--- a/src/HOL/TPTP/TPTP_Parser/tptp_lexyacc.ML Tue Sep 03 21:46:41 2013 +0100
+++ b/src/HOL/TPTP/TPTP_Parser/tptp_lexyacc.ML Tue Sep 03 21:46:41 2013 +0100
@@ -1484,94 +1484,96 @@
local open LrTable in
val table=let val actionRows =
"\
-\\001\000\001\000\052\002\002\000\052\002\004\000\069\002\005\000\052\002\
-\\006\000\052\002\009\000\052\002\010\000\052\002\011\000\052\002\
-\\012\000\052\002\019\000\052\002\020\000\052\002\021\000\052\002\
-\\022\000\052\002\026\000\052\002\027\000\052\002\037\000\052\002\
-\\059\000\052\002\060\000\052\002\000\000\
-\\001\000\001\000\055\002\002\000\055\002\004\000\070\002\005\000\055\002\
-\\006\000\055\002\009\000\055\002\010\000\055\002\011\000\055\002\
-\\012\000\055\002\019\000\055\002\020\000\055\002\021\000\055\002\
-\\022\000\055\002\026\000\055\002\027\000\055\002\037\000\055\002\
-\\059\000\055\002\060\000\055\002\000\000\
-\\001\000\001\000\219\002\005\000\219\002\006\000\234\002\010\000\219\002\
-\\011\000\219\002\012\000\219\002\019\000\219\002\020\000\234\002\
-\\021\000\219\002\022\000\219\002\026\000\219\002\027\000\219\002\
-\\037\000\219\002\000\000\
-\\001\000\001\000\222\002\005\000\222\002\006\000\245\002\010\000\222\002\
-\\011\000\222\002\012\000\222\002\019\000\222\002\020\000\245\002\
-\\021\000\222\002\022\000\222\002\026\000\222\002\027\000\222\002\
-\\037\000\222\002\000\000\
-\\001\000\001\000\229\002\005\000\229\002\006\000\236\002\010\000\229\002\
-\\011\000\229\002\012\000\229\002\019\000\229\002\020\000\236\002\
-\\021\000\229\002\022\000\229\002\026\000\229\002\027\000\229\002\
-\\037\000\229\002\000\000\
-\\001\000\001\000\239\002\004\000\130\002\005\000\239\002\006\000\239\002\
-\\010\000\239\002\011\000\239\002\012\000\239\002\016\000\222\000\
-\\019\000\239\002\020\000\239\002\021\000\239\002\022\000\239\002\
-\\027\000\239\002\037\000\239\002\000\000\
-\\001\000\001\000\252\002\004\000\131\002\005\000\252\002\006\000\252\002\
-\\010\000\252\002\011\000\252\002\012\000\252\002\016\000\217\000\
-\\019\000\252\002\020\000\252\002\021\000\252\002\022\000\252\002\
-\\027\000\252\002\037\000\252\002\000\000\
-\\001\000\001\000\211\000\003\000\210\000\006\000\209\000\007\000\124\000\
-\\010\000\208\000\011\000\207\000\012\000\206\000\013\000\035\000\
-\\015\000\205\000\016\000\204\000\019\000\203\000\020\000\202\000\
-\\021\000\201\000\022\000\200\000\025\000\121\000\028\000\120\000\
-\\037\000\199\000\044\000\101\000\045\000\100\000\046\000\034\000\
+\\001\000\001\000\077\002\002\000\077\002\004\000\096\002\005\000\077\002\
+\\006\000\077\002\009\000\077\002\010\000\077\002\011\000\077\002\
+\\012\000\077\002\019\000\077\002\020\000\077\002\021\000\077\002\
+\\022\000\077\002\026\000\077\002\027\000\077\002\037\000\077\002\
+\\059\000\077\002\060\000\077\002\000\000\
+\\001\000\001\000\080\002\002\000\080\002\004\000\097\002\005\000\080\002\
+\\006\000\080\002\009\000\080\002\010\000\080\002\011\000\080\002\
+\\012\000\080\002\019\000\080\002\020\000\080\002\021\000\080\002\
+\\022\000\080\002\026\000\080\002\027\000\080\002\037\000\080\002\
+\\059\000\080\002\060\000\080\002\000\000\
+\\001\000\001\000\250\002\005\000\250\002\006\000\009\003\010\000\250\002\
+\\011\000\250\002\012\000\250\002\019\000\250\002\020\000\009\003\
+\\021\000\250\002\022\000\250\002\026\000\250\002\027\000\250\002\
+\\037\000\250\002\000\000\
+\\001\000\001\000\253\002\005\000\253\002\006\000\020\003\010\000\253\002\
+\\011\000\253\002\012\000\253\002\019\000\253\002\020\000\020\003\
+\\021\000\253\002\022\000\253\002\026\000\253\002\027\000\253\002\
+\\037\000\253\002\000\000\
+\\001\000\001\000\004\003\005\000\004\003\006\000\011\003\010\000\004\003\
+\\011\000\004\003\012\000\004\003\019\000\004\003\020\000\011\003\
+\\021\000\004\003\022\000\004\003\026\000\004\003\027\000\004\003\
+\\037\000\004\003\000\000\
+\\001\000\001\000\014\003\004\000\161\002\005\000\014\003\006\000\014\003\
+\\010\000\014\003\011\000\014\003\012\000\014\003\016\000\223\000\
+\\019\000\014\003\020\000\014\003\021\000\014\003\022\000\014\003\
+\\027\000\014\003\037\000\014\003\000\000\
+\\001\000\001\000\027\003\004\000\162\002\005\000\027\003\006\000\027\003\
+\\010\000\027\003\011\000\027\003\012\000\027\003\016\000\218\000\
+\\019\000\027\003\020\000\027\003\021\000\027\003\022\000\027\003\
+\\027\000\027\003\037\000\027\003\000\000\
+\\001\000\001\000\212\000\003\000\211\000\006\000\210\000\007\000\124\000\
+\\010\000\209\000\011\000\208\000\012\000\207\000\013\000\035\000\
+\\015\000\206\000\016\000\205\000\019\000\204\000\020\000\203\000\
+\\021\000\202\000\022\000\201\000\025\000\121\000\028\000\120\000\
+\\037\000\200\000\044\000\101\000\045\000\100\000\046\000\034\000\
\\047\000\033\000\049\000\032\000\050\000\099\000\051\000\031\000\
-\\053\000\098\000\055\000\198\000\056\000\197\000\057\000\196\000\
-\\058\000\195\000\062\000\194\000\063\000\193\000\064\000\097\000\
+\\053\000\098\000\055\000\199\000\056\000\198\000\057\000\197\000\
+\\058\000\196\000\062\000\195\000\063\000\194\000\064\000\097\000\
\\065\000\096\000\068\000\030\000\069\000\029\000\070\000\028\000\
-\\071\000\027\000\072\000\192\000\073\000\095\000\074\000\191\000\
-\\076\000\094\000\077\000\093\000\000\000\
-\\001\000\001\000\211\000\003\000\210\000\006\000\209\000\007\000\124\000\
-\\010\000\208\000\011\000\207\000\012\000\206\000\013\000\035\000\
-\\016\000\033\001\019\000\203\000\020\000\202\000\021\000\201\000\
-\\022\000\200\000\025\000\121\000\026\000\032\001\028\000\120\000\
-\\037\000\199\000\044\000\101\000\045\000\100\000\046\000\034\000\
+\\071\000\027\000\072\000\193\000\073\000\095\000\074\000\192\000\
+\\075\000\191\000\076\000\094\000\077\000\093\000\000\000\
+\\001\000\001\000\212\000\003\000\211\000\006\000\210\000\007\000\124\000\
+\\010\000\209\000\011\000\208\000\012\000\207\000\013\000\035\000\
+\\016\000\035\001\019\000\204\000\020\000\203\000\021\000\202\000\
+\\022\000\201\000\025\000\121\000\026\000\034\001\028\000\120\000\
+\\037\000\200\000\044\000\101\000\045\000\100\000\046\000\034\000\
\\047\000\033\000\049\000\032\000\050\000\099\000\051\000\031\000\
-\\053\000\098\000\055\000\198\000\056\000\197\000\057\000\196\000\
-\\058\000\195\000\062\000\194\000\063\000\193\000\064\000\097\000\
+\\053\000\098\000\055\000\199\000\056\000\198\000\057\000\197\000\
+\\058\000\196\000\062\000\195\000\063\000\194\000\064\000\097\000\
\\065\000\096\000\068\000\030\000\069\000\029\000\070\000\028\000\
-\\071\000\027\000\072\000\192\000\073\000\095\000\074\000\191\000\
-\\076\000\094\000\077\000\093\000\000\000\
-\\001\000\001\000\211\000\003\000\210\000\006\000\209\000\007\000\124\000\
-\\010\000\208\000\011\000\207\000\012\000\206\000\013\000\035\000\
-\\016\000\033\001\019\000\203\000\020\000\202\000\021\000\201\000\
-\\022\000\200\000\025\000\121\000\028\000\120\000\037\000\199\000\
+\\071\000\027\000\072\000\193\000\073\000\095\000\074\000\192\000\
+\\075\000\191\000\076\000\094\000\077\000\093\000\000\000\
+\\001\000\001\000\212\000\003\000\211\000\006\000\210\000\007\000\124\000\
+\\010\000\209\000\011\000\208\000\012\000\207\000\013\000\035\000\
+\\016\000\035\001\019\000\204\000\020\000\203\000\021\000\202\000\
+\\022\000\201\000\025\000\121\000\028\000\120\000\037\000\200\000\
\\044\000\101\000\045\000\100\000\046\000\034\000\047\000\033\000\
\\049\000\032\000\050\000\099\000\051\000\031\000\053\000\098\000\
-\\055\000\198\000\056\000\197\000\057\000\196\000\058\000\195\000\
-\\062\000\194\000\063\000\193\000\064\000\097\000\065\000\096\000\
+\\055\000\199\000\056\000\198\000\057\000\197\000\058\000\196\000\
+\\062\000\195\000\063\000\194\000\064\000\097\000\065\000\096\000\
\\068\000\030\000\069\000\029\000\070\000\028\000\071\000\027\000\
-\\072\000\192\000\073\000\095\000\074\000\191\000\076\000\094\000\
-\\077\000\093\000\000\000\
-\\001\000\001\000\211\000\003\000\210\000\006\000\209\000\007\000\124\000\
-\\010\000\208\000\011\000\207\000\012\000\206\000\013\000\035\000\
-\\016\000\110\001\019\000\203\000\020\000\202\000\021\000\201\000\
-\\022\000\200\000\025\000\121\000\028\000\120\000\037\000\199\000\
+\\072\000\193\000\073\000\095\000\074\000\192\000\075\000\191\000\
+\\076\000\094\000\077\000\093\000\000\000\
+\\001\000\001\000\212\000\003\000\211\000\006\000\210\000\007\000\124\000\
+\\010\000\209\000\011\000\208\000\012\000\207\000\013\000\035\000\
+\\016\000\116\001\019\000\204\000\020\000\203\000\021\000\202\000\
+\\022\000\201\000\025\000\121\000\028\000\120\000\037\000\200\000\
\\044\000\101\000\045\000\100\000\046\000\034\000\047\000\033\000\
\\049\000\032\000\050\000\099\000\051\000\031\000\053\000\098\000\
-\\055\000\198\000\056\000\197\000\057\000\196\000\058\000\195\000\
-\\062\000\194\000\063\000\193\000\064\000\097\000\065\000\096\000\
+\\055\000\199\000\056\000\198\000\057\000\197\000\058\000\196\000\
+\\062\000\195\000\063\000\194\000\064\000\097\000\065\000\096\000\
\\068\000\030\000\069\000\029\000\070\000\028\000\071\000\027\000\
-\\072\000\192\000\073\000\095\000\074\000\191\000\076\000\094\000\
-\\077\000\093\000\000\000\
-\\001\000\001\000\015\001\002\000\014\001\005\000\034\002\006\000\209\000\
-\\009\000\073\002\010\000\208\000\011\000\207\000\012\000\206\000\
-\\019\000\203\000\020\000\202\000\021\000\201\000\022\000\200\000\
-\\026\000\034\002\027\000\034\002\037\000\013\001\059\000\073\002\
-\\060\000\073\002\000\000\
-\\001\000\003\000\210\000\007\000\124\000\025\000\121\000\055\000\198\000\
-\\056\000\197\000\062\000\194\000\063\000\193\000\000\000\
-\\001\000\004\000\250\000\000\000\
-\\001\000\004\000\016\001\000\000\
-\\001\000\004\000\205\001\000\000\
-\\001\000\004\000\217\001\000\000\
-\\001\000\004\000\224\001\000\000\
-\\001\000\004\000\255\001\000\000\
-\\001\000\005\000\132\002\009\000\139\002\027\000\132\002\000\000\
+\\072\000\193\000\073\000\095\000\074\000\192\000\075\000\191\000\
+\\076\000\094\000\077\000\093\000\000\000\
+\\001\000\001\000\016\001\002\000\015\001\005\000\059\002\006\000\210\000\
+\\009\000\100\002\010\000\209\000\011\000\208\000\012\000\207\000\
+\\019\000\204\000\020\000\203\000\021\000\202\000\022\000\201\000\
+\\026\000\059\002\027\000\059\002\037\000\014\001\059\000\100\002\
+\\060\000\100\002\000\000\
+\\001\000\003\000\211\000\007\000\124\000\025\000\121\000\055\000\199\000\
+\\056\000\198\000\062\000\195\000\063\000\194\000\000\000\
+\\001\000\004\000\251\000\000\000\
+\\001\000\004\000\017\001\000\000\
+\\001\000\004\000\222\001\000\000\
+\\001\000\004\000\234\001\000\000\
+\\001\000\004\000\241\001\000\000\
+\\001\000\004\000\018\002\000\000\
+\\001\000\004\000\019\002\000\000\
+\\001\000\004\000\022\002\000\000\
+\\001\000\005\000\163\002\009\000\170\002\027\000\163\002\000\000\
\\001\000\005\000\041\000\000\000\
\\001\000\005\000\042\000\000\000\
\\001\000\005\000\043\000\000\000\
@@ -1580,19 +1582,21 @@
\\001\000\005\000\055\000\000\000\
\\001\000\005\000\056\000\000\000\
\\001\000\005\000\057\000\000\000\
-\\001\000\005\000\158\001\000\000\
-\\001\000\005\000\159\001\000\000\
-\\001\000\005\000\160\001\000\000\
-\\001\000\005\000\177\001\000\000\
-\\001\000\005\000\178\001\000\000\
-\\001\000\005\000\179\001\000\000\
-\\001\000\005\000\187\001\000\000\
-\\001\000\005\000\188\001\000\000\
-\\001\000\005\000\238\001\000\000\
-\\001\000\005\000\249\001\000\000\
-\\001\000\005\000\252\001\000\000\
-\\001\000\006\000\209\000\000\000\
-\\001\000\006\000\209\000\020\000\202\000\000\000\
+\\001\000\005\000\166\001\000\000\
+\\001\000\005\000\169\001\000\000\
+\\001\000\005\000\172\001\000\000\
+\\001\000\005\000\189\001\000\000\
+\\001\000\005\000\190\001\000\000\
+\\001\000\005\000\191\001\000\000\
+\\001\000\005\000\199\001\000\000\
+\\001\000\005\000\200\001\000\000\
+\\001\000\005\000\201\001\000\000\
+\\001\000\005\000\002\002\000\000\
+\\001\000\005\000\013\002\000\000\
+\\001\000\005\000\017\002\000\000\
+\\001\000\006\000\210\000\000\000\
+\\001\000\006\000\210\000\020\000\203\000\000\000\
+\\001\000\006\000\167\001\000\000\
\\001\000\007\000\124\000\013\000\035\000\015\000\123\000\016\000\122\000\
\\025\000\121\000\028\000\120\000\044\000\101\000\045\000\100\000\
\\046\000\034\000\047\000\033\000\049\000\032\000\050\000\099\000\
@@ -1606,64 +1610,74 @@
\\068\000\030\000\069\000\029\000\070\000\028\000\071\000\027\000\
\\072\000\149\000\073\000\095\000\074\000\148\000\075\000\147\000\
\\076\000\094\000\077\000\093\000\000\000\
-\\001\000\007\000\124\000\013\000\035\000\016\000\238\000\025\000\121\000\
-\\026\000\243\000\028\000\120\000\044\000\101\000\045\000\100\000\
+\\001\000\007\000\124\000\013\000\035\000\016\000\239\000\025\000\121\000\
+\\026\000\244\000\028\000\120\000\044\000\101\000\045\000\100\000\
\\046\000\034\000\047\000\033\000\049\000\032\000\050\000\099\000\
\\051\000\031\000\053\000\098\000\064\000\097\000\065\000\096\000\
\\068\000\030\000\069\000\029\000\070\000\028\000\071\000\027\000\
\\073\000\095\000\076\000\094\000\077\000\093\000\000\000\
-\\001\000\007\000\124\000\013\000\035\000\016\000\238\000\025\000\121\000\
+\\001\000\007\000\124\000\013\000\035\000\016\000\239\000\025\000\121\000\
\\028\000\120\000\044\000\101\000\045\000\100\000\046\000\034\000\
\\047\000\033\000\049\000\032\000\050\000\099\000\051\000\031\000\
\\053\000\098\000\064\000\097\000\065\000\096\000\068\000\030\000\
\\069\000\029\000\070\000\028\000\071\000\027\000\073\000\095\000\
\\076\000\094\000\077\000\093\000\000\000\
-\\001\000\007\000\124\000\013\000\035\000\016\000\254\000\025\000\121\000\
-\\026\000\007\001\028\000\120\000\044\000\101\000\045\000\100\000\
+\\001\000\007\000\124\000\013\000\035\000\016\000\255\000\025\000\121\000\
+\\026\000\008\001\028\000\120\000\044\000\101\000\045\000\100\000\
\\046\000\034\000\047\000\033\000\049\000\032\000\050\000\099\000\
\\051\000\031\000\053\000\098\000\064\000\097\000\065\000\096\000\
\\068\000\030\000\069\000\029\000\070\000\028\000\071\000\027\000\
\\072\000\149\000\073\000\095\000\074\000\148\000\075\000\147\000\
\\076\000\094\000\077\000\093\000\000\000\
-\\001\000\007\000\124\000\013\000\035\000\016\000\254\000\025\000\121\000\
+\\001\000\007\000\124\000\013\000\035\000\016\000\255\000\025\000\121\000\
\\028\000\120\000\044\000\101\000\045\000\100\000\046\000\034\000\
\\047\000\033\000\049\000\032\000\050\000\099\000\051\000\031\000\
\\053\000\098\000\064\000\097\000\065\000\096\000\068\000\030\000\
\\069\000\029\000\070\000\028\000\071\000\027\000\072\000\149\000\
\\073\000\095\000\074\000\148\000\075\000\147\000\076\000\094\000\
\\077\000\093\000\000\000\
-\\001\000\007\000\124\000\025\000\121\000\000\000\
-\\001\000\009\000\140\002\027\000\151\002\060\000\151\002\000\000\
-\\001\000\009\000\019\001\059\000\018\001\060\000\017\001\000\000\
-\\001\000\009\000\166\001\000\000\
-\\001\000\013\000\035\000\015\000\050\001\026\000\153\001\039\000\049\001\
-\\040\000\048\001\041\000\047\001\042\000\046\001\043\000\045\001\
+\\001\000\007\000\063\001\013\000\035\000\044\000\101\000\045\000\100\000\
+\\046\000\034\000\047\000\033\000\049\000\032\000\050\000\099\000\
+\\051\000\031\000\053\000\098\000\064\000\097\000\065\000\096\000\
+\\068\000\030\000\069\000\029\000\070\000\028\000\071\000\027\000\
+\\073\000\095\000\076\000\094\000\077\000\093\000\000\000\
+\\001\000\007\000\067\001\013\000\035\000\044\000\101\000\045\000\100\000\
+\\046\000\034\000\047\000\033\000\049\000\032\000\050\000\099\000\
+\\051\000\031\000\053\000\098\000\064\000\097\000\065\000\096\000\
+\\068\000\030\000\069\000\029\000\070\000\028\000\071\000\027\000\
+\\073\000\095\000\076\000\094\000\077\000\093\000\000\000\
+\\001\000\009\000\171\002\027\000\182\002\060\000\182\002\000\000\
+\\001\000\009\000\020\001\059\000\019\001\060\000\018\001\000\000\
+\\001\000\009\000\178\001\000\000\
+\\001\000\011\000\170\001\000\000\
+\\001\000\013\000\035\000\015\000\052\001\026\000\161\001\039\000\051\001\
+\\040\000\050\001\041\000\049\001\042\000\048\001\043\000\047\001\
\\044\000\101\000\045\000\100\000\046\000\034\000\047\000\033\000\
-\\049\000\032\000\050\000\099\000\051\000\031\000\053\000\044\001\
+\\049\000\032\000\050\000\099\000\051\000\031\000\053\000\046\001\
\\068\000\030\000\069\000\029\000\070\000\028\000\071\000\027\000\000\000\
-\\001\000\013\000\035\000\015\000\050\001\039\000\049\001\040\000\048\001\
-\\041\000\047\001\042\000\046\001\043\000\045\001\044\000\101\000\
+\\001\000\013\000\035\000\015\000\052\001\039\000\051\001\040\000\050\001\
+\\041\000\049\001\042\000\048\001\043\000\047\001\044\000\101\000\
\\045\000\100\000\046\000\034\000\047\000\033\000\049\000\032\000\
-\\050\000\099\000\051\000\031\000\053\000\044\001\068\000\030\000\
+\\050\000\099\000\051\000\031\000\053\000\046\001\068\000\030\000\
\\069\000\029\000\070\000\028\000\071\000\027\000\000\000\
\\001\000\013\000\035\000\016\000\103\000\028\000\102\000\044\000\101\000\
\\045\000\100\000\046\000\034\000\047\000\033\000\049\000\032\000\
\\050\000\099\000\051\000\031\000\053\000\098\000\064\000\097\000\
\\065\000\096\000\068\000\030\000\069\000\029\000\070\000\028\000\
\\071\000\027\000\073\000\095\000\076\000\094\000\077\000\093\000\000\000\
-\\001\000\013\000\035\000\016\000\093\001\049\000\032\000\050\000\099\000\
-\\051\000\031\000\063\000\092\001\064\000\097\000\068\000\030\000\
+\\001\000\013\000\035\000\016\000\099\001\049\000\032\000\050\000\099\000\
+\\051\000\031\000\063\000\098\001\064\000\097\000\068\000\030\000\
\\069\000\029\000\070\000\028\000\071\000\027\000\000\000\
-\\001\000\013\000\035\000\016\000\173\001\049\000\032\000\050\000\099\000\
-\\051\000\031\000\063\000\092\001\064\000\097\000\068\000\030\000\
+\\001\000\013\000\035\000\016\000\185\001\049\000\032\000\050\000\099\000\
+\\051\000\031\000\063\000\098\001\064\000\097\000\068\000\030\000\
\\069\000\029\000\070\000\028\000\071\000\027\000\000\000\
-\\001\000\013\000\035\000\016\000\005\002\049\000\032\000\050\000\099\000\
+\\001\000\013\000\035\000\016\000\030\002\049\000\032\000\050\000\099\000\
\\051\000\031\000\064\000\097\000\068\000\030\000\069\000\029\000\
\\070\000\028\000\071\000\027\000\000\000\
-\\001\000\013\000\035\000\016\000\010\002\049\000\032\000\050\000\099\000\
+\\001\000\013\000\035\000\016\000\035\002\049\000\032\000\050\000\099\000\
\\051\000\031\000\064\000\097\000\068\000\030\000\069\000\029\000\
\\070\000\028\000\071\000\027\000\000\000\
-\\001\000\013\000\035\000\016\000\012\002\049\000\032\000\050\000\099\000\
+\\001\000\013\000\035\000\016\000\037\002\049\000\032\000\050\000\099\000\
\\051\000\031\000\064\000\097\000\068\000\030\000\069\000\029\000\
\\070\000\028\000\071\000\027\000\000\000\
\\001\000\013\000\035\000\028\000\102\000\044\000\101\000\045\000\100\000\
@@ -1687,119 +1701,101 @@
\\001\000\015\000\053\000\000\000\
\\001\000\015\000\123\000\000\000\
\\001\000\015\000\151\000\000\000\
-\\001\000\015\000\205\000\000\000\
-\\001\000\015\000\236\000\000\000\
-\\001\000\015\000\252\000\000\000\
-\\001\000\015\000\023\001\000\000\
-\\001\000\015\000\050\001\000\000\
+\\001\000\015\000\206\000\000\000\
+\\001\000\015\000\237\000\000\000\
+\\001\000\015\000\253\000\000\000\
+\\001\000\015\000\024\001\000\000\
+\\001\000\015\000\052\001\000\000\
\\001\000\015\000\168\001\000\000\
+\\001\000\015\000\171\001\000\000\
+\\001\000\015\000\180\001\000\000\
\\001\000\016\000\018\000\000\000\
\\001\000\016\000\019\000\000\000\
\\001\000\016\000\020\000\000\000\
\\001\000\016\000\021\000\000\000\
\\001\000\016\000\023\000\000\000\
-\\001\000\016\000\223\000\000\000\
\\001\000\016\000\224\000\000\000\
\\001\000\016\000\225\000\000\000\
-\\001\000\016\000\255\000\000\000\
+\\001\000\016\000\226\000\000\000\
\\001\000\016\000\000\001\000\000\
\\001\000\016\000\001\001\000\000\
-\\001\000\016\000\026\001\000\000\
+\\001\000\016\000\002\001\000\000\
\\001\000\016\000\027\001\000\000\
-\\001\000\016\000\146\001\000\000\
-\\001\000\016\000\147\001\000\000\
-\\001\000\016\000\148\001\000\000\
-\\001\000\016\000\149\001\000\000\
-\\001\000\016\000\150\001\000\000\
+\\001\000\016\000\028\001\000\000\
+\\001\000\016\000\029\001\000\000\
+\\001\000\016\000\154\001\000\000\
+\\001\000\016\000\155\001\000\000\
+\\001\000\016\000\156\001\000\000\
+\\001\000\016\000\157\001\000\000\
+\\001\000\016\000\158\001\000\000\
\\001\000\023\000\058\000\000\000\
-\\001\000\023\000\141\001\000\000\
-\\001\000\023\000\161\001\000\000\
-\\001\000\023\000\165\001\000\000\
-\\001\000\023\000\181\001\000\000\
-\\001\000\026\000\212\000\000\000\
-\\001\000\026\000\076\001\000\000\
-\\001\000\026\000\106\001\000\000\
-\\001\000\026\000\140\001\000\000\
-\\001\000\026\000\162\001\000\000\
+\\001\000\023\000\149\001\000\000\
+\\001\000\023\000\173\001\000\000\
+\\001\000\023\000\177\001\000\000\
+\\001\000\023\000\193\001\000\000\
+\\001\000\026\000\213\000\000\000\
+\\001\000\026\000\082\001\000\000\
+\\001\000\026\000\112\001\000\000\
+\\001\000\026\000\148\001\000\000\
\\001\000\026\000\174\001\000\000\
-\\001\000\026\000\183\001\000\000\
-\\001\000\026\000\200\001\000\000\
-\\001\000\026\000\242\001\000\000\
+\\001\000\026\000\186\001\000\000\
+\\001\000\026\000\195\001\000\000\
+\\001\000\026\000\213\001\000\000\
+\\001\000\026\000\255\001\000\000\
+\\001\000\026\000\001\002\000\000\
+\\001\000\026\000\006\002\000\000\
\\001\000\027\000\052\000\000\000\
-\\001\000\027\000\035\001\000\000\
-\\001\000\027\000\063\001\037\000\216\000\000\000\
-\\001\000\027\000\064\001\000\000\
-\\001\000\027\000\073\001\000\000\
-\\001\000\027\000\074\001\000\000\
-\\001\000\027\000\077\001\000\000\
-\\001\000\027\000\102\001\000\000\
-\\001\000\027\000\103\001\000\000\
-\\001\000\027\000\104\001\000\000\
-\\001\000\027\000\107\001\000\000\
-\\001\000\027\000\137\001\000\000\
-\\001\000\027\000\138\001\000\000\
-\\001\000\027\000\154\001\000\000\
-\\001\000\027\000\156\001\000\000\
-\\001\000\027\000\157\001\000\000\
-\\001\000\027\000\186\001\000\000\
-\\001\000\027\000\211\001\000\000\
-\\001\000\027\000\213\001\000\000\
-\\001\000\027\000\215\001\060\000\214\001\000\000\
-\\001\000\027\000\223\001\000\000\
-\\001\000\027\000\229\001\000\000\
+\\001\000\027\000\037\001\000\000\
+\\001\000\027\000\069\001\037\000\217\000\000\000\
+\\001\000\027\000\070\001\000\000\
+\\001\000\027\000\079\001\000\000\
+\\001\000\027\000\080\001\000\000\
+\\001\000\027\000\083\001\000\000\
+\\001\000\027\000\108\001\000\000\
+\\001\000\027\000\109\001\000\000\
+\\001\000\027\000\110\001\000\000\
+\\001\000\027\000\113\001\000\000\
+\\001\000\027\000\145\001\000\000\
+\\001\000\027\000\146\001\000\000\
+\\001\000\027\000\162\001\000\000\
+\\001\000\027\000\164\001\000\000\
+\\001\000\027\000\165\001\000\000\
+\\001\000\027\000\198\001\000\000\
+\\001\000\027\000\228\001\000\000\
\\001\000\027\000\230\001\000\000\
-\\001\000\027\000\231\001\000\000\
-\\001\000\027\000\232\001\000\000\
-\\001\000\027\000\233\001\000\000\
-\\001\000\027\000\234\001\000\000\
-\\001\000\027\000\236\001\000\000\
-\\001\000\027\000\237\001\000\000\
+\\001\000\027\000\232\001\060\000\231\001\000\000\
\\001\000\027\000\240\001\000\000\
-\\001\000\027\000\245\001\060\000\214\001\000\000\
\\001\000\027\000\247\001\000\000\
\\001\000\027\000\248\001\000\000\
+\\001\000\027\000\249\001\000\000\
+\\001\000\027\000\250\001\000\000\
\\001\000\027\000\251\001\000\000\
-\\001\000\027\000\002\002\000\000\
-\\001\000\027\000\006\002\000\000\
-\\001\000\027\000\007\002\000\000\
+\\001\000\027\000\252\001\000\000\
+\\001\000\027\000\254\001\000\000\
+\\001\000\027\000\000\002\000\000\
+\\001\000\027\000\004\002\000\000\
+\\001\000\027\000\009\002\060\000\231\001\000\000\
\\001\000\027\000\011\002\000\000\
+\\001\000\027\000\012\002\000\000\
+\\001\000\027\000\015\002\000\000\
+\\001\000\027\000\016\002\000\000\
+\\001\000\027\000\027\002\000\000\
+\\001\000\027\000\031\002\000\000\
+\\001\000\027\000\032\002\000\000\
+\\001\000\027\000\036\002\000\000\
\\001\000\038\000\000\000\000\000\
\\001\000\049\000\040\000\000\000\
\\001\000\050\000\099\000\000\000\
\\001\000\051\000\048\000\000\000\
-\\001\000\061\000\235\000\000\000\
-\\001\000\061\000\251\000\000\000\
-\\001\000\061\000\022\001\000\000\
-\\014\002\000\000\
-\\015\002\000\000\
-\\016\002\000\000\
-\\017\002\013\000\016\000\052\000\015\000\068\000\014\000\069\000\013\000\
-\\070\000\012\000\071\000\011\000\000\000\
-\\018\002\000\000\
-\\019\002\000\000\
-\\020\002\000\000\
-\\021\002\000\000\
-\\022\002\000\000\
-\\023\002\000\000\
-\\024\002\000\000\
-\\025\002\000\000\
-\\026\002\000\000\
-\\027\002\000\000\
-\\028\002\000\000\
-\\029\002\005\000\215\000\000\000\
-\\030\002\000\000\
-\\031\002\000\000\
-\\032\002\000\000\
-\\033\002\000\000\
-\\035\002\000\000\
-\\036\002\000\000\
-\\037\002\000\000\
-\\038\002\000\000\
+\\001\000\061\000\236\000\000\000\
+\\001\000\061\000\252\000\000\000\
+\\001\000\061\000\023\001\000\000\
\\039\002\000\000\
\\040\002\000\000\
-\\041\002\037\000\009\001\000\000\
-\\042\002\001\000\010\001\000\000\
-\\043\002\002\000\011\001\000\000\
+\\041\002\000\000\
+\\042\002\013\000\016\000\052\000\015\000\068\000\014\000\069\000\013\000\
+\\070\000\012\000\071\000\011\000\000\000\
+\\043\002\000\000\
\\044\002\000\000\
\\045\002\000\000\
\\046\002\000\000\
@@ -1810,141 +1806,140 @@
\\051\002\000\000\
\\052\002\000\000\
\\053\002\000\000\
-\\054\002\000\000\
+\\054\002\005\000\216\000\000\000\
\\055\002\000\000\
\\056\002\000\000\
-\\057\002\005\000\184\001\000\000\
+\\057\002\000\000\
\\058\002\000\000\
-\\059\002\000\000\
-\\060\002\004\000\185\001\000\000\
+\\060\002\000\000\
\\061\002\000\000\
\\062\002\000\000\
\\063\002\000\000\
\\064\002\000\000\
\\065\002\000\000\
-\\066\002\000\000\
-\\067\002\000\000\
-\\068\002\000\000\
+\\066\002\037\000\010\001\000\000\
+\\067\002\001\000\011\001\000\000\
+\\068\002\002\000\012\001\000\000\
+\\069\002\000\000\
+\\070\002\000\000\
\\071\002\000\000\
\\072\002\000\000\
\\073\002\000\000\
\\074\002\000\000\
-\\075\002\060\000\020\001\000\000\
-\\076\002\059\000\021\001\000\000\
-\\077\002\009\000\019\001\000\000\
+\\075\002\000\000\
+\\076\002\000\000\
+\\077\002\000\000\
\\078\002\000\000\
\\079\002\000\000\
\\080\002\000\000\
\\081\002\000\000\
-\\082\002\000\000\
+\\082\002\005\000\196\001\000\000\
\\083\002\000\000\
\\084\002\000\000\
-\\085\002\000\000\
+\\085\002\004\000\197\001\000\000\
\\086\002\000\000\
-\\087\002\005\000\139\001\000\000\
+\\087\002\000\000\
\\088\002\000\000\
\\089\002\000\000\
\\090\002\000\000\
\\091\002\000\000\
\\092\002\000\000\
-\\093\002\001\000\249\000\010\000\208\000\011\000\207\000\012\000\206\000\
-\\019\000\203\000\021\000\201\000\022\000\200\000\037\000\248\000\000\000\
+\\093\002\000\000\
\\094\002\000\000\
\\095\002\000\000\
-\\096\002\000\000\
-\\097\002\037\000\245\000\000\000\
-\\098\002\001\000\246\000\000\000\
+\\098\002\000\000\
\\099\002\000\000\
\\100\002\000\000\
\\101\002\000\000\
-\\102\002\000\000\
-\\103\002\000\000\
-\\104\002\000\000\
+\\102\002\060\000\021\001\000\000\
+\\103\002\059\000\022\001\000\000\
+\\104\002\009\000\020\001\000\000\
\\105\002\000\000\
\\106\002\000\000\
\\107\002\000\000\
\\108\002\000\000\
\\109\002\000\000\
-\\110\002\005\000\175\001\000\000\
+\\110\002\000\000\
\\111\002\000\000\
\\112\002\000\000\
-\\113\002\004\000\176\001\000\000\
-\\114\002\000\000\
+\\113\002\000\000\
+\\114\002\005\000\147\001\000\000\
\\115\002\000\000\
\\116\002\000\000\
\\117\002\000\000\
\\118\002\000\000\
\\119\002\000\000\
-\\120\002\000\000\
+\\120\002\001\000\250\000\010\000\209\000\011\000\208\000\012\000\207\000\
+\\019\000\204\000\021\000\202\000\022\000\201\000\037\000\249\000\000\000\
\\121\002\000\000\
\\122\002\000\000\
\\123\002\000\000\
-\\124\002\000\000\
-\\125\002\000\000\
+\\124\002\037\000\246\000\000\000\
+\\125\002\001\000\247\000\000\000\
\\126\002\000\000\
-\\127\002\005\000\105\001\000\000\
+\\127\002\000\000\
\\128\002\000\000\
\\129\002\000\000\
+\\130\002\000\000\
+\\131\002\000\000\
+\\132\002\000\000\
\\133\002\000\000\
\\134\002\000\000\
\\135\002\000\000\
\\136\002\000\000\
-\\137\002\000\000\
+\\137\002\005\000\187\001\000\000\
\\138\002\000\000\
\\139\002\000\000\
-\\139\002\060\000\212\001\000\000\
-\\140\002\000\000\
-\\141\002\016\000\167\001\000\000\
+\\140\002\004\000\188\001\000\000\
+\\141\002\000\000\
\\142\002\000\000\
\\143\002\000\000\
\\144\002\000\000\
-\\145\002\005\000\241\001\000\000\
+\\145\002\000\000\
\\146\002\000\000\
\\147\002\000\000\
\\148\002\000\000\
\\149\002\000\000\
\\150\002\000\000\
+\\151\002\000\000\
\\152\002\000\000\
\\153\002\000\000\
\\154\002\000\000\
-\\155\002\001\000\234\000\010\000\208\000\011\000\207\000\012\000\206\000\
-\\019\000\203\000\021\000\201\000\022\000\200\000\037\000\233\000\000\000\
+\\155\002\000\000\
\\156\002\000\000\
\\157\002\000\000\
-\\158\002\000\000\
-\\159\002\037\000\230\000\000\000\
-\\160\002\001\000\231\000\000\000\
-\\161\002\000\000\
-\\162\002\000\000\
-\\163\002\000\000\
+\\158\002\005\000\111\001\000\000\
+\\159\002\000\000\
+\\160\002\000\000\
\\164\002\000\000\
\\165\002\000\000\
\\166\002\000\000\
\\167\002\000\000\
\\168\002\000\000\
\\169\002\000\000\
-\\170\002\005\000\163\001\000\000\
+\\170\002\000\000\
+\\170\002\060\000\229\001\000\000\
\\171\002\000\000\
-\\172\002\000\000\
+\\172\002\016\000\179\001\000\000\
\\173\002\000\000\
\\174\002\000\000\
\\175\002\000\000\
-\\176\002\000\000\
+\\176\002\005\000\005\002\000\000\
\\177\002\000\000\
-\\178\002\005\000\075\001\000\000\
+\\178\002\000\000\
\\179\002\000\000\
\\180\002\000\000\
-\\181\002\037\000\216\000\000\000\
-\\182\002\000\000\
+\\181\002\000\000\
\\183\002\000\000\
\\184\002\000\000\
\\185\002\000\000\
-\\186\002\000\000\
+\\186\002\001\000\235\000\010\000\209\000\011\000\208\000\012\000\207\000\
+\\019\000\204\000\021\000\202\000\022\000\201\000\037\000\234\000\000\000\
\\187\002\000\000\
\\188\002\000\000\
-\\189\002\016\000\024\001\000\000\
-\\190\002\000\000\
-\\191\002\000\000\
+\\189\002\000\000\
+\\190\002\037\000\231\000\000\000\
+\\191\002\001\000\232\000\000\000\
\\192\002\000\000\
\\193\002\000\000\
\\194\002\000\000\
@@ -1954,7 +1949,7 @@
\\198\002\000\000\
\\199\002\000\000\
\\200\002\000\000\
-\\201\002\000\000\
+\\201\002\005\000\175\001\000\000\
\\202\002\000\000\
\\203\002\000\000\
\\204\002\000\000\
@@ -1962,21 +1957,27 @@
\\206\002\000\000\
\\207\002\000\000\
\\208\002\000\000\
-\\209\002\000\000\
+\\209\002\005\000\081\001\000\000\
\\210\002\000\000\
\\211\002\000\000\
-\\212\002\000\000\
+\\212\002\037\000\217\000\000\000\
\\213\002\000\000\
\\214\002\000\000\
+\\215\002\000\000\
\\216\002\000\000\
\\217\002\000\000\
\\218\002\000\000\
-\\220\002\000\000\
+\\219\002\000\000\
+\\220\002\016\000\025\001\000\000\
\\221\002\000\000\
+\\222\002\000\000\
+\\223\002\000\000\
+\\224\002\000\000\
\\225\002\000\000\
\\226\002\000\000\
\\227\002\000\000\
\\228\002\000\000\
+\\229\002\000\000\
\\230\002\000\000\
\\231\002\000\000\
\\232\002\000\000\
@@ -1985,42 +1986,36 @@
\\235\002\000\000\
\\236\002\000\000\
\\237\002\000\000\
-\\237\002\066\000\025\001\000\000\
\\238\002\000\000\
\\239\002\000\000\
-\\239\002\016\000\222\000\000\000\
\\240\002\000\000\
\\241\002\000\000\
\\242\002\000\000\
\\243\002\000\000\
\\244\002\000\000\
\\245\002\000\000\
-\\246\002\000\000\
\\247\002\000\000\
-\\248\002\016\000\218\000\000\000\
+\\248\002\000\000\
\\249\002\000\000\
-\\250\002\000\000\
\\251\002\000\000\
-\\252\002\016\000\217\000\000\000\
-\\253\002\000\000\
-\\254\002\000\000\
-\\255\002\005\000\155\001\000\000\
+\\252\002\000\000\
\\000\003\000\000\
\\001\003\000\000\
\\002\003\000\000\
\\003\003\000\000\
-\\004\003\000\000\
-\\005\003\005\000\145\001\000\000\
+\\005\003\000\000\
\\006\003\000\000\
\\007\003\000\000\
\\008\003\000\000\
-\\009\003\005\000\046\000\000\000\
+\\009\003\000\000\
\\010\003\000\000\
-\\011\003\005\000\213\000\000\000\
-\\012\003\004\000\142\001\000\000\
+\\011\003\000\000\
+\\012\003\000\000\
+\\012\003\066\000\026\001\000\000\
\\013\003\000\000\
\\014\003\000\000\
-\\015\003\016\000\143\001\000\000\
+\\014\003\016\000\223\000\000\000\
+\\015\003\000\000\
\\016\003\000\000\
\\017\003\000\000\
\\018\003\000\000\
@@ -2028,169 +2023,207 @@
\\020\003\000\000\
\\021\003\000\000\
\\022\003\000\000\
-\\023\003\000\000\
+\\023\003\016\000\219\000\000\000\
\\024\003\000\000\
\\025\003\000\000\
\\026\003\000\000\
-\\027\003\000\000\
+\\027\003\016\000\218\000\000\000\
\\028\003\000\000\
\\029\003\000\000\
-\\030\003\005\000\199\001\000\000\
+\\030\003\005\000\163\001\000\000\
\\031\003\000\000\
\\032\003\000\000\
\\033\003\000\000\
\\034\003\000\000\
\\035\003\000\000\
-\\036\003\000\000\
+\\036\003\005\000\153\001\000\000\
\\037\003\000\000\
\\038\003\000\000\
\\039\003\000\000\
-\\040\003\000\000\
+\\040\003\005\000\046\000\000\000\
\\041\003\000\000\
-\\042\003\000\000\
-\\043\003\000\000\
+\\042\003\005\000\214\000\000\000\
+\\043\003\004\000\150\001\000\000\
\\044\003\000\000\
\\045\003\000\000\
-\\046\003\000\000\
+\\046\003\016\000\151\001\000\000\
\\047\003\000\000\
+\\048\003\000\000\
+\\049\003\000\000\
+\\050\003\000\000\
+\\051\003\000\000\
+\\052\003\000\000\
+\\053\003\000\000\
+\\054\003\000\000\
+\\055\003\000\000\
+\\056\003\000\000\
+\\057\003\000\000\
+\\058\003\000\000\
+\\059\003\000\000\
+\\060\003\000\000\
+\\061\003\005\000\212\001\000\000\
+\\062\003\000\000\
+\\063\003\000\000\
+\\064\003\000\000\
+\\065\003\000\000\
+\\066\003\000\000\
+\\067\003\000\000\
+\\068\003\000\000\
+\\069\003\000\000\
+\\070\003\000\000\
+\\071\003\000\000\
+\\072\003\000\000\
+\\073\003\000\000\
+\\074\003\000\000\
+\\075\003\000\000\
+\\076\003\000\000\
+\\077\003\000\000\
+\\078\003\000\000\
\"
val actionRowNumbers =
-"\153\000\150\000\153\000\155\000\
-\\154\000\156\000\157\000\158\000\
-\\159\000\073\000\074\000\075\000\
-\\076\000\153\000\077\000\151\000\
-\\061\000\061\000\061\000\061\000\
-\\152\000\144\000\158\001\157\001\
-\\020\000\164\001\163\001\162\001\
-\\161\001\159\001\160\001\168\001\
-\\169\001\165\001\021\000\022\000\
-\\023\000\135\001\173\001\146\000\
-\\146\000\146\000\146\000\105\000\
-\\064\000\024\000\166\000\025\000\
-\\026\000\027\000\091\000\061\000\
-\\053\000\041\000\042\000\007\000\
-\\133\001\096\000\137\001\123\001\
-\\119\001\101\001\165\000\055\001\
-\\056\001\060\001\058\001\089\001\
-\\090\001\092\001\093\001\091\001\
-\\100\001\098\001\002\000\105\001\
-\\103\001\111\001\112\001\003\000\
-\\116\001\004\000\120\001\122\001\
-\\118\001\040\000\109\001\170\001\
-\\113\001\099\001\110\001\078\000\
-\\079\000\080\000\167\001\166\001\
-\\114\001\124\001\172\001\171\001\
-\\060\000\059\000\165\000\026\001\
-\\028\001\030\001\031\001\033\001\
-\\034\001\029\001\039\001\040\001\
-\\027\001\147\000\047\001\068\000\
-\\044\000\041\001\087\001\078\001\
-\\041\000\043\000\077\001\240\000\
-\\165\000\222\000\225\000\227\000\
-\\228\000\230\000\231\000\226\000\
-\\236\000\237\000\223\000\013\000\
-\\239\000\224\000\148\000\249\000\
-\\069\000\046\000\238\000\006\000\
-\\005\000\081\000\082\000\083\000\
-\\042\000\045\000\165\000\167\000\
-\\169\000\172\000\173\000\176\000\
-\\177\000\178\000\011\000\185\000\
-\\186\000\170\000\014\000\171\000\
-\\049\000\174\000\207\000\208\000\
-\\209\000\000\000\189\000\188\000\
-\\168\000\149\000\199\000\070\000\
-\\061\001\063\001\065\001\073\001\
-\\062\001\074\001\072\001\071\001\
-\\102\001\106\001\115\001\104\001\
-\\198\000\084\000\085\000\067\001\
-\\068\001\076\001\075\001\070\001\
-\\069\001\085\001\083\001\082\001\
-\\097\001\084\001\007\000\008\000\
-\\080\001\079\001\081\001\096\001\
-\\066\001\086\001\134\001\061\000\
-\\106\000\052\000\059\000\060\000\
-\\060\000\060\000\060\000\095\001\
-\\060\000\047\000\047\000\046\000\
-\\059\001\039\000\107\000\108\000\
-\\044\000\044\000\044\000\044\000\
-\\044\000\065\000\145\000\046\001\
-\\044\000\109\000\110\000\052\001\
-\\097\000\050\001\111\000\046\000\
-\\046\000\046\000\046\000\046\000\
-\\054\000\066\000\145\000\248\000\
-\\046\000\047\000\047\000\046\000\
-\\112\000\113\000\114\000\004\001\
-\\098\000\001\001\115\000\010\000\
+"\165\000\162\000\165\000\167\000\
+\\166\000\168\000\169\000\170\000\
+\\171\000\081\000\082\000\083\000\
+\\084\000\165\000\085\000\163\000\
+\\067\000\067\000\067\000\067\000\
+\\164\000\156\000\176\001\175\001\
+\\022\000\182\001\181\001\180\001\
+\\179\001\177\001\178\001\186\001\
+\\187\001\183\001\023\000\024\000\
+\\025\000\153\001\191\001\158\000\
+\\158\000\158\000\158\000\116\000\
+\\070\000\026\000\178\000\027\000\
+\\028\000\029\000\100\000\067\000\
+\\059\000\045\000\046\000\007\000\
+\\151\001\105\000\155\001\141\001\
+\\137\001\119\001\177\000\073\001\
+\\074\001\078\001\076\001\107\001\
+\\108\001\110\001\111\001\109\001\
+\\118\001\116\001\002\000\123\001\
+\\121\001\129\001\130\001\003\000\
+\\134\001\004\000\138\001\140\001\
+\\136\001\043\000\127\001\188\001\
+\\131\001\117\001\128\001\086\000\
+\\087\000\088\000\185\001\184\001\
+\\132\001\142\001\190\001\189\001\
+\\066\000\065\000\177\000\044\001\
+\\046\001\048\001\049\001\051\001\
+\\052\001\047\001\057\001\058\001\
+\\045\001\159\000\065\001\074\000\
+\\048\000\059\001\105\001\096\001\
+\\045\000\047\000\095\001\254\000\
+\\177\000\236\000\239\000\241\000\
+\\242\000\244\000\245\000\240\000\
+\\250\000\251\000\237\000\013\000\
+\\253\000\238\000\160\000\007\001\
+\\075\000\050\000\252\000\006\000\
+\\005\000\089\000\090\000\091\000\
+\\046\000\049\000\177\000\179\000\
+\\181\000\184\000\185\000\188\000\
+\\189\000\190\000\011\000\197\000\
+\\198\000\182\000\014\000\183\000\
+\\054\000\186\000\221\000\222\000\
+\\223\000\000\000\201\000\200\000\
+\\180\000\161\000\211\000\076\000\
+\\079\001\081\001\083\001\091\001\
+\\080\001\092\001\090\001\089\001\
+\\120\001\124\001\133\001\122\001\
+\\210\000\092\000\093\000\094\000\
+\\085\001\086\001\094\001\093\001\
+\\088\001\087\001\103\001\101\001\
+\\100\001\115\001\102\001\007\000\
+\\008\000\098\001\097\001\099\001\
+\\114\001\084\001\104\001\152\001\
+\\067\000\117\000\058\000\065\000\
+\\066\000\066\000\066\000\066\000\
+\\113\001\066\000\051\000\052\000\
+\\050\000\077\001\042\000\118\000\
+\\119\000\048\000\048\000\048\000\
+\\048\000\048\000\071\000\157\000\
+\\064\001\048\000\120\000\121\000\
+\\070\001\106\000\068\001\122\000\
+\\050\000\050\000\050\000\050\000\
+\\050\000\060\000\072\000\157\000\
+\\006\001\050\000\052\000\051\000\
+\\050\000\123\000\124\000\125\000\
+\\022\001\107\000\019\001\126\000\
+\\010\000\010\000\010\000\010\000\
+\\010\000\010\000\010\000\009\000\
\\010\000\010\000\010\000\010\000\
-\\010\000\010\000\009\000\010\000\
-\\010\000\010\000\010\000\010\000\
-\\067\000\145\000\009\000\063\000\
-\\012\000\009\000\116\000\117\000\
-\\220\000\099\000\218\000\009\000\
-\\136\001\092\000\142\001\146\001\
-\\144\001\143\001\138\001\141\001\
-\\131\001\140\001\145\001\086\000\
-\\087\000\088\000\089\000\090\000\
-\\051\000\057\001\118\000\125\001\
-\\119\000\094\001\064\001\120\000\
-\\028\000\253\000\029\000\254\000\
-\\030\000\054\001\093\000\036\001\
-\\038\001\032\001\035\001\037\001\
-\\048\001\100\000\044\001\042\001\
-\\049\001\044\000\051\001\094\000\
-\\233\000\235\000\229\000\232\000\
-\\234\000\088\001\008\001\005\001\
-\\050\000\019\000\007\001\017\001\
-\\019\001\016\001\072\000\055\000\
-\\255\000\101\000\243\000\245\000\
-\\246\000\031\000\032\000\033\000\
-\\241\000\006\001\000\001\046\000\
-\\002\001\095\000\180\000\187\000\
-\\009\000\182\000\184\000\175\000\
-\\179\000\183\000\181\000\205\000\
-\\203\000\206\000\212\000\214\000\
-\\210\000\211\000\213\000\215\000\
-\\216\000\102\000\192\000\194\000\
-\\195\000\121\000\204\000\108\001\
-\\034\000\202\000\035\000\001\000\
-\\217\000\009\000\219\000\163\000\
-\\052\000\052\000\164\000\071\000\
-\\042\000\060\000\053\000\041\000\
-\\007\000\156\001\103\000\154\001\
-\\121\001\060\000\117\001\107\001\
-\\060\000\060\000\060\000\162\000\
-\\015\000\145\000\053\001\161\000\
-\\062\000\062\000\145\000\122\000\
-\\014\001\123\000\124\000\055\000\
-\\016\000\145\000\062\000\042\000\
-\\042\000\046\000\003\001\160\000\
-\\125\000\017\000\145\000\009\000\
-\\197\000\007\000\009\000\221\000\
-\\139\001\126\000\130\001\132\001\
-\\127\000\128\000\129\000\130\000\
-\\131\000\052\000\153\001\126\001\
-\\132\000\133\000\036\000\044\000\
-\\045\001\022\001\134\000\020\001\
-\\104\000\010\001\062\000\023\001\
-\\062\000\015\001\135\000\046\000\
-\\244\000\247\000\136\000\137\000\
-\\037\000\190\000\010\000\193\000\
-\\196\000\138\000\038\000\147\001\
-\\149\001\152\001\151\001\150\001\
-\\148\001\155\001\129\001\128\001\
-\\060\000\043\001\018\001\062\000\
-\\018\000\024\001\025\001\048\000\
-\\242\000\252\000\251\000\046\000\
-\\191\000\201\000\009\000\139\000\
-\\021\001\056\000\140\000\141\000\
-\\127\001\009\001\011\001\057\000\
-\\250\000\200\000\013\001\142\000\
-\\058\000\012\001\058\000\143\000"
+\\010\000\073\000\157\000\009\000\
+\\069\000\012\000\012\000\009\000\
+\\127\000\128\000\234\000\108\000\
+\\232\000\009\000\154\001\101\000\
+\\160\001\164\001\162\001\161\001\
+\\156\001\159\001\149\001\158\001\
+\\163\001\095\000\096\000\097\000\
+\\098\000\099\000\057\000\075\001\
+\\129\000\143\001\130\000\112\001\
+\\082\001\131\000\012\001\030\000\
+\\044\000\078\000\015\001\031\000\
+\\056\000\079\000\032\000\072\001\
+\\102\000\054\001\056\001\050\001\
+\\053\001\055\001\066\001\109\000\
+\\062\001\060\001\067\001\048\000\
+\\069\001\103\000\247\000\249\000\
+\\243\000\246\000\248\000\106\001\
+\\026\001\023\001\055\000\021\000\
+\\025\001\035\001\037\001\034\001\
+\\080\000\061\000\017\001\110\000\
+\\001\001\003\001\004\001\033\000\
+\\034\000\035\000\255\000\024\001\
+\\018\001\050\000\020\001\104\000\
+\\192\000\199\000\009\000\194\000\
+\\196\000\187\000\191\000\195\000\
+\\193\000\219\000\217\000\220\000\
+\\226\000\228\000\224\000\225\000\
+\\227\000\229\000\230\000\111\000\
+\\204\000\206\000\207\000\132\000\
+\\218\000\126\001\036\000\216\000\
+\\037\000\215\000\038\000\001\000\
+\\231\000\009\000\233\000\175\000\
+\\058\000\058\000\176\000\077\000\
+\\046\000\066\000\059\000\045\000\
+\\007\000\174\001\112\000\172\001\
+\\139\001\066\000\135\001\125\001\
+\\066\000\066\000\157\000\066\000\
+\\050\000\157\000\066\000\174\000\
+\\015\000\157\000\071\001\173\000\
+\\068\000\068\000\157\000\133\000\
+\\032\001\134\000\135\000\061\000\
+\\016\000\157\000\068\000\046\000\
+\\046\000\050\000\021\001\172\000\
+\\136\000\017\000\157\000\009\000\
+\\209\000\007\000\007\000\009\000\
+\\235\000\157\001\137\000\148\001\
+\\150\001\138\000\139\000\140\000\
+\\141\000\142\000\058\000\171\001\
+\\144\001\143\000\013\001\113\000\
+\\144\000\016\001\114\000\039\000\
+\\048\000\063\001\040\001\145\000\
+\\038\001\115\000\028\001\068\000\
+\\041\001\068\000\033\001\146\000\
+\\050\000\002\001\005\001\147\000\
+\\148\000\040\000\202\000\010\000\
+\\205\000\208\000\149\000\150\000\
+\\041\000\165\001\167\001\170\001\
+\\169\001\168\001\166\001\173\001\
+\\147\001\018\000\146\001\019\000\
+\\066\000\061\001\036\001\068\000\
+\\020\000\042\001\043\001\053\000\
+\\000\001\010\001\009\001\050\000\
+\\203\000\214\000\213\000\009\000\
+\\066\000\066\000\151\000\039\001\
+\\062\000\152\000\153\000\011\001\
+\\014\001\145\001\027\001\029\001\
+\\063\000\008\001\212\000\031\001\
+\\154\000\064\000\030\001\064\000\
+\\155\000"
val gotoT =
"\
\\128\000\008\000\129\000\007\000\130\000\006\000\131\000\005\000\
\\132\000\004\000\133\000\003\000\134\000\002\000\135\000\001\000\
-\\136\000\011\002\000\000\
+\\136\000\036\002\000\000\
\\000\000\
\\128\000\008\000\129\000\007\000\130\000\006\000\131\000\005\000\
\\132\000\004\000\133\000\003\000\134\000\002\000\135\000\015\000\000\000\
@@ -2251,7 +2284,7 @@
\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
\\045\000\066\000\055\000\065\000\057\000\064\000\058\000\063\000\
-\\059\000\062\000\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\059\000\062\000\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
@@ -2262,7 +2295,7 @@
\\061\000\113\000\062\000\112\000\063\000\111\000\065\000\110\000\
\\066\000\109\000\067\000\108\000\068\000\107\000\069\000\106\000\
\\070\000\105\000\071\000\104\000\072\000\103\000\073\000\102\000\
-\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\144\000\020\000\085\000\022\000\084\000\023\000\143\000\
\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
@@ -2273,8 +2306,8 @@
\\074\000\138\000\076\000\137\000\077\000\136\000\083\000\135\000\
\\084\000\134\000\085\000\133\000\089\000\132\000\090\000\131\000\
\\091\000\130\000\092\000\129\000\093\000\128\000\094\000\127\000\
-\\095\000\126\000\096\000\125\000\097\000\124\000\138\000\123\000\
-\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\095\000\126\000\096\000\125\000\097\000\124\000\139\000\123\000\
+\\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
@@ -2288,37 +2321,37 @@
\\111\000\162\000\112\000\161\000\113\000\160\000\117\000\159\000\
\\118\000\158\000\119\000\157\000\120\000\156\000\121\000\155\000\
\\122\000\154\000\123\000\153\000\124\000\152\000\125\000\151\000\
-\\126\000\150\000\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\001\000\212\000\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\036\000\219\000\037\000\218\000\038\000\217\000\000\000\
+\\126\000\150\000\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\001\000\213\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\036\000\220\000\037\000\219\000\038\000\218\000\000\000\
\\000\000\
\\000\000\
\\000\000\
@@ -2334,28 +2367,28 @@
\\000\000\
\\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
-\\019\000\086\000\020\000\225\000\022\000\084\000\023\000\083\000\
+\\019\000\086\000\020\000\226\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
-\\045\000\224\000\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\045\000\225\000\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
-\\045\000\066\000\055\000\065\000\057\000\064\000\058\000\226\000\
-\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
-\\001\000\227\000\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\050\000\230\000\000\000\
+\\045\000\066\000\055\000\065\000\057\000\064\000\058\000\227\000\
+\\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
+\\001\000\228\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\050\000\231\000\000\000\
\\000\000\
\\000\000\
\\000\000\
@@ -2369,8 +2402,8 @@
\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
\\045\000\117\000\046\000\116\000\051\000\115\000\055\000\114\000\
-\\063\000\111\000\065\000\110\000\066\000\235\000\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
+\\063\000\111\000\065\000\110\000\066\000\236\000\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
\\000\000\
\\000\000\
\\000\000\
@@ -2381,10 +2414,10 @@
\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
\\045\000\117\000\046\000\116\000\051\000\115\000\055\000\114\000\
-\\061\000\113\000\062\000\238\000\063\000\111\000\065\000\110\000\
+\\061\000\113\000\062\000\239\000\063\000\111\000\065\000\110\000\
\\066\000\109\000\067\000\108\000\068\000\107\000\069\000\106\000\
-\\070\000\105\000\071\000\104\000\072\000\237\000\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
+\\070\000\105\000\071\000\104\000\072\000\238\000\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
@@ -2392,20 +2425,20 @@
\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
\\045\000\117\000\046\000\116\000\051\000\115\000\055\000\114\000\
-\\060\000\240\000\063\000\111\000\065\000\110\000\066\000\109\000\
+\\060\000\241\000\063\000\111\000\065\000\110\000\066\000\109\000\
\\067\000\108\000\068\000\107\000\069\000\106\000\070\000\105\000\
-\\071\000\104\000\072\000\239\000\144\000\061\000\145\000\060\000\
-\\146\000\059\000\000\000\
-\\000\000\
-\\000\000\
-\\001\000\242\000\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\050\000\245\000\000\000\
+\\071\000\104\000\072\000\240\000\147\000\061\000\148\000\060\000\
+\\149\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\001\000\243\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\050\000\246\000\000\000\
\\000\000\
\\000\000\
\\000\000\
@@ -2422,8 +2455,8 @@
\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
-\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\251\000\
-\\138\000\123\000\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\252\000\
+\\139\000\123\000\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\000\000\
\\000\000\
\\000\000\
@@ -2437,11 +2470,11 @@
\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
-\\074\000\138\000\076\000\002\001\077\000\136\000\083\000\135\000\
-\\084\000\001\001\085\000\133\000\089\000\132\000\090\000\131\000\
+\\074\000\138\000\076\000\003\001\077\000\136\000\083\000\135\000\
+\\084\000\002\001\085\000\133\000\089\000\132\000\090\000\131\000\
\\091\000\130\000\092\000\129\000\093\000\128\000\094\000\127\000\
-\\095\000\126\000\096\000\000\001\138\000\123\000\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
+\\095\000\126\000\096\000\001\001\139\000\123\000\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
@@ -2449,19 +2482,20 @@
\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
-\\075\000\004\001\077\000\136\000\085\000\133\000\089\000\132\000\
+\\075\000\005\001\077\000\136\000\085\000\133\000\089\000\132\000\
\\090\000\131\000\091\000\130\000\092\000\129\000\093\000\128\000\
-\\094\000\127\000\095\000\126\000\096\000\003\001\138\000\123\000\
-\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
-\\001\000\006\001\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\036\000\183\000\037\000\182\000\050\000\179\000\053\000\010\001\000\000\
+\\094\000\127\000\095\000\126\000\096\000\004\001\139\000\123\000\
+\\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
+\\001\000\007\001\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\036\000\183\000\037\000\182\000\050\000\179\000\053\000\011\001\000\000\
+\\000\000\
\\000\000\
\\000\000\
\\000\000\
@@ -2512,13 +2546,13 @@
\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
-\\056\000\174\000\098\000\173\000\100\000\027\001\101\000\171\000\
+\\056\000\174\000\098\000\173\000\100\000\029\001\101\000\171\000\
\\102\000\170\000\103\000\169\000\104\000\168\000\105\000\167\000\
\\106\000\166\000\107\000\165\000\108\000\164\000\110\000\163\000\
\\111\000\162\000\112\000\161\000\113\000\160\000\117\000\159\000\
\\118\000\158\000\119\000\157\000\120\000\156\000\121\000\155\000\
-\\122\000\154\000\123\000\153\000\124\000\152\000\125\000\026\001\
-\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\122\000\154\000\123\000\153\000\124\000\152\000\125\000\028\001\
+\\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
@@ -2526,66 +2560,78 @@
\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
-\\056\000\174\000\099\000\029\001\101\000\171\000\102\000\170\000\
+\\056\000\174\000\099\000\031\001\101\000\171\000\102\000\170\000\
\\103\000\169\000\104\000\168\000\105\000\167\000\106\000\166\000\
\\107\000\165\000\108\000\164\000\110\000\163\000\111\000\162\000\
\\112\000\161\000\113\000\160\000\117\000\159\000\118\000\158\000\
\\119\000\157\000\120\000\156\000\121\000\155\000\122\000\154\000\
-\\123\000\153\000\124\000\152\000\125\000\028\001\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\002\000\058\000\003\000\032\001\009\000\023\000\014\000\022\000\000\000\
-\\000\000\
-\\006\000\041\001\008\000\040\001\009\000\039\001\010\000\038\001\
-\\011\000\037\001\012\000\036\001\013\000\035\001\014\000\087\000\
-\\016\000\034\001\000\000\
+\\123\000\153\000\124\000\152\000\125\000\030\001\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\002\000\058\000\003\000\034\001\009\000\023\000\014\000\022\000\000\000\
+\\000\000\
+\\006\000\043\001\008\000\042\001\009\000\041\001\010\000\040\001\
+\\011\000\039\001\012\000\038\001\013\000\037\001\014\000\087\000\
+\\016\000\036\001\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
-\\045\000\066\000\055\000\065\000\057\000\049\001\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
+\\045\000\066\000\055\000\065\000\057\000\051\001\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
-\\019\000\086\000\020\000\051\001\021\000\050\001\022\000\084\000\
+\\019\000\086\000\020\000\053\001\021\000\052\001\022\000\084\000\
\\023\000\083\000\024\000\082\000\025\000\187\000\026\000\080\000\
\\027\000\186\000\028\000\078\000\029\000\077\000\030\000\076\000\
\\031\000\075\000\032\000\184\000\033\000\073\000\034\000\072\000\
-\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
-\\019\000\086\000\020\000\051\001\021\000\052\001\022\000\084\000\
+\\019\000\086\000\020\000\053\001\021\000\054\001\022\000\084\000\
\\023\000\083\000\024\000\082\000\025\000\187\000\026\000\080\000\
\\027\000\186\000\028\000\078\000\029\000\077\000\030\000\076\000\
\\031\000\075\000\032\000\184\000\033\000\073\000\034\000\072\000\
-\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
-\\019\000\086\000\020\000\053\001\022\000\084\000\023\000\083\000\
+\\019\000\086\000\020\000\055\001\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
-\\032\000\184\000\033\000\073\000\034\000\072\000\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
-\\019\000\086\000\020\000\054\001\022\000\084\000\023\000\083\000\
+\\019\000\086\000\020\000\056\001\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
-\\032\000\184\000\033\000\073\000\034\000\072\000\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
\\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
-\\019\000\086\000\020\000\051\001\021\000\055\001\022\000\084\000\
+\\019\000\086\000\020\000\053\001\021\000\057\001\022\000\084\000\
\\023\000\083\000\024\000\082\000\025\000\187\000\026\000\080\000\
\\027\000\186\000\028\000\078\000\029\000\077\000\030\000\076\000\
\\031\000\075\000\032\000\184\000\033\000\073\000\034\000\072\000\
-\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
-\\051\000\140\000\089\000\057\001\139\000\056\001\000\000\
-\\051\000\140\000\089\000\059\001\140\000\058\001\000\000\
+\\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\060\001\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\140\000\059\001\
+\\141\000\058\001\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\226\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\064\001\142\000\063\001\143\000\062\001\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
@@ -2595,10 +2641,10 @@
\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\131\000\
\\091\000\130\000\092\000\129\000\093\000\128\000\094\000\127\000\
-\\095\000\126\000\096\000\060\001\138\000\123\000\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
-\\000\000\
-\\036\000\219\000\038\000\217\000\000\000\
+\\095\000\126\000\096\000\066\001\139\000\123\000\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
+\\000\000\
+\\036\000\220\000\038\000\218\000\000\000\
\\000\000\
\\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
@@ -2608,8 +2654,8 @@
\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
\\045\000\117\000\046\000\116\000\051\000\115\000\055\000\114\000\
-\\063\000\111\000\065\000\110\000\066\000\063\001\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
+\\063\000\111\000\065\000\110\000\066\000\069\001\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
@@ -2617,8 +2663,8 @@
\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
\\045\000\117\000\046\000\116\000\051\000\115\000\055\000\114\000\
-\\063\000\111\000\065\000\110\000\066\000\064\001\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
+\\063\000\111\000\065\000\110\000\066\000\070\001\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
@@ -2626,8 +2672,8 @@
\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
\\045\000\117\000\046\000\116\000\051\000\115\000\055\000\114\000\
-\\063\000\111\000\065\000\110\000\066\000\065\001\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
+\\063\000\111\000\065\000\110\000\066\000\071\001\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
@@ -2635,8 +2681,8 @@
\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
\\045\000\117\000\046\000\116\000\051\000\115\000\055\000\114\000\
-\\063\000\111\000\065\000\110\000\066\000\066\001\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
+\\063\000\111\000\065\000\110\000\066\000\072\001\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
@@ -2644,10 +2690,10 @@
\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
\\045\000\117\000\046\000\116\000\051\000\115\000\055\000\114\000\
-\\063\000\111\000\065\000\110\000\066\000\067\001\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
-\\061\000\068\001\000\000\
-\\011\000\070\001\064\000\069\001\000\000\
+\\063\000\111\000\065\000\110\000\066\000\073\001\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
+\\061\000\074\001\000\000\
+\\011\000\076\001\064\000\075\001\000\000\
\\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
@@ -2658,7 +2704,7 @@
\\045\000\117\000\046\000\116\000\051\000\115\000\055\000\114\000\
\\063\000\111\000\065\000\110\000\066\000\109\000\067\000\108\000\
\\068\000\107\000\069\000\106\000\070\000\105\000\071\000\104\000\
-\\072\000\237\000\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\072\000\238\000\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\000\000\
\\000\000\
\\000\000\
@@ -2672,8 +2718,8 @@
\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
-\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\076\001\
-\\138\000\123\000\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\082\001\
+\\139\000\123\000\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
@@ -2681,8 +2727,8 @@
\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
-\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\077\001\
-\\138\000\123\000\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\083\001\
+\\139\000\123\000\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
@@ -2690,8 +2736,8 @@
\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
-\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\078\001\
-\\138\000\123\000\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\084\001\
+\\139\000\123\000\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
@@ -2699,8 +2745,8 @@
\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
-\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\079\001\
-\\138\000\123\000\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\085\001\
+\\139\000\123\000\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
@@ -2708,13 +2754,13 @@
\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
-\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\080\001\
-\\138\000\123\000\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
-\\009\000\089\001\011\000\088\001\047\000\087\001\079\000\086\001\
-\\080\000\085\001\081\000\084\001\082\000\083\001\141\000\082\001\
-\\145\000\081\001\000\000\
-\\074\000\092\001\000\000\
-\\011\000\096\001\086\000\095\001\087\000\094\001\088\000\093\001\000\000\
+\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\086\001\
+\\139\000\123\000\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
+\\009\000\095\001\011\000\094\001\047\000\093\001\079\000\092\001\
+\\080\000\091\001\081\000\090\001\082\000\089\001\144\000\088\001\
+\\148\000\087\001\000\000\
+\\074\000\098\001\000\000\
+\\011\000\102\001\086\000\101\001\087\000\100\001\088\000\099\001\000\000\
\\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
@@ -2725,10 +2771,22 @@
\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\131\000\
\\091\000\130\000\092\000\129\000\093\000\128\000\094\000\127\000\
-\\095\000\126\000\096\000\000\001\138\000\123\000\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
-\\051\000\140\000\089\000\059\001\140\000\097\001\000\000\
-\\051\000\140\000\089\000\057\001\139\000\098\001\000\000\
+\\095\000\126\000\096\000\001\001\139\000\123\000\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\226\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\064\001\142\000\103\001\143\000\062\001\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\060\001\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\140\000\104\001\
+\\141\000\058\001\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
@@ -2738,8 +2796,8 @@
\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\131\000\
\\091\000\130\000\092\000\129\000\093\000\128\000\094\000\127\000\
-\\095\000\126\000\096\000\099\001\138\000\123\000\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
+\\095\000\126\000\096\000\105\001\139\000\123\000\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
\\000\000\
\\000\000\
\\000\000\
@@ -2754,9 +2812,9 @@
\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
-\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\107\001\
-\\113\000\160\000\117\000\159\000\118\000\106\001\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\113\001\
+\\113\000\160\000\117\000\159\000\118\000\112\001\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
@@ -2764,9 +2822,9 @@
\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
-\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\107\001\
-\\113\000\160\000\117\000\159\000\118\000\109\001\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\113\001\
+\\113\000\160\000\117\000\159\000\118\000\115\001\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
@@ -2774,9 +2832,9 @@
\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
-\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\107\001\
-\\113\000\160\000\117\000\159\000\118\000\110\001\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\113\001\
+\\113\000\160\000\117\000\159\000\118\000\116\001\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
@@ -2784,9 +2842,9 @@
\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
-\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\107\001\
-\\113\000\160\000\117\000\159\000\118\000\111\001\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\113\001\
+\\113\000\160\000\117\000\159\000\118\000\117\001\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
@@ -2794,9 +2852,9 @@
\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
-\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\107\001\
-\\113\000\160\000\117\000\159\000\118\000\112\001\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\113\001\
+\\113\000\160\000\117\000\159\000\118\000\118\001\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
@@ -2804,9 +2862,9 @@
\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
-\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\107\001\
-\\113\000\160\000\117\000\159\000\118\000\113\001\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\113\001\
+\\113\000\160\000\117\000\159\000\118\000\119\001\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
@@ -2814,9 +2872,9 @@
\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
-\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\107\001\
-\\113\000\160\000\117\000\159\000\118\000\114\001\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\113\001\
+\\113\000\160\000\117\000\159\000\118\000\120\001\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
@@ -2826,11 +2884,11 @@
\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\169\000\
\\104\000\168\000\105\000\167\000\106\000\166\000\107\000\165\000\
-\\108\000\164\000\109\000\116\001\110\000\163\000\111\000\162\000\
+\\108\000\164\000\109\000\122\001\110\000\163\000\111\000\162\000\
\\112\000\161\000\113\000\160\000\117\000\159\000\118\000\158\000\
\\119\000\157\000\120\000\156\000\121\000\155\000\122\000\154\000\
-\\123\000\153\000\124\000\152\000\125\000\115\001\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
+\\123\000\153\000\124\000\152\000\125\000\121\001\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
@@ -2838,9 +2896,9 @@
\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
-\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\107\001\
-\\108\000\118\001\113\000\160\000\117\000\159\000\118\000\117\001\
-\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\113\001\
+\\108\000\124\001\113\000\160\000\117\000\159\000\118\000\123\001\
+\\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
@@ -2848,9 +2906,9 @@
\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
-\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\107\001\
-\\108\000\119\001\113\000\160\000\117\000\159\000\118\000\117\001\
-\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\113\001\
+\\108\000\125\001\113\000\160\000\117\000\159\000\118\000\123\001\
+\\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
@@ -2858,9 +2916,9 @@
\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
-\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\107\001\
-\\106\000\121\001\108\000\120\001\113\000\160\000\117\000\159\000\
-\\118\000\117\001\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\113\001\
+\\106\000\127\001\108\000\126\001\113\000\160\000\117\000\159\000\
+\\118\000\123\001\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
@@ -2868,9 +2926,9 @@
\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
-\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\107\001\
-\\108\000\122\001\113\000\160\000\117\000\159\000\118\000\117\001\
-\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\113\001\
+\\108\000\128\001\113\000\160\000\117\000\159\000\118\000\123\001\
+\\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
@@ -2878,11 +2936,11 @@
\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
-\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\107\001\
-\\108\000\123\001\113\000\160\000\117\000\159\000\118\000\117\001\
-\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
-\\098\000\124\001\000\000\
-\\011\000\128\001\114\000\127\001\115\000\126\001\116\000\125\001\000\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\113\001\
+\\108\000\129\001\113\000\160\000\117\000\159\000\118\000\123\001\
+\\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
+\\098\000\130\001\000\000\
+\\011\000\134\001\114\000\133\001\115\000\132\001\116\000\131\001\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
@@ -2895,10 +2953,11 @@
\\108\000\164\000\110\000\163\000\111\000\162\000\112\000\161\000\
\\113\000\160\000\117\000\159\000\118\000\158\000\119\000\157\000\
\\120\000\156\000\121\000\155\000\122\000\154\000\123\000\153\000\
-\\124\000\152\000\125\000\129\001\144\000\061\000\145\000\060\000\
-\\146\000\059\000\000\000\
-\\009\000\090\000\019\000\131\001\031\000\130\001\000\000\
-\\051\000\178\000\054\000\175\000\117\000\133\001\137\000\132\001\000\000\
+\\124\000\152\000\125\000\135\001\147\000\061\000\148\000\060\000\
+\\149\000\059\000\000\000\
+\\009\000\090\000\019\000\137\001\031\000\136\001\000\000\
+\\051\000\178\000\054\000\175\000\117\000\139\001\138\000\138\001\000\000\
+\\051\000\178\000\054\000\175\000\117\000\141\001\137\000\140\001\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
@@ -2911,8 +2970,8 @@
\\108\000\164\000\110\000\163\000\111\000\162\000\112\000\161\000\
\\113\000\160\000\117\000\159\000\118\000\158\000\119\000\157\000\
\\120\000\156\000\121\000\155\000\122\000\154\000\123\000\153\000\
-\\124\000\152\000\125\000\134\001\144\000\061\000\145\000\060\000\
-\\146\000\059\000\000\000\
+\\124\000\152\000\125\000\142\001\147\000\061\000\148\000\060\000\
+\\149\000\059\000\000\000\
\\000\000\
\\000\000\
\\000\000\
@@ -2930,27 +2989,31 @@
\\108\000\164\000\110\000\163\000\111\000\162\000\112\000\161\000\
\\113\000\160\000\117\000\159\000\118\000\158\000\119\000\157\000\
\\120\000\156\000\121\000\155\000\122\000\154\000\123\000\153\000\
-\\124\000\152\000\125\000\026\001\144\000\061\000\145\000\060\000\
-\\146\000\059\000\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\005\000\142\001\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\006\000\041\001\007\000\150\001\008\000\149\001\009\000\039\001\
-\\010\000\038\001\011\000\037\001\012\000\036\001\013\000\035\001\
-\\014\000\087\000\016\000\034\001\000\000\
+\\124\000\152\000\125\000\028\001\147\000\061\000\148\000\060\000\
+\\149\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\005\000\150\001\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\006\000\043\001\007\000\158\001\008\000\157\001\009\000\041\001\
+\\010\000\040\001\011\000\039\001\012\000\038\001\013\000\037\001\
+\\014\000\087\000\016\000\036\001\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
\\000\000\
\\000\000\
\\000\000\
@@ -2982,30 +3045,30 @@
\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
\\045\000\117\000\046\000\116\000\051\000\115\000\055\000\114\000\
-\\060\000\162\001\063\000\111\000\065\000\110\000\066\000\109\000\
+\\060\000\174\001\063\000\111\000\065\000\110\000\066\000\109\000\
\\067\000\108\000\068\000\107\000\069\000\106\000\070\000\105\000\
-\\071\000\104\000\072\000\239\000\144\000\061\000\145\000\060\000\
-\\146\000\059\000\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\009\000\089\001\011\000\088\001\047\000\087\001\078\000\170\001\
-\\079\000\169\001\080\000\168\001\081\000\084\001\141\000\167\001\
-\\145\000\081\001\000\000\
+\\071\000\104\000\072\000\240\000\147\000\061\000\148\000\060\000\
+\\149\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\095\001\011\000\094\001\047\000\093\001\078\000\182\001\
+\\079\000\181\001\080\000\180\001\081\000\090\001\144\000\179\001\
+\\148\000\087\001\000\000\
\\000\000\
\\000\000\
\\000\000\
@@ -3024,10 +3087,10 @@
\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
-\\075\000\178\001\077\000\136\000\085\000\133\000\089\000\132\000\
+\\075\000\190\001\077\000\136\000\085\000\133\000\089\000\132\000\
\\090\000\131\000\091\000\130\000\092\000\129\000\093\000\128\000\
-\\094\000\127\000\095\000\126\000\096\000\003\001\138\000\123\000\
-\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\094\000\127\000\095\000\126\000\096\000\004\001\139\000\123\000\
+\\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\000\000\
\\000\000\
\\000\000\
@@ -3044,8 +3107,10 @@
\\108\000\164\000\110\000\163\000\111\000\162\000\112\000\161\000\
\\113\000\160\000\117\000\159\000\118\000\158\000\119\000\157\000\
\\120\000\156\000\121\000\155\000\122\000\154\000\123\000\153\000\
-\\124\000\152\000\125\000\180\001\144\000\061\000\145\000\060\000\
-\\146\000\059\000\000\000\
+\\124\000\152\000\125\000\192\001\147\000\061\000\148\000\060\000\
+\\149\000\059\000\000\000\
+\\000\000\
+\\000\000\
\\000\000\
\\000\000\
\\000\000\
@@ -3081,23 +3146,23 @@
\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
-\\056\000\174\000\099\000\187\001\101\000\171\000\102\000\170\000\
+\\056\000\174\000\099\000\200\001\101\000\171\000\102\000\170\000\
\\103\000\169\000\104\000\168\000\105\000\167\000\106\000\166\000\
\\107\000\165\000\108\000\164\000\110\000\163\000\111\000\162\000\
\\112\000\161\000\113\000\160\000\117\000\159\000\118\000\158\000\
\\119\000\157\000\120\000\156\000\121\000\155\000\122\000\154\000\
-\\123\000\153\000\124\000\152\000\125\000\028\001\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
-\\000\000\
-\\000\000\
-\\006\000\041\001\008\000\188\001\009\000\039\001\010\000\038\001\
-\\011\000\037\001\012\000\036\001\013\000\035\001\014\000\087\000\
-\\016\000\034\001\000\000\
-\\006\000\041\001\007\000\189\001\008\000\149\001\009\000\039\001\
-\\010\000\038\001\011\000\037\001\012\000\036\001\013\000\035\001\
-\\014\000\087\000\016\000\034\001\000\000\
-\\000\000\
-\\006\000\191\001\017\000\190\001\000\000\
+\\123\000\153\000\124\000\152\000\125\000\030\001\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\006\000\043\001\008\000\201\001\009\000\041\001\010\000\040\001\
+\\011\000\039\001\012\000\038\001\013\000\037\001\014\000\087\000\
+\\016\000\036\001\000\000\
+\\006\000\043\001\007\000\202\001\008\000\157\001\009\000\041\001\
+\\010\000\040\001\011\000\039\001\012\000\038\001\013\000\037\001\
+\\014\000\087\000\016\000\036\001\000\000\
+\\000\000\
+\\006\000\204\001\017\000\203\001\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\144\000\020\000\085\000\022\000\084\000\023\000\143\000\
\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
@@ -3108,14 +3173,14 @@
\\074\000\138\000\076\000\137\000\077\000\136\000\083\000\135\000\
\\084\000\134\000\085\000\133\000\089\000\132\000\090\000\131\000\
\\091\000\130\000\092\000\129\000\093\000\128\000\094\000\127\000\
-\\095\000\126\000\096\000\125\000\097\000\192\001\138\000\123\000\
-\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\095\000\126\000\096\000\125\000\097\000\205\001\139\000\123\000\
+\\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
-\\019\000\086\000\020\000\193\001\022\000\084\000\023\000\083\000\
+\\019\000\086\000\020\000\206\001\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
-\\032\000\184\000\033\000\073\000\034\000\072\000\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
@@ -3123,7 +3188,7 @@
\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
\\045\000\066\000\055\000\065\000\057\000\064\000\058\000\063\000\
-\\059\000\194\001\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\059\000\207\001\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
@@ -3133,8 +3198,8 @@
\\045\000\117\000\046\000\116\000\051\000\115\000\055\000\114\000\
\\061\000\113\000\062\000\112\000\063\000\111\000\065\000\110\000\
\\066\000\109\000\067\000\108\000\068\000\107\000\069\000\106\000\
-\\070\000\105\000\071\000\104\000\072\000\103\000\073\000\195\001\
-\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\070\000\105\000\071\000\104\000\072\000\103\000\073\000\208\001\
+\\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
@@ -3148,58 +3213,75 @@
\\111\000\162\000\112\000\161\000\113\000\160\000\117\000\159\000\
\\118\000\158\000\119\000\157\000\120\000\156\000\121\000\155\000\
\\122\000\154\000\123\000\153\000\124\000\152\000\125\000\151\000\
-\\126\000\196\001\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\126\000\209\001\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\000\000\
\\000\000\
\\000\000\
\\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
-\\019\000\086\000\020\000\051\001\021\000\199\001\022\000\084\000\
+\\019\000\086\000\020\000\053\001\021\000\212\001\022\000\084\000\
\\023\000\083\000\024\000\082\000\025\000\187\000\026\000\080\000\
\\027\000\186\000\028\000\078\000\029\000\077\000\030\000\076\000\
\\031\000\075\000\032\000\184\000\033\000\073\000\034\000\072\000\
-\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\000\000\
\\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
-\\019\000\086\000\020\000\200\001\022\000\084\000\023\000\083\000\
+\\019\000\086\000\020\000\213\001\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
-\\032\000\184\000\033\000\073\000\034\000\072\000\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
-\\019\000\086\000\020\000\201\001\022\000\084\000\023\000\083\000\
+\\019\000\086\000\020\000\214\001\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
-\\032\000\184\000\033\000\073\000\034\000\072\000\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
+\\011\000\102\001\086\000\101\001\087\000\100\001\088\000\215\001\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
-\\019\000\086\000\020\000\202\001\022\000\084\000\023\000\083\000\
+\\019\000\086\000\020\000\216\001\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
-\\032\000\184\000\033\000\073\000\034\000\072\000\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
-\\000\000\
-\\000\000\
-\\011\000\070\001\064\000\204\001\000\000\
-\\000\000\
-\\000\000\
-\\009\000\089\001\011\000\088\001\047\000\087\001\080\000\205\001\
-\\145\000\081\001\000\000\
-\\009\000\089\001\011\000\088\001\047\000\087\001\080\000\207\001\
-\\143\000\206\001\145\000\081\001\000\000\
-\\011\000\096\001\086\000\095\001\087\000\094\001\088\000\208\001\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\009\000\089\001\011\000\088\001\047\000\087\001\078\000\214\001\
-\\079\000\169\001\080\000\168\001\081\000\084\001\141\000\167\001\
-\\145\000\081\001\000\000\
-\\000\000\
-\\011\000\096\001\086\000\095\001\087\000\094\001\088\000\216\001\000\000\
-\\009\000\089\001\011\000\088\001\047\000\087\001\080\000\217\001\
-\\145\000\081\001\000\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
+\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\217\001\
+\\139\000\123\000\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
+\\011\000\102\001\086\000\101\001\087\000\100\001\088\000\218\001\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\219\001\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\011\000\076\001\064\000\221\001\000\000\
+\\000\000\
+\\000\000\
+\\009\000\095\001\011\000\094\001\047\000\093\001\080\000\222\001\
+\\148\000\087\001\000\000\
+\\009\000\095\001\011\000\094\001\047\000\093\001\080\000\224\001\
+\\146\000\223\001\148\000\087\001\000\000\
+\\011\000\102\001\086\000\101\001\087\000\100\001\088\000\225\001\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\095\001\011\000\094\001\047\000\093\001\078\000\231\001\
+\\079\000\181\001\080\000\180\001\081\000\090\001\144\000\179\001\
+\\148\000\087\001\000\000\
+\\000\000\
+\\011\000\102\001\086\000\101\001\087\000\100\001\088\000\233\001\000\000\
+\\009\000\095\001\011\000\094\001\047\000\093\001\080\000\234\001\
+\\148\000\087\001\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\144\000\020\000\085\000\022\000\084\000\023\000\143\000\
\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
@@ -3210,8 +3292,8 @@
\\074\000\138\000\076\000\137\000\077\000\136\000\083\000\135\000\
\\084\000\134\000\085\000\133\000\089\000\132\000\090\000\131\000\
\\091\000\130\000\092\000\129\000\093\000\128\000\094\000\127\000\
-\\095\000\126\000\096\000\125\000\097\000\218\001\138\000\123\000\
-\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\095\000\126\000\096\000\125\000\097\000\235\001\139\000\123\000\
+\\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\144\000\020\000\085\000\022\000\084\000\023\000\143\000\
\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
@@ -3222,8 +3304,8 @@
\\074\000\138\000\076\000\137\000\077\000\136\000\083\000\135\000\
\\084\000\134\000\085\000\133\000\089\000\132\000\090\000\131\000\
\\091\000\130\000\092\000\129\000\093\000\128\000\094\000\127\000\
-\\095\000\126\000\096\000\125\000\097\000\219\001\138\000\123\000\
-\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\095\000\126\000\096\000\125\000\097\000\236\001\139\000\123\000\
+\\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
@@ -3233,13 +3315,13 @@
\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\131\000\
\\091\000\130\000\092\000\129\000\093\000\128\000\094\000\127\000\
-\\095\000\126\000\096\000\220\001\138\000\123\000\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\011\000\128\001\114\000\127\001\115\000\126\001\116\000\223\001\000\000\
+\\095\000\126\000\096\000\237\001\139\000\123\000\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\011\000\134\001\114\000\133\001\115\000\132\001\116\000\240\001\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
@@ -3249,11 +3331,11 @@
\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\169\000\
\\104\000\168\000\105\000\167\000\106\000\166\000\107\000\165\000\
-\\108\000\164\000\109\000\224\001\110\000\163\000\111\000\162\000\
+\\108\000\164\000\109\000\241\001\110\000\163\000\111\000\162\000\
\\112\000\161\000\113\000\160\000\117\000\159\000\118\000\158\000\
\\119\000\157\000\120\000\156\000\121\000\155\000\122\000\154\000\
-\\123\000\153\000\124\000\152\000\125\000\115\001\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
+\\123\000\153\000\124\000\152\000\125\000\121\001\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
\\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
@@ -3268,7 +3350,21 @@
\\111\000\162\000\112\000\161\000\113\000\160\000\117\000\159\000\
\\118\000\158\000\119\000\157\000\120\000\156\000\121\000\155\000\
\\122\000\154\000\123\000\153\000\124\000\152\000\125\000\151\000\
-\\126\000\225\001\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\126\000\242\001\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\185\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\098\000\173\000\100\000\172\000\101\000\171\000\
+\\102\000\170\000\103\000\169\000\104\000\168\000\105\000\167\000\
+\\106\000\166\000\107\000\165\000\108\000\164\000\110\000\163\000\
+\\111\000\162\000\112\000\161\000\113\000\160\000\117\000\159\000\
+\\118\000\158\000\119\000\157\000\120\000\156\000\121\000\155\000\
+\\122\000\154\000\123\000\153\000\124\000\152\000\125\000\151\000\
+\\126\000\243\001\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
@@ -3281,21 +3377,25 @@
\\108\000\164\000\110\000\163\000\111\000\162\000\112\000\161\000\
\\113\000\160\000\117\000\159\000\118\000\158\000\119\000\157\000\
\\120\000\156\000\121\000\155\000\122\000\154\000\123\000\153\000\
-\\124\000\152\000\125\000\226\001\144\000\061\000\145\000\060\000\
-\\146\000\059\000\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\006\000\041\001\007\000\233\001\008\000\149\001\009\000\039\001\
-\\010\000\038\001\011\000\037\001\012\000\036\001\013\000\035\001\
-\\014\000\087\000\016\000\034\001\000\000\
+\\124\000\152\000\125\000\244\001\147\000\061\000\148\000\060\000\
+\\149\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\006\000\043\001\007\000\251\001\008\000\157\001\009\000\041\001\
+\\010\000\040\001\011\000\039\001\012\000\038\001\013\000\037\001\
+\\014\000\087\000\016\000\036\001\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
\\000\000\
\\000\000\
\\000\000\
@@ -3308,19 +3408,19 @@
\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
\\045\000\117\000\046\000\116\000\051\000\115\000\055\000\114\000\
-\\063\000\111\000\065\000\110\000\066\000\237\001\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\009\000\089\001\011\000\088\001\047\000\087\001\080\000\241\001\
-\\145\000\081\001\000\000\
-\\000\000\
-\\009\000\089\001\011\000\088\001\047\000\087\001\080\000\242\001\
-\\145\000\081\001\000\000\
+\\063\000\111\000\065\000\110\000\066\000\001\002\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\095\001\011\000\094\001\047\000\093\001\080\000\005\002\
+\\148\000\087\001\000\000\
+\\000\000\
+\\009\000\095\001\011\000\094\001\047\000\093\001\080\000\006\002\
+\\148\000\087\001\000\000\
\\000\000\
\\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
@@ -3330,8 +3430,8 @@
\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
-\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\244\001\
-\\138\000\123\000\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\008\002\
+\\139\000\123\000\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
\\000\000\
\\000\000\
\\000\000\
@@ -3345,9 +3445,12 @@
\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
-\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\107\001\
-\\113\000\160\000\117\000\159\000\118\000\248\001\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\113\001\
+\\113\000\160\000\117\000\159\000\118\000\012\002\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
\\000\000\
\\000\000\
\\000\000\
@@ -3362,15 +3465,15 @@
\\000\000\
\\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
-\\019\000\086\000\020\000\251\001\022\000\084\000\023\000\083\000\
+\\019\000\086\000\020\000\018\002\022\000\084\000\023\000\083\000\
\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
-\\032\000\184\000\033\000\073\000\034\000\072\000\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
-\\000\000\
-\\000\000\
-\\009\000\089\001\011\000\088\001\047\000\087\001\080\000\207\001\
-\\143\000\252\001\145\000\081\001\000\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\009\000\095\001\011\000\094\001\047\000\093\001\080\000\224\001\
+\\146\000\019\002\148\000\087\001\000\000\
\\000\000\
\\000\000\
\\000\000\
@@ -3387,8 +3490,9 @@
\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\131\000\
\\091\000\130\000\092\000\129\000\093\000\128\000\094\000\127\000\
-\\095\000\126\000\096\000\254\001\138\000\123\000\144\000\061\000\
-\\145\000\060\000\146\000\059\000\000\000\
+\\095\000\126\000\096\000\021\002\139\000\123\000\147\000\061\000\
+\\148\000\060\000\149\000\059\000\000\000\
+\\000\000\
\\000\000\
\\000\000\
\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
@@ -3403,32 +3507,48 @@
\\108\000\164\000\110\000\163\000\111\000\162\000\112\000\161\000\
\\113\000\160\000\117\000\159\000\118\000\158\000\119\000\157\000\
\\120\000\156\000\121\000\155\000\122\000\154\000\123\000\153\000\
-\\124\000\152\000\125\000\255\001\144\000\061\000\145\000\060\000\
-\\146\000\059\000\000\000\
-\\000\000\
-\\000\000\
-\\009\000\089\001\011\000\088\001\047\000\087\001\080\000\002\002\
-\\142\000\001\002\145\000\081\001\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\009\000\089\001\011\000\088\001\047\000\087\001\079\000\007\002\
-\\080\000\006\002\081\000\084\001\145\000\081\001\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\009\000\089\001\011\000\088\001\047\000\087\001\078\000\170\001\
-\\079\000\169\001\080\000\168\001\081\000\084\001\145\000\081\001\000\000\
-\\000\000\
-\\009\000\089\001\011\000\088\001\047\000\087\001\078\000\214\001\
-\\079\000\169\001\080\000\168\001\081\000\084\001\145\000\081\001\000\000\
+\\124\000\152\000\125\000\022\002\147\000\061\000\148\000\060\000\
+\\149\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\060\001\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\141\000\023\002\
+\\147\000\061\000\148\000\060\000\149\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\226\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\064\001\143\000\024\002\147\000\061\000\148\000\060\000\
+\\149\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\009\000\095\001\011\000\094\001\047\000\093\001\080\000\027\002\
+\\145\000\026\002\148\000\087\001\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\095\001\011\000\094\001\047\000\093\001\079\000\032\002\
+\\080\000\031\002\081\000\090\001\148\000\087\001\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\095\001\011\000\094\001\047\000\093\001\078\000\182\001\
+\\079\000\181\001\080\000\180\001\081\000\090\001\148\000\087\001\000\000\
+\\000\000\
+\\009\000\095\001\011\000\094\001\047\000\093\001\078\000\231\001\
+\\079\000\181\001\080\000\180\001\081\000\090\001\148\000\087\001\000\000\
\\000\000\
\"
-val numstates = 524
-val numrules = 290
+val numstates = 549
+val numrules = 296
val s = Unsynchronized.ref "" and index = Unsynchronized.ref 0
val string_to_int = fn () =>
let val i = !index
@@ -3500,9 +3620,12 @@
| atomic_system_word of (string) | atomic_defined_word of (string)
| let_term of (tptp_term) | tff_type_arguments of (tptp_type list)
| tff_monotype of (tptp_type) | tff_quantified_type of (tptp_type)
- | tff_let_formula_defn of (tptp_let list)
- | tff_let_term_defn of (tptp_let list) | tff_let of (tptp_formula)
- | thf_let_defn of (tptp_let list) | tptp of (tptp_problem)
+ | tff_let_formula_binding of (tptp_formula)
+ | tff_let_formula_defn of (tptp_let)
+ | tff_let_term_binding of (tptp_term)
+ | tff_let_term_defn of (tptp_let) | tff_let of (tptp_formula)
+ | thf_let_formula_defn of (tptp_let)
+ | thf_let_term_defn of (tptp_let) | tptp of (tptp_problem)
| tptp_file of (tptp_problem) | tptp_input of (tptp_line)
| include_ of (tptp_line) | annotated_formula of (tptp_line)
| thf_annotated of (tptp_line) | tff_annotated of (tptp_line)
@@ -4105,29 +4228,50 @@
end
| ( 52, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.thf_formula
-thf_formula, _, _)) :: _ :: ( _, ( MlyValue.thf_let_defn thf_let_defn,
- _, _)) :: _ :: ( _, ( _, LET_TF1left, _)) :: rest671)) => let val
-result = MlyValue.thf_let ((
- Let (thf_let_defn, thf_formula)
-))
+thf_formula, _, _)) :: _ :: ( _, ( MlyValue.thf_let_term_defn
+thf_let_term_defn, _, _)) :: _ :: ( _, ( _, LET_TF1left, _)) ::
+rest671)) => let val result = MlyValue.thf_let (
+( Let (thf_let_term_defn, thf_formula) ))
in ( LrTable.NT 101, ( result, LET_TF1left, RPAREN1right), rest671)
end
-| ( 53, ( ( _, ( MlyValue.thf_quantified_formula
+| ( 53, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.thf_formula
+thf_formula, _, _)) :: _ :: ( _, ( MlyValue.thf_let_formula_defn
+thf_let_formula_defn, _, _)) :: _ :: ( _, ( _, LET_FF1left, _)) ::
+rest671)) => let val result = MlyValue.thf_let (
+( Let (thf_let_formula_defn, thf_formula) ))
+ in ( LrTable.NT 101, ( result, LET_FF1left, RPAREN1right), rest671)
+
+end
+| ( 54, ( ( _, ( MlyValue.thf_quantified_formula
thf_quantified_formula, thf_quantified_formula1left,
thf_quantified_formula1right)) :: rest671)) => let val result =
-MlyValue.thf_let_defn (
+MlyValue.thf_let_term_defn (
(
let
val (_, vars, fmla) = extract_quant_info thf_quantified_formula
- in [Let_fmla (hd vars, fmla)]
+ in Let_fmla (vars, fmla)
end
)
)
in ( LrTable.NT 136, ( result, thf_quantified_formula1left,
thf_quantified_formula1right), rest671)
end
-| ( 54, ( ( _, ( MlyValue.thf_top_level_type thf_top_level_type, _,
+| ( 55, ( ( _, ( MlyValue.thf_quantified_formula
+thf_quantified_formula, thf_quantified_formula1left,
+thf_quantified_formula1right)) :: rest671)) => let val result =
+MlyValue.thf_let_formula_defn (
+(
+ let
+ val (_, vars, fmla) = extract_quant_info thf_quantified_formula
+ in Let_fmla (vars, fmla)
+ end
+)
+)
+ in ( LrTable.NT 137, ( result, thf_quantified_formula1left,
+thf_quantified_formula1right), rest671)
+end
+| ( 56, ( ( _, ( MlyValue.thf_top_level_type thf_top_level_type, _,
thf_top_level_type1right)) :: _ :: ( _, (
MlyValue.thf_typeable_formula thf_typeable_formula,
thf_typeable_formula1left, _)) :: rest671)) => let val result =
@@ -4136,59 +4280,59 @@
in ( LrTable.NT 111, ( result, thf_typeable_formula1left,
thf_top_level_type1right), rest671)
end
-| ( 55, ( ( _, ( MlyValue.thf_atom thf_atom, thf_atom1left,
+| ( 57, ( ( _, ( MlyValue.thf_atom thf_atom, thf_atom1left,
thf_atom1right)) :: rest671)) => let val result =
MlyValue.thf_typeable_formula (( thf_atom ))
in ( LrTable.NT 110, ( result, thf_atom1left, thf_atom1right),
rest671)
end
-| ( 56, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
+| ( 58, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
MlyValue.thf_logic_formula thf_logic_formula, _, _)) :: ( _, ( _,
LPAREN1left, _)) :: rest671)) => let val result =
MlyValue.thf_typeable_formula (( thf_logic_formula ))
in ( LrTable.NT 110, ( result, LPAREN1left, RPAREN1right), rest671)
end
-| ( 57, ( ( _, ( MlyValue.constant constant2, _, constant2right)) ::
+| ( 59, ( ( _, ( MlyValue.constant constant2, _, constant2right)) ::
_ :: ( _, ( MlyValue.constant constant1, constant1left, _)) ::
rest671)) => let val result = MlyValue.thf_subtype (
( Subtype(constant1, constant2) ))
in ( LrTable.NT 109, ( result, constant1left, constant2right),
rest671)
end
-| ( 58, ( ( _, ( MlyValue.thf_logic_formula thf_logic_formula,
+| ( 60, ( ( _, ( MlyValue.thf_logic_formula thf_logic_formula,
thf_logic_formula1left, thf_logic_formula1right)) :: rest671)) => let
val result = MlyValue.thf_top_level_type (
( Fmla_type thf_logic_formula ))
in ( LrTable.NT 108, ( result, thf_logic_formula1left,
thf_logic_formula1right), rest671)
end
-| ( 59, ( ( _, ( MlyValue.thf_unitary_formula thf_unitary_formula,
+| ( 61, ( ( _, ( MlyValue.thf_unitary_formula thf_unitary_formula,
thf_unitary_formula1left, thf_unitary_formula1right)) :: rest671)) =>
let val result = MlyValue.thf_unitary_type (
( Fmla_type thf_unitary_formula ))
in ( LrTable.NT 107, ( result, thf_unitary_formula1left,
thf_unitary_formula1right), rest671)
end
-| ( 60, ( ( _, ( MlyValue.thf_mapping_type thf_mapping_type,
+| ( 62, ( ( _, ( MlyValue.thf_mapping_type thf_mapping_type,
thf_mapping_type1left, thf_mapping_type1right)) :: rest671)) => let
val result = MlyValue.thf_binary_type (( thf_mapping_type ))
in ( LrTable.NT 106, ( result, thf_mapping_type1left,
thf_mapping_type1right), rest671)
end
-| ( 61, ( ( _, ( MlyValue.thf_xprod_type thf_xprod_type,
+| ( 63, ( ( _, ( MlyValue.thf_xprod_type thf_xprod_type,
thf_xprod_type1left, thf_xprod_type1right)) :: rest671)) => let val
result = MlyValue.thf_binary_type (( thf_xprod_type ))
in ( LrTable.NT 106, ( result, thf_xprod_type1left,
thf_xprod_type1right), rest671)
end
-| ( 62, ( ( _, ( MlyValue.thf_union_type thf_union_type,
+| ( 64, ( ( _, ( MlyValue.thf_union_type thf_union_type,
thf_union_type1left, thf_union_type1right)) :: rest671)) => let val
result = MlyValue.thf_binary_type (( thf_union_type ))
in ( LrTable.NT 106, ( result, thf_union_type1left,
thf_union_type1right), rest671)
end
-| ( 63, ( ( _, ( MlyValue.thf_unitary_type thf_unitary_type2, _,
+| ( 65, ( ( _, ( MlyValue.thf_unitary_type thf_unitary_type2, _,
thf_unitary_type2right)) :: _ :: ( _, ( MlyValue.thf_unitary_type
thf_unitary_type1, thf_unitary_type1left, _)) :: rest671)) => let val
result = MlyValue.thf_mapping_type (
@@ -4196,7 +4340,7 @@
in ( LrTable.NT 105, ( result, thf_unitary_type1left,
thf_unitary_type2right), rest671)
end
-| ( 64, ( ( _, ( MlyValue.thf_mapping_type thf_mapping_type, _,
+| ( 66, ( ( _, ( MlyValue.thf_mapping_type thf_mapping_type, _,
thf_mapping_type1right)) :: _ :: ( _, ( MlyValue.thf_unitary_type
thf_unitary_type, thf_unitary_type1left, _)) :: rest671)) => let val
result = MlyValue.thf_mapping_type (
@@ -4204,7 +4348,7 @@
in ( LrTable.NT 105, ( result, thf_unitary_type1left,
thf_mapping_type1right), rest671)
end
-| ( 65, ( ( _, ( MlyValue.thf_unitary_type thf_unitary_type2, _,
+| ( 67, ( ( _, ( MlyValue.thf_unitary_type thf_unitary_type2, _,
thf_unitary_type2right)) :: _ :: ( _, ( MlyValue.thf_unitary_type
thf_unitary_type1, thf_unitary_type1left, _)) :: rest671)) => let val
result = MlyValue.thf_xprod_type (
@@ -4212,7 +4356,7 @@
in ( LrTable.NT 104, ( result, thf_unitary_type1left,
thf_unitary_type2right), rest671)
end
-| ( 66, ( ( _, ( MlyValue.thf_unitary_type thf_unitary_type, _,
+| ( 68, ( ( _, ( MlyValue.thf_unitary_type thf_unitary_type, _,
thf_unitary_type1right)) :: _ :: ( _, ( MlyValue.thf_xprod_type
thf_xprod_type, thf_xprod_type1left, _)) :: rest671)) => let val
result = MlyValue.thf_xprod_type (
@@ -4220,7 +4364,7 @@
in ( LrTable.NT 104, ( result, thf_xprod_type1left,
thf_unitary_type1right), rest671)
end
-| ( 67, ( ( _, ( MlyValue.thf_unitary_type thf_unitary_type2, _,
+| ( 69, ( ( _, ( MlyValue.thf_unitary_type thf_unitary_type2, _,
thf_unitary_type2right)) :: _ :: ( _, ( MlyValue.thf_unitary_type
thf_unitary_type1, thf_unitary_type1left, _)) :: rest671)) => let val
result = MlyValue.thf_union_type (
@@ -4228,7 +4372,7 @@
in ( LrTable.NT 103, ( result, thf_unitary_type1left,
thf_unitary_type2right), rest671)
end
-| ( 68, ( ( _, ( MlyValue.thf_unitary_type thf_unitary_type, _,
+| ( 70, ( ( _, ( MlyValue.thf_unitary_type thf_unitary_type, _,
thf_unitary_type1right)) :: _ :: ( _, ( MlyValue.thf_union_type
thf_union_type, thf_union_type1left, _)) :: rest671)) => let val
result = MlyValue.thf_union_type (
@@ -4236,36 +4380,36 @@
in ( LrTable.NT 103, ( result, thf_union_type1left,
thf_unitary_type1right), rest671)
end
-| ( 69, ( ( _, ( MlyValue.thf_tuple thf_tuple2, _, thf_tuple2right))
+| ( 71, ( ( _, ( MlyValue.thf_tuple thf_tuple2, _, thf_tuple2right))
:: _ :: ( _, ( MlyValue.thf_tuple thf_tuple1, thf_tuple1left, _)) ::
rest671)) => let val result = MlyValue.thf_sequent (
( Sequent(thf_tuple1, thf_tuple2) ))
in ( LrTable.NT 99, ( result, thf_tuple1left, thf_tuple2right),
rest671)
end
-| ( 70, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.thf_sequent
+| ( 72, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.thf_sequent
thf_sequent, _, _)) :: ( _, ( _, LPAREN1left, _)) :: rest671)) => let
val result = MlyValue.thf_sequent (( thf_sequent ))
in ( LrTable.NT 99, ( result, LPAREN1left, RPAREN1right), rest671)
end
-| ( 71, ( ( _, ( _, _, RBRKT1right)) :: ( _, ( _, LBRKT1left, _)) ::
+| ( 73, ( ( _, ( _, _, RBRKT1right)) :: ( _, ( _, LBRKT1left, _)) ::
rest671)) => let val result = MlyValue.thf_tuple (( [] ))
in ( LrTable.NT 97, ( result, LBRKT1left, RBRKT1right), rest671)
end
-| ( 72, ( ( _, ( _, _, RBRKT1right)) :: ( _, (
+| ( 74, ( ( _, ( _, _, RBRKT1right)) :: ( _, (
MlyValue.thf_tuple_list thf_tuple_list, _, _)) :: ( _, ( _, LBRKT1left
, _)) :: rest671)) => let val result = MlyValue.thf_tuple (
( thf_tuple_list ))
in ( LrTable.NT 97, ( result, LBRKT1left, RBRKT1right), rest671)
end
-| ( 73, ( ( _, ( MlyValue.thf_logic_formula thf_logic_formula,
+| ( 75, ( ( _, ( MlyValue.thf_logic_formula thf_logic_formula,
thf_logic_formula1left, thf_logic_formula1right)) :: rest671)) => let
val result = MlyValue.thf_tuple_list (( [thf_logic_formula] ))
in ( LrTable.NT 98, ( result, thf_logic_formula1left,
thf_logic_formula1right), rest671)
end
-| ( 74, ( ( _, ( MlyValue.thf_tuple_list thf_tuple_list, _,
+| ( 76, ( ( _, ( MlyValue.thf_tuple_list thf_tuple_list, _,
thf_tuple_list1right)) :: _ :: ( _, ( MlyValue.thf_logic_formula
thf_logic_formula, thf_logic_formula1left, _)) :: rest671)) => let
val result = MlyValue.thf_tuple_list (
@@ -4273,52 +4417,52 @@
in ( LrTable.NT 98, ( result, thf_logic_formula1left,
thf_tuple_list1right), rest671)
end
-| ( 75, ( ( _, ( MlyValue.tff_logic_formula tff_logic_formula,
+| ( 77, ( ( _, ( MlyValue.tff_logic_formula tff_logic_formula,
tff_logic_formula1left, tff_logic_formula1right)) :: rest671)) => let
val result = MlyValue.tff_formula (( tff_logic_formula ))
in ( LrTable.NT 96, ( result, tff_logic_formula1left,
tff_logic_formula1right), rest671)
end
-| ( 76, ( ( _, ( MlyValue.tff_typed_atom tff_typed_atom,
+| ( 78, ( ( _, ( MlyValue.tff_typed_atom tff_typed_atom,
tff_typed_atom1left, tff_typed_atom1right)) :: rest671)) => let val
result = MlyValue.tff_formula (
( Atom (TFF_Typed_Atom tff_typed_atom) ))
in ( LrTable.NT 96, ( result, tff_typed_atom1left,
tff_typed_atom1right), rest671)
end
-| ( 77, ( ( _, ( MlyValue.tff_sequent tff_sequent, tff_sequent1left,
+| ( 79, ( ( _, ( MlyValue.tff_sequent tff_sequent, tff_sequent1left,
tff_sequent1right)) :: rest671)) => let val result =
MlyValue.tff_formula (( tff_sequent ))
in ( LrTable.NT 96, ( result, tff_sequent1left, tff_sequent1right),
rest671)
end
-| ( 78, ( ( _, ( MlyValue.tff_binary_formula tff_binary_formula,
+| ( 80, ( ( _, ( MlyValue.tff_binary_formula tff_binary_formula,
tff_binary_formula1left, tff_binary_formula1right)) :: rest671)) =>
let val result = MlyValue.tff_logic_formula (( tff_binary_formula ))
in ( LrTable.NT 95, ( result, tff_binary_formula1left,
tff_binary_formula1right), rest671)
end
-| ( 79, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula,
+| ( 81, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula,
tff_unitary_formula1left, tff_unitary_formula1right)) :: rest671)) =>
let val result = MlyValue.tff_logic_formula (( tff_unitary_formula )
)
in ( LrTable.NT 95, ( result, tff_unitary_formula1left,
tff_unitary_formula1right), rest671)
end
-| ( 80, ( ( _, ( MlyValue.tff_binary_nonassoc tff_binary_nonassoc,
+| ( 82, ( ( _, ( MlyValue.tff_binary_nonassoc tff_binary_nonassoc,
tff_binary_nonassoc1left, tff_binary_nonassoc1right)) :: rest671)) =>
let val result = MlyValue.tff_binary_formula (
( tff_binary_nonassoc ))
in ( LrTable.NT 94, ( result, tff_binary_nonassoc1left,
tff_binary_nonassoc1right), rest671)
end
-| ( 81, ( ( _, ( MlyValue.tff_binary_assoc tff_binary_assoc,
+| ( 83, ( ( _, ( MlyValue.tff_binary_assoc tff_binary_assoc,
tff_binary_assoc1left, tff_binary_assoc1right)) :: rest671)) => let
val result = MlyValue.tff_binary_formula (( tff_binary_assoc ))
in ( LrTable.NT 94, ( result, tff_binary_assoc1left,
tff_binary_assoc1right), rest671)
end
-| ( 82, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula2, _
+| ( 84, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula2, _
, tff_unitary_formula2right)) :: ( _, ( MlyValue.binary_connective
binary_connective, _, _)) :: ( _, ( MlyValue.tff_unitary_formula
tff_unitary_formula1, tff_unitary_formula1left, _)) :: rest671)) =>
@@ -4328,19 +4472,19 @@
in ( LrTable.NT 93, ( result, tff_unitary_formula1left,
tff_unitary_formula2right), rest671)
end
-| ( 83, ( ( _, ( MlyValue.tff_or_formula tff_or_formula,
+| ( 85, ( ( _, ( MlyValue.tff_or_formula tff_or_formula,
tff_or_formula1left, tff_or_formula1right)) :: rest671)) => let val
result = MlyValue.tff_binary_assoc (( tff_or_formula ))
in ( LrTable.NT 92, ( result, tff_or_formula1left,
tff_or_formula1right), rest671)
end
-| ( 84, ( ( _, ( MlyValue.tff_and_formula tff_and_formula,
+| ( 86, ( ( _, ( MlyValue.tff_and_formula tff_and_formula,
tff_and_formula1left, tff_and_formula1right)) :: rest671)) => let val
result = MlyValue.tff_binary_assoc (( tff_and_formula ))
in ( LrTable.NT 92, ( result, tff_and_formula1left,
tff_and_formula1right), rest671)
end
-| ( 85, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula2, _
+| ( 87, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula2, _
, tff_unitary_formula2right)) :: _ :: ( _, (
MlyValue.tff_unitary_formula tff_unitary_formula1,
tff_unitary_formula1left, _)) :: rest671)) => let val result =
@@ -4350,7 +4494,7 @@
in ( LrTable.NT 91, ( result, tff_unitary_formula1left,
tff_unitary_formula2right), rest671)
end
-| ( 86, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula, _,
+| ( 88, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula, _,
tff_unitary_formula1right)) :: _ :: ( _, ( MlyValue.tff_or_formula
tff_or_formula, tff_or_formula1left, _)) :: rest671)) => let val
result = MlyValue.tff_or_formula (
@@ -4359,7 +4503,7 @@
in ( LrTable.NT 91, ( result, tff_or_formula1left,
tff_unitary_formula1right), rest671)
end
-| ( 87, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula2, _
+| ( 89, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula2, _
, tff_unitary_formula2right)) :: _ :: ( _, (
MlyValue.tff_unitary_formula tff_unitary_formula1,
tff_unitary_formula1left, _)) :: rest671)) => let val result =
@@ -4369,7 +4513,7 @@
in ( LrTable.NT 90, ( result, tff_unitary_formula1left,
tff_unitary_formula2right), rest671)
end
-| ( 88, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula, _,
+| ( 90, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula, _,
tff_unitary_formula1right)) :: _ :: ( _, ( MlyValue.tff_and_formula
tff_and_formula, tff_and_formula1left, _)) :: rest671)) => let val
result = MlyValue.tff_and_formula (
@@ -4378,45 +4522,45 @@
in ( LrTable.NT 90, ( result, tff_and_formula1left,
tff_unitary_formula1right), rest671)
end
-| ( 89, ( ( _, ( MlyValue.tff_quantified_formula
+| ( 91, ( ( _, ( MlyValue.tff_quantified_formula
tff_quantified_formula, tff_quantified_formula1left,
tff_quantified_formula1right)) :: rest671)) => let val result =
MlyValue.tff_unitary_formula (( tff_quantified_formula ))
in ( LrTable.NT 89, ( result, tff_quantified_formula1left,
tff_quantified_formula1right), rest671)
end
-| ( 90, ( ( _, ( MlyValue.tff_unary_formula tff_unary_formula,
+| ( 92, ( ( _, ( MlyValue.tff_unary_formula tff_unary_formula,
tff_unary_formula1left, tff_unary_formula1right)) :: rest671)) => let
val result = MlyValue.tff_unitary_formula (( tff_unary_formula ))
in ( LrTable.NT 89, ( result, tff_unary_formula1left,
tff_unary_formula1right), rest671)
end
-| ( 91, ( ( _, ( MlyValue.atomic_formula atomic_formula,
+| ( 93, ( ( _, ( MlyValue.atomic_formula atomic_formula,
atomic_formula1left, atomic_formula1right)) :: rest671)) => let val
result = MlyValue.tff_unitary_formula (( atomic_formula ))
in ( LrTable.NT 89, ( result, atomic_formula1left,
atomic_formula1right), rest671)
end
-| ( 92, ( ( _, ( MlyValue.tff_conditional tff_conditional,
+| ( 94, ( ( _, ( MlyValue.tff_conditional tff_conditional,
tff_conditional1left, tff_conditional1right)) :: rest671)) => let val
result = MlyValue.tff_unitary_formula (( tff_conditional ))
in ( LrTable.NT 89, ( result, tff_conditional1left,
tff_conditional1right), rest671)
end
-| ( 93, ( ( _, ( MlyValue.tff_let tff_let, tff_let1left,
+| ( 95, ( ( _, ( MlyValue.tff_let tff_let, tff_let1left,
tff_let1right)) :: rest671)) => let val result =
MlyValue.tff_unitary_formula (( tff_let ))
in ( LrTable.NT 89, ( result, tff_let1left, tff_let1right), rest671)
end
-| ( 94, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
+| ( 96, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
MlyValue.tff_logic_formula tff_logic_formula, _, _)) :: ( _, ( _,
LPAREN1left, _)) :: rest671)) => let val result =
MlyValue.tff_unitary_formula (( tff_logic_formula ))
in ( LrTable.NT 89, ( result, LPAREN1left, RPAREN1right), rest671)
end
-| ( 95, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula, _,
+| ( 97, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula, _,
tff_unitary_formula1right)) :: _ :: _ :: ( _, (
MlyValue.tff_variable_list tff_variable_list, _, _)) :: _ :: ( _, (
MlyValue.fol_quantifier fol_quantifier, fol_quantifier1left, _)) ::
@@ -4427,39 +4571,39 @@
in ( LrTable.NT 88, ( result, fol_quantifier1left,
tff_unitary_formula1right), rest671)
end
-| ( 96, ( ( _, ( MlyValue.tff_variable tff_variable,
+| ( 98, ( ( _, ( MlyValue.tff_variable tff_variable,
tff_variable1left, tff_variable1right)) :: rest671)) => let val
result = MlyValue.tff_variable_list (( [tff_variable] ))
in ( LrTable.NT 87, ( result, tff_variable1left, tff_variable1right),
rest671)
end
-| ( 97, ( ( _, ( MlyValue.tff_variable_list tff_variable_list, _,
+| ( 99, ( ( _, ( MlyValue.tff_variable_list tff_variable_list, _,
tff_variable_list1right)) :: _ :: ( _, ( MlyValue.tff_variable
tff_variable, tff_variable1left, _)) :: rest671)) => let val result =
MlyValue.tff_variable_list (( tff_variable :: tff_variable_list ))
in ( LrTable.NT 87, ( result, tff_variable1left,
tff_variable_list1right), rest671)
end
-| ( 98, ( ( _, ( MlyValue.tff_typed_variable tff_typed_variable,
+| ( 100, ( ( _, ( MlyValue.tff_typed_variable tff_typed_variable,
tff_typed_variable1left, tff_typed_variable1right)) :: rest671)) =>
let val result = MlyValue.tff_variable (( tff_typed_variable ))
in ( LrTable.NT 86, ( result, tff_typed_variable1left,
tff_typed_variable1right), rest671)
end
-| ( 99, ( ( _, ( MlyValue.variable_ variable_, variable_1left,
+| ( 101, ( ( _, ( MlyValue.variable_ variable_, variable_1left,
variable_1right)) :: rest671)) => let val result =
MlyValue.tff_variable (( (variable_, NONE) ))
in ( LrTable.NT 86, ( result, variable_1left, variable_1right),
rest671)
end
-| ( 100, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type, _,
+| ( 102, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type, _,
tff_atomic_type1right)) :: _ :: ( _, ( MlyValue.variable_ variable_,
variable_1left, _)) :: rest671)) => let val result =
MlyValue.tff_typed_variable (( (variable_, SOME tff_atomic_type) ))
in ( LrTable.NT 85, ( result, variable_1left, tff_atomic_type1right),
rest671)
end
-| ( 101, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula, _
+| ( 103, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula, _
, tff_unitary_formula1right)) :: ( _, ( MlyValue.unary_connective
unary_connective, unary_connective1left, _)) :: rest671)) => let val
result = MlyValue.tff_unary_formula (
@@ -4467,13 +4611,13 @@
in ( LrTable.NT 84, ( result, unary_connective1left,
tff_unitary_formula1right), rest671)
end
-| ( 102, ( ( _, ( MlyValue.fol_infix_unary fol_infix_unary,
+| ( 104, ( ( _, ( MlyValue.fol_infix_unary fol_infix_unary,
fol_infix_unary1left, fol_infix_unary1right)) :: rest671)) => let val
result = MlyValue.tff_unary_formula (( fol_infix_unary ))
in ( LrTable.NT 84, ( result, fol_infix_unary1left,
fol_infix_unary1right), rest671)
end
-| ( 103, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
+| ( 105, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
MlyValue.tff_logic_formula tff_logic_formula3, _, _)) :: _ :: ( _, (
MlyValue.tff_logic_formula tff_logic_formula2, _, _)) :: _ :: ( _, (
MlyValue.tff_logic_formula tff_logic_formula1, _, _)) :: _ :: ( _, ( _
@@ -4485,74 +4629,98 @@
)
in ( LrTable.NT 76, ( result, ITE_F1left, RPAREN1right), rest671)
end
-| ( 104, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.tff_formula
+| ( 106, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.tff_formula
tff_formula, _, _)) :: _ :: ( _, ( MlyValue.tff_let_term_defn
tff_let_term_defn, _, _)) :: _ :: ( _, ( _, LET_TF1left, _)) ::
rest671)) => let val result = MlyValue.tff_let (
(Let (tff_let_term_defn, tff_formula) ))
- in ( LrTable.NT 137, ( result, LET_TF1left, RPAREN1right), rest671)
+ in ( LrTable.NT 138, ( result, LET_TF1left, RPAREN1right), rest671)
end
-| ( 105, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.tff_formula
+| ( 107, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.tff_formula
tff_formula, _, _)) :: _ :: ( _, ( MlyValue.tff_let_formula_defn
tff_let_formula_defn, _, _)) :: _ :: ( _, ( _, LET_FF1left, _)) ::
rest671)) => let val result = MlyValue.tff_let (
( Let (tff_let_formula_defn, tff_formula) ))
- in ( LrTable.NT 137, ( result, LET_FF1left, RPAREN1right), rest671)
+ in ( LrTable.NT 138, ( result, LET_FF1left, RPAREN1right), rest671)
end
-| ( 106, ( ( _, ( MlyValue.tff_quantified_formula
-tff_quantified_formula, tff_quantified_formula1left,
-tff_quantified_formula1right)) :: rest671)) => let val result =
+| ( 108, ( ( _, ( MlyValue.tff_let_term_binding tff_let_term_binding,
+ _, tff_let_term_binding1right)) :: _ :: _ :: ( _, (
+MlyValue.tff_variable_list tff_variable_list, _, _)) :: _ :: ( _, ( _,
+ EXCLAMATION1left, _)) :: rest671)) => let val result =
MlyValue.tff_let_term_defn (
+( Let_term (tff_variable_list, tff_let_term_binding) ))
+ in ( LrTable.NT 139, ( result, EXCLAMATION1left,
+tff_let_term_binding1right), rest671)
+end
+| ( 109, ( ( _, ( MlyValue.tff_let_term_binding tff_let_term_binding,
+ tff_let_term_binding1left, tff_let_term_binding1right)) :: rest671))
+ => let val result = MlyValue.tff_let_term_defn (
+( Let_term ([], tff_let_term_binding) ))
+ in ( LrTable.NT 139, ( result, tff_let_term_binding1left,
+tff_let_term_binding1right), rest671)
+end
+| ( 110, ( ( _, ( MlyValue.term term2, _, term2right)) :: _ :: ( _, (
+ MlyValue.term term1, term1left, _)) :: rest671)) => let val result =
+ MlyValue.tff_let_term_binding (
(
- let
- val (_, vars, fmla) = extract_quant_info tff_quantified_formula
- in [Let_fmla (hd vars, fmla)]
- end
+ Term_Func (Interpreted_ExtraLogic Apply, [term1, term2])
+))
+ in ( LrTable.NT 140, ( result, term1left, term2right), rest671)
+end
+| ( 111, ( ( _, ( MlyValue.tff_let_formula_binding
+tff_let_formula_binding, _, tff_let_formula_binding1right)) :: _ :: _
+ :: ( _, ( MlyValue.tff_variable_list tff_variable_list, _, _)) :: _
+ :: ( _, ( _, EXCLAMATION1left, _)) :: rest671)) => let val result =
+MlyValue.tff_let_formula_defn (
+( Let_fmla (tff_variable_list, tff_let_formula_binding) ))
+ in ( LrTable.NT 141, ( result, EXCLAMATION1left,
+tff_let_formula_binding1right), rest671)
+end
+| ( 112, ( ( _, ( MlyValue.tff_let_formula_binding
+tff_let_formula_binding, tff_let_formula_binding1left,
+tff_let_formula_binding1right)) :: rest671)) => let val result =
+MlyValue.tff_let_formula_defn (
+( Let_fmla ([], tff_let_formula_binding) ))
+ in ( LrTable.NT 141, ( result, tff_let_formula_binding1left,
+tff_let_formula_binding1right), rest671)
+end
+| ( 113, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula, _
+, tff_unitary_formula1right)) :: _ :: ( _, ( MlyValue.atomic_formula
+atomic_formula, atomic_formula1left, _)) :: rest671)) => let val
+result = MlyValue.tff_let_formula_binding (
+(
+ Fmla (Interpreted_Logic Iff, [atomic_formula, tff_unitary_formula])
)
)
- in ( LrTable.NT 138, ( result, tff_quantified_formula1left,
-tff_quantified_formula1right), rest671)
-end
-| ( 107, ( ( _, ( MlyValue.tff_quantified_formula
-tff_quantified_formula, tff_quantified_formula1left,
-tff_quantified_formula1right)) :: rest671)) => let val result =
-MlyValue.tff_let_formula_defn (
-(
- let
- val (_, vars, fmla) = extract_quant_info tff_quantified_formula
- in [Let_fmla (hd vars, fmla)]
- end
-)
-)
- in ( LrTable.NT 139, ( result, tff_quantified_formula1left,
-tff_quantified_formula1right), rest671)
-end
-| ( 108, ( ( _, ( MlyValue.tff_tuple tff_tuple2, _, tff_tuple2right))
+ in ( LrTable.NT 142, ( result, atomic_formula1left,
+tff_unitary_formula1right), rest671)
+end
+| ( 114, ( ( _, ( MlyValue.tff_tuple tff_tuple2, _, tff_tuple2right))
:: _ :: ( _, ( MlyValue.tff_tuple tff_tuple1, tff_tuple1left, _)) ::
rest671)) => let val result = MlyValue.tff_sequent (
( Sequent (tff_tuple1, tff_tuple2) ))
in ( LrTable.NT 75, ( result, tff_tuple1left, tff_tuple2right),
rest671)
end
-| ( 109, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.tff_sequent
+| ( 115, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.tff_sequent
tff_sequent, _, _)) :: ( _, ( _, LPAREN1left, _)) :: rest671)) => let
val result = MlyValue.tff_sequent (( tff_sequent ))
in ( LrTable.NT 75, ( result, LPAREN1left, RPAREN1right), rest671)
end
-| ( 110, ( ( _, ( _, _, RBRKT1right)) :: ( _, ( _, LBRKT1left, _)) ::
+| ( 116, ( ( _, ( _, _, RBRKT1right)) :: ( _, ( _, LBRKT1left, _)) ::
rest671)) => let val result = MlyValue.tff_tuple (( [] ))
in ( LrTable.NT 73, ( result, LBRKT1left, RBRKT1right), rest671)
end
-| ( 111, ( ( _, ( _, _, RBRKT1right)) :: ( _, (
+| ( 117, ( ( _, ( _, _, RBRKT1right)) :: ( _, (
MlyValue.tff_tuple_list tff_tuple_list, _, _)) :: ( _, ( _, LBRKT1left
, _)) :: rest671)) => let val result = MlyValue.tff_tuple (
( tff_tuple_list ))
in ( LrTable.NT 73, ( result, LBRKT1left, RBRKT1right), rest671)
end
-| ( 112, ( ( _, ( MlyValue.tff_tuple_list tff_tuple_list, _,
+| ( 118, ( ( _, ( MlyValue.tff_tuple_list tff_tuple_list, _,
tff_tuple_list1right)) :: _ :: ( _, ( MlyValue.tff_logic_formula
tff_logic_formula, tff_logic_formula1left, _)) :: rest671)) => let
val result = MlyValue.tff_tuple_list (
@@ -4560,13 +4728,13 @@
in ( LrTable.NT 74, ( result, tff_logic_formula1left,
tff_tuple_list1right), rest671)
end
-| ( 113, ( ( _, ( MlyValue.tff_logic_formula tff_logic_formula,
+| ( 119, ( ( _, ( MlyValue.tff_logic_formula tff_logic_formula,
tff_logic_formula1left, tff_logic_formula1right)) :: rest671)) => let
val result = MlyValue.tff_tuple_list (( [tff_logic_formula] ))
in ( LrTable.NT 74, ( result, tff_logic_formula1left,
tff_logic_formula1right), rest671)
end
-| ( 114, ( ( _, ( MlyValue.tff_top_level_type tff_top_level_type, _,
+| ( 120, ( ( _, ( MlyValue.tff_top_level_type tff_top_level_type, _,
tff_top_level_type1right)) :: _ :: ( _, ( MlyValue.tff_untyped_atom
tff_untyped_atom, tff_untyped_atom1left, _)) :: rest671)) => let val
result = MlyValue.tff_typed_atom (
@@ -4574,45 +4742,45 @@
in ( LrTable.NT 83, ( result, tff_untyped_atom1left,
tff_top_level_type1right), rest671)
end
-| ( 115, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
+| ( 121, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
MlyValue.tff_typed_atom tff_typed_atom, _, _)) :: ( _, ( _,
LPAREN1left, _)) :: rest671)) => let val result =
MlyValue.tff_typed_atom (( tff_typed_atom ))
in ( LrTable.NT 83, ( result, LPAREN1left, RPAREN1right), rest671)
end
-| ( 116, ( ( _, ( MlyValue.functor_ functor_, functor_1left,
+| ( 122, ( ( _, ( MlyValue.functor_ functor_, functor_1left,
functor_1right)) :: rest671)) => let val result =
MlyValue.tff_untyped_atom (( (functor_, NONE) ))
in ( LrTable.NT 82, ( result, functor_1left, functor_1right), rest671
)
end
-| ( 117, ( ( _, ( MlyValue.system_functor system_functor,
+| ( 123, ( ( _, ( MlyValue.system_functor system_functor,
system_functor1left, system_functor1right)) :: rest671)) => let val
result = MlyValue.tff_untyped_atom (( (system_functor, NONE) ))
in ( LrTable.NT 82, ( result, system_functor1left,
system_functor1right), rest671)
end
-| ( 118, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type,
+| ( 124, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type,
tff_atomic_type1left, tff_atomic_type1right)) :: rest671)) => let val
result = MlyValue.tff_top_level_type (( tff_atomic_type ))
in ( LrTable.NT 81, ( result, tff_atomic_type1left,
tff_atomic_type1right), rest671)
end
-| ( 119, ( ( _, ( MlyValue.tff_mapping_type tff_mapping_type,
+| ( 125, ( ( _, ( MlyValue.tff_mapping_type tff_mapping_type,
tff_mapping_type1left, tff_mapping_type1right)) :: rest671)) => let
val result = MlyValue.tff_top_level_type (( tff_mapping_type ))
in ( LrTable.NT 81, ( result, tff_mapping_type1left,
tff_mapping_type1right), rest671)
end
-| ( 120, ( ( _, ( MlyValue.tff_quantified_type tff_quantified_type,
+| ( 126, ( ( _, ( MlyValue.tff_quantified_type tff_quantified_type,
tff_quantified_type1left, tff_quantified_type1right)) :: rest671)) =>
let val result = MlyValue.tff_top_level_type (
( tff_quantified_type ))
in ( LrTable.NT 81, ( result, tff_quantified_type1left,
tff_quantified_type1right), rest671)
end
-| ( 121, ( ( _, ( MlyValue.tff_monotype tff_monotype, _,
+| ( 127, ( ( _, ( MlyValue.tff_monotype tff_monotype, _,
tff_monotype1right)) :: _ :: _ :: ( _, ( MlyValue.tff_variable_list
tff_variable_list, _, _)) :: _ :: ( _, ( _, DEP_PROD1left, _)) ::
rest671)) => let val result = MlyValue.tff_quantified_type (
@@ -4620,55 +4788,55 @@
Fmla_type (Quant (Dep_Prod, tff_variable_list, Type_fmla tff_monotype))
)
)
- in ( LrTable.NT 140, ( result, DEP_PROD1left, tff_monotype1right),
+ in ( LrTable.NT 143, ( result, DEP_PROD1left, tff_monotype1right),
rest671)
end
-| ( 122, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
+| ( 128, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
MlyValue.tff_quantified_type tff_quantified_type, _, _)) :: ( _, ( _,
LPAREN1left, _)) :: rest671)) => let val result =
MlyValue.tff_quantified_type (( tff_quantified_type ))
- in ( LrTable.NT 140, ( result, LPAREN1left, RPAREN1right), rest671)
+ in ( LrTable.NT 143, ( result, LPAREN1left, RPAREN1right), rest671)
end
-| ( 123, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type,
+| ( 129, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type,
tff_atomic_type1left, tff_atomic_type1right)) :: rest671)) => let val
result = MlyValue.tff_monotype (( tff_atomic_type ))
- in ( LrTable.NT 141, ( result, tff_atomic_type1left,
+ in ( LrTable.NT 144, ( result, tff_atomic_type1left,
tff_atomic_type1right), rest671)
end
-| ( 124, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
+| ( 130, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
MlyValue.tff_mapping_type tff_mapping_type, _, _)) :: ( _, ( _,
LPAREN1left, _)) :: rest671)) => let val result =
MlyValue.tff_monotype (( tff_mapping_type ))
- in ( LrTable.NT 141, ( result, LPAREN1left, RPAREN1right), rest671)
+ in ( LrTable.NT 144, ( result, LPAREN1left, RPAREN1right), rest671)
end
-| ( 125, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type,
+| ( 131, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type,
tff_atomic_type1left, tff_atomic_type1right)) :: rest671)) => let val
result = MlyValue.tff_unitary_type (( tff_atomic_type ))
in ( LrTable.NT 80, ( result, tff_atomic_type1left,
tff_atomic_type1right), rest671)
end
-| ( 126, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
+| ( 132, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
MlyValue.tff_xprod_type tff_xprod_type, _, _)) :: ( _, ( _,
LPAREN1left, _)) :: rest671)) => let val result =
MlyValue.tff_unitary_type (( tff_xprod_type ))
in ( LrTable.NT 80, ( result, LPAREN1left, RPAREN1right), rest671)
end
-| ( 127, ( ( _, ( MlyValue.atomic_word atomic_word, atomic_word1left,
+| ( 133, ( ( _, ( MlyValue.atomic_word atomic_word, atomic_word1left,
atomic_word1right)) :: rest671)) => let val result =
MlyValue.tff_atomic_type (( Atom_type atomic_word ))
in ( LrTable.NT 79, ( result, atomic_word1left, atomic_word1right),
rest671)
end
-| ( 128, ( ( _, ( MlyValue.defined_type defined_type,
+| ( 134, ( ( _, ( MlyValue.defined_type defined_type,
defined_type1left, defined_type1right)) :: rest671)) => let val
result = MlyValue.tff_atomic_type (( Defined_type defined_type ))
in ( LrTable.NT 79, ( result, defined_type1left, defined_type1right),
rest671)
end
-| ( 129, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
+| ( 135, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
MlyValue.tff_type_arguments tff_type_arguments, _, _)) :: _ :: ( _, (
MlyValue.atomic_word atomic_word, atomic_word1left, _)) :: rest671))
=> let val result = MlyValue.tff_atomic_type (
@@ -4677,7 +4845,7 @@
in ( LrTable.NT 79, ( result, atomic_word1left, RPAREN1right),
rest671)
end
-| ( 130, ( ( _, ( MlyValue.variable_ variable_, variable_1left,
+| ( 136, ( ( _, ( MlyValue.variable_ variable_, variable_1left,
variable_1right)) :: rest671)) => let val result =
MlyValue.tff_atomic_type (
( Fmla_type (Pred (Interpreted_ExtraLogic Apply, [Term_Var variable_])) )
@@ -4685,21 +4853,21 @@
in ( LrTable.NT 79, ( result, variable_1left, variable_1right),
rest671)
end
-| ( 131, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type,
+| ( 137, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type,
tff_atomic_type1left, tff_atomic_type1right)) :: rest671)) => let val
result = MlyValue.tff_type_arguments (( [tff_atomic_type] ))
- in ( LrTable.NT 142, ( result, tff_atomic_type1left,
+ in ( LrTable.NT 145, ( result, tff_atomic_type1left,
tff_atomic_type1right), rest671)
end
-| ( 132, ( ( _, ( MlyValue.tff_type_arguments tff_type_arguments, _,
+| ( 138, ( ( _, ( MlyValue.tff_type_arguments tff_type_arguments, _,
tff_type_arguments1right)) :: _ :: ( _, ( MlyValue.tff_atomic_type
tff_atomic_type, tff_atomic_type1left, _)) :: rest671)) => let val
result = MlyValue.tff_type_arguments (
( tff_atomic_type :: tff_type_arguments ))
- in ( LrTable.NT 142, ( result, tff_atomic_type1left,
+ in ( LrTable.NT 145, ( result, tff_atomic_type1left,
tff_type_arguments1right), rest671)
end
-| ( 133, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type, _,
+| ( 139, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type, _,
tff_atomic_type1right)) :: _ :: ( _, ( MlyValue.tff_unitary_type
tff_unitary_type, tff_unitary_type1left, _)) :: rest671)) => let val
result = MlyValue.tff_mapping_type (
@@ -4707,14 +4875,14 @@
in ( LrTable.NT 78, ( result, tff_unitary_type1left,
tff_atomic_type1right), rest671)
end
-| ( 134, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
+| ( 140, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
MlyValue.tff_mapping_type tff_mapping_type, _, _)) :: ( _, ( _,
LPAREN1left, _)) :: rest671)) => let val result =
MlyValue.tff_mapping_type (( tff_mapping_type ))
in ( LrTable.NT 78, ( result, LPAREN1left, RPAREN1right), rest671)
end
-| ( 135, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type2, _,
+| ( 141, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type2, _,
tff_atomic_type2right)) :: _ :: ( _, ( MlyValue.tff_atomic_type
tff_atomic_type1, tff_atomic_type1left, _)) :: rest671)) => let val
result = MlyValue.tff_xprod_type (
@@ -4722,7 +4890,7 @@
in ( LrTable.NT 77, ( result, tff_atomic_type1left,
tff_atomic_type2right), rest671)
end
-| ( 136, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type, _,
+| ( 142, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type, _,
tff_atomic_type1right)) :: _ :: ( _, ( MlyValue.tff_xprod_type
tff_xprod_type, tff_xprod_type1left, _)) :: rest671)) => let val
result = MlyValue.tff_xprod_type (
@@ -4730,52 +4898,52 @@
in ( LrTable.NT 77, ( result, tff_xprod_type1left,
tff_atomic_type1right), rest671)
end
-| ( 137, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
+| ( 143, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
MlyValue.tff_xprod_type tff_xprod_type, _, _)) :: ( _, ( _,
LPAREN1left, _)) :: rest671)) => let val result =
MlyValue.tff_xprod_type (( tff_xprod_type ))
in ( LrTable.NT 77, ( result, LPAREN1left, RPAREN1right), rest671)
end
-| ( 138, ( ( _, ( MlyValue.fof_logic_formula fof_logic_formula,
+| ( 144, ( ( _, ( MlyValue.fof_logic_formula fof_logic_formula,
fof_logic_formula1left, fof_logic_formula1right)) :: rest671)) => let
val result = MlyValue.fof_formula (( fof_logic_formula ))
in ( LrTable.NT 72, ( result, fof_logic_formula1left,
fof_logic_formula1right), rest671)
end
-| ( 139, ( ( _, ( MlyValue.fof_sequent fof_sequent, fof_sequent1left,
+| ( 145, ( ( _, ( MlyValue.fof_sequent fof_sequent, fof_sequent1left,
fof_sequent1right)) :: rest671)) => let val result =
MlyValue.fof_formula (( fof_sequent ))
in ( LrTable.NT 72, ( result, fof_sequent1left, fof_sequent1right),
rest671)
end
-| ( 140, ( ( _, ( MlyValue.fof_binary_formula fof_binary_formula,
+| ( 146, ( ( _, ( MlyValue.fof_binary_formula fof_binary_formula,
fof_binary_formula1left, fof_binary_formula1right)) :: rest671)) =>
let val result = MlyValue.fof_logic_formula (( fof_binary_formula ))
in ( LrTable.NT 71, ( result, fof_binary_formula1left,
fof_binary_formula1right), rest671)
end
-| ( 141, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula,
+| ( 147, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula,
fof_unitary_formula1left, fof_unitary_formula1right)) :: rest671)) =>
let val result = MlyValue.fof_logic_formula (( fof_unitary_formula )
)
in ( LrTable.NT 71, ( result, fof_unitary_formula1left,
fof_unitary_formula1right), rest671)
end
-| ( 142, ( ( _, ( MlyValue.fof_binary_nonassoc fof_binary_nonassoc,
+| ( 148, ( ( _, ( MlyValue.fof_binary_nonassoc fof_binary_nonassoc,
fof_binary_nonassoc1left, fof_binary_nonassoc1right)) :: rest671)) =>
let val result = MlyValue.fof_binary_formula (
( fof_binary_nonassoc ))
in ( LrTable.NT 70, ( result, fof_binary_nonassoc1left,
fof_binary_nonassoc1right), rest671)
end
-| ( 143, ( ( _, ( MlyValue.fof_binary_assoc fof_binary_assoc,
+| ( 149, ( ( _, ( MlyValue.fof_binary_assoc fof_binary_assoc,
fof_binary_assoc1left, fof_binary_assoc1right)) :: rest671)) => let
val result = MlyValue.fof_binary_formula (( fof_binary_assoc ))
in ( LrTable.NT 70, ( result, fof_binary_assoc1left,
fof_binary_assoc1right), rest671)
end
-| ( 144, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula2,
+| ( 150, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula2,
_, fof_unitary_formula2right)) :: ( _, ( MlyValue.binary_connective
binary_connective, _, _)) :: ( _, ( MlyValue.fof_unitary_formula
fof_unitary_formula1, fof_unitary_formula1left, _)) :: rest671)) =>
@@ -4787,19 +4955,19 @@
in ( LrTable.NT 69, ( result, fof_unitary_formula1left,
fof_unitary_formula2right), rest671)
end
-| ( 145, ( ( _, ( MlyValue.fof_or_formula fof_or_formula,
+| ( 151, ( ( _, ( MlyValue.fof_or_formula fof_or_formula,
fof_or_formula1left, fof_or_formula1right)) :: rest671)) => let val
result = MlyValue.fof_binary_assoc (( fof_or_formula ))
in ( LrTable.NT 68, ( result, fof_or_formula1left,
fof_or_formula1right), rest671)
end
-| ( 146, ( ( _, ( MlyValue.fof_and_formula fof_and_formula,
+| ( 152, ( ( _, ( MlyValue.fof_and_formula fof_and_formula,
fof_and_formula1left, fof_and_formula1right)) :: rest671)) => let val
result = MlyValue.fof_binary_assoc (( fof_and_formula ))
in ( LrTable.NT 68, ( result, fof_and_formula1left,
fof_and_formula1right), rest671)
end
-| ( 147, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula2,
+| ( 153, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula2,
_, fof_unitary_formula2right)) :: _ :: ( _, (
MlyValue.fof_unitary_formula fof_unitary_formula1,
fof_unitary_formula1left, _)) :: rest671)) => let val result =
@@ -4809,7 +4977,7 @@
in ( LrTable.NT 67, ( result, fof_unitary_formula1left,
fof_unitary_formula2right), rest671)
end
-| ( 148, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula, _
+| ( 154, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula, _
, fof_unitary_formula1right)) :: _ :: ( _, ( MlyValue.fof_or_formula
fof_or_formula, fof_or_formula1left, _)) :: rest671)) => let val
result = MlyValue.fof_or_formula (
@@ -4818,7 +4986,7 @@
in ( LrTable.NT 67, ( result, fof_or_formula1left,
fof_unitary_formula1right), rest671)
end
-| ( 149, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula2,
+| ( 155, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula2,
_, fof_unitary_formula2right)) :: _ :: ( _, (
MlyValue.fof_unitary_formula fof_unitary_formula1,
fof_unitary_formula1left, _)) :: rest671)) => let val result =
@@ -4828,7 +4996,7 @@
in ( LrTable.NT 66, ( result, fof_unitary_formula1left,
fof_unitary_formula2right), rest671)
end
-| ( 150, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula, _
+| ( 156, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula, _
, fof_unitary_formula1right)) :: _ :: ( _, ( MlyValue.fof_and_formula
fof_and_formula, fof_and_formula1left, _)) :: rest671)) => let val
result = MlyValue.fof_and_formula (
@@ -4837,33 +5005,33 @@
in ( LrTable.NT 66, ( result, fof_and_formula1left,
fof_unitary_formula1right), rest671)
end
-| ( 151, ( ( _, ( MlyValue.fof_quantified_formula
+| ( 157, ( ( _, ( MlyValue.fof_quantified_formula
fof_quantified_formula, fof_quantified_formula1left,
fof_quantified_formula1right)) :: rest671)) => let val result =
MlyValue.fof_unitary_formula (( fof_quantified_formula ))
in ( LrTable.NT 65, ( result, fof_quantified_formula1left,
fof_quantified_formula1right), rest671)
end
-| ( 152, ( ( _, ( MlyValue.fof_unary_formula fof_unary_formula,
+| ( 158, ( ( _, ( MlyValue.fof_unary_formula fof_unary_formula,
fof_unary_formula1left, fof_unary_formula1right)) :: rest671)) => let
val result = MlyValue.fof_unitary_formula (( fof_unary_formula ))
in ( LrTable.NT 65, ( result, fof_unary_formula1left,
fof_unary_formula1right), rest671)
end
-| ( 153, ( ( _, ( MlyValue.atomic_formula atomic_formula,
+| ( 159, ( ( _, ( MlyValue.atomic_formula atomic_formula,
atomic_formula1left, atomic_formula1right)) :: rest671)) => let val
result = MlyValue.fof_unitary_formula (( atomic_formula ))
in ( LrTable.NT 65, ( result, atomic_formula1left,
atomic_formula1right), rest671)
end
-| ( 154, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
+| ( 160, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
MlyValue.fof_logic_formula fof_logic_formula, _, _)) :: ( _, ( _,
LPAREN1left, _)) :: rest671)) => let val result =
MlyValue.fof_unitary_formula (( fof_logic_formula ))
in ( LrTable.NT 65, ( result, LPAREN1left, RPAREN1right), rest671)
end
-| ( 155, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula, _
+| ( 161, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula, _
, fof_unitary_formula1right)) :: _ :: _ :: ( _, (
MlyValue.fof_variable_list fof_variable_list, _, _)) :: _ :: ( _, (
MlyValue.fol_quantifier fol_quantifier, fol_quantifier1left, _)) ::
@@ -4875,20 +5043,20 @@
in ( LrTable.NT 64, ( result, fol_quantifier1left,
fof_unitary_formula1right), rest671)
end
-| ( 156, ( ( _, ( MlyValue.variable_ variable_, variable_1left,
+| ( 162, ( ( _, ( MlyValue.variable_ variable_, variable_1left,
variable_1right)) :: rest671)) => let val result =
MlyValue.fof_variable_list (( [variable_] ))
in ( LrTable.NT 63, ( result, variable_1left, variable_1right),
rest671)
end
-| ( 157, ( ( _, ( MlyValue.fof_variable_list fof_variable_list, _,
+| ( 163, ( ( _, ( MlyValue.fof_variable_list fof_variable_list, _,
fof_variable_list1right)) :: _ :: ( _, ( MlyValue.variable_ variable_,
variable_1left, _)) :: rest671)) => let val result =
MlyValue.fof_variable_list (( variable_ :: fof_variable_list ))
in ( LrTable.NT 63, ( result, variable_1left, fof_variable_list1right
), rest671)
end
-| ( 158, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula, _
+| ( 164, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula, _
, fof_unitary_formula1right)) :: ( _, ( MlyValue.unary_connective
unary_connective, unary_connective1left, _)) :: rest671)) => let val
result = MlyValue.fof_unary_formula (
@@ -4896,42 +5064,42 @@
in ( LrTable.NT 62, ( result, unary_connective1left,
fof_unitary_formula1right), rest671)
end
-| ( 159, ( ( _, ( MlyValue.fol_infix_unary fol_infix_unary,
+| ( 165, ( ( _, ( MlyValue.fol_infix_unary fol_infix_unary,
fol_infix_unary1left, fol_infix_unary1right)) :: rest671)) => let val
result = MlyValue.fof_unary_formula (( fol_infix_unary ))
in ( LrTable.NT 62, ( result, fol_infix_unary1left,
fol_infix_unary1right), rest671)
end
-| ( 160, ( ( _, ( MlyValue.fof_tuple fof_tuple2, _, fof_tuple2right))
+| ( 166, ( ( _, ( MlyValue.fof_tuple fof_tuple2, _, fof_tuple2right))
:: _ :: ( _, ( MlyValue.fof_tuple fof_tuple1, fof_tuple1left, _)) ::
rest671)) => let val result = MlyValue.fof_sequent (
( Sequent (fof_tuple1, fof_tuple2) ))
in ( LrTable.NT 61, ( result, fof_tuple1left, fof_tuple2right),
rest671)
end
-| ( 161, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.fof_sequent
+| ( 167, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.fof_sequent
fof_sequent, _, _)) :: ( _, ( _, LPAREN1left, _)) :: rest671)) => let
val result = MlyValue.fof_sequent (( fof_sequent ))
in ( LrTable.NT 61, ( result, LPAREN1left, RPAREN1right), rest671)
end
-| ( 162, ( ( _, ( _, _, RBRKT1right)) :: ( _, ( _, LBRKT1left, _)) ::
+| ( 168, ( ( _, ( _, _, RBRKT1right)) :: ( _, ( _, LBRKT1left, _)) ::
rest671)) => let val result = MlyValue.fof_tuple (( [] ))
in ( LrTable.NT 60, ( result, LBRKT1left, RBRKT1right), rest671)
end
-| ( 163, ( ( _, ( _, _, RBRKT1right)) :: ( _, (
+| ( 169, ( ( _, ( _, _, RBRKT1right)) :: ( _, (
MlyValue.fof_tuple_list fof_tuple_list, _, _)) :: ( _, ( _, LBRKT1left
, _)) :: rest671)) => let val result = MlyValue.fof_tuple (
( fof_tuple_list ))
in ( LrTable.NT 60, ( result, LBRKT1left, RBRKT1right), rest671)
end
-| ( 164, ( ( _, ( MlyValue.fof_logic_formula fof_logic_formula,
+| ( 170, ( ( _, ( MlyValue.fof_logic_formula fof_logic_formula,
fof_logic_formula1left, fof_logic_formula1right)) :: rest671)) => let
val result = MlyValue.fof_tuple_list (( [fof_logic_formula] ))
in ( LrTable.NT 59, ( result, fof_logic_formula1left,
fof_logic_formula1right), rest671)
end
-| ( 165, ( ( _, ( MlyValue.fof_tuple_list fof_tuple_list, _,
+| ( 171, ( ( _, ( MlyValue.fof_tuple_list fof_tuple_list, _,
fof_tuple_list1right)) :: _ :: ( _, ( MlyValue.fof_logic_formula
fof_logic_formula, fof_logic_formula1left, _)) :: rest671)) => let
val result = MlyValue.fof_tuple_list (
@@ -4939,192 +5107,192 @@
in ( LrTable.NT 59, ( result, fof_logic_formula1left,
fof_tuple_list1right), rest671)
end
-| ( 166, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.disjunction
+| ( 172, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.disjunction
disjunction, _, _)) :: ( _, ( _, LPAREN1left, _)) :: rest671)) => let
val result = MlyValue.cnf_formula (( disjunction ))
in ( LrTable.NT 58, ( result, LPAREN1left, RPAREN1right), rest671)
end
-| ( 167, ( ( _, ( MlyValue.disjunction disjunction, disjunction1left,
+| ( 173, ( ( _, ( MlyValue.disjunction disjunction, disjunction1left,
disjunction1right)) :: rest671)) => let val result =
MlyValue.cnf_formula (( disjunction ))
in ( LrTable.NT 58, ( result, disjunction1left, disjunction1right),
rest671)
end
-| ( 168, ( ( _, ( MlyValue.literal literal, literal1left,
+| ( 174, ( ( _, ( MlyValue.literal literal, literal1left,
literal1right)) :: rest671)) => let val result = MlyValue.disjunction
(( literal ))
in ( LrTable.NT 57, ( result, literal1left, literal1right), rest671)
end
-| ( 169, ( ( _, ( MlyValue.literal literal, _, literal1right)) :: _
+| ( 175, ( ( _, ( MlyValue.literal literal, _, literal1right)) :: _
:: ( _, ( MlyValue.disjunction disjunction, disjunction1left, _)) ::
rest671)) => let val result = MlyValue.disjunction (
( Fmla (Interpreted_Logic Or, [disjunction, literal]) ))
in ( LrTable.NT 57, ( result, disjunction1left, literal1right),
rest671)
end
-| ( 170, ( ( _, ( MlyValue.atomic_formula atomic_formula,
+| ( 176, ( ( _, ( MlyValue.atomic_formula atomic_formula,
atomic_formula1left, atomic_formula1right)) :: rest671)) => let val
result = MlyValue.literal (( atomic_formula ))
in ( LrTable.NT 56, ( result, atomic_formula1left,
atomic_formula1right), rest671)
end
-| ( 171, ( ( _, ( MlyValue.atomic_formula atomic_formula, _,
+| ( 177, ( ( _, ( MlyValue.atomic_formula atomic_formula, _,
atomic_formula1right)) :: ( _, ( _, TILDE1left, _)) :: rest671)) =>
let val result = MlyValue.literal (
( Fmla (Interpreted_Logic Not, [atomic_formula]) ))
in ( LrTable.NT 56, ( result, TILDE1left, atomic_formula1right),
rest671)
end
-| ( 172, ( ( _, ( MlyValue.fol_infix_unary fol_infix_unary,
+| ( 178, ( ( _, ( MlyValue.fol_infix_unary fol_infix_unary,
fol_infix_unary1left, fol_infix_unary1right)) :: rest671)) => let val
result = MlyValue.literal (( fol_infix_unary ))
in ( LrTable.NT 56, ( result, fol_infix_unary1left,
fol_infix_unary1right), rest671)
end
-| ( 173, ( ( _, ( MlyValue.thf_pair_connective thf_pair_connective,
+| ( 179, ( ( _, ( MlyValue.thf_pair_connective thf_pair_connective,
thf_pair_connective1left, thf_pair_connective1right)) :: rest671)) =>
let val result = MlyValue.thf_conn_term (( thf_pair_connective ))
in ( LrTable.NT 55, ( result, thf_pair_connective1left,
thf_pair_connective1right), rest671)
end
-| ( 174, ( ( _, ( MlyValue.assoc_connective assoc_connective,
+| ( 180, ( ( _, ( MlyValue.assoc_connective assoc_connective,
assoc_connective1left, assoc_connective1right)) :: rest671)) => let
val result = MlyValue.thf_conn_term (( assoc_connective ))
in ( LrTable.NT 55, ( result, assoc_connective1left,
assoc_connective1right), rest671)
end
-| ( 175, ( ( _, ( MlyValue.thf_unary_connective thf_unary_connective,
+| ( 181, ( ( _, ( MlyValue.thf_unary_connective thf_unary_connective,
thf_unary_connective1left, thf_unary_connective1right)) :: rest671))
=> let val result = MlyValue.thf_conn_term (( thf_unary_connective )
)
in ( LrTable.NT 55, ( result, thf_unary_connective1left,
thf_unary_connective1right), rest671)
end
-| ( 176, ( ( _, ( MlyValue.term term2, _, term2right)) :: ( _, (
+| ( 182, ( ( _, ( MlyValue.term term2, _, term2right)) :: ( _, (
MlyValue.infix_inequality infix_inequality, _, _)) :: ( _, (
MlyValue.term term1, term1left, _)) :: rest671)) => let val result =
MlyValue.fol_infix_unary (( Pred (infix_inequality, [term1, term2]) ))
in ( LrTable.NT 54, ( result, term1left, term2right), rest671)
end
-| ( 177, ( ( _, ( MlyValue.fol_quantifier fol_quantifier,
+| ( 183, ( ( _, ( MlyValue.fol_quantifier fol_quantifier,
fol_quantifier1left, fol_quantifier1right)) :: rest671)) => let val
result = MlyValue.thf_quantifier (( fol_quantifier ))
in ( LrTable.NT 53, ( result, fol_quantifier1left,
fol_quantifier1right), rest671)
end
-| ( 178, ( ( _, ( _, CARET1left, CARET1right)) :: rest671)) => let
+| ( 184, ( ( _, ( _, CARET1left, CARET1right)) :: rest671)) => let
val result = MlyValue.thf_quantifier (( Lambda ))
in ( LrTable.NT 53, ( result, CARET1left, CARET1right), rest671)
end
-| ( 179, ( ( _, ( _, DEP_PROD1left, DEP_PROD1right)) :: rest671)) =>
+| ( 185, ( ( _, ( _, DEP_PROD1left, DEP_PROD1right)) :: rest671)) =>
let val result = MlyValue.thf_quantifier (( Dep_Prod ))
in ( LrTable.NT 53, ( result, DEP_PROD1left, DEP_PROD1right), rest671
)
end
-| ( 180, ( ( _, ( _, DEP_SUM1left, DEP_SUM1right)) :: rest671)) =>
+| ( 186, ( ( _, ( _, DEP_SUM1left, DEP_SUM1right)) :: rest671)) =>
let val result = MlyValue.thf_quantifier (( Dep_Sum ))
in ( LrTable.NT 53, ( result, DEP_SUM1left, DEP_SUM1right), rest671)
end
-| ( 181, ( ( _, ( _, INDEF_CHOICE1left, INDEF_CHOICE1right)) ::
+| ( 187, ( ( _, ( _, INDEF_CHOICE1left, INDEF_CHOICE1right)) ::
rest671)) => let val result = MlyValue.thf_quantifier (( Epsilon ))
in ( LrTable.NT 53, ( result, INDEF_CHOICE1left, INDEF_CHOICE1right),
rest671)
end
-| ( 182, ( ( _, ( _, DEFIN_CHOICE1left, DEFIN_CHOICE1right)) ::
+| ( 188, ( ( _, ( _, DEFIN_CHOICE1left, DEFIN_CHOICE1right)) ::
rest671)) => let val result = MlyValue.thf_quantifier (( Iota ))
in ( LrTable.NT 53, ( result, DEFIN_CHOICE1left, DEFIN_CHOICE1right),
rest671)
end
-| ( 183, ( ( _, ( MlyValue.infix_equality infix_equality,
+| ( 189, ( ( _, ( MlyValue.infix_equality infix_equality,
infix_equality1left, infix_equality1right)) :: rest671)) => let val
result = MlyValue.thf_pair_connective (( infix_equality ))
in ( LrTable.NT 52, ( result, infix_equality1left,
infix_equality1right), rest671)
end
-| ( 184, ( ( _, ( MlyValue.infix_inequality infix_inequality,
+| ( 190, ( ( _, ( MlyValue.infix_inequality infix_inequality,
infix_inequality1left, infix_inequality1right)) :: rest671)) => let
val result = MlyValue.thf_pair_connective (( infix_inequality ))
in ( LrTable.NT 52, ( result, infix_inequality1left,
infix_inequality1right), rest671)
end
-| ( 185, ( ( _, ( MlyValue.binary_connective binary_connective,
+| ( 191, ( ( _, ( MlyValue.binary_connective binary_connective,
binary_connective1left, binary_connective1right)) :: rest671)) => let
val result = MlyValue.thf_pair_connective (( binary_connective ))
in ( LrTable.NT 52, ( result, binary_connective1left,
binary_connective1right), rest671)
end
-| ( 186, ( ( _, ( MlyValue.unary_connective unary_connective,
+| ( 192, ( ( _, ( MlyValue.unary_connective unary_connective,
unary_connective1left, unary_connective1right)) :: rest671)) => let
val result = MlyValue.thf_unary_connective (( unary_connective ))
in ( LrTable.NT 51, ( result, unary_connective1left,
unary_connective1right), rest671)
end
-| ( 187, ( ( _, ( _, OPERATOR_FORALL1left, OPERATOR_FORALL1right)) ::
+| ( 193, ( ( _, ( _, OPERATOR_FORALL1left, OPERATOR_FORALL1right)) ::
rest671)) => let val result = MlyValue.thf_unary_connective (
( Interpreted_Logic Op_Forall ))
in ( LrTable.NT 51, ( result, OPERATOR_FORALL1left,
OPERATOR_FORALL1right), rest671)
end
-| ( 188, ( ( _, ( _, OPERATOR_EXISTS1left, OPERATOR_EXISTS1right)) ::
+| ( 194, ( ( _, ( _, OPERATOR_EXISTS1left, OPERATOR_EXISTS1right)) ::
rest671)) => let val result = MlyValue.thf_unary_connective (
( Interpreted_Logic Op_Exists ))
in ( LrTable.NT 51, ( result, OPERATOR_EXISTS1left,
OPERATOR_EXISTS1right), rest671)
end
-| ( 189, ( ( _, ( _, EXCLAMATION1left, EXCLAMATION1right)) :: rest671
+| ( 195, ( ( _, ( _, EXCLAMATION1left, EXCLAMATION1right)) :: rest671
)) => let val result = MlyValue.fol_quantifier (( Forall ))
in ( LrTable.NT 50, ( result, EXCLAMATION1left, EXCLAMATION1right),
rest671)
end
-| ( 190, ( ( _, ( _, QUESTION1left, QUESTION1right)) :: rest671)) =>
+| ( 196, ( ( _, ( _, QUESTION1left, QUESTION1right)) :: rest671)) =>
let val result = MlyValue.fol_quantifier (( Exists ))
in ( LrTable.NT 50, ( result, QUESTION1left, QUESTION1right), rest671
)
end
-| ( 191, ( ( _, ( _, IFF1left, IFF1right)) :: rest671)) => let val
+| ( 197, ( ( _, ( _, IFF1left, IFF1right)) :: rest671)) => let val
result = MlyValue.binary_connective (( Interpreted_Logic Iff ))
in ( LrTable.NT 49, ( result, IFF1left, IFF1right), rest671)
end
-| ( 192, ( ( _, ( _, IMPLIES1left, IMPLIES1right)) :: rest671)) =>
+| ( 198, ( ( _, ( _, IMPLIES1left, IMPLIES1right)) :: rest671)) =>
let val result = MlyValue.binary_connective (
( Interpreted_Logic If ))
in ( LrTable.NT 49, ( result, IMPLIES1left, IMPLIES1right), rest671)
end
-| ( 193, ( ( _, ( _, FI1left, FI1right)) :: rest671)) => let val
+| ( 199, ( ( _, ( _, FI1left, FI1right)) :: rest671)) => let val
result = MlyValue.binary_connective (( Interpreted_Logic Fi ))
in ( LrTable.NT 49, ( result, FI1left, FI1right), rest671)
end
-| ( 194, ( ( _, ( _, XOR1left, XOR1right)) :: rest671)) => let val
+| ( 200, ( ( _, ( _, XOR1left, XOR1right)) :: rest671)) => let val
result = MlyValue.binary_connective (( Interpreted_Logic Xor ))
in ( LrTable.NT 49, ( result, XOR1left, XOR1right), rest671)
end
-| ( 195, ( ( _, ( _, NOR1left, NOR1right)) :: rest671)) => let val
+| ( 201, ( ( _, ( _, NOR1left, NOR1right)) :: rest671)) => let val
result = MlyValue.binary_connective (( Interpreted_Logic Nor ))
in ( LrTable.NT 49, ( result, NOR1left, NOR1right), rest671)
end
-| ( 196, ( ( _, ( _, NAND1left, NAND1right)) :: rest671)) => let val
+| ( 202, ( ( _, ( _, NAND1left, NAND1right)) :: rest671)) => let val
result = MlyValue.binary_connective (( Interpreted_Logic Nand ))
in ( LrTable.NT 49, ( result, NAND1left, NAND1right), rest671)
end
-| ( 197, ( ( _, ( _, VLINE1left, VLINE1right)) :: rest671)) => let
+| ( 203, ( ( _, ( _, VLINE1left, VLINE1right)) :: rest671)) => let
val result = MlyValue.assoc_connective (( Interpreted_Logic Or ))
in ( LrTable.NT 48, ( result, VLINE1left, VLINE1right), rest671)
end
-| ( 198, ( ( _, ( _, AMPERSAND1left, AMPERSAND1right)) :: rest671))
+| ( 204, ( ( _, ( _, AMPERSAND1left, AMPERSAND1right)) :: rest671))
=> let val result = MlyValue.assoc_connective (
( Interpreted_Logic And ))
in ( LrTable.NT 48, ( result, AMPERSAND1left, AMPERSAND1right),
rest671)
end
-| ( 199, ( ( _, ( _, TILDE1left, TILDE1right)) :: rest671)) => let
+| ( 205, ( ( _, ( _, TILDE1left, TILDE1right)) :: rest671)) => let
val result = MlyValue.unary_connective (( Interpreted_Logic Not ))
in ( LrTable.NT 45, ( result, TILDE1left, TILDE1right), rest671)
end
-| ( 200, ( ( _, ( MlyValue.atomic_defined_word atomic_defined_word,
+| ( 206, ( ( _, ( MlyValue.atomic_defined_word atomic_defined_word,
atomic_defined_word1left, atomic_defined_word1right)) :: rest671)) =>
let val result = MlyValue.defined_type (
(
@@ -5143,61 +5311,61 @@
in ( LrTable.NT 46, ( result, atomic_defined_word1left,
atomic_defined_word1right), rest671)
end
-| ( 201, ( ( _, ( MlyValue.atomic_system_word atomic_system_word,
+| ( 207, ( ( _, ( MlyValue.atomic_system_word atomic_system_word,
atomic_system_word1left, atomic_system_word1right)) :: rest671)) =>
let val result = MlyValue.system_type (( atomic_system_word ))
in ( LrTable.NT 47, ( result, atomic_system_word1left,
atomic_system_word1right), rest671)
end
-| ( 202, ( ( _, ( MlyValue.plain_atomic_formula plain_atomic_formula,
+| ( 208, ( ( _, ( MlyValue.plain_atomic_formula plain_atomic_formula,
plain_atomic_formula1left, plain_atomic_formula1right)) :: rest671))
=> let val result = MlyValue.atomic_formula (
( plain_atomic_formula ))
in ( LrTable.NT 44, ( result, plain_atomic_formula1left,
plain_atomic_formula1right), rest671)
end
-| ( 203, ( ( _, ( MlyValue.defined_atomic_formula
+| ( 209, ( ( _, ( MlyValue.defined_atomic_formula
defined_atomic_formula, defined_atomic_formula1left,
defined_atomic_formula1right)) :: rest671)) => let val result =
MlyValue.atomic_formula (( defined_atomic_formula ))
in ( LrTable.NT 44, ( result, defined_atomic_formula1left,
defined_atomic_formula1right), rest671)
end
-| ( 204, ( ( _, ( MlyValue.system_atomic_formula
+| ( 210, ( ( _, ( MlyValue.system_atomic_formula
system_atomic_formula, system_atomic_formula1left,
system_atomic_formula1right)) :: rest671)) => let val result =
MlyValue.atomic_formula (( system_atomic_formula ))
in ( LrTable.NT 44, ( result, system_atomic_formula1left,
system_atomic_formula1right), rest671)
end
-| ( 205, ( ( _, ( MlyValue.plain_term plain_term, plain_term1left,
+| ( 211, ( ( _, ( MlyValue.plain_term plain_term, plain_term1left,
plain_term1right)) :: rest671)) => let val result =
MlyValue.plain_atomic_formula (( Pred plain_term ))
in ( LrTable.NT 43, ( result, plain_term1left, plain_term1right),
rest671)
end
-| ( 206, ( ( _, ( MlyValue.defined_plain_formula
+| ( 212, ( ( _, ( MlyValue.defined_plain_formula
defined_plain_formula, defined_plain_formula1left,
defined_plain_formula1right)) :: rest671)) => let val result =
MlyValue.defined_atomic_formula (( defined_plain_formula ))
in ( LrTable.NT 42, ( result, defined_plain_formula1left,
defined_plain_formula1right), rest671)
end
-| ( 207, ( ( _, ( MlyValue.defined_infix_formula
+| ( 213, ( ( _, ( MlyValue.defined_infix_formula
defined_infix_formula, defined_infix_formula1left,
defined_infix_formula1right)) :: rest671)) => let val result =
MlyValue.defined_atomic_formula (( defined_infix_formula ))
in ( LrTable.NT 42, ( result, defined_infix_formula1left,
defined_infix_formula1right), rest671)
end
-| ( 208, ( ( _, ( MlyValue.defined_plain_term defined_plain_term,
+| ( 214, ( ( _, ( MlyValue.defined_plain_term defined_plain_term,
defined_plain_term1left, defined_plain_term1right)) :: rest671)) =>
let val result = MlyValue.defined_plain_formula (
( Pred defined_plain_term ))
in ( LrTable.NT 41, ( result, defined_plain_term1left,
defined_plain_term1right), rest671)
end
-| ( 209, ( ( _, ( MlyValue.atomic_defined_word atomic_defined_word,
+| ( 215, ( ( _, ( MlyValue.atomic_defined_word atomic_defined_word,
atomic_defined_word1left, atomic_defined_word1right)) :: rest671)) =>
let val result = MlyValue.defined_prop (
(
@@ -5210,7 +5378,7 @@
in ( LrTable.NT 39, ( result, atomic_defined_word1left,
atomic_defined_word1right), rest671)
end
-| ( 210, ( ( _, ( MlyValue.atomic_defined_word atomic_defined_word,
+| ( 216, ( ( _, ( MlyValue.atomic_defined_word atomic_defined_word,
atomic_defined_word1left, atomic_defined_word1right)) :: rest671)) =>
let val result = MlyValue.defined_pred (
(
@@ -5229,143 +5397,143 @@
in ( LrTable.NT 40, ( result, atomic_defined_word1left,
atomic_defined_word1right), rest671)
end
-| ( 211, ( ( _, ( MlyValue.term term2, _, term2right)) :: ( _, (
+| ( 217, ( ( _, ( MlyValue.term term2, _, term2right)) :: ( _, (
MlyValue.defined_infix_pred defined_infix_pred, _, _)) :: ( _, (
MlyValue.term term1, term1left, _)) :: rest671)) => let val result =
MlyValue.defined_infix_formula (
(Pred (defined_infix_pred, [term1, term2])))
in ( LrTable.NT 38, ( result, term1left, term2right), rest671)
end
-| ( 212, ( ( _, ( MlyValue.infix_equality infix_equality,
+| ( 218, ( ( _, ( MlyValue.infix_equality infix_equality,
infix_equality1left, infix_equality1right)) :: rest671)) => let val
result = MlyValue.defined_infix_pred (( infix_equality ))
in ( LrTable.NT 37, ( result, infix_equality1left,
infix_equality1right), rest671)
end
-| ( 213, ( ( _, ( _, EQUALS1left, EQUALS1right)) :: rest671)) => let
+| ( 219, ( ( _, ( _, EQUALS1left, EQUALS1right)) :: rest671)) => let
val result = MlyValue.infix_equality (( Interpreted_Logic Equals ))
in ( LrTable.NT 35, ( result, EQUALS1left, EQUALS1right), rest671)
end
-| ( 214, ( ( _, ( _, NEQUALS1left, NEQUALS1right)) :: rest671)) =>
+| ( 220, ( ( _, ( _, NEQUALS1left, NEQUALS1right)) :: rest671)) =>
let val result = MlyValue.infix_inequality (
( Interpreted_Logic NEquals ))
in ( LrTable.NT 36, ( result, NEQUALS1left, NEQUALS1right), rest671)
end
-| ( 215, ( ( _, ( MlyValue.system_term system_term, system_term1left,
+| ( 221, ( ( _, ( MlyValue.system_term system_term, system_term1left,
system_term1right)) :: rest671)) => let val result =
MlyValue.system_atomic_formula (( Pred system_term ))
in ( LrTable.NT 34, ( result, system_term1left, system_term1right),
rest671)
end
-| ( 216, ( ( _, ( MlyValue.function_term function_term,
+| ( 222, ( ( _, ( MlyValue.function_term function_term,
function_term1left, function_term1right)) :: rest671)) => let val
result = MlyValue.term (( function_term ))
in ( LrTable.NT 19, ( result, function_term1left, function_term1right
), rest671)
end
-| ( 217, ( ( _, ( MlyValue.variable_ variable_, variable_1left,
+| ( 223, ( ( _, ( MlyValue.variable_ variable_, variable_1left,
variable_1right)) :: rest671)) => let val result = MlyValue.term (
( Term_Var variable_ ))
in ( LrTable.NT 19, ( result, variable_1left, variable_1right),
rest671)
end
-| ( 218, ( ( _, ( MlyValue.conditional_term conditional_term,
+| ( 224, ( ( _, ( MlyValue.conditional_term conditional_term,
conditional_term1left, conditional_term1right)) :: rest671)) => let
val result = MlyValue.term (( conditional_term ))
in ( LrTable.NT 19, ( result, conditional_term1left,
conditional_term1right), rest671)
end
-| ( 219, ( ( _, ( MlyValue.let_term let_term, let_term1left,
+| ( 225, ( ( _, ( MlyValue.let_term let_term, let_term1left,
let_term1right)) :: rest671)) => let val result = MlyValue.term (
( let_term ))
in ( LrTable.NT 19, ( result, let_term1left, let_term1right), rest671
)
end
-| ( 220, ( ( _, ( MlyValue.plain_term plain_term, plain_term1left,
+| ( 226, ( ( _, ( MlyValue.plain_term plain_term, plain_term1left,
plain_term1right)) :: rest671)) => let val result =
MlyValue.function_term (( Term_Func plain_term ))
in ( LrTable.NT 32, ( result, plain_term1left, plain_term1right),
rest671)
end
-| ( 221, ( ( _, ( MlyValue.defined_term defined_term,
+| ( 227, ( ( _, ( MlyValue.defined_term defined_term,
defined_term1left, defined_term1right)) :: rest671)) => let val
result = MlyValue.function_term (( defined_term ))
in ( LrTable.NT 32, ( result, defined_term1left, defined_term1right),
rest671)
end
-| ( 222, ( ( _, ( MlyValue.system_term system_term, system_term1left,
+| ( 228, ( ( _, ( MlyValue.system_term system_term, system_term1left,
system_term1right)) :: rest671)) => let val result =
MlyValue.function_term (( Term_Func system_term ))
in ( LrTable.NT 32, ( result, system_term1left, system_term1right),
rest671)
end
-| ( 223, ( ( _, ( MlyValue.constant constant, constant1left,
+| ( 229, ( ( _, ( MlyValue.constant constant, constant1left,
constant1right)) :: rest671)) => let val result = MlyValue.plain_term
(( (constant, []) ))
in ( LrTable.NT 31, ( result, constant1left, constant1right), rest671
)
end
-| ( 224, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.arguments
+| ( 230, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.arguments
arguments, _, _)) :: _ :: ( _, ( MlyValue.functor_ functor_,
functor_1left, _)) :: rest671)) => let val result =
MlyValue.plain_term (( (functor_, arguments) ))
in ( LrTable.NT 31, ( result, functor_1left, RPAREN1right), rest671)
end
-| ( 225, ( ( _, ( MlyValue.functor_ functor_, functor_1left,
+| ( 231, ( ( _, ( MlyValue.functor_ functor_, functor_1left,
functor_1right)) :: rest671)) => let val result = MlyValue.constant (
( functor_ ))
in ( LrTable.NT 30, ( result, functor_1left, functor_1right), rest671
)
end
-| ( 226, ( ( _, ( MlyValue.atomic_word atomic_word, atomic_word1left,
+| ( 232, ( ( _, ( MlyValue.atomic_word atomic_word, atomic_word1left,
atomic_word1right)) :: rest671)) => let val result =
MlyValue.functor_ (( Uninterpreted atomic_word ))
in ( LrTable.NT 18, ( result, atomic_word1left, atomic_word1right),
rest671)
end
-| ( 227, ( ( _, ( MlyValue.defined_atom defined_atom,
+| ( 233, ( ( _, ( MlyValue.defined_atom defined_atom,
defined_atom1left, defined_atom1right)) :: rest671)) => let val
result = MlyValue.defined_term (( defined_atom ))
in ( LrTable.NT 29, ( result, defined_atom1left, defined_atom1right),
rest671)
end
-| ( 228, ( ( _, ( MlyValue.defined_atomic_term defined_atomic_term,
+| ( 234, ( ( _, ( MlyValue.defined_atomic_term defined_atomic_term,
defined_atomic_term1left, defined_atomic_term1right)) :: rest671)) =>
let val result = MlyValue.defined_term (( defined_atomic_term ))
in ( LrTable.NT 29, ( result, defined_atomic_term1left,
defined_atomic_term1right), rest671)
end
-| ( 229, ( ( _, ( MlyValue.number number, number1left, number1right))
+| ( 235, ( ( _, ( MlyValue.number number, number1left, number1right))
:: rest671)) => let val result = MlyValue.defined_atom (
( Term_Num number ))
in ( LrTable.NT 28, ( result, number1left, number1right), rest671)
end
-| ( 230, ( ( _, ( MlyValue.DISTINCT_OBJECT DISTINCT_OBJECT,
+| ( 236, ( ( _, ( MlyValue.DISTINCT_OBJECT DISTINCT_OBJECT,
DISTINCT_OBJECT1left, DISTINCT_OBJECT1right)) :: rest671)) => let val
result = MlyValue.defined_atom (
( Term_Distinct_Object DISTINCT_OBJECT ))
in ( LrTable.NT 28, ( result, DISTINCT_OBJECT1left,
DISTINCT_OBJECT1right), rest671)
end
-| ( 231, ( ( _, ( MlyValue.defined_plain_term defined_plain_term,
+| ( 237, ( ( _, ( MlyValue.defined_plain_term defined_plain_term,
defined_plain_term1left, defined_plain_term1right)) :: rest671)) =>
let val result = MlyValue.defined_atomic_term (
( Term_Func defined_plain_term ))
in ( LrTable.NT 27, ( result, defined_plain_term1left,
defined_plain_term1right), rest671)
end
-| ( 232, ( ( _, ( MlyValue.defined_constant defined_constant,
+| ( 238, ( ( _, ( MlyValue.defined_constant defined_constant,
defined_constant1left, defined_constant1right)) :: rest671)) => let
val result = MlyValue.defined_plain_term (( (defined_constant, []) )
)
in ( LrTable.NT 26, ( result, defined_constant1left,
defined_constant1right), rest671)
end
-| ( 233, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.arguments
+| ( 239, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.arguments
arguments, _, _)) :: _ :: ( _, ( MlyValue.defined_functor
defined_functor, defined_functor1left, _)) :: rest671)) => let val
result = MlyValue.defined_plain_term (( (defined_functor, arguments) )
@@ -5373,13 +5541,13 @@
in ( LrTable.NT 26, ( result, defined_functor1left, RPAREN1right),
rest671)
end
-| ( 234, ( ( _, ( MlyValue.defined_functor defined_functor,
+| ( 240, ( ( _, ( MlyValue.defined_functor defined_functor,
defined_functor1left, defined_functor1right)) :: rest671)) => let val
result = MlyValue.defined_constant (( defined_functor ))
in ( LrTable.NT 25, ( result, defined_functor1left,
defined_functor1right), rest671)
end
-| ( 235, ( ( _, ( MlyValue.atomic_defined_word atomic_defined_word,
+| ( 241, ( ( _, ( MlyValue.atomic_defined_word atomic_defined_word,
atomic_defined_word1left, atomic_defined_word1right)) :: rest671)) =>
let val result = MlyValue.defined_functor (
(
@@ -5432,49 +5600,49 @@
in ( LrTable.NT 21, ( result, atomic_defined_word1left,
atomic_defined_word1right), rest671)
end
-| ( 236, ( ( _, ( MlyValue.system_constant system_constant,
+| ( 242, ( ( _, ( MlyValue.system_constant system_constant,
system_constant1left, system_constant1right)) :: rest671)) => let val
result = MlyValue.system_term (( (system_constant, []) ))
in ( LrTable.NT 24, ( result, system_constant1left,
system_constant1right), rest671)
end
-| ( 237, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.arguments
+| ( 243, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.arguments
arguments, _, _)) :: _ :: ( _, ( MlyValue.system_functor
system_functor, system_functor1left, _)) :: rest671)) => let val
result = MlyValue.system_term (( (system_functor, arguments) ))
in ( LrTable.NT 24, ( result, system_functor1left, RPAREN1right),
rest671)
end
-| ( 238, ( ( _, ( MlyValue.system_functor system_functor,
+| ( 244, ( ( _, ( MlyValue.system_functor system_functor,
system_functor1left, system_functor1right)) :: rest671)) => let val
result = MlyValue.system_constant (( system_functor ))
in ( LrTable.NT 23, ( result, system_functor1left,
system_functor1right), rest671)
end
-| ( 239, ( ( _, ( MlyValue.atomic_system_word atomic_system_word,
+| ( 245, ( ( _, ( MlyValue.atomic_system_word atomic_system_word,
atomic_system_word1left, atomic_system_word1right)) :: rest671)) =>
let val result = MlyValue.system_functor (
( System atomic_system_word ))
in ( LrTable.NT 22, ( result, atomic_system_word1left,
atomic_system_word1right), rest671)
end
-| ( 240, ( ( _, ( MlyValue.UPPER_WORD UPPER_WORD, UPPER_WORD1left,
+| ( 246, ( ( _, ( MlyValue.UPPER_WORD UPPER_WORD, UPPER_WORD1left,
UPPER_WORD1right)) :: rest671)) => let val result =
MlyValue.variable_ (( UPPER_WORD ))
in ( LrTable.NT 10, ( result, UPPER_WORD1left, UPPER_WORD1right),
rest671)
end
-| ( 241, ( ( _, ( MlyValue.term term, term1left, term1right)) ::
+| ( 247, ( ( _, ( MlyValue.term term, term1left, term1right)) ::
rest671)) => let val result = MlyValue.arguments (( [term] ))
in ( LrTable.NT 20, ( result, term1left, term1right), rest671)
end
-| ( 242, ( ( _, ( MlyValue.arguments arguments, _, arguments1right))
+| ( 248, ( ( _, ( MlyValue.arguments arguments, _, arguments1right))
:: _ :: ( _, ( MlyValue.term term, term1left, _)) :: rest671)) => let
val result = MlyValue.arguments (( term :: arguments ))
in ( LrTable.NT 20, ( result, term1left, arguments1right), rest671)
end
-| ( 243, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.term term2,
+| ( 249, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.term term2,
_, _)) :: _ :: ( _, ( MlyValue.term term1, _, _)) :: _ :: ( _, (
MlyValue.tff_logic_formula tff_logic_formula, _, _)) :: _ :: ( _, ( _,
ITE_T1left, _)) :: rest671)) => let val result =
@@ -5484,38 +5652,38 @@
))
in ( LrTable.NT 33, ( result, ITE_T1left, RPAREN1right), rest671)
end
-| ( 244, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.term term,
+| ( 250, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.term term,
_, _)) :: _ :: ( _, ( MlyValue.tff_let_formula_defn
tff_let_formula_defn, _, _)) :: _ :: ( _, ( _, LET_FT1left, _)) ::
rest671)) => let val result = MlyValue.let_term (
(Term_Let (tff_let_formula_defn, term) ))
- in ( LrTable.NT 143, ( result, LET_FT1left, RPAREN1right), rest671)
+ in ( LrTable.NT 146, ( result, LET_FT1left, RPAREN1right), rest671)
end
-| ( 245, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.term term,
+| ( 251, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.term term,
_, _)) :: _ :: ( _, ( MlyValue.tff_let_term_defn tff_let_term_defn, _
, _)) :: _ :: ( _, ( _, LET_TT1left, _)) :: rest671)) => let val
result = MlyValue.let_term ((Term_Let (tff_let_term_defn, term) ))
- in ( LrTable.NT 143, ( result, LET_TT1left, RPAREN1right), rest671)
+ in ( LrTable.NT 146, ( result, LET_TT1left, RPAREN1right), rest671)
end
-| ( 246, ( ( _, ( MlyValue.useful_info useful_info, _,
+| ( 252, ( ( _, ( MlyValue.useful_info useful_info, _,
useful_info1right)) :: ( _, ( _, COMMA1left, _)) :: rest671)) => let
val result = MlyValue.optional_info (( useful_info ))
in ( LrTable.NT 4, ( result, COMMA1left, useful_info1right), rest671)
end
-| ( 247, ( rest671)) => let val result = MlyValue.optional_info (
+| ( 253, ( rest671)) => let val result = MlyValue.optional_info (
( [] ))
in ( LrTable.NT 4, ( result, defaultPos, defaultPos), rest671)
end
-| ( 248, ( ( _, ( MlyValue.general_list general_list,
+| ( 254, ( ( _, ( MlyValue.general_list general_list,
general_list1left, general_list1right)) :: rest671)) => let val
result = MlyValue.useful_info (( general_list ))
in ( LrTable.NT 16, ( result, general_list1left, general_list1right),
rest671)
end
-| ( 249, ( ( _, ( _, _, PERIOD1right)) :: _ :: ( _, (
+| ( 255, ( ( _, ( _, _, PERIOD1right)) :: _ :: ( _, (
MlyValue.formula_selection formula_selection, _, _)) :: ( _, (
MlyValue.file_name file_name, _, _)) :: _ :: ( _, ( _, (INCLUDEleft
as INCLUDE1left), INCLUDEright)) :: rest671)) => let val result =
@@ -5528,80 +5696,80 @@
in ( LrTable.NT 132, ( result, INCLUDE1left, PERIOD1right), rest671)
end
-| ( 250, ( ( _, ( _, _, RBRKT1right)) :: ( _, ( MlyValue.name_list
+| ( 256, ( ( _, ( _, _, RBRKT1right)) :: ( _, ( MlyValue.name_list
name_list, _, _)) :: _ :: ( _, ( _, COMMA1left, _)) :: rest671)) =>
let val result = MlyValue.formula_selection (( name_list ))
in ( LrTable.NT 3, ( result, COMMA1left, RBRKT1right), rest671)
end
-| ( 251, ( rest671)) => let val result = MlyValue.formula_selection
+| ( 257, ( rest671)) => let val result = MlyValue.formula_selection
(( [] ))
in ( LrTable.NT 3, ( result, defaultPos, defaultPos), rest671)
end
-| ( 252, ( ( _, ( MlyValue.name_list name_list, _, name_list1right))
+| ( 258, ( ( _, ( MlyValue.name_list name_list, _, name_list1right))
:: _ :: ( _, ( MlyValue.name name, name1left, _)) :: rest671)) => let
val result = MlyValue.name_list (( name :: name_list ))
in ( LrTable.NT 2, ( result, name1left, name_list1right), rest671)
end
-| ( 253, ( ( _, ( MlyValue.name name, name1left, name1right)) ::
+| ( 259, ( ( _, ( MlyValue.name name, name1left, name1right)) ::
rest671)) => let val result = MlyValue.name_list (( [name] ))
in ( LrTable.NT 2, ( result, name1left, name1right), rest671)
end
-| ( 254, ( ( _, ( MlyValue.general_data general_data,
+| ( 260, ( ( _, ( MlyValue.general_data general_data,
general_data1left, general_data1right)) :: rest671)) => let val
result = MlyValue.general_term (( General_Data general_data ))
in ( LrTable.NT 7, ( result, general_data1left, general_data1right),
rest671)
end
-| ( 255, ( ( _, ( MlyValue.general_term general_term, _,
+| ( 261, ( ( _, ( MlyValue.general_term general_term, _,
general_term1right)) :: _ :: ( _, ( MlyValue.general_data general_data
, general_data1left, _)) :: rest671)) => let val result =
MlyValue.general_term (( General_Term (general_data, general_term) ))
in ( LrTable.NT 7, ( result, general_data1left, general_term1right),
rest671)
end
-| ( 256, ( ( _, ( MlyValue.general_list general_list,
+| ( 262, ( ( _, ( MlyValue.general_list general_list,
general_list1left, general_list1right)) :: rest671)) => let val
result = MlyValue.general_term (( General_List general_list ))
in ( LrTable.NT 7, ( result, general_list1left, general_list1right),
rest671)
end
-| ( 257, ( ( _, ( MlyValue.atomic_word atomic_word, atomic_word1left,
+| ( 263, ( ( _, ( MlyValue.atomic_word atomic_word, atomic_word1left,
atomic_word1right)) :: rest671)) => let val result =
MlyValue.general_data (( Atomic_Word atomic_word ))
in ( LrTable.NT 9, ( result, atomic_word1left, atomic_word1right),
rest671)
end
-| ( 258, ( ( _, ( MlyValue.general_function general_function,
+| ( 264, ( ( _, ( MlyValue.general_function general_function,
general_function1left, general_function1right)) :: rest671)) => let
val result = MlyValue.general_data (( general_function ))
in ( LrTable.NT 9, ( result, general_function1left,
general_function1right), rest671)
end
-| ( 259, ( ( _, ( MlyValue.variable_ variable_, variable_1left,
+| ( 265, ( ( _, ( MlyValue.variable_ variable_, variable_1left,
variable_1right)) :: rest671)) => let val result =
MlyValue.general_data (( V variable_ ))
in ( LrTable.NT 9, ( result, variable_1left, variable_1right),
rest671)
end
-| ( 260, ( ( _, ( MlyValue.number number, number1left, number1right))
+| ( 266, ( ( _, ( MlyValue.number number, number1left, number1right))
:: rest671)) => let val result = MlyValue.general_data (
( Number number ))
in ( LrTable.NT 9, ( result, number1left, number1right), rest671)
end
-| ( 261, ( ( _, ( MlyValue.DISTINCT_OBJECT DISTINCT_OBJECT,
+| ( 267, ( ( _, ( MlyValue.DISTINCT_OBJECT DISTINCT_OBJECT,
DISTINCT_OBJECT1left, DISTINCT_OBJECT1right)) :: rest671)) => let val
result = MlyValue.general_data (( Distinct_Object DISTINCT_OBJECT ))
in ( LrTable.NT 9, ( result, DISTINCT_OBJECT1left,
DISTINCT_OBJECT1right), rest671)
end
-| ( 262, ( ( _, ( MlyValue.formula_data formula_data,
+| ( 268, ( ( _, ( MlyValue.formula_data formula_data,
formula_data1left, formula_data1right)) :: rest671)) => let val
result = MlyValue.general_data (( formula_data ))
in ( LrTable.NT 9, ( result, formula_data1left, formula_data1right),
rest671)
end
-| ( 263, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
+| ( 269, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
MlyValue.general_terms general_terms, _, _)) :: _ :: ( _, (
MlyValue.atomic_word atomic_word, atomic_word1left, _)) :: rest671))
=> let val result = MlyValue.general_function (
@@ -5609,145 +5777,145 @@
in ( LrTable.NT 15, ( result, atomic_word1left, RPAREN1right),
rest671)
end
-| ( 264, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.thf_formula
+| ( 270, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.thf_formula
thf_formula, _, _)) :: _ :: ( _, ( _, DTHF1left, _)) :: rest671)) =>
let val result = MlyValue.formula_data (
( Formula_Data (THF, thf_formula) ))
in ( LrTable.NT 12, ( result, DTHF1left, RPAREN1right), rest671)
end
-| ( 265, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.tff_formula
+| ( 271, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.tff_formula
tff_formula, _, _)) :: _ :: ( _, ( _, DTFF1left, _)) :: rest671)) =>
let val result = MlyValue.formula_data (
( Formula_Data (TFF, tff_formula) ))
in ( LrTable.NT 12, ( result, DTFF1left, RPAREN1right), rest671)
end
-| ( 266, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.fof_formula
+| ( 272, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.fof_formula
fof_formula, _, _)) :: _ :: ( _, ( _, DFOF1left, _)) :: rest671)) =>
let val result = MlyValue.formula_data (
( Formula_Data (FOF, fof_formula) ))
in ( LrTable.NT 12, ( result, DFOF1left, RPAREN1right), rest671)
end
-| ( 267, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.cnf_formula
+| ( 273, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.cnf_formula
cnf_formula, _, _)) :: _ :: ( _, ( _, DCNF1left, _)) :: rest671)) =>
let val result = MlyValue.formula_data (
( Formula_Data (CNF, cnf_formula) ))
in ( LrTable.NT 12, ( result, DCNF1left, RPAREN1right), rest671)
end
-| ( 268, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.term term,
+| ( 274, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.term term,
_, _)) :: _ :: ( _, ( _, DFOT1left, _)) :: rest671)) => let val
result = MlyValue.formula_data (( Term_Data term ))
in ( LrTable.NT 12, ( result, DFOT1left, RPAREN1right), rest671)
end
-| ( 269, ( ( _, ( _, _, RBRKT1right)) :: ( _, (
+| ( 275, ( ( _, ( _, _, RBRKT1right)) :: ( _, (
MlyValue.general_terms general_terms, _, _)) :: ( _, ( _, LBRKT1left,
_)) :: rest671)) => let val result = MlyValue.general_list (
( general_terms ))
in ( LrTable.NT 5, ( result, LBRKT1left, RBRKT1right), rest671)
end
-| ( 270, ( ( _, ( _, _, RBRKT1right)) :: ( _, ( _, LBRKT1left, _)) ::
+| ( 276, ( ( _, ( _, _, RBRKT1right)) :: ( _, ( _, LBRKT1left, _)) ::
rest671)) => let val result = MlyValue.general_list (( [] ))
in ( LrTable.NT 5, ( result, LBRKT1left, RBRKT1right), rest671)
end
-| ( 271, ( ( _, ( MlyValue.general_terms general_terms, _,
+| ( 277, ( ( _, ( MlyValue.general_terms general_terms, _,
general_terms1right)) :: _ :: ( _, ( MlyValue.general_term
general_term, general_term1left, _)) :: rest671)) => let val result =
MlyValue.general_terms (( general_term :: general_terms ))
in ( LrTable.NT 6, ( result, general_term1left, general_terms1right),
rest671)
end
-| ( 272, ( ( _, ( MlyValue.general_term general_term,
+| ( 278, ( ( _, ( MlyValue.general_term general_term,
general_term1left, general_term1right)) :: rest671)) => let val
result = MlyValue.general_terms (( [general_term] ))
in ( LrTable.NT 6, ( result, general_term1left, general_term1right),
rest671)
end
-| ( 273, ( ( _, ( MlyValue.atomic_word atomic_word, atomic_word1left,
+| ( 279, ( ( _, ( MlyValue.atomic_word atomic_word, atomic_word1left,
atomic_word1right)) :: rest671)) => let val result = MlyValue.name (
( atomic_word ))
in ( LrTable.NT 1, ( result, atomic_word1left, atomic_word1right),
rest671)
end
-| ( 274, ( ( _, ( MlyValue.integer integer, integer1left,
+| ( 280, ( ( _, ( MlyValue.integer integer, integer1left,
integer1right)) :: rest671)) => let val result = MlyValue.name (
( integer ))
in ( LrTable.NT 1, ( result, integer1left, integer1right), rest671)
end
-| ( 275, ( ( _, ( MlyValue.LOWER_WORD LOWER_WORD, LOWER_WORD1left,
+| ( 281, ( ( _, ( MlyValue.LOWER_WORD LOWER_WORD, LOWER_WORD1left,
LOWER_WORD1right)) :: rest671)) => let val result =
MlyValue.atomic_word (( LOWER_WORD ))
in ( LrTable.NT 8, ( result, LOWER_WORD1left, LOWER_WORD1right),
rest671)
end
-| ( 276, ( ( _, ( MlyValue.SINGLE_QUOTED SINGLE_QUOTED,
+| ( 282, ( ( _, ( MlyValue.SINGLE_QUOTED SINGLE_QUOTED,
SINGLE_QUOTED1left, SINGLE_QUOTED1right)) :: rest671)) => let val
result = MlyValue.atomic_word (( dequote SINGLE_QUOTED ))
in ( LrTable.NT 8, ( result, SINGLE_QUOTED1left, SINGLE_QUOTED1right)
, rest671)
end
-| ( 277, ( ( _, ( _, THF1left, THF1right)) :: rest671)) => let val
+| ( 283, ( ( _, ( _, THF1left, THF1right)) :: rest671)) => let val
result = MlyValue.atomic_word (( "thf" ))
in ( LrTable.NT 8, ( result, THF1left, THF1right), rest671)
end
-| ( 278, ( ( _, ( _, TFF1left, TFF1right)) :: rest671)) => let val
+| ( 284, ( ( _, ( _, TFF1left, TFF1right)) :: rest671)) => let val
result = MlyValue.atomic_word (( "tff" ))
in ( LrTable.NT 8, ( result, TFF1left, TFF1right), rest671)
end
-| ( 279, ( ( _, ( _, FOF1left, FOF1right)) :: rest671)) => let val
+| ( 285, ( ( _, ( _, FOF1left, FOF1right)) :: rest671)) => let val
result = MlyValue.atomic_word (( "fof" ))
in ( LrTable.NT 8, ( result, FOF1left, FOF1right), rest671)
end
-| ( 280, ( ( _, ( _, CNF1left, CNF1right)) :: rest671)) => let val
+| ( 286, ( ( _, ( _, CNF1left, CNF1right)) :: rest671)) => let val
result = MlyValue.atomic_word (( "cnf" ))
in ( LrTable.NT 8, ( result, CNF1left, CNF1right), rest671)
end
-| ( 281, ( ( _, ( _, INCLUDE1left, INCLUDE1right)) :: rest671)) =>
+| ( 287, ( ( _, ( _, INCLUDE1left, INCLUDE1right)) :: rest671)) =>
let val result = MlyValue.atomic_word (( "include" ))
in ( LrTable.NT 8, ( result, INCLUDE1left, INCLUDE1right), rest671)
end
-| ( 282, ( ( _, ( MlyValue.DOLLAR_WORD DOLLAR_WORD, DOLLAR_WORD1left,
+| ( 288, ( ( _, ( MlyValue.DOLLAR_WORD DOLLAR_WORD, DOLLAR_WORD1left,
DOLLAR_WORD1right)) :: rest671)) => let val result =
MlyValue.atomic_defined_word (( DOLLAR_WORD ))
- in ( LrTable.NT 144, ( result, DOLLAR_WORD1left, DOLLAR_WORD1right),
+ in ( LrTable.NT 147, ( result, DOLLAR_WORD1left, DOLLAR_WORD1right),
rest671)
end
-| ( 283, ( ( _, ( MlyValue.DOLLAR_DOLLAR_WORD DOLLAR_DOLLAR_WORD,
+| ( 289, ( ( _, ( MlyValue.DOLLAR_DOLLAR_WORD DOLLAR_DOLLAR_WORD,
DOLLAR_DOLLAR_WORD1left, DOLLAR_DOLLAR_WORD1right)) :: rest671)) =>
let val result = MlyValue.atomic_system_word (( DOLLAR_DOLLAR_WORD )
)
- in ( LrTable.NT 145, ( result, DOLLAR_DOLLAR_WORD1left,
+ in ( LrTable.NT 148, ( result, DOLLAR_DOLLAR_WORD1left,
DOLLAR_DOLLAR_WORD1right), rest671)
end
-| ( 284, ( ( _, ( MlyValue.UNSIGNED_INTEGER UNSIGNED_INTEGER,
+| ( 290, ( ( _, ( MlyValue.UNSIGNED_INTEGER UNSIGNED_INTEGER,
UNSIGNED_INTEGER1left, UNSIGNED_INTEGER1right)) :: rest671)) => let
val result = MlyValue.integer (( UNSIGNED_INTEGER ))
in ( LrTable.NT 13, ( result, UNSIGNED_INTEGER1left,
UNSIGNED_INTEGER1right), rest671)
end
-| ( 285, ( ( _, ( MlyValue.SIGNED_INTEGER SIGNED_INTEGER,
+| ( 291, ( ( _, ( MlyValue.SIGNED_INTEGER SIGNED_INTEGER,
SIGNED_INTEGER1left, SIGNED_INTEGER1right)) :: rest671)) => let val
result = MlyValue.integer (( SIGNED_INTEGER ))
in ( LrTable.NT 13, ( result, SIGNED_INTEGER1left,
SIGNED_INTEGER1right), rest671)
end
-| ( 286, ( ( _, ( MlyValue.integer integer, integer1left,
+| ( 292, ( ( _, ( MlyValue.integer integer, integer1left,
integer1right)) :: rest671)) => let val result = MlyValue.number (
( (Int_num, integer) ))
in ( LrTable.NT 11, ( result, integer1left, integer1right), rest671)
end
-| ( 287, ( ( _, ( MlyValue.REAL REAL, REAL1left, REAL1right)) ::
+| ( 293, ( ( _, ( MlyValue.REAL REAL, REAL1left, REAL1right)) ::
rest671)) => let val result = MlyValue.number (( (Real_num, REAL) ))
in ( LrTable.NT 11, ( result, REAL1left, REAL1right), rest671)
end
-| ( 288, ( ( _, ( MlyValue.RATIONAL RATIONAL, RATIONAL1left,
+| ( 294, ( ( _, ( MlyValue.RATIONAL RATIONAL, RATIONAL1left,
RATIONAL1right)) :: rest671)) => let val result = MlyValue.number (
( (Rat_num, RATIONAL) ))
in ( LrTable.NT 11, ( result, RATIONAL1left, RATIONAL1right), rest671
)
end
-| ( 289, ( ( _, ( MlyValue.SINGLE_QUOTED SINGLE_QUOTED,
+| ( 295, ( ( _, ( MlyValue.SINGLE_QUOTED SINGLE_QUOTED,
SINGLE_QUOTED1left, SINGLE_QUOTED1right)) :: rest671)) => let val
result = MlyValue.file_name (( SINGLE_QUOTED ))
in ( LrTable.NT 17, ( result, SINGLE_QUOTED1left, SINGLE_QUOTED1right