--- a/src/HOL/Library/Library.thy Mon Jan 14 03:58:30 2008 +0100
+++ b/src/HOL/Library/Library.thy Mon Jan 14 11:45:57 2008 +0100
@@ -20,6 +20,7 @@
FuncSet
GCD
Infinite_Set
+ ListSpace
Multiset
NatPair
Nat_Infinity
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/ListSpace.thy Mon Jan 14 11:45:57 2008 +0100
@@ -0,0 +1,134 @@
+(* ID: $Id$
+ Author: Tobias Nipkow, 2007
+*)
+
+header "Lists as vectors"
+
+theory ListSpace
+imports Main
+begin
+
+text{* \noindent
+A vector-space like structure of lists and arithmetic operations on them.
+Is only a vector space if restricted to lists of the same length. *}
+
+text{* Multiplication with a scalar: *}
+
+abbreviation scale :: "('a::times) \<Rightarrow> 'a list \<Rightarrow> 'a list" (infix "*\<^sub>s" 70)
+where "x *\<^sub>s xs \<equiv> map (op * x) xs"
+
+lemma scale1[simp]: "(1::'a::monoid_mult) *\<^sub>s xs = xs"
+by (induct xs) simp_all
+
+subsection {* @{text"+"} and @{text"-"} *}
+
+fun zipwith0 :: "('a::zero \<Rightarrow> 'b::zero \<Rightarrow> 'c) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'c list"
+where
+"zipwith0 f [] [] = []" |
+"zipwith0 f (x#xs) (y#ys) = f x y # zipwith0 f xs ys" |
+"zipwith0 f (x#xs) [] = f x 0 # zipwith0 f xs []" |
+"zipwith0 f [] (y#ys) = f 0 y # zipwith0 f [] ys"
+
+instance list :: ("{zero,plus}")plus
+list_add_def : "op + \<equiv> zipwith0 (op +)" ..
+
+instance list :: ("{zero,uminus}")uminus
+list_uminus_def: "uminus \<equiv> map uminus" ..
+
+instance list :: ("{zero,minus}")minus
+list_diff_def: "op - \<equiv> zipwith0 (op -)" ..
+
+lemma zipwith0_Nil[simp]: "zipwith0 f [] ys = map (f 0) ys"
+by(induct ys) simp_all
+
+
+lemma list_add_Nil[simp]: "[] + xs = (xs::'a::monoid_add list)"
+by (induct xs) (auto simp:list_add_def)
+
+lemma list_add_Nil2[simp]: "xs + [] = (xs::'a::monoid_add list)"
+by (induct xs) (auto simp:list_add_def)
+
+lemma list_add_Cons[simp]: "(x#xs) + (y#ys) = (x+y)#(xs+ys)"
+by(auto simp:list_add_def)
+
+lemma list_diff_Nil[simp]: "[] - xs = -(xs::'a::group_add list)"
+by (induct xs) (auto simp:list_diff_def list_uminus_def)
+
+lemma list_diff_Nil2[simp]: "xs - [] = (xs::'a::group_add list)"
+by (induct xs) (auto simp:list_diff_def)
+
+lemma list_diff_Cons_Cons[simp]: "(x#xs) - (y#ys) = (x-y)#(xs-ys)"
+by (induct xs) (auto simp:list_diff_def)
+
+lemma list_uminus_Cons[simp]: "-(x#xs) = (-x)#(-xs)"
+by (induct xs) (auto simp:list_uminus_def)
+
+lemma self_list_diff:
+ "xs - xs = replicate (length(xs::'a::group_add list)) 0"
+by(induct xs) simp_all
+
+lemma list_add_assoc: fixes xs :: "'a::monoid_add list"
+shows "(xs+ys)+zs = xs+(ys+zs)"
+apply(induct xs arbitrary: ys zs)
+ apply simp
+apply(case_tac ys)
+ apply(simp)
+apply(simp)
+apply(case_tac zs)
+ apply(simp)
+apply(simp add:add_assoc)
+done
+
+subsection "Inner product"
+
+definition iprod :: "'a::ring list \<Rightarrow> 'a list \<Rightarrow> 'a" ("\<langle>_,_\<rangle>") where
+"\<langle>xs,ys\<rangle> = (\<Sum>(x,y) \<leftarrow> zip xs ys. x*y)"
+
+lemma iprod_Nil[simp]: "\<langle>[],ys\<rangle> = 0"
+by(simp add:iprod_def)
+
+lemma iprod_Nil2[simp]: "\<langle>xs,[]\<rangle> = 0"
+by(simp add:iprod_def)
+
+lemma iprod_Cons[simp]: "\<langle>x#xs,y#ys\<rangle> = x*y + \<langle>xs,ys\<rangle>"
+by(simp add:iprod_def)
+
+lemma iprod0_if_coeffs0: "\<forall>c\<in>set cs. c = 0 \<Longrightarrow> \<langle>cs,xs\<rangle> = 0"
+apply(induct cs arbitrary:xs)
+ apply simp
+apply(case_tac xs) apply simp
+apply auto
+done
+
+lemma iprod_uminus[simp]: "\<langle>-xs,ys\<rangle> = -\<langle>xs,ys\<rangle>"
+by(simp add: iprod_def uminus_listsum_map o_def split_def map_zip_map list_uminus_def)
+
+lemma iprod_left_add_distrib: "\<langle>xs + ys,zs\<rangle> = \<langle>xs,zs\<rangle> + \<langle>ys,zs\<rangle>"
+apply(induct xs arbitrary: ys zs)
+apply (simp add: o_def split_def)
+apply(case_tac ys)
+apply simp
+apply(case_tac zs)
+apply (simp)
+apply(simp add:left_distrib)
+done
+
+lemma iprod_left_diff_distrib: "\<langle>xs - ys, zs\<rangle> = \<langle>xs,zs\<rangle> - \<langle>ys,zs\<rangle>"
+apply(induct xs arbitrary: ys zs)
+apply (simp add: o_def split_def)
+apply(case_tac ys)
+apply simp
+apply(case_tac zs)
+apply (simp)
+apply(simp add:left_diff_distrib)
+done
+
+lemma iprod_assoc: "\<langle>x *\<^sub>s xs, ys\<rangle> = x * \<langle>xs,ys\<rangle>"
+apply(induct xs arbitrary: ys)
+apply simp
+apply(case_tac ys)
+apply (simp)
+apply (simp add:right_distrib mult_assoc)
+done
+
+end
\ No newline at end of file