author | wenzelm |
Mon, 07 Dec 2015 15:16:28 +0100 | |
changeset 61800 | f3789d5b96ca |
parent 61799 | 4cf66f21b764 |
child 61801 | fa8d1cdf6518 |
--- a/src/HOL/Hahn_Banach/Hahn_Banach.thy Mon Dec 07 10:38:04 2015 +0100 +++ b/src/HOL/Hahn_Banach/Hahn_Banach.thy Mon Dec 07 15:16:28 2015 +0100 @@ -189,7 +189,7 @@ proof show "g \<subseteq> graph H' h'" proof - - have "graph H h \<subseteq> graph H' h'" + have "graph H h \<subseteq> graph H' h'" proof (rule graph_extI) fix t assume t: "t \<in> H" from E HE t have "(SOME (y, a). t = y + a \<cdot> x' \<and> y \<in> H) = (t, 0)"