tuned tags
authornipkow
Thu, 14 Nov 2019 11:54:52 +0100
changeset 71120 f4579e6800d7
parent 71096 ec7cc76e88e5
child 71121 8d51418d4ec0
tuned tags
src/HOL/Analysis/Henstock_Kurzweil_Integration.thy
src/HOL/Analysis/Linear_Algebra.thy
--- a/src/HOL/Analysis/Henstock_Kurzweil_Integration.thy	Tue Nov 12 12:33:05 2019 +0000
+++ b/src/HOL/Analysis/Henstock_Kurzweil_Integration.thy	Thu Nov 14 11:54:52 2019 +0100
@@ -79,7 +79,7 @@
 lemma content_pos_le [iff]: "0 \<le> content X"
   by simp
 
-corollary content_nonneg [simp]: "\<not> content (cbox a b) < 0"
+corollary\<^marker>\<open>tag unimportant\<close> content_nonneg [simp]: "\<not> content (cbox a b) < 0"
   using not_le by blast
 
 lemma content_pos_lt: "\<forall>i\<in>Basis. a\<bullet>i < b\<bullet>i \<Longrightarrow> 0 < content (cbox a b)"
--- a/src/HOL/Analysis/Linear_Algebra.thy	Tue Nov 12 12:33:05 2019 +0000
+++ b/src/HOL/Analysis/Linear_Algebra.thy	Thu Nov 14 11:54:52 2019 +0100
@@ -698,10 +698,10 @@
 
 lemmas independent_imp_finite = finiteI_independent
 
-corollary
+corollary\<^marker>\<open>tag unimportant\<close> independent_card_le:
   fixes S :: "'a::euclidean_space set"
   assumes "independent S"
-  shows independent_card_le:"card S \<le> DIM('a)"
+  shows "card S \<le> DIM('a)"
   using assms independent_bound by auto
 
 lemma dependent_biggerset: