--- a/src/HOL/TPTP/TPTP_Parser/tptp_lexyacc.ML Wed Apr 04 16:48:39 2012 +0200
+++ b/src/HOL/TPTP/TPTP_Parser/tptp_lexyacc.ML Wed Apr 04 20:45:19 2012 +0200
@@ -13,6 +13,10 @@
sig
type ('a,'b) token
type svalue
+val LET_TT: 'a * 'a -> (svalue,'a) token
+val LET_FT: 'a * 'a -> (svalue,'a) token
+val LET_FF: 'a * 'a -> (svalue,'a) token
+val LET_TF: 'a * 'a -> (svalue,'a) token
val ITE_T: 'a * 'a -> (svalue,'a) token
val ITE_F: 'a * 'a -> (svalue,'a) token
val CNF: 'a * 'a -> (svalue,'a) token
@@ -21,8 +25,8 @@
val THF: 'a * 'a -> (svalue,'a) token
val LET_TERM: 'a * 'a -> (svalue,'a) token
val SUBTYPE: 'a * 'a -> (svalue,'a) token
-val ATOMIC_SYSTEM_WORD: (string) * 'a * 'a -> (svalue,'a) token
-val ATOMIC_DEFINED_WORD: (string) * 'a * 'a -> (svalue,'a) token
+val DOLLAR_DOLLAR_WORD: (string) * 'a * 'a -> (svalue,'a) token
+val DOLLAR_WORD: (string) * 'a * 'a -> (svalue,'a) token
val DEP_PROD: 'a * 'a -> (svalue,'a) token
val DEP_SUM: 'a * 'a -> (svalue,'a) token
val GENTZEN_ARROW: 'a * 'a -> (svalue,'a) token
@@ -76,7 +80,7 @@
val INCLUDE: 'a * 'a -> (svalue,'a) token
val IMPLIES: 'a * 'a -> (svalue,'a) token
val IFF: 'a * 'a -> (svalue,'a) token
-val IF: 'a * 'a -> (svalue,'a) token
+val FI: 'a * 'a -> (svalue,'a) token
val ARROW: 'a * 'a -> (svalue,'a) token
val LET: 'a * 'a -> (svalue,'a) token
val EXCLAMATION: 'a * 'a -> (svalue,'a) token
@@ -103,8 +107,8 @@
Notes:
* Omit %full in definitions to restrict alphabet to ascii.
- * Could include %posarg to ensure that start counting character positions from
- 0, but it would punish performance.
+ * Could include %posarg to ensure that we'd start counting character positions
+ from 0, but it would punish performance.
* %s AF F COMMENT; -- could improve by making stateful.
Acknowledgements:
@@ -170,9 +174,9 @@
\\000"
),
(1,
-"\000\000\000\000\000\000\000\000\000\134\136\000\000\135\000\000\
-\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
-\\134\130\124\000\102\090\089\083\082\081\080\078\077\072\070\057\
+"\000\000\000\000\000\000\000\000\000\144\146\000\000\145\000\000\
+\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+\\144\140\134\000\102\090\089\083\082\081\080\078\077\072\070\057\
\\048\048\048\048\048\048\048\048\048\048\045\000\039\037\036\033\
\\030\029\029\029\029\029\029\029\029\029\029\029\029\029\029\029\
\\029\029\029\029\029\029\029\029\029\029\029\028\000\027\026\000\
@@ -843,11 +847,11 @@
(102,
"\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
-\\000\000\000\000\122\000\000\000\000\000\000\000\000\000\000\000\
-\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
-\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
-\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
-\\000\103\103\119\103\103\115\103\103\109\103\103\103\103\103\103\
+\\000\000\000\000\132\000\000\000\000\000\000\000\000\000\000\000\
+\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+\\000\103\103\129\103\103\125\103\103\119\103\103\109\103\103\103\
\\103\103\103\103\104\103\103\103\103\103\103\000\000\000\000\000\
\\000"
),
@@ -902,8 +906,8 @@
\\103\103\103\103\103\103\103\103\103\103\000\000\000\000\000\000\
\\000\103\103\103\103\103\103\103\103\103\103\103\103\103\103\103\
\\103\103\103\103\103\103\103\103\103\103\103\000\000\000\000\103\
-\\000\103\103\103\103\103\103\103\103\103\103\103\103\103\103\103\
-\\103\103\103\103\110\103\103\103\103\103\103\000\000\000\000\000\
+\\000\103\103\103\103\110\103\103\103\103\103\103\103\103\103\103\
+\\103\103\103\103\103\103\103\103\103\103\103\000\000\000\000\000\
\\000"
),
(110,
@@ -913,8 +917,8 @@
\\103\103\103\103\103\103\103\103\103\103\000\000\000\000\000\000\
\\000\103\103\103\103\103\103\103\103\103\103\103\103\103\103\103\
\\103\103\103\103\103\103\103\103\103\103\103\000\000\000\000\103\
-\\000\103\103\103\103\111\103\103\103\103\103\103\103\103\103\103\
-\\103\103\103\103\103\103\103\103\103\103\103\000\000\000\000\000\
+\\000\103\103\103\103\103\103\103\103\103\103\103\103\103\103\103\
+\\103\103\103\103\111\103\103\103\103\103\103\000\000\000\000\000\
\\000"
),
(111,
@@ -935,19 +939,19 @@
\\103\103\103\103\103\103\103\103\103\103\000\000\000\000\000\000\
\\000\103\103\103\103\103\103\103\103\103\103\103\103\103\103\103\
\\103\103\103\103\103\103\103\103\103\103\103\000\000\000\000\103\
-\\000\103\103\103\103\103\114\103\103\103\103\103\103\103\103\103\
+\\000\103\103\103\103\103\116\103\103\103\103\103\103\103\103\103\
\\103\103\103\103\113\103\103\103\103\103\103\000\000\000\000\000\
\\000"
),
- (115,
+ (113,
"\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
\\103\103\103\103\103\103\103\103\103\103\000\000\000\000\000\000\
\\000\103\103\103\103\103\103\103\103\103\103\103\103\103\103\103\
\\103\103\103\103\103\103\103\103\103\103\103\000\000\000\000\103\
-\\000\103\103\103\103\103\103\103\103\103\103\103\103\103\103\116\
-\\103\103\103\103\103\103\103\103\103\103\103\000\000\000\000\000\
+\\000\103\103\103\103\103\115\103\103\103\103\103\103\103\103\103\
+\\103\103\103\103\114\103\103\103\103\103\103\000\000\000\000\000\
\\000"
),
(116,
@@ -968,8 +972,8 @@
\\103\103\103\103\103\103\103\103\103\103\000\000\000\000\000\000\
\\000\103\103\103\103\103\103\103\103\103\103\103\103\103\103\103\
\\103\103\103\103\103\103\103\103\103\103\103\000\000\000\000\103\
-\\000\103\103\103\103\103\103\103\103\103\103\103\103\103\120\103\
-\\103\103\103\103\103\103\103\103\103\103\103\000\000\000\000\000\
+\\000\103\103\103\103\103\103\103\103\103\103\103\103\103\103\103\
+\\103\103\103\103\120\103\103\103\103\103\103\000\000\000\000\000\
\\000"
),
(120,
@@ -979,7 +983,18 @@
\\103\103\103\103\103\103\103\103\103\103\000\000\000\000\000\000\
\\000\103\103\103\103\103\103\103\103\103\103\103\103\103\103\103\
\\103\103\103\103\103\103\103\103\103\103\103\000\000\000\000\103\
-\\000\103\103\103\103\103\121\103\103\103\103\103\103\103\103\103\
+\\000\103\103\103\103\121\103\103\103\103\103\103\103\103\103\103\
+\\103\103\103\103\103\103\103\103\103\103\103\000\000\000\000\000\
+\\000"
+),
+ (121,
+"\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+\\103\103\103\103\103\103\103\103\103\103\000\000\000\000\000\000\
+\\000\103\103\103\103\103\103\103\103\103\103\103\103\103\103\103\
+\\103\103\103\103\103\103\103\103\103\103\103\000\000\000\000\122\
+\\000\103\103\103\103\103\103\103\103\103\103\103\103\103\103\103\
\\103\103\103\103\103\103\103\103\103\103\103\000\000\000\000\000\
\\000"
),
@@ -987,72 +1002,127 @@
"\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
-\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
-\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
-\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
-\\000\123\123\123\123\123\123\123\123\123\123\123\123\123\123\123\
-\\123\123\123\123\123\123\123\123\123\123\123\000\000\000\000\000\
+\\103\103\103\103\103\103\103\103\103\103\000\000\000\000\000\000\
+\\000\103\103\103\103\103\103\103\103\103\103\103\103\103\103\103\
+\\103\103\103\103\103\103\103\103\103\103\103\000\000\000\000\103\
+\\000\103\103\103\103\103\124\103\103\103\103\103\103\103\103\103\
+\\103\103\103\103\123\103\103\103\103\103\103\000\000\000\000\000\
\\000"
),
- (123,
+ (125,
"\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
-\\123\123\123\123\123\123\123\123\123\123\000\000\000\000\000\000\
-\\000\123\123\123\123\123\123\123\123\123\123\123\123\123\123\123\
-\\123\123\123\123\123\123\123\123\123\123\123\000\000\000\000\123\
-\\000\123\123\123\123\123\123\123\123\123\123\123\123\123\123\123\
-\\123\123\123\123\123\123\123\123\123\123\123\000\000\000\000\000\
+\\103\103\103\103\103\103\103\103\103\103\000\000\000\000\000\000\
+\\000\103\103\103\103\103\103\103\103\103\103\103\103\103\103\103\
+\\103\103\103\103\103\103\103\103\103\103\103\000\000\000\000\103\
+\\000\103\103\103\103\103\103\103\103\103\103\103\103\103\103\126\
+\\103\103\103\103\103\103\103\103\103\103\103\000\000\000\000\000\
\\000"
),
- (124,
-"\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\
-\\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\
-\\125\125\000\125\125\125\125\125\125\125\125\125\125\125\125\125\
-\\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\
-\\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\
-\\125\125\125\125\125\125\125\125\125\125\125\125\129\125\125\125\
-\\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\
-\\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\
-\\125"
+ (126,
+"\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+\\103\103\103\103\103\103\103\103\103\103\000\000\000\000\000\000\
+\\000\103\103\103\103\103\103\103\103\103\103\103\103\103\103\103\
+\\103\103\103\103\103\103\103\103\103\103\103\000\000\000\000\103\
+\\000\103\103\103\103\103\128\103\103\103\103\103\103\103\103\103\
+\\103\103\103\103\127\103\103\103\103\103\103\000\000\000\000\000\
+\\000"
),
- (125,
-"\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\
-\\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\
-\\125\125\128\125\125\125\125\125\125\125\125\125\125\125\125\125\
-\\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\
-\\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\
-\\125\125\125\125\125\125\125\125\125\125\125\125\126\125\125\125\
-\\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\
-\\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\
-\\125"
-),
- (126,
-"\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\
-\\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\
-\\125\125\127\125\125\125\125\125\125\125\125\125\125\125\125\125\
-\\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\
-\\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\
-\\125\125\125\125\125\125\125\125\125\125\125\125\126\125\125\125\
-\\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\
-\\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\125\
-\\125"
+ (129,
+"\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+\\103\103\103\103\103\103\103\103\103\103\000\000\000\000\000\000\
+\\000\103\103\103\103\103\103\103\103\103\103\103\103\103\103\103\
+\\103\103\103\103\103\103\103\103\103\103\103\000\000\000\000\103\
+\\000\103\103\103\103\103\103\103\103\103\103\103\103\103\130\103\
+\\103\103\103\103\103\103\103\103\103\103\103\000\000\000\000\000\
+\\000"
),
(130,
"\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
-\\000\133\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
-\\000\000\000\000\000\000\000\000\000\000\000\000\000\132\131\000\
+\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+\\103\103\103\103\103\103\103\103\103\103\000\000\000\000\000\000\
+\\000\103\103\103\103\103\103\103\103\103\103\103\103\103\103\103\
+\\103\103\103\103\103\103\103\103\103\103\103\000\000\000\000\103\
+\\000\103\103\103\103\103\131\103\103\103\103\103\103\103\103\103\
+\\103\103\103\103\103\103\103\103\103\103\103\000\000\000\000\000\
+\\000"
+),
+ (132,
+"\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+\\000\133\133\133\133\133\133\133\133\133\133\133\133\133\133\133\
+\\133\133\133\133\133\133\133\133\133\133\133\000\000\000\000\000\
+\\000"
+),
+ (133,
+"\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+\\133\133\133\133\133\133\133\133\133\133\000\000\000\000\000\000\
+\\000\133\133\133\133\133\133\133\133\133\133\133\133\133\133\133\
+\\133\133\133\133\133\133\133\133\133\133\133\000\000\000\000\133\
+\\000\133\133\133\133\133\133\133\133\133\133\133\133\133\133\133\
+\\133\133\133\133\133\133\133\133\133\133\133\000\000\000\000\000\
+\\000"
+),
+ (134,
+"\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\
+\\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\
+\\135\135\000\135\135\135\135\135\135\135\135\135\135\135\135\135\
+\\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\
+\\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\
+\\135\135\135\135\135\135\135\135\135\135\135\135\139\135\135\135\
+\\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\
+\\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\
+\\135"
+),
+ (135,
+"\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\
+\\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\
+\\135\135\138\135\135\135\135\135\135\135\135\135\135\135\135\135\
+\\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\
+\\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\
+\\135\135\135\135\135\135\135\135\135\135\135\135\136\135\135\135\
+\\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\
+\\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\
+\\135"
+),
+ (136,
+"\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\
+\\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\
+\\135\135\137\135\135\135\135\135\135\135\135\135\135\135\135\135\
+\\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\
+\\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\
+\\135\135\135\135\135\135\135\135\135\135\135\135\136\135\135\135\
+\\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\
+\\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\135\
+\\135"
+),
+ (140,
+"\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+\\000\143\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+\\000\000\000\000\000\000\000\000\000\000\000\000\000\142\141\000\
\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
\\000"
),
- (134,
-"\000\000\000\000\000\000\000\000\000\134\000\000\000\000\000\000\
-\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
-\\134\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+ (144,
+"\000\000\000\000\000\000\000\000\000\144\000\000\000\000\000\000\
+\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
+\\144\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
@@ -1060,8 +1130,8 @@
\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
\\000"
),
- (135,
-"\000\000\000\000\000\000\000\000\000\000\136\000\000\000\000\000\
+ (145,
+"\000\000\000\000\000\000\000\000\000\000\146\000\000\000\000\000\
\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
\\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\
@@ -1086,25 +1156,25 @@
{fin = [(N 71)], trans = 0},
{fin = [(N 61)], trans = 0},
{fin = [(N 86)], trans = 0},
-{fin = [(N 251)], trans = 7},
-{fin = [(N 251)], trans = 8},
-{fin = [(N 251)], trans = 9},
-{fin = [(N 186),(N 251)], trans = 7},
-{fin = [(N 251)], trans = 11},
-{fin = [(N 198),(N 251)], trans = 7},
-{fin = [(N 251)], trans = 13},
-{fin = [(N 251)], trans = 14},
-{fin = [(N 251)], trans = 15},
-{fin = [(N 251)], trans = 16},
-{fin = [(N 251)], trans = 17},
-{fin = [(N 251)], trans = 18},
-{fin = [(N 206),(N 251)], trans = 7},
-{fin = [(N 251)], trans = 20},
-{fin = [(N 251)], trans = 21},
-{fin = [(N 190),(N 251)], trans = 7},
-{fin = [(N 251)], trans = 23},
-{fin = [(N 251)], trans = 24},
-{fin = [(N 194),(N 251)], trans = 7},
+{fin = [(N 283)], trans = 7},
+{fin = [(N 283)], trans = 8},
+{fin = [(N 283)], trans = 9},
+{fin = [(N 186),(N 283)], trans = 7},
+{fin = [(N 283)], trans = 11},
+{fin = [(N 198),(N 283)], trans = 7},
+{fin = [(N 283)], trans = 13},
+{fin = [(N 283)], trans = 14},
+{fin = [(N 283)], trans = 15},
+{fin = [(N 283)], trans = 16},
+{fin = [(N 283)], trans = 17},
+{fin = [(N 283)], trans = 18},
+{fin = [(N 206),(N 283)], trans = 7},
+{fin = [(N 283)], trans = 20},
+{fin = [(N 283)], trans = 21},
+{fin = [(N 190),(N 283)], trans = 7},
+{fin = [(N 283)], trans = 23},
+{fin = [(N 283)], trans = 24},
+{fin = [(N 194),(N 283)], trans = 7},
{fin = [(N 25)], trans = 0},
{fin = [(N 80)], trans = 0},
{fin = [(N 50)], trans = 0},
@@ -1114,7 +1184,7 @@
{fin = [(N 12)], trans = 0},
{fin = [(N 78)], trans = 33},
{fin = [(N 21)], trans = 0},
-{fin = [(N 283)], trans = 0},
+{fin = [(N 315)], trans = 0},
{fin = [(N 38)], trans = 0},
{fin = [(N 31)], trans = 37},
{fin = [(N 48)], trans = 0},
@@ -1123,10 +1193,10 @@
{fin = [(N 68)], trans = 0},
{fin = [(N 41)], trans = 42},
{fin = [(N 45)], trans = 0},
-{fin = [(N 277)], trans = 0},
+{fin = [(N 309)], trans = 0},
{fin = [(N 27)], trans = 45},
{fin = [(N 36)], trans = 0},
-{fin = [(N 286)], trans = 0},
+{fin = [(N 318)], trans = 0},
{fin = [(N 126)], trans = 48},
{fin = [], trans = 49},
{fin = [(N 104)], trans = 49},
@@ -1155,11 +1225,11 @@
{fin = [(N 55)], trans = 0},
{fin = [(N 123)], trans = 74},
{fin = [(N 58)], trans = 75},
-{fin = [(N 274)], trans = 0},
+{fin = [(N 306)], trans = 0},
{fin = [(N 29)], trans = 0},
-{fin = [(N 268)], trans = 78},
+{fin = [(N 300)], trans = 78},
{fin = [(N 76)], trans = 0},
-{fin = [(N 270)], trans = 0},
+{fin = [(N 302)], trans = 0},
{fin = [(N 82)], trans = 0},
{fin = [(N 52)], trans = 0},
{fin = [], trans = 83},
@@ -1182,39 +1252,49 @@
{fin = [(N 182)], trans = 100},
{fin = [(N 182)], trans = 101},
{fin = [], trans = 102},
-{fin = [(N 266)], trans = 103},
-{fin = [(N 266)], trans = 104},
-{fin = [(N 266)], trans = 105},
-{fin = [(N 211),(N 266)], trans = 103},
-{fin = [(N 266)], trans = 107},
-{fin = [(N 231),(N 266)], trans = 103},
-{fin = [(N 266)], trans = 109},
-{fin = [(N 266)], trans = 110},
-{fin = [(N 266)], trans = 111},
-{fin = [(N 266)], trans = 112},
-{fin = [(N 245),(N 266)], trans = 103},
-{fin = [(N 238),(N 266)], trans = 103},
-{fin = [(N 266)], trans = 115},
-{fin = [(N 266)], trans = 116},
-{fin = [(N 226),(N 266)], trans = 103},
-{fin = [(N 216),(N 266)], trans = 103},
-{fin = [(N 266)], trans = 119},
-{fin = [(N 266)], trans = 120},
-{fin = [(N 221),(N 266)], trans = 103},
-{fin = [], trans = 122},
-{fin = [(N 259)], trans = 123},
-{fin = [], trans = 124},
-{fin = [], trans = 125},
-{fin = [], trans = 126},
-{fin = [(N 95)], trans = 125},
+{fin = [(N 290)], trans = 103},
+{fin = [(N 290)], trans = 104},
+{fin = [(N 290)], trans = 105},
+{fin = [(N 211),(N 290)], trans = 103},
+{fin = [(N 290)], trans = 107},
+{fin = [(N 231),(N 290)], trans = 103},
+{fin = [(N 290)], trans = 109},
+{fin = [(N 290)], trans = 110},
+{fin = [(N 290)], trans = 111},
+{fin = [(N 290)], trans = 112},
+{fin = [(N 290)], trans = 113},
+{fin = [(N 277),(N 290)], trans = 103},
+{fin = [(N 253),(N 290)], trans = 103},
+{fin = [(N 290)], trans = 116},
+{fin = [(N 269),(N 290)], trans = 103},
+{fin = [(N 261),(N 290)], trans = 103},
+{fin = [(N 290)], trans = 119},
+{fin = [(N 290)], trans = 120},
+{fin = [(N 290)], trans = 121},
+{fin = [(N 290)], trans = 122},
+{fin = [(N 245),(N 290)], trans = 103},
+{fin = [(N 238),(N 290)], trans = 103},
+{fin = [(N 290)], trans = 125},
+{fin = [(N 290)], trans = 126},
+{fin = [(N 226),(N 290)], trans = 103},
+{fin = [(N 216),(N 290)], trans = 103},
+{fin = [(N 290)], trans = 129},
+{fin = [(N 290)], trans = 130},
+{fin = [(N 221),(N 290)], trans = 103},
+{fin = [], trans = 132},
+{fin = [(N 298)], trans = 133},
+{fin = [], trans = 134},
+{fin = [], trans = 135},
+{fin = [], trans = 136},
+{fin = [(N 95)], trans = 135},
{fin = [(N 95)], trans = 0},
-{fin = [], trans = 126},
-{fin = [(N 33)], trans = 130},
-{fin = [(N 280)], trans = 0},
+{fin = [], trans = 136},
+{fin = [(N 33)], trans = 140},
+{fin = [(N 312)], trans = 0},
{fin = [(N 64)], trans = 0},
{fin = [(N 18)], trans = 0},
-{fin = [(N 2)], trans = 134},
-{fin = [(N 7)], trans = 135},
+{fin = [(N 2)], trans = 144},
+{fin = [(N 7)], trans = 145},
{fin = [(N 7)], trans = 0}])
end
structure StartStates =
@@ -1284,23 +1364,27 @@
| 238 => (col:=yypos-(!eolpos); T.ITE_F(!linep,!col))
| 245 => (col:=yypos-(!eolpos); T.ITE_T(!linep,!col))
| 25 => (col:=yypos-(!eolpos); T.CARET(!linep,!col))
-| 251 => let val yytext=yymktext() in col:=yypos-(!eolpos); T.LOWER_WORD(yytext,!linep,!col) end
-| 259 => let val yytext=yymktext() in col:=yypos-(!eolpos); T.ATOMIC_SYSTEM_WORD(yytext,!linep,!col) end
-| 266 => let val yytext=yymktext() in col:=yypos-(!eolpos); T.ATOMIC_DEFINED_WORD(yytext,!linep,!col) end
-| 268 => (col:=yypos-(!eolpos); T.PLUS(!linep,!col))
+| 253 => (col:=yypos-(!eolpos); T.LET_TF(!linep,!col))
+| 261 => (col:=yypos-(!eolpos); T.LET_FF(!linep,!col))
+| 269 => (col:=yypos-(!eolpos); T.LET_FT(!linep,!col))
| 27 => (col:=yypos-(!eolpos); T.COLON(!linep,!col))
-| 270 => (col:=yypos-(!eolpos); T.TIMES(!linep,!col))
-| 274 => (col:=yypos-(!eolpos); T.GENTZEN_ARROW(!linep,!col))
-| 277 => (col:=yypos-(!eolpos); T.SUBTYPE(!linep,!col))
-| 280 => (col:=yypos-(!eolpos); T.DEP_PROD(!linep,!col))
-| 283 => (col:=yypos-(!eolpos); T.DEP_SUM(!linep,!col))
-| 286 => (col:=yypos-(!eolpos); T.LET_TERM(!linep,!col))
+| 277 => (col:=yypos-(!eolpos); T.LET_TT(!linep,!col))
+| 283 => let val yytext=yymktext() in col:=yypos-(!eolpos); T.LOWER_WORD(yytext,!linep,!col) end
| 29 => (col:=yypos-(!eolpos); T.COMMA(!linep,!col))
+| 290 => let val yytext=yymktext() in col:=yypos-(!eolpos); T.DOLLAR_WORD(yytext,!linep,!col) end
+| 298 => let val yytext=yymktext() in col:=yypos-(!eolpos); T.DOLLAR_DOLLAR_WORD(yytext,!linep,!col) end
+| 300 => (col:=yypos-(!eolpos); T.PLUS(!linep,!col))
+| 302 => (col:=yypos-(!eolpos); T.TIMES(!linep,!col))
+| 306 => (col:=yypos-(!eolpos); T.GENTZEN_ARROW(!linep,!col))
+| 309 => (col:=yypos-(!eolpos); T.SUBTYPE(!linep,!col))
| 31 => (col:=yypos-(!eolpos); T.EQUALS(!linep,!col))
+| 312 => (col:=yypos-(!eolpos); T.DEP_PROD(!linep,!col))
+| 315 => (col:=yypos-(!eolpos); T.DEP_SUM(!linep,!col))
+| 318 => (col:=yypos-(!eolpos); T.LET_TERM(!linep,!col))
| 33 => (col:=yypos-(!eolpos); T.EXCLAMATION(!linep,!col))
| 36 => (col:=yypos-(!eolpos); T.LET(!linep,!col))
| 38 => (col:=yypos-(!eolpos); T.ARROW(!linep,!col))
-| 41 => (col:=yypos-(!eolpos); T.IF(!linep,!col))
+| 41 => (col:=yypos-(!eolpos); T.FI(!linep,!col))
| 45 => (col:=yypos-(!eolpos); T.IFF(!linep,!col))
| 48 => (col:=yypos-(!eolpos); T.IMPLIES(!linep,!col))
| 50 => (col:=yypos-(!eolpos); T.LBRKT(!linep,!col))
@@ -1392,6 +1476,9 @@
| "unknown" => Role_Unknown
| thing => raise (UNRECOGNISED_ROLE thing)
+fun extract_quant_info (Quant (quantifier, vars, tptp_formula)) =
+ (quantifier, vars, tptp_formula)
+
end
structure LrTable = Token.LrTable
@@ -1399,93 +1486,94 @@
local open LrTable in
val table=let val actionRows =
"\
-\\001\000\001\000\032\002\004\000\155\002\005\000\032\002\006\000\032\002\
-\\010\000\032\002\011\000\032\002\012\000\032\002\016\000\212\000\
-\\019\000\032\002\020\000\032\002\021\000\032\002\022\000\032\002\
-\\027\000\032\002\037\000\032\002\000\000\
-\\001\000\001\000\044\002\004\000\154\002\005\000\044\002\006\000\044\002\
-\\010\000\044\002\011\000\044\002\012\000\044\002\016\000\217\000\
-\\019\000\044\002\020\000\044\002\021\000\044\002\022\000\044\002\
-\\027\000\044\002\037\000\044\002\000\000\
-\\001\000\001\000\054\002\005\000\054\002\006\000\049\002\010\000\054\002\
-\\011\000\054\002\012\000\054\002\019\000\054\002\020\000\049\002\
-\\021\000\054\002\022\000\054\002\026\000\054\002\027\000\054\002\
-\\037\000\054\002\000\000\
-\\001\000\001\000\061\002\005\000\061\002\006\000\039\002\010\000\061\002\
-\\011\000\061\002\012\000\061\002\019\000\061\002\020\000\039\002\
-\\021\000\061\002\022\000\061\002\026\000\061\002\027\000\061\002\
-\\037\000\061\002\000\000\
-\\001\000\001\000\064\002\005\000\064\002\006\000\047\002\010\000\064\002\
-\\011\000\064\002\012\000\064\002\019\000\064\002\020\000\047\002\
-\\021\000\064\002\022\000\064\002\026\000\064\002\027\000\064\002\
-\\037\000\064\002\000\000\
-\\001\000\001\000\170\002\005\000\170\002\006\000\052\002\010\000\170\002\
-\\011\000\170\002\012\000\170\002\019\000\170\002\020\000\052\002\
-\\021\000\170\002\022\000\170\002\026\000\170\002\027\000\170\002\
-\\037\000\170\002\000\000\
-\\001\000\001\000\225\002\002\000\225\002\004\000\213\002\005\000\225\002\
-\\006\000\225\002\008\000\225\002\009\000\225\002\010\000\225\002\
-\\011\000\225\002\012\000\225\002\019\000\225\002\020\000\225\002\
-\\021\000\225\002\022\000\225\002\026\000\225\002\027\000\225\002\
-\\037\000\225\002\059\000\225\002\060\000\225\002\000\000\
-\\001\000\001\000\228\002\002\000\228\002\004\000\214\002\005\000\228\002\
-\\006\000\228\002\008\000\228\002\009\000\228\002\010\000\228\002\
-\\011\000\228\002\012\000\228\002\019\000\228\002\020\000\228\002\
-\\021\000\228\002\022\000\228\002\026\000\228\002\027\000\228\002\
-\\037\000\228\002\059\000\228\002\060\000\228\002\000\000\
-\\001\000\001\000\206\000\003\000\205\000\006\000\204\000\007\000\119\000\
-\\008\000\203\000\010\000\202\000\011\000\201\000\012\000\200\000\
-\\013\000\035\000\015\000\199\000\016\000\198\000\019\000\197\000\
-\\020\000\196\000\021\000\195\000\022\000\194\000\025\000\116\000\
-\\028\000\115\000\037\000\193\000\044\000\096\000\045\000\095\000\
-\\046\000\034\000\047\000\033\000\049\000\032\000\050\000\094\000\
-\\051\000\031\000\053\000\093\000\055\000\192\000\056\000\191\000\
-\\057\000\190\000\058\000\189\000\062\000\188\000\063\000\187\000\
-\\064\000\092\000\065\000\091\000\068\000\030\000\069\000\029\000\
-\\070\000\028\000\071\000\027\000\072\000\186\000\073\000\090\000\000\000\
-\\001\000\001\000\206\000\003\000\205\000\006\000\204\000\007\000\119\000\
-\\008\000\203\000\010\000\202\000\011\000\201\000\012\000\200\000\
-\\013\000\035\000\016\000\024\001\019\000\197\000\020\000\196\000\
-\\021\000\195\000\022\000\194\000\025\000\116\000\026\000\023\001\
-\\028\000\115\000\037\000\193\000\044\000\096\000\045\000\095\000\
-\\046\000\034\000\047\000\033\000\049\000\032\000\050\000\094\000\
-\\051\000\031\000\053\000\093\000\055\000\192\000\056\000\191\000\
-\\057\000\190\000\058\000\189\000\062\000\188\000\063\000\187\000\
-\\064\000\092\000\065\000\091\000\068\000\030\000\069\000\029\000\
-\\070\000\028\000\071\000\027\000\072\000\186\000\073\000\090\000\000\000\
-\\001\000\001\000\206\000\003\000\205\000\006\000\204\000\007\000\119\000\
-\\008\000\203\000\010\000\202\000\011\000\201\000\012\000\200\000\
-\\013\000\035\000\016\000\024\001\019\000\197\000\020\000\196\000\
-\\021\000\195\000\022\000\194\000\025\000\116\000\028\000\115\000\
-\\037\000\193\000\044\000\096\000\045\000\095\000\046\000\034\000\
-\\047\000\033\000\049\000\032\000\050\000\094\000\051\000\031\000\
-\\053\000\093\000\055\000\192\000\056\000\191\000\057\000\190\000\
-\\058\000\189\000\062\000\188\000\063\000\187\000\064\000\092\000\
-\\065\000\091\000\068\000\030\000\069\000\029\000\070\000\028\000\
-\\071\000\027\000\072\000\186\000\073\000\090\000\000\000\
-\\001\000\001\000\206\000\003\000\205\000\006\000\204\000\007\000\119\000\
-\\008\000\203\000\010\000\202\000\011\000\201\000\012\000\200\000\
-\\013\000\035\000\016\000\097\001\019\000\197\000\020\000\196\000\
-\\021\000\195\000\022\000\194\000\025\000\116\000\028\000\115\000\
-\\037\000\193\000\044\000\096\000\045\000\095\000\046\000\034\000\
-\\047\000\033\000\049\000\032\000\050\000\094\000\051\000\031\000\
-\\053\000\093\000\055\000\192\000\056\000\191\000\057\000\190\000\
-\\058\000\189\000\062\000\188\000\063\000\187\000\064\000\092\000\
-\\065\000\091\000\068\000\030\000\069\000\029\000\070\000\028\000\
-\\071\000\027\000\072\000\186\000\073\000\090\000\000\000\
-\\001\000\001\000\007\001\002\000\006\001\005\000\243\002\006\000\204\000\
-\\008\000\243\002\009\000\210\002\010\000\202\000\011\000\201\000\
-\\012\000\200\000\019\000\197\000\020\000\196\000\021\000\195\000\
-\\022\000\194\000\026\000\243\002\027\000\243\002\037\000\005\001\
-\\059\000\210\002\060\000\210\002\000\000\
-\\001\000\004\000\243\000\000\000\
-\\001\000\004\000\008\001\000\000\
-\\001\000\004\000\193\001\000\000\
-\\001\000\004\000\201\001\000\000\
+\\001\000\001\000\052\002\002\000\052\002\004\000\069\002\005\000\052\002\
+\\006\000\052\002\009\000\052\002\010\000\052\002\011\000\052\002\
+\\012\000\052\002\019\000\052\002\020\000\052\002\021\000\052\002\
+\\022\000\052\002\026\000\052\002\027\000\052\002\037\000\052\002\
+\\059\000\052\002\060\000\052\002\000\000\
+\\001\000\001\000\055\002\002\000\055\002\004\000\070\002\005\000\055\002\
+\\006\000\055\002\009\000\055\002\010\000\055\002\011\000\055\002\
+\\012\000\055\002\019\000\055\002\020\000\055\002\021\000\055\002\
+\\022\000\055\002\026\000\055\002\027\000\055\002\037\000\055\002\
+\\059\000\055\002\060\000\055\002\000\000\
+\\001\000\001\000\219\002\005\000\219\002\006\000\234\002\010\000\219\002\
+\\011\000\219\002\012\000\219\002\019\000\219\002\020\000\234\002\
+\\021\000\219\002\022\000\219\002\026\000\219\002\027\000\219\002\
+\\037\000\219\002\000\000\
+\\001\000\001\000\222\002\005\000\222\002\006\000\245\002\010\000\222\002\
+\\011\000\222\002\012\000\222\002\019\000\222\002\020\000\245\002\
+\\021\000\222\002\022\000\222\002\026\000\222\002\027\000\222\002\
+\\037\000\222\002\000\000\
+\\001\000\001\000\229\002\005\000\229\002\006\000\236\002\010\000\229\002\
+\\011\000\229\002\012\000\229\002\019\000\229\002\020\000\236\002\
+\\021\000\229\002\022\000\229\002\026\000\229\002\027\000\229\002\
+\\037\000\229\002\000\000\
+\\001\000\001\000\239\002\004\000\130\002\005\000\239\002\006\000\239\002\
+\\010\000\239\002\011\000\239\002\012\000\239\002\016\000\222\000\
+\\019\000\239\002\020\000\239\002\021\000\239\002\022\000\239\002\
+\\027\000\239\002\037\000\239\002\000\000\
+\\001\000\001\000\252\002\004\000\131\002\005\000\252\002\006\000\252\002\
+\\010\000\252\002\011\000\252\002\012\000\252\002\016\000\217\000\
+\\019\000\252\002\020\000\252\002\021\000\252\002\022\000\252\002\
+\\027\000\252\002\037\000\252\002\000\000\
+\\001\000\001\000\211\000\003\000\210\000\006\000\209\000\007\000\124\000\
+\\010\000\208\000\011\000\207\000\012\000\206\000\013\000\035\000\
+\\015\000\205\000\016\000\204\000\019\000\203\000\020\000\202\000\
+\\021\000\201\000\022\000\200\000\025\000\121\000\028\000\120\000\
+\\037\000\199\000\044\000\101\000\045\000\100\000\046\000\034\000\
+\\047\000\033\000\049\000\032\000\050\000\099\000\051\000\031\000\
+\\053\000\098\000\055\000\198\000\056\000\197\000\057\000\196\000\
+\\058\000\195\000\062\000\194\000\063\000\193\000\064\000\097\000\
+\\065\000\096\000\068\000\030\000\069\000\029\000\070\000\028\000\
+\\071\000\027\000\072\000\192\000\073\000\095\000\074\000\191\000\
+\\076\000\094\000\077\000\093\000\000\000\
+\\001\000\001\000\211\000\003\000\210\000\006\000\209\000\007\000\124\000\
+\\010\000\208\000\011\000\207\000\012\000\206\000\013\000\035\000\
+\\016\000\033\001\019\000\203\000\020\000\202\000\021\000\201\000\
+\\022\000\200\000\025\000\121\000\026\000\032\001\028\000\120\000\
+\\037\000\199\000\044\000\101\000\045\000\100\000\046\000\034\000\
+\\047\000\033\000\049\000\032\000\050\000\099\000\051\000\031\000\
+\\053\000\098\000\055\000\198\000\056\000\197\000\057\000\196\000\
+\\058\000\195\000\062\000\194\000\063\000\193\000\064\000\097\000\
+\\065\000\096\000\068\000\030\000\069\000\029\000\070\000\028\000\
+\\071\000\027\000\072\000\192\000\073\000\095\000\074\000\191\000\
+\\076\000\094\000\077\000\093\000\000\000\
+\\001\000\001\000\211\000\003\000\210\000\006\000\209\000\007\000\124\000\
+\\010\000\208\000\011\000\207\000\012\000\206\000\013\000\035\000\
+\\016\000\033\001\019\000\203\000\020\000\202\000\021\000\201\000\
+\\022\000\200\000\025\000\121\000\028\000\120\000\037\000\199\000\
+\\044\000\101\000\045\000\100\000\046\000\034\000\047\000\033\000\
+\\049\000\032\000\050\000\099\000\051\000\031\000\053\000\098\000\
+\\055\000\198\000\056\000\197\000\057\000\196\000\058\000\195\000\
+\\062\000\194\000\063\000\193\000\064\000\097\000\065\000\096\000\
+\\068\000\030\000\069\000\029\000\070\000\028\000\071\000\027\000\
+\\072\000\192\000\073\000\095\000\074\000\191\000\076\000\094\000\
+\\077\000\093\000\000\000\
+\\001\000\001\000\211\000\003\000\210\000\006\000\209\000\007\000\124\000\
+\\010\000\208\000\011\000\207\000\012\000\206\000\013\000\035\000\
+\\016\000\110\001\019\000\203\000\020\000\202\000\021\000\201\000\
+\\022\000\200\000\025\000\121\000\028\000\120\000\037\000\199\000\
+\\044\000\101\000\045\000\100\000\046\000\034\000\047\000\033\000\
+\\049\000\032\000\050\000\099\000\051\000\031\000\053\000\098\000\
+\\055\000\198\000\056\000\197\000\057\000\196\000\058\000\195\000\
+\\062\000\194\000\063\000\193\000\064\000\097\000\065\000\096\000\
+\\068\000\030\000\069\000\029\000\070\000\028\000\071\000\027\000\
+\\072\000\192\000\073\000\095\000\074\000\191\000\076\000\094\000\
+\\077\000\093\000\000\000\
+\\001\000\001\000\015\001\002\000\014\001\005\000\034\002\006\000\209\000\
+\\009\000\073\002\010\000\208\000\011\000\207\000\012\000\206\000\
+\\019\000\203\000\020\000\202\000\021\000\201\000\022\000\200\000\
+\\026\000\034\002\027\000\034\002\037\000\013\001\059\000\073\002\
+\\060\000\073\002\000\000\
+\\001\000\003\000\210\000\007\000\124\000\025\000\121\000\055\000\198\000\
+\\056\000\197\000\062\000\194\000\063\000\193\000\000\000\
+\\001\000\004\000\250\000\000\000\
+\\001\000\004\000\016\001\000\000\
\\001\000\004\000\205\001\000\000\
-\\001\000\004\000\211\001\000\000\
-\\001\000\004\000\216\001\000\000\
-\\001\000\005\000\152\002\009\000\150\002\027\000\152\002\000\000\
+\\001\000\004\000\217\001\000\000\
+\\001\000\004\000\224\001\000\000\
+\\001\000\004\000\255\001\000\000\
+\\001\000\005\000\132\002\009\000\139\002\027\000\132\002\000\000\
\\001\000\005\000\041\000\000\000\
\\001\000\005\000\042\000\000\000\
\\001\000\005\000\043\000\000\000\
@@ -1494,200 +1582,201 @@
\\001\000\005\000\055\000\000\000\
\\001\000\005\000\056\000\000\000\
\\001\000\005\000\057\000\000\000\
-\\001\000\005\000\147\001\000\000\
-\\001\000\005\000\161\001\000\000\
-\\001\000\005\000\174\001\000\000\
-\\001\000\005\000\226\001\000\000\
-\\001\000\005\000\232\001\000\000\
-\\001\000\005\000\235\001\000\000\
-\\001\000\006\000\204\000\000\000\
-\\001\000\006\000\204\000\020\000\196\000\000\000\
-\\001\000\007\000\119\000\008\000\146\000\013\000\035\000\015\000\145\000\
-\\016\000\144\000\025\000\116\000\028\000\115\000\044\000\096\000\
-\\045\000\095\000\046\000\034\000\047\000\033\000\049\000\032\000\
-\\050\000\094\000\051\000\031\000\053\000\093\000\064\000\092\000\
-\\065\000\091\000\068\000\030\000\069\000\029\000\070\000\028\000\
-\\071\000\027\000\072\000\143\000\073\000\090\000\000\000\
-\\001\000\007\000\119\000\008\000\146\000\013\000\035\000\016\000\247\000\
-\\025\000\116\000\026\000\254\000\028\000\115\000\044\000\096\000\
-\\045\000\095\000\046\000\034\000\047\000\033\000\049\000\032\000\
-\\050\000\094\000\051\000\031\000\053\000\093\000\064\000\092\000\
-\\065\000\091\000\068\000\030\000\069\000\029\000\070\000\028\000\
-\\071\000\027\000\072\000\143\000\073\000\090\000\000\000\
-\\001\000\007\000\119\000\008\000\146\000\013\000\035\000\016\000\247\000\
-\\025\000\116\000\028\000\115\000\044\000\096\000\045\000\095\000\
-\\046\000\034\000\047\000\033\000\049\000\032\000\050\000\094\000\
-\\051\000\031\000\053\000\093\000\064\000\092\000\065\000\091\000\
+\\001\000\005\000\158\001\000\000\
+\\001\000\005\000\159\001\000\000\
+\\001\000\005\000\160\001\000\000\
+\\001\000\005\000\177\001\000\000\
+\\001\000\005\000\178\001\000\000\
+\\001\000\005\000\179\001\000\000\
+\\001\000\005\000\187\001\000\000\
+\\001\000\005\000\188\001\000\000\
+\\001\000\005\000\238\001\000\000\
+\\001\000\005\000\249\001\000\000\
+\\001\000\005\000\252\001\000\000\
+\\001\000\006\000\209\000\000\000\
+\\001\000\006\000\209\000\020\000\202\000\000\000\
+\\001\000\007\000\124\000\013\000\035\000\015\000\123\000\016\000\122\000\
+\\025\000\121\000\028\000\120\000\044\000\101\000\045\000\100\000\
+\\046\000\034\000\047\000\033\000\049\000\032\000\050\000\099\000\
+\\051\000\031\000\053\000\098\000\064\000\097\000\065\000\096\000\
\\068\000\030\000\069\000\029\000\070\000\028\000\071\000\027\000\
-\\072\000\143\000\073\000\090\000\000\000\
-\\001\000\007\000\119\000\013\000\035\000\015\000\118\000\016\000\117\000\
-\\025\000\116\000\028\000\115\000\044\000\096\000\045\000\095\000\
-\\046\000\034\000\047\000\033\000\049\000\032\000\050\000\094\000\
-\\051\000\031\000\053\000\093\000\064\000\092\000\065\000\091\000\
+\\073\000\095\000\076\000\094\000\077\000\093\000\000\000\
+\\001\000\007\000\124\000\013\000\035\000\015\000\151\000\016\000\150\000\
+\\025\000\121\000\028\000\120\000\044\000\101\000\045\000\100\000\
+\\046\000\034\000\047\000\033\000\049\000\032\000\050\000\099\000\
+\\051\000\031\000\053\000\098\000\064\000\097\000\065\000\096\000\
\\068\000\030\000\069\000\029\000\070\000\028\000\071\000\027\000\
-\\073\000\090\000\000\000\
-\\001\000\007\000\119\000\013\000\035\000\016\000\231\000\025\000\116\000\
-\\026\000\236\000\028\000\115\000\044\000\096\000\045\000\095\000\
-\\046\000\034\000\047\000\033\000\049\000\032\000\050\000\094\000\
-\\051\000\031\000\053\000\093\000\064\000\092\000\065\000\091\000\
+\\072\000\149\000\073\000\095\000\074\000\148\000\075\000\147\000\
+\\076\000\094\000\077\000\093\000\000\000\
+\\001\000\007\000\124\000\013\000\035\000\016\000\238\000\025\000\121\000\
+\\026\000\243\000\028\000\120\000\044\000\101\000\045\000\100\000\
+\\046\000\034\000\047\000\033\000\049\000\032\000\050\000\099\000\
+\\051\000\031\000\053\000\098\000\064\000\097\000\065\000\096\000\
+\\068\000\030\000\069\000\029\000\070\000\028\000\071\000\027\000\
+\\073\000\095\000\076\000\094\000\077\000\093\000\000\000\
+\\001\000\007\000\124\000\013\000\035\000\016\000\238\000\025\000\121\000\
+\\028\000\120\000\044\000\101\000\045\000\100\000\046\000\034\000\
+\\047\000\033\000\049\000\032\000\050\000\099\000\051\000\031\000\
+\\053\000\098\000\064\000\097\000\065\000\096\000\068\000\030\000\
+\\069\000\029\000\070\000\028\000\071\000\027\000\073\000\095\000\
+\\076\000\094\000\077\000\093\000\000\000\
+\\001\000\007\000\124\000\013\000\035\000\016\000\254\000\025\000\121\000\
+\\026\000\007\001\028\000\120\000\044\000\101\000\045\000\100\000\
+\\046\000\034\000\047\000\033\000\049\000\032\000\050\000\099\000\
+\\051\000\031\000\053\000\098\000\064\000\097\000\065\000\096\000\
\\068\000\030\000\069\000\029\000\070\000\028\000\071\000\027\000\
-\\073\000\090\000\000\000\
-\\001\000\007\000\119\000\013\000\035\000\016\000\231\000\025\000\116\000\
-\\028\000\115\000\044\000\096\000\045\000\095\000\046\000\034\000\
-\\047\000\033\000\049\000\032\000\050\000\094\000\051\000\031\000\
-\\053\000\093\000\064\000\092\000\065\000\091\000\068\000\030\000\
-\\069\000\029\000\070\000\028\000\071\000\027\000\073\000\090\000\000\000\
-\\001\000\008\000\166\001\067\000\165\001\000\000\
-\\001\000\008\000\176\001\000\000\
-\\001\000\009\000\151\002\027\000\145\002\060\000\145\002\000\000\
-\\001\000\009\000\011\001\059\000\010\001\060\000\009\001\000\000\
-\\001\000\009\000\153\001\000\000\
-\\001\000\013\000\035\000\015\000\042\001\026\000\142\001\039\000\041\001\
-\\040\000\040\001\041\000\039\001\042\000\038\001\043\000\037\001\
-\\044\000\096\000\045\000\095\000\046\000\034\000\047\000\033\000\
-\\049\000\032\000\050\000\094\000\051\000\031\000\053\000\036\001\
+\\072\000\149\000\073\000\095\000\074\000\148\000\075\000\147\000\
+\\076\000\094\000\077\000\093\000\000\000\
+\\001\000\007\000\124\000\013\000\035\000\016\000\254\000\025\000\121\000\
+\\028\000\120\000\044\000\101\000\045\000\100\000\046\000\034\000\
+\\047\000\033\000\049\000\032\000\050\000\099\000\051\000\031\000\
+\\053\000\098\000\064\000\097\000\065\000\096\000\068\000\030\000\
+\\069\000\029\000\070\000\028\000\071\000\027\000\072\000\149\000\
+\\073\000\095\000\074\000\148\000\075\000\147\000\076\000\094\000\
+\\077\000\093\000\000\000\
+\\001\000\007\000\124\000\025\000\121\000\000\000\
+\\001\000\009\000\140\002\027\000\151\002\060\000\151\002\000\000\
+\\001\000\009\000\019\001\059\000\018\001\060\000\017\001\000\000\
+\\001\000\009\000\166\001\000\000\
+\\001\000\013\000\035\000\015\000\050\001\026\000\153\001\039\000\049\001\
+\\040\000\048\001\041\000\047\001\042\000\046\001\043\000\045\001\
+\\044\000\101\000\045\000\100\000\046\000\034\000\047\000\033\000\
+\\049\000\032\000\050\000\099\000\051\000\031\000\053\000\044\001\
\\068\000\030\000\069\000\029\000\070\000\028\000\071\000\027\000\000\000\
-\\001\000\013\000\035\000\015\000\042\001\039\000\041\001\040\000\040\001\
-\\041\000\039\001\042\000\038\001\043\000\037\001\044\000\096\000\
-\\045\000\095\000\046\000\034\000\047\000\033\000\049\000\032\000\
-\\050\000\094\000\051\000\031\000\053\000\036\001\068\000\030\000\
+\\001\000\013\000\035\000\015\000\050\001\039\000\049\001\040\000\048\001\
+\\041\000\047\001\042\000\046\001\043\000\045\001\044\000\101\000\
+\\045\000\100\000\046\000\034\000\047\000\033\000\049\000\032\000\
+\\050\000\099\000\051\000\031\000\053\000\044\001\068\000\030\000\
\\069\000\029\000\070\000\028\000\071\000\027\000\000\000\
-\\001\000\013\000\035\000\016\000\098\000\028\000\097\000\044\000\096\000\
-\\045\000\095\000\046\000\034\000\047\000\033\000\049\000\032\000\
-\\050\000\094\000\051\000\031\000\053\000\093\000\064\000\092\000\
-\\065\000\091\000\068\000\030\000\069\000\029\000\070\000\028\000\
-\\071\000\027\000\073\000\090\000\000\000\
-\\001\000\013\000\035\000\016\000\078\001\049\000\032\000\051\000\031\000\
-\\064\000\077\001\068\000\030\000\069\000\029\000\070\000\028\000\
-\\071\000\027\000\000\000\
-\\001\000\013\000\035\000\016\000\157\001\049\000\032\000\051\000\031\000\
-\\064\000\077\001\068\000\030\000\069\000\029\000\070\000\028\000\
-\\071\000\027\000\000\000\
-\\001\000\013\000\035\000\028\000\097\000\044\000\096\000\045\000\095\000\
-\\046\000\034\000\047\000\033\000\049\000\032\000\050\000\094\000\
-\\051\000\031\000\053\000\093\000\064\000\092\000\065\000\091\000\
+\\001\000\013\000\035\000\016\000\103\000\028\000\102\000\044\000\101\000\
+\\045\000\100\000\046\000\034\000\047\000\033\000\049\000\032\000\
+\\050\000\099\000\051\000\031\000\053\000\098\000\064\000\097\000\
+\\065\000\096\000\068\000\030\000\069\000\029\000\070\000\028\000\
+\\071\000\027\000\073\000\095\000\076\000\094\000\077\000\093\000\000\000\
+\\001\000\013\000\035\000\016\000\093\001\049\000\032\000\050\000\099\000\
+\\051\000\031\000\063\000\092\001\064\000\097\000\068\000\030\000\
+\\069\000\029\000\070\000\028\000\071\000\027\000\000\000\
+\\001\000\013\000\035\000\016\000\173\001\049\000\032\000\050\000\099\000\
+\\051\000\031\000\063\000\092\001\064\000\097\000\068\000\030\000\
+\\069\000\029\000\070\000\028\000\071\000\027\000\000\000\
+\\001\000\013\000\035\000\016\000\005\002\049\000\032\000\050\000\099\000\
+\\051\000\031\000\064\000\097\000\068\000\030\000\069\000\029\000\
+\\070\000\028\000\071\000\027\000\000\000\
+\\001\000\013\000\035\000\016\000\010\002\049\000\032\000\050\000\099\000\
+\\051\000\031\000\064\000\097\000\068\000\030\000\069\000\029\000\
+\\070\000\028\000\071\000\027\000\000\000\
+\\001\000\013\000\035\000\016\000\012\002\049\000\032\000\050\000\099\000\
+\\051\000\031\000\064\000\097\000\068\000\030\000\069\000\029\000\
+\\070\000\028\000\071\000\027\000\000\000\
+\\001\000\013\000\035\000\028\000\102\000\044\000\101\000\045\000\100\000\
+\\046\000\034\000\047\000\033\000\049\000\032\000\050\000\099\000\
+\\051\000\031\000\053\000\098\000\064\000\097\000\065\000\096\000\
\\068\000\030\000\069\000\029\000\070\000\028\000\071\000\027\000\
-\\073\000\090\000\000\000\
-\\001\000\013\000\035\000\044\000\096\000\045\000\095\000\046\000\034\000\
-\\047\000\033\000\049\000\032\000\050\000\094\000\051\000\031\000\
-\\053\000\093\000\064\000\092\000\065\000\091\000\068\000\030\000\
-\\069\000\029\000\070\000\028\000\071\000\027\000\073\000\090\000\000\000\
+\\073\000\095\000\076\000\094\000\077\000\093\000\000\000\
+\\001\000\013\000\035\000\044\000\101\000\045\000\100\000\046\000\034\000\
+\\047\000\033\000\049\000\032\000\050\000\099\000\051\000\031\000\
+\\053\000\098\000\064\000\097\000\065\000\096\000\068\000\030\000\
+\\069\000\029\000\070\000\028\000\071\000\027\000\073\000\095\000\
+\\076\000\094\000\077\000\093\000\000\000\
\\001\000\013\000\035\000\046\000\034\000\047\000\033\000\049\000\032\000\
\\051\000\031\000\068\000\030\000\069\000\029\000\070\000\028\000\
\\071\000\027\000\000\000\
-\\001\000\013\000\035\000\049\000\032\000\051\000\031\000\064\000\077\001\
-\\068\000\030\000\069\000\029\000\070\000\028\000\071\000\027\000\000\000\
+\\001\000\013\000\035\000\049\000\032\000\050\000\099\000\051\000\031\000\
+\\064\000\097\000\068\000\030\000\069\000\029\000\070\000\028\000\
+\\071\000\027\000\000\000\
\\001\000\013\000\035\000\049\000\032\000\051\000\031\000\068\000\030\000\
\\069\000\029\000\070\000\028\000\071\000\027\000\000\000\
\\001\000\015\000\053\000\000\000\
-\\001\000\015\000\118\000\000\000\
-\\001\000\015\000\145\000\000\000\
-\\001\000\015\000\199\000\000\000\
-\\001\000\015\000\229\000\000\000\
-\\001\000\015\000\245\000\000\000\
-\\001\000\015\000\255\000\000\000\
-\\001\000\015\000\015\001\000\000\
-\\001\000\015\000\025\001\000\000\
-\\001\000\015\000\042\001\000\000\
+\\001\000\015\000\123\000\000\000\
+\\001\000\015\000\151\000\000\000\
+\\001\000\015\000\205\000\000\000\
+\\001\000\015\000\236\000\000\000\
+\\001\000\015\000\252\000\000\000\
+\\001\000\015\000\023\001\000\000\
+\\001\000\015\000\050\001\000\000\
+\\001\000\015\000\168\001\000\000\
\\001\000\016\000\018\000\000\000\
\\001\000\016\000\019\000\000\000\
\\001\000\016\000\020\000\000\000\
\\001\000\016\000\021\000\000\000\
\\001\000\016\000\023\000\000\000\
-\\001\000\016\000\218\000\000\000\
-\\001\000\016\000\248\000\000\000\
-\\001\000\016\000\018\001\000\000\
-\\001\000\016\000\093\001\050\000\094\000\000\000\
-\\001\000\016\000\129\001\050\000\094\000\000\000\
-\\001\000\016\000\135\001\000\000\
-\\001\000\016\000\136\001\000\000\
-\\001\000\016\000\137\001\000\000\
-\\001\000\016\000\138\001\000\000\
-\\001\000\016\000\139\001\000\000\
+\\001\000\016\000\223\000\000\000\
+\\001\000\016\000\224\000\000\000\
+\\001\000\016\000\225\000\000\000\
+\\001\000\016\000\255\000\000\000\
+\\001\000\016\000\000\001\000\000\
+\\001\000\016\000\001\001\000\000\
+\\001\000\016\000\026\001\000\000\
+\\001\000\016\000\027\001\000\000\
+\\001\000\016\000\146\001\000\000\
+\\001\000\016\000\147\001\000\000\
+\\001\000\016\000\148\001\000\000\
+\\001\000\016\000\149\001\000\000\
+\\001\000\016\000\150\001\000\000\
\\001\000\023\000\058\000\000\000\
-\\001\000\023\000\130\001\000\000\
-\\001\000\023\000\148\001\000\000\
-\\001\000\023\000\152\001\000\000\
-\\001\000\023\000\168\001\000\000\
-\\001\000\026\000\207\000\000\000\
-\\001\000\026\000\064\001\000\000\
-\\001\000\026\000\089\001\000\000\
-\\001\000\026\000\125\001\000\000\
-\\001\000\026\000\149\001\000\000\
-\\001\000\026\000\158\001\000\000\
-\\001\000\026\000\163\001\000\000\
-\\001\000\026\000\170\001\000\000\
-\\001\000\026\000\177\001\000\000\
-\\001\000\026\000\190\001\000\000\
+\\001\000\023\000\141\001\000\000\
+\\001\000\023\000\161\001\000\000\
+\\001\000\023\000\165\001\000\000\
+\\001\000\023\000\181\001\000\000\
+\\001\000\026\000\212\000\000\000\
+\\001\000\026\000\076\001\000\000\
+\\001\000\026\000\106\001\000\000\
+\\001\000\026\000\140\001\000\000\
+\\001\000\026\000\162\001\000\000\
+\\001\000\026\000\174\001\000\000\
+\\001\000\026\000\183\001\000\000\
+\\001\000\026\000\200\001\000\000\
+\\001\000\026\000\242\001\000\000\
\\001\000\027\000\052\000\000\000\
-\\001\000\027\000\027\001\000\000\
-\\001\000\027\000\051\001\037\000\211\000\000\000\
-\\001\000\027\000\052\001\000\000\
-\\001\000\027\000\061\001\000\000\
-\\001\000\027\000\062\001\000\000\
-\\001\000\027\000\065\001\000\000\
-\\001\000\027\000\085\001\000\000\
-\\001\000\027\000\086\001\000\000\
-\\001\000\027\000\087\001\000\000\
-\\001\000\027\000\094\001\000\000\
-\\001\000\027\000\122\001\000\000\
-\\001\000\027\000\123\001\000\000\
-\\001\000\027\000\143\001\000\000\
-\\001\000\027\000\145\001\000\000\
-\\001\000\027\000\146\001\000\000\
-\\001\000\027\000\173\001\000\000\
-\\001\000\027\000\197\001\000\000\
-\\001\000\027\000\199\001\060\000\198\001\000\000\
-\\001\000\027\000\209\001\000\000\
-\\001\000\027\000\210\001\000\000\
-\\001\000\027\000\218\001\000\000\
-\\001\000\027\000\219\001\000\000\
-\\001\000\027\000\220\001\000\000\
-\\001\000\027\000\221\001\000\000\
-\\001\000\027\000\222\001\000\000\
+\\001\000\027\000\035\001\000\000\
+\\001\000\027\000\063\001\037\000\216\000\000\000\
+\\001\000\027\000\064\001\000\000\
+\\001\000\027\000\073\001\000\000\
+\\001\000\027\000\074\001\000\000\
+\\001\000\027\000\077\001\000\000\
+\\001\000\027\000\102\001\000\000\
+\\001\000\027\000\103\001\000\000\
+\\001\000\027\000\104\001\000\000\
+\\001\000\027\000\107\001\000\000\
+\\001\000\027\000\137\001\000\000\
+\\001\000\027\000\138\001\000\000\
+\\001\000\027\000\154\001\000\000\
+\\001\000\027\000\156\001\000\000\
+\\001\000\027\000\157\001\000\000\
+\\001\000\027\000\186\001\000\000\
+\\001\000\027\000\211\001\000\000\
+\\001\000\027\000\213\001\000\000\
+\\001\000\027\000\215\001\060\000\214\001\000\000\
\\001\000\027\000\223\001\000\000\
-\\001\000\027\000\224\001\000\000\
-\\001\000\027\000\230\001\060\000\198\001\000\000\
+\\001\000\027\000\229\001\000\000\
+\\001\000\027\000\230\001\000\000\
+\\001\000\027\000\231\001\000\000\
+\\001\000\027\000\232\001\000\000\
+\\001\000\027\000\233\001\000\000\
+\\001\000\027\000\234\001\000\000\
+\\001\000\027\000\236\001\000\000\
+\\001\000\027\000\237\001\000\000\
\\001\000\027\000\240\001\000\000\
-\\001\000\027\000\241\001\000\000\
-\\001\000\027\000\242\001\000\000\
+\\001\000\027\000\245\001\060\000\214\001\000\000\
+\\001\000\027\000\247\001\000\000\
+\\001\000\027\000\248\001\000\000\
+\\001\000\027\000\251\001\000\000\
+\\001\000\027\000\002\002\000\000\
+\\001\000\027\000\006\002\000\000\
+\\001\000\027\000\007\002\000\000\
+\\001\000\027\000\011\002\000\000\
\\001\000\038\000\000\000\000\000\
\\001\000\049\000\040\000\000\000\
-\\001\000\050\000\094\000\000\000\
+\\001\000\050\000\099\000\000\000\
\\001\000\051\000\048\000\000\000\
-\\001\000\061\000\228\000\000\000\
-\\001\000\061\000\244\000\000\000\
-\\001\000\061\000\014\001\000\000\
-\\244\001\000\000\
-\\245\001\005\000\210\000\000\000\
-\\246\001\000\000\
-\\247\001\005\000\134\001\000\000\
-\\248\001\000\000\
-\\249\001\000\000\
-\\250\001\000\000\
-\\251\001\000\000\
-\\252\001\005\000\189\001\000\000\
-\\253\001\004\000\131\001\000\000\
-\\254\001\000\000\
-\\255\001\000\000\
-\\000\002\000\000\
-\\001\002\000\000\
-\\002\002\000\000\
-\\003\002\000\000\
-\\004\002\000\000\
-\\005\002\000\000\
-\\006\002\000\000\
-\\007\002\000\000\
-\\008\002\000\000\
-\\009\002\016\000\132\001\000\000\
-\\010\002\000\000\
-\\011\002\000\000\
-\\012\002\000\000\
-\\013\002\000\000\
+\\001\000\061\000\235\000\000\000\
+\\001\000\061\000\251\000\000\000\
+\\001\000\061\000\022\001\000\000\
\\014\002\000\000\
\\015\002\000\000\
\\016\002\000\000\
-\\017\002\000\000\
+\\017\002\013\000\016\000\052\000\015\000\068\000\014\000\069\000\013\000\
+\\070\000\012\000\071\000\011\000\000\000\
\\018\002\000\000\
\\019\002\000\000\
\\020\002\000\000\
@@ -1696,27 +1785,25 @@
\\023\002\000\000\
\\024\002\000\000\
\\025\002\000\000\
+\\026\002\000\000\
\\027\002\000\000\
\\028\002\000\000\
-\\029\002\005\000\144\001\000\000\
+\\029\002\005\000\215\000\000\000\
\\030\002\000\000\
\\031\002\000\000\
-\\032\002\016\000\212\000\000\000\
+\\032\002\000\000\
\\033\002\000\000\
-\\034\002\000\000\
\\035\002\000\000\
-\\036\002\016\000\213\000\000\000\
+\\036\002\000\000\
\\037\002\000\000\
\\038\002\000\000\
\\039\002\000\000\
\\040\002\000\000\
-\\041\002\000\000\
-\\042\002\000\000\
-\\043\002\000\000\
+\\041\002\037\000\009\001\000\000\
+\\042\002\001\000\010\001\000\000\
+\\043\002\002\000\011\001\000\000\
\\044\002\000\000\
-\\044\002\016\000\217\000\000\000\
\\045\002\000\000\
-\\045\002\066\000\017\001\000\000\
\\046\002\000\000\
\\047\002\000\000\
\\048\002\000\000\
@@ -1725,25 +1812,28 @@
\\051\002\000\000\
\\052\002\000\000\
\\053\002\000\000\
+\\054\002\000\000\
\\055\002\000\000\
\\056\002\000\000\
-\\057\002\000\000\
+\\057\002\005\000\184\001\000\000\
\\058\002\000\000\
+\\059\002\000\000\
+\\060\002\004\000\185\001\000\000\
+\\061\002\000\000\
\\062\002\000\000\
\\063\002\000\000\
+\\064\002\000\000\
\\065\002\000\000\
\\066\002\000\000\
\\067\002\000\000\
\\068\002\000\000\
-\\069\002\000\000\
-\\070\002\000\000\
\\071\002\000\000\
\\072\002\000\000\
\\073\002\000\000\
\\074\002\000\000\
-\\075\002\000\000\
-\\076\002\000\000\
-\\077\002\000\000\
+\\075\002\060\000\020\001\000\000\
+\\076\002\059\000\021\001\000\000\
+\\077\002\009\000\019\001\000\000\
\\078\002\000\000\
\\079\002\000\000\
\\080\002\000\000\
@@ -1753,21 +1843,22 @@
\\084\002\000\000\
\\085\002\000\000\
\\086\002\000\000\
-\\087\002\000\000\
+\\087\002\005\000\139\001\000\000\
\\088\002\000\000\
\\089\002\000\000\
\\090\002\000\000\
\\091\002\000\000\
\\092\002\000\000\
-\\093\002\016\000\016\001\000\000\
+\\093\002\001\000\249\000\010\000\208\000\011\000\207\000\012\000\206\000\
+\\019\000\203\000\021\000\201\000\022\000\200\000\037\000\248\000\000\000\
\\094\002\000\000\
\\095\002\000\000\
\\096\002\000\000\
-\\097\002\000\000\
-\\098\002\000\000\
+\\097\002\037\000\245\000\000\000\
+\\098\002\001\000\246\000\000\000\
\\099\002\000\000\
-\\100\002\037\000\211\000\000\000\
-\\101\002\005\000\063\001\000\000\
+\\100\002\000\000\
+\\101\002\000\000\
\\102\002\000\000\
\\103\002\000\000\
\\104\002\000\000\
@@ -1776,10 +1867,10 @@
\\107\002\000\000\
\\108\002\000\000\
\\109\002\000\000\
-\\110\002\005\000\150\001\000\000\
+\\110\002\005\000\175\001\000\000\
\\111\002\000\000\
\\112\002\000\000\
-\\113\002\000\000\
+\\113\002\004\000\176\001\000\000\
\\114\002\000\000\
\\115\002\000\000\
\\116\002\000\000\
@@ -1787,79 +1878,80 @@
\\118\002\000\000\
\\119\002\000\000\
\\120\002\000\000\
-\\121\002\037\000\223\000\000\000\
-\\122\002\001\000\224\000\000\000\
+\\121\002\000\000\
+\\122\002\000\000\
\\123\002\000\000\
\\124\002\000\000\
\\125\002\000\000\
\\126\002\000\000\
-\\127\002\001\000\227\000\010\000\202\000\011\000\201\000\012\000\200\000\
-\\019\000\197\000\021\000\195\000\022\000\194\000\037\000\226\000\000\000\
+\\127\002\005\000\105\001\000\000\
\\128\002\000\000\
\\129\002\000\000\
-\\130\002\000\000\
-\\131\002\000\000\
-\\132\002\000\000\
-\\133\002\005\000\088\001\000\000\
+\\133\002\000\000\
\\134\002\000\000\
\\135\002\000\000\
\\136\002\000\000\
\\137\002\000\000\
\\138\002\000\000\
\\139\002\000\000\
-\\140\002\005\000\164\001\000\000\
-\\141\002\000\000\
+\\139\002\060\000\212\001\000\000\
+\\140\002\000\000\
+\\141\002\016\000\167\001\000\000\
\\142\002\000\000\
\\143\002\000\000\
\\144\002\000\000\
+\\145\002\005\000\241\001\000\000\
\\146\002\000\000\
\\147\002\000\000\
\\148\002\000\000\
\\149\002\000\000\
-\\150\002\060\000\196\001\000\000\
-\\151\002\000\000\
+\\150\002\000\000\
+\\152\002\000\000\
\\153\002\000\000\
+\\154\002\000\000\
+\\155\002\001\000\234\000\010\000\208\000\011\000\207\000\012\000\206\000\
+\\019\000\203\000\021\000\201\000\022\000\200\000\037\000\233\000\000\000\
\\156\002\000\000\
\\157\002\000\000\
\\158\002\000\000\
-\\159\002\000\000\
-\\160\002\000\000\
+\\159\002\037\000\230\000\000\000\
+\\160\002\001\000\231\000\000\000\
\\161\002\000\000\
-\\162\002\004\000\160\001\000\000\
-\\163\002\005\000\159\001\000\000\
+\\162\002\000\000\
+\\163\002\000\000\
\\164\002\000\000\
\\165\002\000\000\
\\166\002\000\000\
\\167\002\000\000\
\\168\002\000\000\
\\169\002\000\000\
+\\170\002\005\000\163\001\000\000\
\\171\002\000\000\
\\172\002\000\000\
\\173\002\000\000\
\\174\002\000\000\
\\175\002\000\000\
\\176\002\000\000\
-\\177\002\037\000\238\000\000\000\
-\\178\002\001\000\239\000\000\000\
+\\177\002\000\000\
+\\178\002\005\000\075\001\000\000\
\\179\002\000\000\
\\180\002\000\000\
-\\181\002\000\000\
+\\181\002\037\000\216\000\000\000\
\\182\002\000\000\
-\\183\002\001\000\242\000\010\000\202\000\011\000\201\000\012\000\200\000\
-\\019\000\197\000\021\000\195\000\022\000\194\000\037\000\241\000\000\000\
+\\183\002\000\000\
\\184\002\000\000\
\\185\002\000\000\
\\186\002\000\000\
\\187\002\000\000\
\\188\002\000\000\
-\\189\002\005\000\124\001\000\000\
+\\189\002\016\000\024\001\000\000\
\\190\002\000\000\
\\191\002\000\000\
\\192\002\000\000\
\\193\002\000\000\
\\194\002\000\000\
\\195\002\000\000\
-\\196\002\005\000\178\001\000\000\
+\\196\002\000\000\
\\197\002\000\000\
\\198\002\000\000\
\\199\002\000\000\
@@ -1868,216 +1960,254 @@
\\202\002\000\000\
\\203\002\000\000\
\\204\002\000\000\
-\\205\002\009\000\011\001\000\000\
+\\205\002\000\000\
\\206\002\000\000\
\\207\002\000\000\
-\\208\002\060\000\012\001\000\000\
-\\209\002\059\000\013\001\000\000\
+\\208\002\000\000\
+\\209\002\000\000\
\\210\002\000\000\
\\211\002\000\000\
\\212\002\000\000\
-\\215\002\000\000\
+\\213\002\000\000\
+\\214\002\000\000\
\\216\002\000\000\
\\217\002\000\000\
\\218\002\000\000\
-\\219\002\004\000\172\001\000\000\
-\\220\002\005\000\171\001\000\000\
+\\220\002\000\000\
\\221\002\000\000\
-\\222\002\000\000\
-\\223\002\000\000\
-\\224\002\000\000\
\\225\002\000\000\
\\226\002\000\000\
\\227\002\000\000\
\\228\002\000\000\
-\\229\002\000\000\
\\230\002\000\000\
\\231\002\000\000\
\\232\002\000\000\
\\233\002\000\000\
\\234\002\000\000\
-\\235\002\037\000\001\001\000\000\
-\\236\002\001\000\002\001\000\000\
-\\237\002\002\000\003\001\000\000\
+\\235\002\000\000\
+\\236\002\000\000\
+\\237\002\000\000\
+\\237\002\066\000\025\001\000\000\
\\238\002\000\000\
\\239\002\000\000\
+\\239\002\016\000\222\000\000\000\
\\240\002\000\000\
\\241\002\000\000\
\\242\002\000\000\
+\\243\002\000\000\
\\244\002\000\000\
\\245\002\000\000\
\\246\002\000\000\
\\247\002\000\000\
-\\248\002\000\000\
+\\248\002\016\000\218\000\000\000\
\\249\002\000\000\
\\250\002\000\000\
\\251\002\000\000\
-\\252\002\000\000\
+\\252\002\016\000\217\000\000\000\
\\253\002\000\000\
\\254\002\000\000\
-\\255\002\000\000\
+\\255\002\005\000\155\001\000\000\
\\000\003\000\000\
\\001\003\000\000\
\\002\003\000\000\
-\\003\003\005\000\046\000\000\000\
+\\003\003\000\000\
\\004\003\000\000\
-\\005\003\005\000\208\000\000\000\
+\\005\003\005\000\145\001\000\000\
\\006\003\000\000\
\\007\003\000\000\
\\008\003\000\000\
-\\009\003\000\000\
+\\009\003\005\000\046\000\000\000\
\\010\003\000\000\
-\\011\003\000\000\
-\\012\003\013\000\016\000\052\000\015\000\068\000\014\000\069\000\013\000\
-\\070\000\012\000\071\000\011\000\000\000\
+\\011\003\005\000\213\000\000\000\
+\\012\003\004\000\142\001\000\000\
\\013\003\000\000\
+\\014\003\000\000\
+\\015\003\016\000\143\001\000\000\
+\\016\003\000\000\
+\\017\003\000\000\
+\\018\003\000\000\
+\\019\003\000\000\
+\\020\003\000\000\
+\\021\003\000\000\
+\\022\003\000\000\
+\\023\003\000\000\
+\\024\003\000\000\
+\\025\003\000\000\
+\\026\003\000\000\
+\\027\003\000\000\
+\\028\003\000\000\
+\\029\003\000\000\
+\\030\003\005\000\199\001\000\000\
+\\031\003\000\000\
+\\032\003\000\000\
+\\033\003\000\000\
+\\034\003\000\000\
+\\035\003\000\000\
+\\036\003\000\000\
+\\037\003\000\000\
+\\038\003\000\000\
+\\039\003\000\000\
+\\040\003\000\000\
+\\041\003\000\000\
+\\042\003\000\000\
+\\043\003\000\000\
+\\044\003\000\000\
+\\045\003\000\000\
+\\046\003\000\000\
+\\047\003\000\000\
\"
val actionRowNumbers =
-"\149\001\150\001\149\001\146\001\
-\\145\001\137\001\136\001\135\001\
-\\134\001\068\000\069\000\070\000\
-\\071\000\149\001\072\000\147\001\
-\\055\000\055\000\055\000\055\000\
-\\148\001\131\000\144\001\143\001\
-\\021\000\154\000\153\000\152\000\
-\\151\000\149\000\150\000\167\000\
-\\168\000\155\000\022\000\023\000\
-\\024\000\140\001\169\000\133\000\
-\\133\000\133\000\133\000\098\000\
-\\058\000\025\000\129\001\026\000\
-\\027\000\028\000\083\000\055\000\
-\\050\000\040\000\037\000\008\000\
-\\138\001\088\000\142\001\138\000\
-\\245\000\242\000\241\000\239\000\
-\\210\000\211\000\208\000\209\000\
-\\212\000\203\000\201\000\004\000\
-\\194\000\198\000\190\000\191\000\
-\\003\000\185\000\002\000\181\000\
-\\180\000\184\000\036\000\193\000\
-\\164\000\188\000\202\000\176\000\
-\\073\000\179\000\183\000\189\000\
-\\156\000\166\000\165\000\054\000\
-\\053\000\138\000\017\001\015\001\
-\\013\001\014\001\010\001\011\001\
-\\016\001\002\001\003\001\018\001\
-\\134\000\254\000\062\000\042\000\
-\\004\001\252\000\222\000\040\000\
-\\041\000\221\000\138\000\068\001\
-\\066\001\064\001\065\001\061\001\
-\\062\001\067\001\051\001\052\001\
-\\069\001\013\000\054\001\055\001\
-\\070\001\135\000\044\001\063\000\
-\\039\000\053\001\000\000\001\000\
-\\005\000\074\000\037\000\038\000\
-\\064\000\138\000\127\001\124\001\
-\\121\001\122\001\117\001\118\001\
-\\119\001\012\000\105\001\106\001\
-\\125\001\014\000\126\001\046\000\
-\\123\001\091\001\092\001\093\001\
-\\006\000\108\001\109\001\128\001\
-\\136\000\084\001\065\000\236\000\
-\\238\000\229\000\228\000\237\000\
-\\223\000\227\000\226\000\197\000\
-\\195\000\187\000\199\000\083\001\
-\\075\000\231\000\232\000\225\000\
-\\224\000\234\000\233\000\213\000\
-\\219\000\218\000\205\000\220\000\
-\\008\000\009\000\216\000\215\000\
-\\217\000\066\000\204\000\230\000\
-\\214\000\139\001\055\000\099\000\
-\\049\000\053\000\054\000\054\000\
-\\054\000\054\000\206\000\054\000\
-\\039\000\240\000\035\000\100\000\
-\\101\000\042\000\042\000\042\000\
-\\042\000\042\000\059\000\132\000\
-\\253\000\042\000\102\000\103\000\
-\\246\000\089\000\248\000\104\000\
-\\039\000\039\000\039\000\039\000\
-\\039\000\051\000\060\000\132\000\
-\\043\001\039\000\039\000\105\000\
-\\106\000\107\000\022\001\090\000\
-\\019\001\076\000\108\000\011\000\
-\\011\000\011\000\011\000\011\000\
-\\011\000\011\000\010\000\011\000\
-\\011\000\011\000\011\000\011\000\
-\\061\000\132\000\010\000\057\000\
-\\010\000\109\000\110\000\073\001\
-\\091\000\071\001\010\000\077\000\
-\\141\001\084\000\159\000\163\000\
-\\161\000\160\000\146\000\158\000\
-\\140\000\148\000\162\000\078\000\
-\\079\000\080\000\081\000\082\000\
-\\048\000\243\000\111\000\177\000\
-\\112\000\207\000\235\000\113\000\
-\\029\000\244\000\085\000\009\001\
-\\007\001\012\001\008\001\006\001\
-\\250\000\092\000\255\000\005\001\
-\\251\000\042\000\249\000\086\000\
-\\060\001\058\001\063\001\059\001\
-\\057\001\041\001\047\000\020\000\
-\\040\001\037\001\036\001\175\000\
-\\052\000\023\001\093\000\048\001\
-\\046\001\047\001\030\000\056\001\
-\\042\001\024\001\039\000\020\001\
-\\094\000\029\001\043\000\076\000\
-\\087\000\116\001\107\001\010\000\
-\\114\001\112\001\120\001\115\001\
-\\111\001\113\001\095\001\097\001\
-\\094\001\087\001\085\001\089\001\
-\\090\001\088\001\086\001\075\001\
-\\095\000\102\001\100\001\101\001\
-\\114\000\096\001\192\000\031\000\
-\\007\000\076\001\010\000\072\001\
-\\044\000\096\000\080\001\077\000\
-\\133\001\049\000\049\000\137\000\
-\\067\000\037\000\054\000\050\000\
-\\040\000\008\000\145\000\097\000\
-\\143\000\182\000\054\000\186\000\
-\\196\000\054\000\132\001\015\000\
-\\132\000\247\000\131\001\056\000\
-\\038\001\115\000\116\000\052\000\
-\\016\000\132\000\056\000\039\000\
-\\021\001\017\000\076\000\054\000\
-\\039\000\117\000\130\001\118\000\
-\\018\000\132\000\010\000\098\001\
-\\010\000\074\001\010\000\019\000\
-\\077\000\119\000\147\000\120\000\
-\\139\000\141\000\121\000\122\000\
-\\123\000\124\000\125\000\049\000\
-\\142\000\178\000\032\000\042\000\
-\\000\001\034\001\056\000\035\001\
-\\056\000\039\001\126\000\039\000\
-\\049\001\045\001\033\000\039\000\
-\\030\001\027\001\026\001\028\001\
-\\110\001\011\000\103\001\099\001\
-\\034\000\078\001\011\000\081\001\
-\\079\001\157\000\171\000\174\000\
-\\173\000\172\000\170\000\144\000\
-\\054\000\001\001\032\001\033\001\
-\\045\000\050\001\039\000\031\001\
-\\104\001\010\000\082\001\127\000\
-\\128\000\129\000\200\000\025\001\
-\\077\001\130\000"
+"\153\000\150\000\153\000\155\000\
+\\154\000\156\000\157\000\158\000\
+\\159\000\073\000\074\000\075\000\
+\\076\000\153\000\077\000\151\000\
+\\061\000\061\000\061\000\061\000\
+\\152\000\144\000\158\001\157\001\
+\\020\000\164\001\163\001\162\001\
+\\161\001\159\001\160\001\168\001\
+\\169\001\165\001\021\000\022\000\
+\\023\000\135\001\173\001\146\000\
+\\146\000\146\000\146\000\105\000\
+\\064\000\024\000\166\000\025\000\
+\\026\000\027\000\091\000\061\000\
+\\053\000\041\000\042\000\007\000\
+\\133\001\096\000\137\001\123\001\
+\\119\001\101\001\165\000\055\001\
+\\056\001\060\001\058\001\089\001\
+\\090\001\092\001\093\001\091\001\
+\\100\001\098\001\002\000\105\001\
+\\103\001\111\001\112\001\003\000\
+\\116\001\004\000\120\001\122\001\
+\\118\001\040\000\109\001\170\001\
+\\113\001\099\001\110\001\078\000\
+\\079\000\080\000\167\001\166\001\
+\\114\001\124\001\172\001\171\001\
+\\060\000\059\000\165\000\026\001\
+\\028\001\030\001\031\001\033\001\
+\\034\001\029\001\039\001\040\001\
+\\027\001\147\000\047\001\068\000\
+\\044\000\041\001\087\001\078\001\
+\\041\000\043\000\077\001\240\000\
+\\165\000\222\000\225\000\227\000\
+\\228\000\230\000\231\000\226\000\
+\\236\000\237\000\223\000\013\000\
+\\239\000\224\000\148\000\249\000\
+\\069\000\046\000\238\000\006\000\
+\\005\000\081\000\082\000\083\000\
+\\042\000\045\000\165\000\167\000\
+\\169\000\172\000\173\000\176\000\
+\\177\000\178\000\011\000\185\000\
+\\186\000\170\000\014\000\171\000\
+\\049\000\174\000\207\000\208\000\
+\\209\000\000\000\189\000\188\000\
+\\168\000\149\000\199\000\070\000\
+\\061\001\063\001\065\001\073\001\
+\\062\001\074\001\072\001\071\001\
+\\102\001\106\001\115\001\104\001\
+\\198\000\084\000\085\000\067\001\
+\\068\001\076\001\075\001\070\001\
+\\069\001\085\001\083\001\082\001\
+\\097\001\084\001\007\000\008\000\
+\\080\001\079\001\081\001\096\001\
+\\066\001\086\001\134\001\061\000\
+\\106\000\052\000\059\000\060\000\
+\\060\000\060\000\060\000\095\001\
+\\060\000\047\000\047\000\046\000\
+\\059\001\039\000\107\000\108\000\
+\\044\000\044\000\044\000\044\000\
+\\044\000\065\000\145\000\046\001\
+\\044\000\109\000\110\000\052\001\
+\\097\000\050\001\111\000\046\000\
+\\046\000\046\000\046\000\046\000\
+\\054\000\066\000\145\000\248\000\
+\\046\000\047\000\047\000\046\000\
+\\112\000\113\000\114\000\004\001\
+\\098\000\001\001\115\000\010\000\
+\\010\000\010\000\010\000\010\000\
+\\010\000\010\000\009\000\010\000\
+\\010\000\010\000\010\000\010\000\
+\\067\000\145\000\009\000\063\000\
+\\012\000\009\000\116\000\117\000\
+\\220\000\099\000\218\000\009\000\
+\\136\001\092\000\142\001\146\001\
+\\144\001\143\001\138\001\141\001\
+\\131\001\140\001\145\001\086\000\
+\\087\000\088\000\089\000\090\000\
+\\051\000\057\001\118\000\125\001\
+\\119\000\094\001\064\001\120\000\
+\\028\000\253\000\029\000\254\000\
+\\030\000\054\001\093\000\036\001\
+\\038\001\032\001\035\001\037\001\
+\\048\001\100\000\044\001\042\001\
+\\049\001\044\000\051\001\094\000\
+\\233\000\235\000\229\000\232\000\
+\\234\000\088\001\008\001\005\001\
+\\050\000\019\000\007\001\017\001\
+\\019\001\016\001\072\000\055\000\
+\\255\000\101\000\243\000\245\000\
+\\246\000\031\000\032\000\033\000\
+\\241\000\006\001\000\001\046\000\
+\\002\001\095\000\180\000\187\000\
+\\009\000\182\000\184\000\175\000\
+\\179\000\183\000\181\000\205\000\
+\\203\000\206\000\212\000\214\000\
+\\210\000\211\000\213\000\215\000\
+\\216\000\102\000\192\000\194\000\
+\\195\000\121\000\204\000\108\001\
+\\034\000\202\000\035\000\001\000\
+\\217\000\009\000\219\000\163\000\
+\\052\000\052\000\164\000\071\000\
+\\042\000\060\000\053\000\041\000\
+\\007\000\156\001\103\000\154\001\
+\\121\001\060\000\117\001\107\001\
+\\060\000\060\000\060\000\162\000\
+\\015\000\145\000\053\001\161\000\
+\\062\000\062\000\145\000\122\000\
+\\014\001\123\000\124\000\055\000\
+\\016\000\145\000\062\000\042\000\
+\\042\000\046\000\003\001\160\000\
+\\125\000\017\000\145\000\009\000\
+\\197\000\007\000\009\000\221\000\
+\\139\001\126\000\130\001\132\001\
+\\127\000\128\000\129\000\130\000\
+\\131\000\052\000\153\001\126\001\
+\\132\000\133\000\036\000\044\000\
+\\045\001\022\001\134\000\020\001\
+\\104\000\010\001\062\000\023\001\
+\\062\000\015\001\135\000\046\000\
+\\244\000\247\000\136\000\137\000\
+\\037\000\190\000\010\000\193\000\
+\\196\000\138\000\038\000\147\001\
+\\149\001\152\001\151\001\150\001\
+\\148\001\155\001\129\001\128\001\
+\\060\000\043\001\018\001\062\000\
+\\018\000\024\001\025\001\048\000\
+\\242\000\252\000\251\000\046\000\
+\\191\000\201\000\009\000\139\000\
+\\021\001\056\000\140\000\141\000\
+\\127\001\009\001\011\001\057\000\
+\\250\000\200\000\013\001\142\000\
+\\058\000\012\001\058\000\143\000"
val gotoT =
"\
-\\133\000\008\000\134\000\007\000\135\000\006\000\136\000\005\000\
-\\137\000\004\000\138\000\003\000\139\000\002\000\140\000\001\000\
-\\141\000\241\001\000\000\
-\\000\000\
-\\133\000\008\000\134\000\007\000\135\000\006\000\136\000\005\000\
-\\137\000\004\000\138\000\003\000\139\000\002\000\140\000\015\000\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\133\000\008\000\134\000\007\000\135\000\006\000\136\000\005\000\
-\\137\000\004\000\138\000\003\000\139\000\002\000\140\000\020\000\000\000\
+\\128\000\008\000\129\000\007\000\130\000\006\000\131\000\005\000\
+\\132\000\004\000\133\000\003\000\134\000\002\000\135\000\001\000\
+\\136\000\011\002\000\000\
+\\000\000\
+\\128\000\008\000\129\000\007\000\130\000\006\000\131\000\005\000\
+\\132\000\004\000\133\000\003\000\134\000\002\000\135\000\015\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\128\000\008\000\129\000\007\000\130\000\006\000\131\000\005\000\
+\\132\000\004\000\133\000\003\000\134\000\002\000\135\000\020\000\000\000\
\\000\000\
\\000\000\
\\002\000\024\000\009\000\023\000\014\000\022\000\000\000\
@@ -2103,10 +2233,10 @@
\\000\000\
\\004\000\043\000\000\000\
\\000\000\
-\\132\000\045\000\000\000\
-\\132\000\047\000\000\000\
-\\132\000\048\000\000\000\
-\\132\000\049\000\000\000\
+\\127\000\045\000\000\000\
+\\127\000\047\000\000\000\
+\\127\000\048\000\000\000\
+\\127\000\049\000\000\000\
\\000\000\
\\000\000\
\\000\000\
@@ -2116,1094 +2246,1191 @@
\\000\000\
\\000\000\
\\002\000\058\000\003\000\057\000\009\000\023\000\014\000\022\000\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\063\000\055\000\062\000\057\000\061\000\058\000\060\000\
-\\059\000\059\000\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\112\000\046\000\111\000\051\000\110\000\055\000\109\000\
-\\061\000\108\000\062\000\107\000\063\000\106\000\065\000\105\000\
-\\066\000\104\000\067\000\103\000\068\000\102\000\069\000\101\000\
-\\070\000\100\000\071\000\099\000\072\000\098\000\073\000\097\000\000\000\
-\\009\000\087\000\011\000\140\000\012\000\085\000\014\000\084\000\
-\\019\000\139\000\020\000\082\000\022\000\081\000\023\000\138\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\137\000\046\000\136\000\051\000\135\000\055\000\134\000\
-\\074\000\133\000\076\000\132\000\077\000\131\000\080\000\130\000\
-\\086\000\129\000\087\000\128\000\088\000\127\000\092\000\126\000\
-\\093\000\125\000\094\000\124\000\095\000\123\000\096\000\122\000\
-\\097\000\121\000\098\000\120\000\099\000\119\000\100\000\118\000\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\180\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\101\000\168\000\103\000\167\000\104\000\166\000\
-\\107\000\165\000\108\000\164\000\109\000\163\000\110\000\162\000\
-\\111\000\161\000\112\000\160\000\113\000\159\000\115\000\158\000\
-\\116\000\157\000\117\000\156\000\118\000\155\000\122\000\154\000\
-\\123\000\153\000\124\000\152\000\125\000\151\000\126\000\150\000\
-\\127\000\149\000\128\000\148\000\129\000\147\000\130\000\146\000\
-\\131\000\145\000\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\001\000\207\000\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\036\000\214\000\037\000\213\000\038\000\212\000\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\218\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\217\000\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\063\000\055\000\062\000\057\000\061\000\058\000\219\000\000\000\
-\\001\000\220\000\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\050\000\223\000\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\112\000\046\000\111\000\051\000\110\000\055\000\109\000\
-\\063\000\106\000\065\000\105\000\066\000\228\000\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\112\000\046\000\111\000\051\000\110\000\055\000\109\000\
-\\061\000\108\000\062\000\231\000\063\000\106\000\065\000\105\000\
-\\066\000\104\000\067\000\103\000\068\000\102\000\069\000\101\000\
-\\070\000\100\000\071\000\099\000\072\000\230\000\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\112\000\046\000\111\000\051\000\110\000\055\000\109\000\
-\\060\000\233\000\063\000\106\000\065\000\105\000\066\000\104\000\
-\\067\000\103\000\068\000\102\000\069\000\101\000\070\000\100\000\
-\\071\000\099\000\072\000\232\000\000\000\
-\\000\000\
-\\001\000\235\000\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\050\000\238\000\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\009\000\087\000\011\000\140\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\137\000\046\000\136\000\051\000\135\000\055\000\134\000\
-\\077\000\131\000\080\000\130\000\088\000\127\000\092\000\126\000\
-\\093\000\244\000\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\009\000\087\000\011\000\140\000\012\000\085\000\014\000\084\000\
-\\019\000\139\000\020\000\082\000\022\000\081\000\023\000\138\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\137\000\046\000\136\000\051\000\135\000\055\000\134\000\
-\\074\000\133\000\076\000\249\000\077\000\131\000\080\000\130\000\
-\\086\000\129\000\087\000\248\000\088\000\127\000\092\000\126\000\
-\\093\000\125\000\094\000\124\000\095\000\123\000\096\000\122\000\
-\\097\000\121\000\098\000\120\000\099\000\247\000\000\000\
-\\009\000\087\000\011\000\140\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\137\000\046\000\136\000\051\000\135\000\055\000\134\000\
-\\075\000\251\000\077\000\131\000\080\000\130\000\088\000\127\000\
-\\092\000\126\000\093\000\125\000\094\000\124\000\095\000\123\000\
-\\096\000\122\000\097\000\121\000\098\000\120\000\099\000\250\000\000\000\
-\\000\000\
-\\001\000\254\000\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\036\000\178\000\037\000\177\000\050\000\174\000\053\000\002\001\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\180\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\101\000\168\000\103\000\018\001\104\000\166\000\
-\\107\000\165\000\108\000\164\000\109\000\163\000\110\000\162\000\
-\\111\000\161\000\112\000\160\000\113\000\159\000\115\000\158\000\
-\\116\000\157\000\117\000\156\000\118\000\155\000\122\000\154\000\
-\\123\000\153\000\124\000\152\000\125\000\151\000\126\000\150\000\
-\\127\000\149\000\128\000\148\000\129\000\147\000\130\000\017\001\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\180\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\102\000\020\001\104\000\166\000\107\000\165\000\
-\\108\000\164\000\109\000\163\000\110\000\162\000\111\000\161\000\
-\\112\000\160\000\113\000\159\000\115\000\158\000\116\000\157\000\
-\\117\000\156\000\118\000\155\000\122\000\154\000\123\000\153\000\
-\\124\000\152\000\125\000\151\000\126\000\150\000\127\000\149\000\
-\\128\000\148\000\129\000\147\000\130\000\019\001\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\002\000\058\000\003\000\024\001\009\000\023\000\014\000\022\000\000\000\
-\\000\000\
-\\006\000\033\001\008\000\032\001\009\000\031\001\010\000\030\001\
-\\011\000\029\001\012\000\028\001\013\000\027\001\014\000\084\000\
-\\016\000\026\001\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\063\000\055\000\062\000\057\000\041\001\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\043\001\021\000\042\001\022\000\081\000\
-\\023\000\080\000\024\000\079\000\025\000\182\000\026\000\077\000\
-\\027\000\181\000\028\000\075\000\029\000\074\000\030\000\073\000\
-\\031\000\072\000\032\000\179\000\033\000\070\000\034\000\069\000\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\043\001\021\000\044\001\022\000\081\000\
-\\023\000\080\000\024\000\079\000\025\000\182\000\026\000\077\000\
-\\027\000\181\000\028\000\075\000\029\000\074\000\030\000\073\000\
-\\031\000\072\000\032\000\179\000\033\000\070\000\034\000\069\000\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\045\001\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\046\001\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\000\000\
-\\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\043\001\021\000\047\001\022\000\081\000\
-\\023\000\080\000\024\000\079\000\025\000\182\000\026\000\077\000\
-\\027\000\181\000\028\000\075\000\029\000\074\000\030\000\073\000\
-\\031\000\072\000\032\000\179\000\033\000\070\000\034\000\069\000\000\000\
-\\009\000\087\000\011\000\140\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\137\000\046\000\136\000\051\000\135\000\055\000\134\000\
-\\077\000\131\000\080\000\130\000\088\000\127\000\092\000\126\000\
-\\093\000\125\000\094\000\124\000\095\000\123\000\096\000\122\000\
-\\097\000\121\000\098\000\120\000\099\000\048\001\000\000\
-\\000\000\
-\\036\000\214\000\038\000\212\000\000\000\
-\\000\000\
-\\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\112\000\046\000\111\000\051\000\110\000\055\000\109\000\
-\\063\000\106\000\065\000\105\000\066\000\051\001\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\112\000\046\000\111\000\051\000\110\000\055\000\109\000\
-\\063\000\106\000\065\000\105\000\066\000\052\001\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\112\000\046\000\111\000\051\000\110\000\055\000\109\000\
-\\063\000\106\000\065\000\105\000\066\000\053\001\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\112\000\046\000\111\000\051\000\110\000\055\000\109\000\
-\\063\000\106\000\065\000\105\000\066\000\054\001\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\112\000\046\000\111\000\051\000\110\000\055\000\109\000\
-\\063\000\106\000\065\000\105\000\066\000\055\001\000\000\
-\\061\000\056\001\000\000\
-\\011\000\058\001\064\000\057\001\000\000\
-\\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\112\000\046\000\111\000\051\000\110\000\055\000\109\000\
-\\063\000\106\000\065\000\105\000\066\000\104\000\067\000\103\000\
-\\068\000\102\000\069\000\101\000\070\000\100\000\071\000\099\000\
-\\072\000\230\000\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\009\000\087\000\011\000\140\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\137\000\046\000\136\000\051\000\135\000\055\000\134\000\
-\\077\000\131\000\080\000\130\000\088\000\127\000\092\000\126\000\
-\\093\000\064\001\000\000\
-\\009\000\087\000\011\000\140\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\137\000\046\000\136\000\051\000\135\000\055\000\134\000\
-\\077\000\131\000\080\000\130\000\088\000\127\000\092\000\126\000\
-\\093\000\065\001\000\000\
-\\009\000\087\000\011\000\140\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\137\000\046\000\136\000\051\000\135\000\055\000\134\000\
-\\077\000\131\000\080\000\130\000\088\000\127\000\092\000\126\000\
-\\093\000\066\001\000\000\
-\\009\000\087\000\011\000\140\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\137\000\046\000\136\000\051\000\135\000\055\000\134\000\
-\\077\000\131\000\080\000\130\000\088\000\127\000\092\000\126\000\
-\\093\000\067\001\000\000\
-\\009\000\087\000\011\000\140\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\137\000\046\000\136\000\051\000\135\000\055\000\134\000\
-\\077\000\131\000\080\000\130\000\088\000\127\000\092\000\126\000\
-\\093\000\068\001\000\000\
-\\009\000\074\001\047\000\073\001\082\000\072\001\083\000\071\001\
-\\084\000\070\001\085\000\069\001\000\000\
-\\074\000\077\001\000\000\
-\\011\000\081\001\089\000\080\001\090\000\079\001\091\000\078\001\000\000\
-\\000\000\
-\\009\000\087\000\011\000\140\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\137\000\046\000\136\000\051\000\135\000\055\000\134\000\
-\\077\000\131\000\080\000\130\000\088\000\127\000\092\000\126\000\
-\\093\000\125\000\094\000\124\000\095\000\123\000\096\000\122\000\
-\\097\000\121\000\098\000\120\000\099\000\247\000\000\000\
-\\009\000\087\000\011\000\140\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\137\000\046\000\136\000\051\000\135\000\055\000\134\000\
-\\077\000\131\000\080\000\130\000\088\000\127\000\092\000\126\000\
-\\093\000\125\000\094\000\124\000\095\000\123\000\096\000\122\000\
-\\097\000\121\000\098\000\120\000\099\000\082\001\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\011\000\090\001\078\000\089\001\079\000\088\001\000\000\
-\\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\104\000\166\000\107\000\165\000\108\000\094\001\
-\\118\000\155\000\122\000\154\000\123\000\093\001\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\104\000\166\000\107\000\165\000\108\000\094\001\
-\\118\000\155\000\122\000\154\000\123\000\096\001\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\104\000\166\000\107\000\165\000\108\000\094\001\
-\\118\000\155\000\122\000\154\000\123\000\097\001\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\104\000\166\000\107\000\165\000\108\000\094\001\
-\\118\000\155\000\122\000\154\000\123\000\098\001\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\104\000\166\000\107\000\165\000\108\000\094\001\
-\\118\000\155\000\122\000\154\000\123\000\099\001\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\104\000\166\000\107\000\165\000\108\000\094\001\
-\\118\000\155\000\122\000\154\000\123\000\100\001\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\104\000\166\000\107\000\165\000\108\000\094\001\
-\\118\000\155\000\122\000\154\000\123\000\101\001\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\180\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\104\000\166\000\107\000\165\000\108\000\164\000\
-\\109\000\163\000\110\000\162\000\111\000\161\000\112\000\160\000\
-\\113\000\159\000\114\000\103\001\115\000\158\000\116\000\157\000\
-\\117\000\156\000\118\000\155\000\122\000\154\000\123\000\153\000\
-\\124\000\152\000\125\000\151\000\126\000\150\000\127\000\149\000\
-\\128\000\148\000\129\000\147\000\130\000\102\001\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\104\000\166\000\107\000\165\000\108\000\094\001\
-\\113\000\105\001\118\000\155\000\122\000\154\000\123\000\104\001\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\104\000\166\000\107\000\165\000\108\000\094\001\
-\\113\000\106\001\118\000\155\000\122\000\154\000\123\000\104\001\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\104\000\166\000\107\000\165\000\108\000\094\001\
-\\111\000\108\001\113\000\107\001\118\000\155\000\122\000\154\000\
-\\123\000\104\001\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\104\000\166\000\107\000\165\000\108\000\094\001\
-\\113\000\109\001\118\000\155\000\122\000\154\000\123\000\104\001\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\104\000\166\000\107\000\165\000\108\000\094\001\
-\\113\000\110\001\118\000\155\000\122\000\154\000\123\000\104\001\000\000\
-\\101\000\111\001\000\000\
-\\011\000\115\001\119\000\114\001\120\000\113\001\121\000\112\001\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\180\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\104\000\166\000\107\000\165\000\108\000\164\000\
-\\109\000\163\000\110\000\162\000\111\000\161\000\112\000\160\000\
-\\113\000\159\000\115\000\158\000\116\000\157\000\117\000\156\000\
-\\118\000\155\000\122\000\154\000\123\000\153\000\124\000\152\000\
-\\125\000\151\000\126\000\150\000\127\000\149\000\128\000\148\000\
-\\129\000\147\000\130\000\116\001\000\000\
-\\009\000\087\000\019\000\118\001\031\000\117\001\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\180\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\104\000\166\000\107\000\165\000\108\000\164\000\
-\\109\000\163\000\110\000\162\000\111\000\161\000\112\000\160\000\
-\\113\000\159\000\115\000\158\000\116\000\157\000\117\000\156\000\
-\\118\000\155\000\122\000\154\000\123\000\153\000\124\000\152\000\
-\\125\000\151\000\126\000\150\000\127\000\149\000\128\000\148\000\
-\\129\000\147\000\130\000\119\001\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\180\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\104\000\166\000\107\000\165\000\108\000\164\000\
-\\109\000\163\000\110\000\162\000\111\000\161\000\112\000\160\000\
-\\113\000\159\000\115\000\158\000\116\000\157\000\117\000\156\000\
-\\118\000\155\000\122\000\154\000\123\000\153\000\124\000\152\000\
-\\125\000\151\000\126\000\150\000\127\000\149\000\128\000\148\000\
-\\129\000\147\000\130\000\017\001\000\000\
-\\011\000\115\001\105\000\126\001\106\000\125\001\119\000\114\001\
-\\120\000\124\001\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\005\000\131\001\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\006\000\033\001\007\000\139\001\008\000\138\001\009\000\031\001\
-\\010\000\030\001\011\000\029\001\012\000\028\001\013\000\027\001\
-\\014\000\084\000\016\000\026\001\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\112\000\046\000\111\000\051\000\110\000\055\000\109\000\
-\\060\000\149\001\063\000\106\000\065\000\105\000\066\000\104\000\
-\\067\000\103\000\068\000\102\000\069\000\101\000\070\000\100\000\
-\\071\000\099\000\072\000\232\000\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\009\000\074\001\047\000\073\001\081\000\154\001\082\000\153\001\
-\\083\000\152\001\084\000\070\001\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\009\000\087\000\011\000\140\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\137\000\046\000\136\000\051\000\135\000\055\000\134\000\
-\\075\000\160\001\077\000\131\000\080\000\130\000\088\000\127\000\
-\\092\000\126\000\093\000\125\000\094\000\124\000\095\000\123\000\
-\\096\000\122\000\097\000\121\000\098\000\120\000\099\000\250\000\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\011\000\090\001\078\000\165\001\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\180\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\104\000\166\000\107\000\165\000\108\000\164\000\
-\\109\000\163\000\110\000\162\000\111\000\161\000\112\000\160\000\
-\\113\000\159\000\115\000\158\000\116\000\157\000\117\000\156\000\
-\\118\000\155\000\122\000\154\000\123\000\153\000\124\000\152\000\
-\\125\000\151\000\126\000\150\000\127\000\149\000\128\000\148\000\
-\\129\000\147\000\130\000\167\001\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\180\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\102\000\173\001\104\000\166\000\107\000\165\000\
-\\108\000\164\000\109\000\163\000\110\000\162\000\111\000\161\000\
-\\112\000\160\000\113\000\159\000\115\000\158\000\116\000\157\000\
-\\117\000\156\000\118\000\155\000\122\000\154\000\123\000\153\000\
-\\124\000\152\000\125\000\151\000\126\000\150\000\127\000\149\000\
-\\128\000\148\000\129\000\147\000\130\000\019\001\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\011\000\115\001\105\000\177\001\119\000\114\001\120\000\124\001\000\000\
-\\000\000\
-\\006\000\033\001\008\000\178\001\009\000\031\001\010\000\030\001\
-\\011\000\029\001\012\000\028\001\013\000\027\001\014\000\084\000\
-\\016\000\026\001\000\000\
-\\006\000\033\001\007\000\179\001\008\000\138\001\009\000\031\001\
-\\010\000\030\001\011\000\029\001\012\000\028\001\013\000\027\001\
-\\014\000\084\000\016\000\026\001\000\000\
-\\000\000\
-\\006\000\181\001\017\000\180\001\000\000\
-\\009\000\087\000\011\000\140\000\012\000\085\000\014\000\084\000\
-\\019\000\139\000\020\000\082\000\022\000\081\000\023\000\138\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\137\000\046\000\136\000\051\000\135\000\055\000\134\000\
-\\074\000\133\000\076\000\132\000\077\000\131\000\080\000\130\000\
-\\086\000\129\000\087\000\128\000\088\000\127\000\092\000\126\000\
-\\093\000\125\000\094\000\124\000\095\000\123\000\096\000\122\000\
-\\097\000\121\000\098\000\120\000\099\000\119\000\100\000\182\001\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\001\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\063\000\055\000\062\000\057\000\061\000\058\000\060\000\
-\\059\000\184\001\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\112\000\046\000\111\000\051\000\110\000\055\000\109\000\
-\\061\000\108\000\062\000\107\000\063\000\106\000\065\000\105\000\
-\\066\000\104\000\067\000\103\000\068\000\102\000\069\000\101\000\
-\\070\000\100\000\071\000\099\000\072\000\098\000\073\000\185\001\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\180\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\101\000\168\000\103\000\167\000\104\000\166\000\
-\\107\000\165\000\108\000\164\000\109\000\163\000\110\000\162\000\
-\\111\000\161\000\112\000\160\000\113\000\159\000\115\000\158\000\
-\\116\000\157\000\117\000\156\000\118\000\155\000\122\000\154\000\
-\\123\000\153\000\124\000\152\000\125\000\151\000\126\000\150\000\
-\\127\000\149\000\128\000\148\000\129\000\147\000\130\000\146\000\
-\\131\000\186\001\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\043\001\021\000\189\001\022\000\081\000\
-\\023\000\080\000\024\000\079\000\025\000\182\000\026\000\077\000\
-\\027\000\181\000\028\000\075\000\029\000\074\000\030\000\073\000\
-\\031\000\072\000\032\000\179\000\033\000\070\000\034\000\069\000\000\000\
-\\000\000\
-\\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\190\001\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\000\000\
-\\000\000\
-\\000\000\
-\\011\000\058\001\064\000\192\001\000\000\
-\\000\000\
-\\000\000\
-\\009\000\074\001\047\000\073\001\083\000\193\001\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\009\000\074\001\047\000\073\001\081\000\198\001\082\000\153\001\
-\\083\000\152\001\084\000\070\001\000\000\
-\\000\000\
-\\011\000\081\001\089\000\080\001\090\000\079\001\091\000\200\001\000\000\
-\\009\000\074\001\047\000\073\001\083\000\201\001\000\000\
-\\009\000\087\000\011\000\140\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\137\000\046\000\136\000\051\000\135\000\055\000\134\000\
-\\077\000\131\000\080\000\130\000\088\000\127\000\092\000\126\000\
-\\093\000\125\000\094\000\124\000\095\000\123\000\096\000\122\000\
-\\097\000\121\000\098\000\120\000\099\000\202\001\000\000\
-\\000\000\
-\\000\000\
-\\011\000\090\001\078\000\089\001\079\000\204\001\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\205\001\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\000\000\
-\\009\000\087\000\011\000\140\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\137\000\046\000\136\000\051\000\135\000\055\000\134\000\
-\\077\000\131\000\080\000\130\000\088\000\127\000\092\000\126\000\
-\\093\000\125\000\094\000\124\000\095\000\123\000\096\000\122\000\
-\\097\000\121\000\098\000\120\000\099\000\206\001\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\011\000\115\001\119\000\114\001\120\000\113\001\121\000\210\001\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\180\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\104\000\166\000\107\000\165\000\108\000\164\000\
-\\109\000\163\000\110\000\162\000\111\000\161\000\112\000\160\000\
-\\113\000\159\000\114\000\211\001\115\000\158\000\116\000\157\000\
-\\117\000\156\000\118\000\155\000\122\000\154\000\123\000\153\000\
-\\124\000\152\000\125\000\151\000\126\000\150\000\127\000\149\000\
-\\128\000\148\000\129\000\147\000\130\000\102\001\000\000\
-\\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\180\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\104\000\166\000\107\000\165\000\108\000\164\000\
-\\109\000\163\000\110\000\162\000\111\000\161\000\112\000\160\000\
-\\113\000\159\000\115\000\158\000\116\000\157\000\117\000\156\000\
-\\118\000\155\000\122\000\154\000\123\000\153\000\124\000\152\000\
-\\125\000\151\000\126\000\150\000\127\000\149\000\128\000\148\000\
-\\129\000\147\000\130\000\212\001\000\000\
-\\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\180\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\104\000\166\000\107\000\165\000\108\000\164\000\
-\\109\000\163\000\110\000\162\000\111\000\161\000\112\000\160\000\
-\\113\000\159\000\115\000\158\000\116\000\157\000\117\000\156\000\
-\\118\000\155\000\122\000\154\000\123\000\153\000\124\000\152\000\
-\\125\000\151\000\126\000\150\000\127\000\149\000\128\000\148\000\
-\\129\000\147\000\130\000\213\001\000\000\
-\\000\000\
-\\011\000\115\001\105\000\126\001\106\000\215\001\119\000\114\001\
-\\120\000\124\001\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\006\000\033\001\007\000\223\001\008\000\138\001\009\000\031\001\
-\\010\000\030\001\011\000\029\001\012\000\028\001\013\000\027\001\
-\\014\000\084\000\016\000\026\001\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\112\000\046\000\111\000\051\000\110\000\055\000\109\000\
-\\063\000\106\000\065\000\105\000\066\000\225\001\000\000\
-\\000\000\
-\\000\000\
-\\009\000\074\001\047\000\073\001\083\000\226\001\000\000\
-\\000\000\
-\\009\000\074\001\047\000\073\001\083\000\227\001\000\000\
-\\000\000\
-\\000\000\
-\\009\000\087\000\011\000\140\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\137\000\046\000\136\000\051\000\135\000\055\000\134\000\
-\\077\000\131\000\080\000\130\000\088\000\127\000\092\000\126\000\
-\\093\000\229\001\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\009\000\087\000\011\000\140\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\137\000\046\000\136\000\051\000\135\000\055\000\134\000\
-\\077\000\131\000\080\000\130\000\088\000\127\000\092\000\126\000\
-\\093\000\231\001\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\104\000\166\000\107\000\165\000\108\000\094\001\
-\\118\000\155\000\122\000\154\000\123\000\232\001\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\104\000\166\000\107\000\165\000\108\000\094\001\
-\\118\000\155\000\122\000\154\000\123\000\234\001\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\235\001\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\009\000\087\000\011\000\140\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\082\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\078\000\026\000\077\000\027\000\076\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\072\000\
-\\032\000\071\000\033\000\070\000\034\000\069\000\035\000\068\000\
-\\039\000\067\000\042\000\066\000\043\000\065\000\044\000\064\000\
-\\045\000\137\000\046\000\136\000\051\000\135\000\055\000\134\000\
-\\077\000\131\000\080\000\130\000\088\000\127\000\092\000\126\000\
-\\093\000\125\000\094\000\124\000\095\000\123\000\096\000\122\000\
-\\097\000\121\000\098\000\120\000\099\000\236\001\000\000\
-\\000\000\
-\\000\000\
-\\009\000\087\000\011\000\086\000\012\000\085\000\014\000\084\000\
-\\019\000\083\000\020\000\183\000\022\000\081\000\023\000\080\000\
-\\024\000\079\000\025\000\182\000\026\000\077\000\027\000\181\000\
-\\028\000\075\000\029\000\074\000\030\000\073\000\031\000\180\000\
-\\032\000\179\000\033\000\070\000\034\000\069\000\036\000\178\000\
-\\037\000\177\000\046\000\176\000\049\000\175\000\050\000\174\000\
-\\051\000\173\000\052\000\172\000\053\000\171\000\054\000\170\000\
-\\056\000\169\000\104\000\166\000\107\000\165\000\108\000\164\000\
-\\109\000\163\000\110\000\162\000\111\000\161\000\112\000\160\000\
-\\113\000\159\000\115\000\158\000\116\000\157\000\117\000\156\000\
-\\118\000\155\000\122\000\154\000\123\000\153\000\124\000\152\000\
-\\125\000\151\000\126\000\150\000\127\000\149\000\128\000\148\000\
-\\129\000\147\000\130\000\237\001\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
-\\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\066\000\055\000\065\000\057\000\064\000\058\000\063\000\
+\\059\000\062\000\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\117\000\046\000\116\000\051\000\115\000\055\000\114\000\
+\\061\000\113\000\062\000\112\000\063\000\111\000\065\000\110\000\
+\\066\000\109\000\067\000\108\000\068\000\107\000\069\000\106\000\
+\\070\000\105\000\071\000\104\000\072\000\103\000\073\000\102\000\
+\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\144\000\020\000\085\000\022\000\084\000\023\000\143\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
+\\074\000\138\000\076\000\137\000\077\000\136\000\083\000\135\000\
+\\084\000\134\000\085\000\133\000\089\000\132\000\090\000\131\000\
+\\091\000\130\000\092\000\129\000\093\000\128\000\094\000\127\000\
+\\095\000\126\000\096\000\125\000\097\000\124\000\138\000\123\000\
+\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\185\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\098\000\173\000\100\000\172\000\101\000\171\000\
+\\102\000\170\000\103\000\169\000\104\000\168\000\105\000\167\000\
+\\106\000\166\000\107\000\165\000\108\000\164\000\110\000\163\000\
+\\111\000\162\000\112\000\161\000\113\000\160\000\117\000\159\000\
+\\118\000\158\000\119\000\157\000\120\000\156\000\121\000\155\000\
+\\122\000\154\000\123\000\153\000\124\000\152\000\125\000\151\000\
+\\126\000\150\000\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\001\000\212\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\036\000\219\000\037\000\218\000\038\000\217\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\225\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\224\000\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\066\000\055\000\065\000\057\000\064\000\058\000\226\000\
+\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\001\000\227\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\050\000\230\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\117\000\046\000\116\000\051\000\115\000\055\000\114\000\
+\\063\000\111\000\065\000\110\000\066\000\235\000\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\117\000\046\000\116\000\051\000\115\000\055\000\114\000\
+\\061\000\113\000\062\000\238\000\063\000\111\000\065\000\110\000\
+\\066\000\109\000\067\000\108\000\068\000\107\000\069\000\106\000\
+\\070\000\105\000\071\000\104\000\072\000\237\000\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\117\000\046\000\116\000\051\000\115\000\055\000\114\000\
+\\060\000\240\000\063\000\111\000\065\000\110\000\066\000\109\000\
+\\067\000\108\000\068\000\107\000\069\000\106\000\070\000\105\000\
+\\071\000\104\000\072\000\239\000\144\000\061\000\145\000\060\000\
+\\146\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\001\000\242\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\050\000\245\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
+\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\251\000\
+\\138\000\123\000\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\144\000\020\000\085\000\022\000\084\000\023\000\143\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
+\\074\000\138\000\076\000\002\001\077\000\136\000\083\000\135\000\
+\\084\000\001\001\085\000\133\000\089\000\132\000\090\000\131\000\
+\\091\000\130\000\092\000\129\000\093\000\128\000\094\000\127\000\
+\\095\000\126\000\096\000\000\001\138\000\123\000\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
+\\075\000\004\001\077\000\136\000\085\000\133\000\089\000\132\000\
+\\090\000\131\000\091\000\130\000\092\000\129\000\093\000\128\000\
+\\094\000\127\000\095\000\126\000\096\000\003\001\138\000\123\000\
+\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\001\000\006\001\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\036\000\183\000\037\000\182\000\050\000\179\000\053\000\010\001\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\185\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\098\000\173\000\100\000\027\001\101\000\171\000\
+\\102\000\170\000\103\000\169\000\104\000\168\000\105\000\167\000\
+\\106\000\166\000\107\000\165\000\108\000\164\000\110\000\163\000\
+\\111\000\162\000\112\000\161\000\113\000\160\000\117\000\159\000\
+\\118\000\158\000\119\000\157\000\120\000\156\000\121\000\155\000\
+\\122\000\154\000\123\000\153\000\124\000\152\000\125\000\026\001\
+\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\185\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\099\000\029\001\101\000\171\000\102\000\170\000\
+\\103\000\169\000\104\000\168\000\105\000\167\000\106\000\166\000\
+\\107\000\165\000\108\000\164\000\110\000\163\000\111\000\162\000\
+\\112\000\161\000\113\000\160\000\117\000\159\000\118\000\158\000\
+\\119\000\157\000\120\000\156\000\121\000\155\000\122\000\154\000\
+\\123\000\153\000\124\000\152\000\125\000\028\001\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\002\000\058\000\003\000\032\001\009\000\023\000\014\000\022\000\000\000\
+\\000\000\
+\\006\000\041\001\008\000\040\001\009\000\039\001\010\000\038\001\
+\\011\000\037\001\012\000\036\001\013\000\035\001\014\000\087\000\
+\\016\000\034\001\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\066\000\055\000\065\000\057\000\049\001\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\051\001\021\000\050\001\022\000\084\000\
+\\023\000\083\000\024\000\082\000\025\000\187\000\026\000\080\000\
+\\027\000\186\000\028\000\078\000\029\000\077\000\030\000\076\000\
+\\031\000\075\000\032\000\184\000\033\000\073\000\034\000\072\000\
+\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\051\001\021\000\052\001\022\000\084\000\
+\\023\000\083\000\024\000\082\000\025\000\187\000\026\000\080\000\
+\\027\000\186\000\028\000\078\000\029\000\077\000\030\000\076\000\
+\\031\000\075\000\032\000\184\000\033\000\073\000\034\000\072\000\
+\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\053\001\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\054\001\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\051\001\021\000\055\001\022\000\084\000\
+\\023\000\083\000\024\000\082\000\025\000\187\000\026\000\080\000\
+\\027\000\186\000\028\000\078\000\029\000\077\000\030\000\076\000\
+\\031\000\075\000\032\000\184\000\033\000\073\000\034\000\072\000\
+\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\051\000\140\000\089\000\057\001\139\000\056\001\000\000\
+\\051\000\140\000\089\000\059\001\140\000\058\001\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
+\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\131\000\
+\\091\000\130\000\092\000\129\000\093\000\128\000\094\000\127\000\
+\\095\000\126\000\096\000\060\001\138\000\123\000\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\000\000\
+\\036\000\219\000\038\000\217\000\000\000\
+\\000\000\
+\\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\117\000\046\000\116\000\051\000\115\000\055\000\114\000\
+\\063\000\111\000\065\000\110\000\066\000\063\001\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\117\000\046\000\116\000\051\000\115\000\055\000\114\000\
+\\063\000\111\000\065\000\110\000\066\000\064\001\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\117\000\046\000\116\000\051\000\115\000\055\000\114\000\
+\\063\000\111\000\065\000\110\000\066\000\065\001\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\117\000\046\000\116\000\051\000\115\000\055\000\114\000\
+\\063\000\111\000\065\000\110\000\066\000\066\001\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\117\000\046\000\116\000\051\000\115\000\055\000\114\000\
+\\063\000\111\000\065\000\110\000\066\000\067\001\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\061\000\068\001\000\000\
+\\011\000\070\001\064\000\069\001\000\000\
+\\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\117\000\046\000\116\000\051\000\115\000\055\000\114\000\
+\\063\000\111\000\065\000\110\000\066\000\109\000\067\000\108\000\
+\\068\000\107\000\069\000\106\000\070\000\105\000\071\000\104\000\
+\\072\000\237\000\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
+\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\076\001\
+\\138\000\123\000\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
+\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\077\001\
+\\138\000\123\000\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
+\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\078\001\
+\\138\000\123\000\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
+\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\079\001\
+\\138\000\123\000\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
+\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\080\001\
+\\138\000\123\000\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\009\000\089\001\011\000\088\001\047\000\087\001\079\000\086\001\
+\\080\000\085\001\081\000\084\001\082\000\083\001\141\000\082\001\
+\\145\000\081\001\000\000\
+\\074\000\092\001\000\000\
+\\011\000\096\001\086\000\095\001\087\000\094\001\088\000\093\001\000\000\
+\\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
+\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\131\000\
+\\091\000\130\000\092\000\129\000\093\000\128\000\094\000\127\000\
+\\095\000\126\000\096\000\000\001\138\000\123\000\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\051\000\140\000\089\000\059\001\140\000\097\001\000\000\
+\\051\000\140\000\089\000\057\001\139\000\098\001\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
+\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\131\000\
+\\091\000\130\000\092\000\129\000\093\000\128\000\094\000\127\000\
+\\095\000\126\000\096\000\099\001\138\000\123\000\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\107\001\
+\\113\000\160\000\117\000\159\000\118\000\106\001\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\107\001\
+\\113\000\160\000\117\000\159\000\118\000\109\001\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\107\001\
+\\113\000\160\000\117\000\159\000\118\000\110\001\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\107\001\
+\\113\000\160\000\117\000\159\000\118\000\111\001\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\107\001\
+\\113\000\160\000\117\000\159\000\118\000\112\001\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\107\001\
+\\113\000\160\000\117\000\159\000\118\000\113\001\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\107\001\
+\\113\000\160\000\117\000\159\000\118\000\114\001\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\185\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\169\000\
+\\104\000\168\000\105\000\167\000\106\000\166\000\107\000\165\000\
+\\108\000\164\000\109\000\116\001\110\000\163\000\111\000\162\000\
+\\112\000\161\000\113\000\160\000\117\000\159\000\118\000\158\000\
+\\119\000\157\000\120\000\156\000\121\000\155\000\122\000\154\000\
+\\123\000\153\000\124\000\152\000\125\000\115\001\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\107\001\
+\\108\000\118\001\113\000\160\000\117\000\159\000\118\000\117\001\
+\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\107\001\
+\\108\000\119\001\113\000\160\000\117\000\159\000\118\000\117\001\
+\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\107\001\
+\\106\000\121\001\108\000\120\001\113\000\160\000\117\000\159\000\
+\\118\000\117\001\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\107\001\
+\\108\000\122\001\113\000\160\000\117\000\159\000\118\000\117\001\
+\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\107\001\
+\\108\000\123\001\113\000\160\000\117\000\159\000\118\000\117\001\
+\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\098\000\124\001\000\000\
+\\011\000\128\001\114\000\127\001\115\000\126\001\116\000\125\001\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\185\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\169\000\
+\\104\000\168\000\105\000\167\000\106\000\166\000\107\000\165\000\
+\\108\000\164\000\110\000\163\000\111\000\162\000\112\000\161\000\
+\\113\000\160\000\117\000\159\000\118\000\158\000\119\000\157\000\
+\\120\000\156\000\121\000\155\000\122\000\154\000\123\000\153\000\
+\\124\000\152\000\125\000\129\001\144\000\061\000\145\000\060\000\
+\\146\000\059\000\000\000\
+\\009\000\090\000\019\000\131\001\031\000\130\001\000\000\
+\\051\000\178\000\054\000\175\000\117\000\133\001\137\000\132\001\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\185\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\169\000\
+\\104\000\168\000\105\000\167\000\106\000\166\000\107\000\165\000\
+\\108\000\164\000\110\000\163\000\111\000\162\000\112\000\161\000\
+\\113\000\160\000\117\000\159\000\118\000\158\000\119\000\157\000\
+\\120\000\156\000\121\000\155\000\122\000\154\000\123\000\153\000\
+\\124\000\152\000\125\000\134\001\144\000\061\000\145\000\060\000\
+\\146\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\185\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\169\000\
+\\104\000\168\000\105\000\167\000\106\000\166\000\107\000\165\000\
+\\108\000\164\000\110\000\163\000\111\000\162\000\112\000\161\000\
+\\113\000\160\000\117\000\159\000\118\000\158\000\119\000\157\000\
+\\120\000\156\000\121\000\155\000\122\000\154\000\123\000\153\000\
+\\124\000\152\000\125\000\026\001\144\000\061\000\145\000\060\000\
+\\146\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\005\000\142\001\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\006\000\041\001\007\000\150\001\008\000\149\001\009\000\039\001\
+\\010\000\038\001\011\000\037\001\012\000\036\001\013\000\035\001\
+\\014\000\087\000\016\000\034\001\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\117\000\046\000\116\000\051\000\115\000\055\000\114\000\
+\\060\000\162\001\063\000\111\000\065\000\110\000\066\000\109\000\
+\\067\000\108\000\068\000\107\000\069\000\106\000\070\000\105\000\
+\\071\000\104\000\072\000\239\000\144\000\061\000\145\000\060\000\
+\\146\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\089\001\011\000\088\001\047\000\087\001\078\000\170\001\
+\\079\000\169\001\080\000\168\001\081\000\084\001\141\000\167\001\
+\\145\000\081\001\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
+\\075\000\178\001\077\000\136\000\085\000\133\000\089\000\132\000\
+\\090\000\131\000\091\000\130\000\092\000\129\000\093\000\128\000\
+\\094\000\127\000\095\000\126\000\096\000\003\001\138\000\123\000\
+\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\185\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\169\000\
+\\104\000\168\000\105\000\167\000\106\000\166\000\107\000\165\000\
+\\108\000\164\000\110\000\163\000\111\000\162\000\112\000\161\000\
+\\113\000\160\000\117\000\159\000\118\000\158\000\119\000\157\000\
+\\120\000\156\000\121\000\155\000\122\000\154\000\123\000\153\000\
+\\124\000\152\000\125\000\180\001\144\000\061\000\145\000\060\000\
+\\146\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\185\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\099\000\187\001\101\000\171\000\102\000\170\000\
+\\103\000\169\000\104\000\168\000\105\000\167\000\106\000\166\000\
+\\107\000\165\000\108\000\164\000\110\000\163\000\111\000\162\000\
+\\112\000\161\000\113\000\160\000\117\000\159\000\118\000\158\000\
+\\119\000\157\000\120\000\156\000\121\000\155\000\122\000\154\000\
+\\123\000\153\000\124\000\152\000\125\000\028\001\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\006\000\041\001\008\000\188\001\009\000\039\001\010\000\038\001\
+\\011\000\037\001\012\000\036\001\013\000\035\001\014\000\087\000\
+\\016\000\034\001\000\000\
+\\006\000\041\001\007\000\189\001\008\000\149\001\009\000\039\001\
+\\010\000\038\001\011\000\037\001\012\000\036\001\013\000\035\001\
+\\014\000\087\000\016\000\034\001\000\000\
+\\000\000\
+\\006\000\191\001\017\000\190\001\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\144\000\020\000\085\000\022\000\084\000\023\000\143\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
+\\074\000\138\000\076\000\137\000\077\000\136\000\083\000\135\000\
+\\084\000\134\000\085\000\133\000\089\000\132\000\090\000\131\000\
+\\091\000\130\000\092\000\129\000\093\000\128\000\094\000\127\000\
+\\095\000\126\000\096\000\125\000\097\000\192\001\138\000\123\000\
+\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\193\001\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\066\000\055\000\065\000\057\000\064\000\058\000\063\000\
+\\059\000\194\001\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\117\000\046\000\116\000\051\000\115\000\055\000\114\000\
+\\061\000\113\000\062\000\112\000\063\000\111\000\065\000\110\000\
+\\066\000\109\000\067\000\108\000\068\000\107\000\069\000\106\000\
+\\070\000\105\000\071\000\104\000\072\000\103\000\073\000\195\001\
+\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\185\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\098\000\173\000\100\000\172\000\101\000\171\000\
+\\102\000\170\000\103\000\169\000\104\000\168\000\105\000\167\000\
+\\106\000\166\000\107\000\165\000\108\000\164\000\110\000\163\000\
+\\111\000\162\000\112\000\161\000\113\000\160\000\117\000\159\000\
+\\118\000\158\000\119\000\157\000\120\000\156\000\121\000\155\000\
+\\122\000\154\000\123\000\153\000\124\000\152\000\125\000\151\000\
+\\126\000\196\001\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\051\001\021\000\199\001\022\000\084\000\
+\\023\000\083\000\024\000\082\000\025\000\187\000\026\000\080\000\
+\\027\000\186\000\028\000\078\000\029\000\077\000\030\000\076\000\
+\\031\000\075\000\032\000\184\000\033\000\073\000\034\000\072\000\
+\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\200\001\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\201\001\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\202\001\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\011\000\070\001\064\000\204\001\000\000\
+\\000\000\
+\\000\000\
+\\009\000\089\001\011\000\088\001\047\000\087\001\080\000\205\001\
+\\145\000\081\001\000\000\
+\\009\000\089\001\011\000\088\001\047\000\087\001\080\000\207\001\
+\\143\000\206\001\145\000\081\001\000\000\
+\\011\000\096\001\086\000\095\001\087\000\094\001\088\000\208\001\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\089\001\011\000\088\001\047\000\087\001\078\000\214\001\
+\\079\000\169\001\080\000\168\001\081\000\084\001\141\000\167\001\
+\\145\000\081\001\000\000\
+\\000\000\
+\\011\000\096\001\086\000\095\001\087\000\094\001\088\000\216\001\000\000\
+\\009\000\089\001\011\000\088\001\047\000\087\001\080\000\217\001\
+\\145\000\081\001\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\144\000\020\000\085\000\022\000\084\000\023\000\143\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
+\\074\000\138\000\076\000\137\000\077\000\136\000\083\000\135\000\
+\\084\000\134\000\085\000\133\000\089\000\132\000\090\000\131\000\
+\\091\000\130\000\092\000\129\000\093\000\128\000\094\000\127\000\
+\\095\000\126\000\096\000\125\000\097\000\218\001\138\000\123\000\
+\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\144\000\020\000\085\000\022\000\084\000\023\000\143\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
+\\074\000\138\000\076\000\137\000\077\000\136\000\083\000\135\000\
+\\084\000\134\000\085\000\133\000\089\000\132\000\090\000\131\000\
+\\091\000\130\000\092\000\129\000\093\000\128\000\094\000\127\000\
+\\095\000\126\000\096\000\125\000\097\000\219\001\138\000\123\000\
+\\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
+\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\131\000\
+\\091\000\130\000\092\000\129\000\093\000\128\000\094\000\127\000\
+\\095\000\126\000\096\000\220\001\138\000\123\000\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\011\000\128\001\114\000\127\001\115\000\126\001\116\000\223\001\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\185\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\169\000\
+\\104\000\168\000\105\000\167\000\106\000\166\000\107\000\165\000\
+\\108\000\164\000\109\000\224\001\110\000\163\000\111\000\162\000\
+\\112\000\161\000\113\000\160\000\117\000\159\000\118\000\158\000\
+\\119\000\157\000\120\000\156\000\121\000\155\000\122\000\154\000\
+\\123\000\153\000\124\000\152\000\125\000\115\001\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\185\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\098\000\173\000\100\000\172\000\101\000\171\000\
+\\102\000\170\000\103\000\169\000\104\000\168\000\105\000\167\000\
+\\106\000\166\000\107\000\165\000\108\000\164\000\110\000\163\000\
+\\111\000\162\000\112\000\161\000\113\000\160\000\117\000\159\000\
+\\118\000\158\000\119\000\157\000\120\000\156\000\121\000\155\000\
+\\122\000\154\000\123\000\153\000\124\000\152\000\125\000\151\000\
+\\126\000\225\001\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\185\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\169\000\
+\\104\000\168\000\105\000\167\000\106\000\166\000\107\000\165\000\
+\\108\000\164\000\110\000\163\000\111\000\162\000\112\000\161\000\
+\\113\000\160\000\117\000\159\000\118\000\158\000\119\000\157\000\
+\\120\000\156\000\121\000\155\000\122\000\154\000\123\000\153\000\
+\\124\000\152\000\125\000\226\001\144\000\061\000\145\000\060\000\
+\\146\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\006\000\041\001\007\000\233\001\008\000\149\001\009\000\039\001\
+\\010\000\038\001\011\000\037\001\012\000\036\001\013\000\035\001\
+\\014\000\087\000\016\000\034\001\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\117\000\046\000\116\000\051\000\115\000\055\000\114\000\
+\\063\000\111\000\065\000\110\000\066\000\237\001\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\089\001\011\000\088\001\047\000\087\001\080\000\241\001\
+\\145\000\081\001\000\000\
+\\000\000\
+\\009\000\089\001\011\000\088\001\047\000\087\001\080\000\242\001\
+\\145\000\081\001\000\000\
+\\000\000\
+\\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
+\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\244\001\
+\\138\000\123\000\144\000\061\000\145\000\060\000\146\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\107\001\
+\\113\000\160\000\117\000\159\000\118\000\248\001\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\251\001\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\009\000\089\001\011\000\088\001\047\000\087\001\080\000\207\001\
+\\143\000\252\001\145\000\081\001\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\085\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\081\000\026\000\080\000\027\000\079\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\075\000\
+\\032\000\074\000\033\000\073\000\034\000\072\000\035\000\071\000\
+\\039\000\070\000\042\000\069\000\043\000\068\000\044\000\067\000\
+\\045\000\142\000\046\000\141\000\051\000\140\000\055\000\139\000\
+\\077\000\136\000\085\000\133\000\089\000\132\000\090\000\131\000\
+\\091\000\130\000\092\000\129\000\093\000\128\000\094\000\127\000\
+\\095\000\126\000\096\000\254\001\138\000\123\000\144\000\061\000\
+\\145\000\060\000\146\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\009\000\090\000\011\000\089\000\012\000\088\000\014\000\087\000\
+\\019\000\086\000\020\000\188\000\022\000\084\000\023\000\083\000\
+\\024\000\082\000\025\000\187\000\026\000\080\000\027\000\186\000\
+\\028\000\078\000\029\000\077\000\030\000\076\000\031\000\185\000\
+\\032\000\184\000\033\000\073\000\034\000\072\000\036\000\183\000\
+\\037\000\182\000\046\000\181\000\049\000\180\000\050\000\179\000\
+\\051\000\178\000\052\000\177\000\053\000\176\000\054\000\175\000\
+\\056\000\174\000\101\000\171\000\102\000\170\000\103\000\169\000\
+\\104\000\168\000\105\000\167\000\106\000\166\000\107\000\165\000\
+\\108\000\164\000\110\000\163\000\111\000\162\000\112\000\161\000\
+\\113\000\160\000\117\000\159\000\118\000\158\000\119\000\157\000\
+\\120\000\156\000\121\000\155\000\122\000\154\000\123\000\153\000\
+\\124\000\152\000\125\000\255\001\144\000\061\000\145\000\060\000\
+\\146\000\059\000\000\000\
+\\000\000\
+\\000\000\
+\\009\000\089\001\011\000\088\001\047\000\087\001\080\000\002\002\
+\\142\000\001\002\145\000\081\001\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\089\001\011\000\088\001\047\000\087\001\079\000\007\002\
+\\080\000\006\002\081\000\084\001\145\000\081\001\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\000\000\
+\\009\000\089\001\011\000\088\001\047\000\087\001\078\000\170\001\
+\\079\000\169\001\080\000\168\001\081\000\084\001\145\000\081\001\000\000\
+\\000\000\
+\\009\000\089\001\011\000\088\001\047\000\087\001\078\000\214\001\
+\\079\000\169\001\080\000\168\001\081\000\084\001\145\000\081\001\000\000\
\\000\000\
\"
-val numstates = 498
-val numrules = 282
+val numstates = 524
+val numrules = 290
val s = Unsynchronized.ref "" and index = Unsynchronized.ref 0
val string_to_int = fn () =>
let val i = !index
@@ -3266,12 +3493,18 @@
structure MlyValue =
struct
datatype svalue = VOID | ntVOID of unit
- | ATOMIC_SYSTEM_WORD of (string) | ATOMIC_DEFINED_WORD of (string)
+ | DOLLAR_DOLLAR_WORD of (string) | DOLLAR_WORD of (string)
| DISTINCT_OBJECT of (string) | COMMENT of (string)
| LOWER_WORD of (string) | UPPER_WORD of (string)
| SINGLE_QUOTED of (string) | DOT_DECIMAL of (string)
| UNSIGNED_INTEGER of (string) | SIGNED_INTEGER of (string)
- | RATIONAL of (string) | REAL of (string) | tptp of (tptp_problem)
+ | RATIONAL of (string) | REAL of (string)
+ | atomic_system_word of (string) | atomic_defined_word of (string)
+ | let_term of (tptp_term) | tff_type_arguments of (tptp_type list)
+ | tff_monotype of (tptp_type) | tff_quantified_type of (tptp_type)
+ | tff_let_formula_defn of (tptp_let list)
+ | tff_let_term_defn of (tptp_let list) | tff_let of (tptp_formula)
+ | thf_let_defn of (tptp_let list) | tptp of (tptp_problem)
| tptp_file of (tptp_problem) | tptp_input of (tptp_line)
| include_ of (tptp_line) | annotated_formula of (tptp_line)
| thf_annotated of (tptp_line) | tff_annotated of (tptp_line)
@@ -3296,8 +3529,7 @@
| thf_unitary_type of (tptp_type) | thf_binary_type of (tptp_type)
| thf_mapping_type of (tptp_type) | thf_xprod_type of (tptp_type)
| thf_union_type of (tptp_type) | thf_atom of (tptp_formula)
- | thf_let of (tptp_formula) | thf_let_list of (tptp_let list)
- | thf_defined_var of (tptp_let) | thf_conditional of (tptp_formula)
+ | thf_let of (tptp_formula) | thf_conditional of (tptp_formula)
| thf_sequent of (tptp_formula)
| thf_tuple_list of (tptp_formula list)
| thf_tuple of (tptp_formula list) | tff_formula of (tptp_formula)
@@ -3318,9 +3550,7 @@
| tff_top_level_type of (tptp_type)
| tff_unitary_type of (tptp_type) | tff_atomic_type of (tptp_type)
| tff_mapping_type of (tptp_type) | tff_xprod_type of (tptp_type)
- | tptp_let of (tptp_formula) | tff_let_list of (tptp_let list)
- | tff_defined_var of (tptp_let) | tff_conditional of (tptp_formula)
- | tff_sequent of (tptp_formula)
+ | tff_conditional of (tptp_formula) | tff_sequent of (tptp_formula)
| tff_tuple_list of (tptp_formula list)
| tff_tuple of (tptp_formula list) | fof_formula of (tptp_formula)
| fof_logic_formula of (tptp_formula)
@@ -3397,7 +3627,7 @@
| (T 6) => "EXCLAMATION"
| (T 7) => "LET"
| (T 8) => "ARROW"
- | (T 9) => "IF"
+ | (T 9) => "FI"
| (T 10) => "IFF"
| (T 11) => "IMPLIES"
| (T 12) => "INCLUDE"
@@ -3451,8 +3681,8 @@
| (T 60) => "GENTZEN_ARROW"
| (T 61) => "DEP_SUM"
| (T 62) => "DEP_PROD"
- | (T 63) => "ATOMIC_DEFINED_WORD"
- | (T 64) => "ATOMIC_SYSTEM_WORD"
+ | (T 63) => "DOLLAR_WORD"
+ | (T 64) => "DOLLAR_DOLLAR_WORD"
| (T 65) => "SUBTYPE"
| (T 66) => "LET_TERM"
| (T 67) => "THF"
@@ -3461,21 +3691,26 @@
| (T 70) => "CNF"
| (T 71) => "ITE_F"
| (T 72) => "ITE_T"
+ | (T 73) => "LET_TF"
+ | (T 74) => "LET_FF"
+ | (T 75) => "LET_FT"
+ | (T 76) => "LET_TT"
| _ => "bogus-term"
local open Header in
val errtermvalue=
fn _ => MlyValue.VOID
end
val terms : term list = nil
- $$ (T 72) $$ (T 71) $$ (T 70) $$ (T 69) $$ (T 68) $$ (T 67) $$ (T 66)
- $$ (T 65) $$ (T 62) $$ (T 61) $$ (T 60) $$ (T 59) $$ (T 58) $$ (T 57)
- $$ (T 56) $$ (T 55) $$ (T 54) $$ (T 53) $$ (T 42) $$ (T 41) $$ (T 40)
- $$ (T 39) $$ (T 38) $$ (T 37) $$ (T 36) $$ (T 35) $$ (T 34) $$ (T 33)
- $$ (T 32) $$ (T 31) $$ (T 30) $$ (T 29) $$ (T 28) $$ (T 27) $$ (T 26)
- $$ (T 25) $$ (T 24) $$ (T 23) $$ (T 22) $$ (T 21) $$ (T 20) $$ (T 19)
- $$ (T 18) $$ (T 17) $$ (T 16) $$ (T 15) $$ (T 14) $$ (T 13) $$ (T 12)
- $$ (T 11) $$ (T 10) $$ (T 9) $$ (T 8) $$ (T 7) $$ (T 6) $$ (T 5) $$
-(T 4) $$ (T 3) $$ (T 2) $$ (T 1) $$ (T 0)end
+ $$ (T 76) $$ (T 75) $$ (T 74) $$ (T 73) $$ (T 72) $$ (T 71) $$ (T 70)
+ $$ (T 69) $$ (T 68) $$ (T 67) $$ (T 66) $$ (T 65) $$ (T 62) $$ (T 61)
+ $$ (T 60) $$ (T 59) $$ (T 58) $$ (T 57) $$ (T 56) $$ (T 55) $$ (T 54)
+ $$ (T 53) $$ (T 42) $$ (T 41) $$ (T 40) $$ (T 39) $$ (T 38) $$ (T 37)
+ $$ (T 36) $$ (T 35) $$ (T 34) $$ (T 33) $$ (T 32) $$ (T 31) $$ (T 30)
+ $$ (T 29) $$ (T 28) $$ (T 27) $$ (T 26) $$ (T 25) $$ (T 24) $$ (T 23)
+ $$ (T 22) $$ (T 21) $$ (T 20) $$ (T 19) $$ (T 18) $$ (T 17) $$ (T 16)
+ $$ (T 15) $$ (T 14) $$ (T 13) $$ (T 12) $$ (T 11) $$ (T 10) $$ (T 9)
+ $$ (T 8) $$ (T 7) $$ (T 6) $$ (T 5) $$ (T 4) $$ (T 3) $$ (T 2) $$ (T
+1) $$ (T 0)end
structure Actions =
struct
exception mlyAction of int
@@ -3484,292 +3719,1675 @@
fn (i392,defaultPos,stack,
(file_name):arg) =>
case (i392,stack)
-of ( 0, ( ( _, ( MlyValue.optional_info optional_info, _,
+of ( 0, ( ( _, ( MlyValue.tptp_file tptp_file, tptp_file1left,
+tptp_file1right)) :: rest671)) => let val result = MlyValue.tptp (
+( tptp_file ))
+ in ( LrTable.NT 135, ( result, tptp_file1left, tptp_file1right),
+rest671)
+end
+| ( 1, ( ( _, ( MlyValue.tptp_file tptp_file, _, tptp_file1right)) ::
+ ( _, ( MlyValue.tptp_input tptp_input, tptp_input1left, _)) ::
+rest671)) => let val result = MlyValue.tptp_file (
+( tptp_input :: tptp_file ))
+ in ( LrTable.NT 134, ( result, tptp_input1left, tptp_file1right),
+rest671)
+end
+| ( 2, ( ( _, ( MlyValue.tptp_file tptp_file, _, tptp_file1right)) ::
+ ( _, ( _, COMMENT1left, _)) :: rest671)) => let val result =
+MlyValue.tptp_file (( tptp_file ))
+ in ( LrTable.NT 134, ( result, COMMENT1left, tptp_file1right),
+rest671)
+end
+| ( 3, ( rest671)) => let val result = MlyValue.tptp_file (( [] ))
+ in ( LrTable.NT 134, ( result, defaultPos, defaultPos), rest671)
+end
+| ( 4, ( ( _, ( MlyValue.annotated_formula annotated_formula,
+annotated_formula1left, annotated_formula1right)) :: rest671)) => let
+ val result = MlyValue.tptp_input (( annotated_formula ))
+ in ( LrTable.NT 133, ( result, annotated_formula1left,
+annotated_formula1right), rest671)
+end
+| ( 5, ( ( _, ( MlyValue.include_ include_, include_1left,
+include_1right)) :: rest671)) => let val result = MlyValue.tptp_input
+ (( include_ ))
+ in ( LrTable.NT 133, ( result, include_1left, include_1right),
+rest671)
+end
+| ( 6, ( ( _, ( MlyValue.thf_annotated thf_annotated,
+thf_annotated1left, thf_annotated1right)) :: rest671)) => let val
+result = MlyValue.annotated_formula (( thf_annotated ))
+ in ( LrTable.NT 131, ( result, thf_annotated1left,
+thf_annotated1right), rest671)
+end
+| ( 7, ( ( _, ( MlyValue.tff_annotated tff_annotated,
+tff_annotated1left, tff_annotated1right)) :: rest671)) => let val
+result = MlyValue.annotated_formula (( tff_annotated ))
+ in ( LrTable.NT 131, ( result, tff_annotated1left,
+tff_annotated1right), rest671)
+end
+| ( 8, ( ( _, ( MlyValue.fof_annotated fof_annotated,
+fof_annotated1left, fof_annotated1right)) :: rest671)) => let val
+result = MlyValue.annotated_formula (( fof_annotated ))
+ in ( LrTable.NT 131, ( result, fof_annotated1left,
+fof_annotated1right), rest671)
+end
+| ( 9, ( ( _, ( MlyValue.cnf_annotated cnf_annotated,
+cnf_annotated1left, cnf_annotated1right)) :: rest671)) => let val
+result = MlyValue.annotated_formula (( cnf_annotated ))
+ in ( LrTable.NT 131, ( result, cnf_annotated1left,
+cnf_annotated1right), rest671)
+end
+| ( 10, ( ( _, ( _, _, PERIOD1right)) :: _ :: ( _, (
+MlyValue.annotations annotations, _, _)) :: ( _, (
+MlyValue.thf_formula thf_formula, _, _)) :: _ :: ( _, (
+MlyValue.formula_role formula_role, _, _)) :: _ :: ( _, (
+MlyValue.name name, _, _)) :: _ :: ( _, ( _, (THFleft as THF1left),
+THFright)) :: rest671)) => let val result = MlyValue.thf_annotated (
+(
+ Annotated_Formula ((file_name, THFleft + 1, THFright + 1),
+ THF, name, formula_role, thf_formula, annotations)
+)
+)
+ in ( LrTable.NT 130, ( result, THF1left, PERIOD1right), rest671)
+end
+| ( 11, ( ( _, ( _, _, PERIOD1right)) :: _ :: ( _, (
+MlyValue.annotations annotations, _, _)) :: ( _, (
+MlyValue.tff_formula tff_formula, _, _)) :: _ :: ( _, (
+MlyValue.formula_role formula_role, _, _)) :: _ :: ( _, (
+MlyValue.name name, _, _)) :: _ :: ( _, ( _, (TFFleft as TFF1left),
+TFFright)) :: rest671)) => let val result = MlyValue.tff_annotated (
+(
+ Annotated_Formula ((file_name, TFFleft + 1, TFFright + 1),
+ TFF, name, formula_role, tff_formula, annotations)
+)
+)
+ in ( LrTable.NT 129, ( result, TFF1left, PERIOD1right), rest671)
+end
+| ( 12, ( ( _, ( _, _, PERIOD1right)) :: _ :: ( _, (
+MlyValue.annotations annotations, _, _)) :: ( _, (
+MlyValue.fof_formula fof_formula, _, _)) :: _ :: ( _, (
+MlyValue.formula_role formula_role, _, _)) :: _ :: ( _, (
+MlyValue.name name, _, _)) :: _ :: ( _, ( _, (FOFleft as FOF1left),
+FOFright)) :: rest671)) => let val result = MlyValue.fof_annotated (
+(
+ Annotated_Formula ((file_name, FOFleft + 1, FOFright + 1),
+ FOF, name, formula_role, fof_formula, annotations)
+)
+)
+ in ( LrTable.NT 128, ( result, FOF1left, PERIOD1right), rest671)
+end
+| ( 13, ( ( _, ( _, _, PERIOD1right)) :: _ :: ( _, (
+MlyValue.annotations annotations, _, _)) :: ( _, (
+MlyValue.cnf_formula cnf_formula, _, _)) :: _ :: ( _, (
+MlyValue.formula_role formula_role, _, _)) :: _ :: ( _, (
+MlyValue.name name, _, _)) :: _ :: ( _, ( _, (CNFleft as CNF1left),
+CNFright)) :: rest671)) => let val result = MlyValue.cnf_annotated (
+(
+ Annotated_Formula ((file_name, CNFleft + 1, CNFright + 1),
+ CNF, name, formula_role, cnf_formula, annotations)
+)
+)
+ in ( LrTable.NT 127, ( result, CNF1left, PERIOD1right), rest671)
+end
+| ( 14, ( ( _, ( MlyValue.optional_info optional_info, _,
optional_info1right)) :: ( _, ( MlyValue.general_term general_term, _,
_)) :: ( _, ( _, COMMA1left, _)) :: rest671)) => let val result =
MlyValue.annotations (( SOME (general_term, optional_info) ))
in ( LrTable.NT 0, ( result, COMMA1left, optional_info1right),
rest671)
end
-| ( 1, ( rest671)) => let val result = MlyValue.annotations (
+| ( 15, ( rest671)) => let val result = MlyValue.annotations (
( NONE ))
in ( LrTable.NT 0, ( result, defaultPos, defaultPos), rest671)
end
-| ( 2, ( ( _, ( MlyValue.useful_info useful_info, _,
-useful_info1right)) :: ( _, ( _, COMMA1left, _)) :: rest671)) => let
- val result = MlyValue.optional_info (( useful_info ))
- in ( LrTable.NT 4, ( result, COMMA1left, useful_info1right), rest671)
+| ( 16, ( ( _, ( MlyValue.LOWER_WORD LOWER_WORD, LOWER_WORD1left,
+LOWER_WORD1right)) :: rest671)) => let val result =
+MlyValue.formula_role (( classify_role LOWER_WORD ))
+ in ( LrTable.NT 126, ( result, LOWER_WORD1left, LOWER_WORD1right),
+rest671)
+end
+| ( 17, ( ( _, ( MlyValue.thf_logic_formula thf_logic_formula,
+thf_logic_formula1left, thf_logic_formula1right)) :: rest671)) => let
+ val result = MlyValue.thf_formula (( thf_logic_formula ))
+ in ( LrTable.NT 125, ( result, thf_logic_formula1left,
+thf_logic_formula1right), rest671)
+end
+| ( 18, ( ( _, ( MlyValue.thf_sequent thf_sequent, thf_sequent1left,
+thf_sequent1right)) :: rest671)) => let val result =
+MlyValue.thf_formula (( thf_sequent ))
+ in ( LrTable.NT 125, ( result, thf_sequent1left, thf_sequent1right),
+rest671)
+end
+| ( 19, ( ( _, ( MlyValue.thf_binary_formula thf_binary_formula,
+thf_binary_formula1left, thf_binary_formula1right)) :: rest671)) =>
+ let val result = MlyValue.thf_logic_formula (( thf_binary_formula ))
+ in ( LrTable.NT 124, ( result, thf_binary_formula1left,
+thf_binary_formula1right), rest671)
+end
+| ( 20, ( ( _, ( MlyValue.thf_unitary_formula thf_unitary_formula,
+thf_unitary_formula1left, thf_unitary_formula1right)) :: rest671)) =>
+ let val result = MlyValue.thf_logic_formula (( thf_unitary_formula )
+)
+ in ( LrTable.NT 124, ( result, thf_unitary_formula1left,
+thf_unitary_formula1right), rest671)
+end
+| ( 21, ( ( _, ( MlyValue.thf_type_formula thf_type_formula,
+thf_type_formula1left, thf_type_formula1right)) :: rest671)) => let
+ val result = MlyValue.thf_logic_formula (
+( THF_typing thf_type_formula ))
+ in ( LrTable.NT 124, ( result, thf_type_formula1left,
+thf_type_formula1right), rest671)
+end
+| ( 22, ( ( _, ( MlyValue.thf_subtype thf_subtype, thf_subtype1left,
+thf_subtype1right)) :: rest671)) => let val result =
+MlyValue.thf_logic_formula (( Type_fmla thf_subtype ))
+ in ( LrTable.NT 124, ( result, thf_subtype1left, thf_subtype1right),
+rest671)
+end
+| ( 23, ( ( _, ( MlyValue.thf_binary_pair thf_binary_pair,
+thf_binary_pair1left, thf_binary_pair1right)) :: rest671)) => let val
+ result = MlyValue.thf_binary_formula (( thf_binary_pair ))
+ in ( LrTable.NT 123, ( result, thf_binary_pair1left,
+thf_binary_pair1right), rest671)
+end
+| ( 24, ( ( _, ( MlyValue.thf_binary_tuple thf_binary_tuple,
+thf_binary_tuple1left, thf_binary_tuple1right)) :: rest671)) => let
+ val result = MlyValue.thf_binary_formula (( thf_binary_tuple ))
+ in ( LrTable.NT 123, ( result, thf_binary_tuple1left,
+thf_binary_tuple1right), rest671)
+end
+| ( 25, ( ( _, ( MlyValue.thf_binary_type thf_binary_type,
+thf_binary_type1left, thf_binary_type1right)) :: rest671)) => let val
+ result = MlyValue.thf_binary_formula (( Type_fmla thf_binary_type ))
+ in ( LrTable.NT 123, ( result, thf_binary_type1left,
+thf_binary_type1right), rest671)
+end
+| ( 26, ( ( _, ( MlyValue.thf_unitary_formula thf_unitary_formula2, _
+, thf_unitary_formula2right)) :: ( _, ( MlyValue.thf_pair_connective
+thf_pair_connective, _, _)) :: ( _, ( MlyValue.thf_unitary_formula
+thf_unitary_formula1, thf_unitary_formula1left, _)) :: rest671)) =>
+ let val result = MlyValue.thf_binary_pair (
+(
+ Fmla (thf_pair_connective, [thf_unitary_formula1, thf_unitary_formula2])
+)
+)
+ in ( LrTable.NT 122, ( result, thf_unitary_formula1left,
+thf_unitary_formula2right), rest671)
+end
+| ( 27, ( ( _, ( MlyValue.thf_or_formula thf_or_formula,
+thf_or_formula1left, thf_or_formula1right)) :: rest671)) => let val
+result = MlyValue.thf_binary_tuple (( thf_or_formula ))
+ in ( LrTable.NT 121, ( result, thf_or_formula1left,
+thf_or_formula1right), rest671)
+end
+| ( 28, ( ( _, ( MlyValue.thf_and_formula thf_and_formula,
+thf_and_formula1left, thf_and_formula1right)) :: rest671)) => let val
+ result = MlyValue.thf_binary_tuple (( thf_and_formula ))
+ in ( LrTable.NT 121, ( result, thf_and_formula1left,
+thf_and_formula1right), rest671)
+end
+| ( 29, ( ( _, ( MlyValue.thf_apply_formula thf_apply_formula,
+thf_apply_formula1left, thf_apply_formula1right)) :: rest671)) => let
+ val result = MlyValue.thf_binary_tuple (( thf_apply_formula ))
+ in ( LrTable.NT 121, ( result, thf_apply_formula1left,
+thf_apply_formula1right), rest671)
+end
+| ( 30, ( ( _, ( MlyValue.thf_unitary_formula thf_unitary_formula2, _
+, thf_unitary_formula2right)) :: _ :: ( _, (
+MlyValue.thf_unitary_formula thf_unitary_formula1,
+thf_unitary_formula1left, _)) :: rest671)) => let val result =
+MlyValue.thf_or_formula (
+( Fmla (Interpreted_Logic Or, [thf_unitary_formula1, thf_unitary_formula2]) )
+)
+ in ( LrTable.NT 120, ( result, thf_unitary_formula1left,
+thf_unitary_formula2right), rest671)
+end
+| ( 31, ( ( _, ( MlyValue.thf_unitary_formula thf_unitary_formula, _,
+ thf_unitary_formula1right)) :: _ :: ( _, ( MlyValue.thf_or_formula
+thf_or_formula, thf_or_formula1left, _)) :: rest671)) => let val
+result = MlyValue.thf_or_formula (
+( Fmla (Interpreted_Logic Or, [thf_or_formula, thf_unitary_formula]) )
+)
+ in ( LrTable.NT 120, ( result, thf_or_formula1left,
+thf_unitary_formula1right), rest671)
+end
+| ( 32, ( ( _, ( MlyValue.thf_unitary_formula thf_unitary_formula2, _
+, thf_unitary_formula2right)) :: _ :: ( _, (
+MlyValue.thf_unitary_formula thf_unitary_formula1,
+thf_unitary_formula1left, _)) :: rest671)) => let val result =
+MlyValue.thf_and_formula (
+( Fmla (Interpreted_Logic And, [thf_unitary_formula1, thf_unitary_formula2]) )
+)
+ in ( LrTable.NT 119, ( result, thf_unitary_formula1left,
+thf_unitary_formula2right), rest671)
+end
+| ( 33, ( ( _, ( MlyValue.thf_unitary_formula thf_unitary_formula, _,
+ thf_unitary_formula1right)) :: _ :: ( _, ( MlyValue.thf_and_formula
+thf_and_formula, thf_and_formula1left, _)) :: rest671)) => let val
+result = MlyValue.thf_and_formula (
+( Fmla (Interpreted_Logic And, [thf_and_formula, thf_unitary_formula]) )
+)
+ in ( LrTable.NT 119, ( result, thf_and_formula1left,
+thf_unitary_formula1right), rest671)
+end
+| ( 34, ( ( _, ( MlyValue.thf_unitary_formula thf_unitary_formula2, _
+, thf_unitary_formula2right)) :: _ :: ( _, (
+MlyValue.thf_unitary_formula thf_unitary_formula1,
+thf_unitary_formula1left, _)) :: rest671)) => let val result =
+MlyValue.thf_apply_formula (
+( Fmla (Interpreted_ExtraLogic Apply, [thf_unitary_formula1, thf_unitary_formula2]) )
+)
+ in ( LrTable.NT 118, ( result, thf_unitary_formula1left,
+thf_unitary_formula2right), rest671)
+end
+| ( 35, ( ( _, ( MlyValue.thf_unitary_formula thf_unitary_formula, _,
+ thf_unitary_formula1right)) :: _ :: ( _, ( MlyValue.thf_apply_formula
+ thf_apply_formula, thf_apply_formula1left, _)) :: rest671)) => let
+ val result = MlyValue.thf_apply_formula (
+( Fmla (Interpreted_ExtraLogic Apply, [thf_apply_formula, thf_unitary_formula]) )
+)
+ in ( LrTable.NT 118, ( result, thf_apply_formula1left,
+thf_unitary_formula1right), rest671)
+end
+| ( 36, ( ( _, ( MlyValue.thf_quantified_formula
+thf_quantified_formula, thf_quantified_formula1left,
+thf_quantified_formula1right)) :: rest671)) => let val result =
+MlyValue.thf_unitary_formula (( thf_quantified_formula ))
+ in ( LrTable.NT 117, ( result, thf_quantified_formula1left,
+thf_quantified_formula1right), rest671)
+end
+| ( 37, ( ( _, ( MlyValue.thf_unary_formula thf_unary_formula,
+thf_unary_formula1left, thf_unary_formula1right)) :: rest671)) => let
+ val result = MlyValue.thf_unitary_formula (( thf_unary_formula ))
+ in ( LrTable.NT 117, ( result, thf_unary_formula1left,
+thf_unary_formula1right), rest671)
+end
+| ( 38, ( ( _, ( MlyValue.thf_atom thf_atom, thf_atom1left,
+thf_atom1right)) :: rest671)) => let val result =
+MlyValue.thf_unitary_formula (( thf_atom ))
+ in ( LrTable.NT 117, ( result, thf_atom1left, thf_atom1right),
+rest671)
+end
+| ( 39, ( ( _, ( MlyValue.thf_conditional thf_conditional,
+thf_conditional1left, thf_conditional1right)) :: rest671)) => let val
+ result = MlyValue.thf_unitary_formula (( thf_conditional ))
+ in ( LrTable.NT 117, ( result, thf_conditional1left,
+thf_conditional1right), rest671)
+end
+| ( 40, ( ( _, ( MlyValue.thf_let thf_let, thf_let1left,
+thf_let1right)) :: rest671)) => let val result =
+MlyValue.thf_unitary_formula (( thf_let ))
+ in ( LrTable.NT 117, ( result, thf_let1left, thf_let1right), rest671)
end
-| ( 3, ( rest671)) => let val result = MlyValue.optional_info (
-( [] ))
- in ( LrTable.NT 4, ( result, defaultPos, defaultPos), rest671)
-end
-| ( 4, ( ( _, ( MlyValue.general_list general_list, general_list1left
-, general_list1right)) :: rest671)) => let val result =
-MlyValue.useful_info (( general_list ))
- in ( LrTable.NT 16, ( result, general_list1left, general_list1right),
- rest671)
-end
-| ( 5, ( ( _, ( _, _, RBRKT1right)) :: ( _, ( MlyValue.general_terms
-general_terms, _, _)) :: ( _, ( _, LBRKT1left, _)) :: rest671)) => let
- val result = MlyValue.general_list (( general_terms ))
- in ( LrTable.NT 5, ( result, LBRKT1left, RBRKT1right), rest671)
-end
-| ( 6, ( ( _, ( _, _, RBRKT1right)) :: ( _, ( _, LBRKT1left, _)) ::
-rest671)) => let val result = MlyValue.general_list (( [] ))
- in ( LrTable.NT 5, ( result, LBRKT1left, RBRKT1right), rest671)
-end
-| ( 7, ( ( _, ( MlyValue.general_terms general_terms, _,
-general_terms1right)) :: _ :: ( _, ( MlyValue.general_term
-general_term, general_term1left, _)) :: rest671)) => let val result =
- MlyValue.general_terms (( general_term :: general_terms ))
- in ( LrTable.NT 6, ( result, general_term1left, general_terms1right),
- rest671)
-end
-| ( 8, ( ( _, ( MlyValue.general_term general_term, general_term1left
-, general_term1right)) :: rest671)) => let val result =
-MlyValue.general_terms (( [general_term] ))
- in ( LrTable.NT 6, ( result, general_term1left, general_term1right),
+| ( 41, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
+MlyValue.thf_logic_formula thf_logic_formula, _, _)) :: ( _, ( _,
+LPAREN1left, _)) :: rest671)) => let val result =
+MlyValue.thf_unitary_formula (( thf_logic_formula ))
+ in ( LrTable.NT 117, ( result, LPAREN1left, RPAREN1right), rest671)
+
+end
+| ( 42, ( ( _, ( MlyValue.thf_unitary_formula thf_unitary_formula, _,
+ thf_unitary_formula1right)) :: _ :: _ :: ( _, (
+MlyValue.thf_variable_list thf_variable_list, _, _)) :: _ :: ( _, (
+MlyValue.thf_quantifier thf_quantifier, thf_quantifier1left, _)) ::
+rest671)) => let val result = MlyValue.thf_quantified_formula (
+(
+ Quant (thf_quantifier, thf_variable_list, thf_unitary_formula)
+))
+ in ( LrTable.NT 116, ( result, thf_quantifier1left,
+thf_unitary_formula1right), rest671)
+end
+| ( 43, ( ( _, ( MlyValue.thf_variable thf_variable,
+thf_variable1left, thf_variable1right)) :: rest671)) => let val
+result = MlyValue.thf_variable_list (( [thf_variable] ))
+ in ( LrTable.NT 115, ( result, thf_variable1left, thf_variable1right)
+, rest671)
+end
+| ( 44, ( ( _, ( MlyValue.thf_variable_list thf_variable_list, _,
+thf_variable_list1right)) :: _ :: ( _, ( MlyValue.thf_variable
+thf_variable, thf_variable1left, _)) :: rest671)) => let val result =
+ MlyValue.thf_variable_list (( thf_variable :: thf_variable_list ))
+ in ( LrTable.NT 115, ( result, thf_variable1left,
+thf_variable_list1right), rest671)
+end
+| ( 45, ( ( _, ( MlyValue.thf_typed_variable thf_typed_variable,
+thf_typed_variable1left, thf_typed_variable1right)) :: rest671)) =>
+ let val result = MlyValue.thf_variable (( thf_typed_variable ))
+ in ( LrTable.NT 114, ( result, thf_typed_variable1left,
+thf_typed_variable1right), rest671)
+end
+| ( 46, ( ( _, ( MlyValue.variable_ variable_, variable_1left,
+variable_1right)) :: rest671)) => let val result =
+MlyValue.thf_variable (( (variable_, NONE) ))
+ in ( LrTable.NT 114, ( result, variable_1left, variable_1right),
rest671)
end
-| ( 9, ( ( _, ( MlyValue.general_data general_data, general_data1left
-, general_data1right)) :: rest671)) => let val result =
-MlyValue.general_term (( General_Data general_data ))
- in ( LrTable.NT 7, ( result, general_data1left, general_data1right),
-rest671)
-end
-| ( 10, ( ( _, ( MlyValue.general_term general_term, _,
-general_term1right)) :: _ :: ( _, ( MlyValue.general_data general_data
-, general_data1left, _)) :: rest671)) => let val result =
-MlyValue.general_term (( General_Term (general_data, general_term) ))
- in ( LrTable.NT 7, ( result, general_data1left, general_term1right),
+| ( 47, ( ( _, ( MlyValue.thf_top_level_type thf_top_level_type, _,
+thf_top_level_type1right)) :: _ :: ( _, ( MlyValue.variable_ variable_
+, variable_1left, _)) :: rest671)) => let val result =
+MlyValue.thf_typed_variable (( (variable_, SOME thf_top_level_type) ))
+ in ( LrTable.NT 113, ( result, variable_1left,
+thf_top_level_type1right), rest671)
+end
+| ( 48, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
+MlyValue.thf_logic_formula thf_logic_formula, _, _)) :: _ :: ( _, (
+MlyValue.thf_unary_connective thf_unary_connective,
+thf_unary_connective1left, _)) :: rest671)) => let val result =
+MlyValue.thf_unary_formula (
+(
+ Fmla (thf_unary_connective, [thf_logic_formula])
+))
+ in ( LrTable.NT 112, ( result, thf_unary_connective1left,
+RPAREN1right), rest671)
+end
+| ( 49, ( ( _, ( MlyValue.term term, term1left, term1right)) ::
+rest671)) => let val result = MlyValue.thf_atom (
+( Atom (THF_Atom_term term) ))
+ in ( LrTable.NT 102, ( result, term1left, term1right), rest671)
+end
+| ( 50, ( ( _, ( MlyValue.thf_conn_term thf_conn_term,
+thf_conn_term1left, thf_conn_term1right)) :: rest671)) => let val
+result = MlyValue.thf_atom (
+( Atom (THF_Atom_conn_term thf_conn_term) ))
+ in ( LrTable.NT 102, ( result, thf_conn_term1left,
+thf_conn_term1right), rest671)
+end
+| ( 51, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
+MlyValue.thf_logic_formula thf_logic_formula3, _, _)) :: _ :: ( _, (
+MlyValue.thf_logic_formula thf_logic_formula2, _, _)) :: _ :: ( _, (
+MlyValue.thf_logic_formula thf_logic_formula1, _, _)) :: _ :: ( _, ( _
+, ITE_F1left, _)) :: rest671)) => let val result =
+MlyValue.thf_conditional (
+(
+ Conditional (thf_logic_formula1, thf_logic_formula2, thf_logic_formula3)
+)
+)
+ in ( LrTable.NT 100, ( result, ITE_F1left, RPAREN1right), rest671)
+
+end
+| ( 52, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.thf_formula
+thf_formula, _, _)) :: _ :: ( _, ( MlyValue.thf_let_defn thf_let_defn,
+ _, _)) :: _ :: ( _, ( _, LET_TF1left, _)) :: rest671)) => let val
+result = MlyValue.thf_let ((
+ Let (thf_let_defn, thf_formula)
+))
+ in ( LrTable.NT 101, ( result, LET_TF1left, RPAREN1right), rest671)
+
+end
+| ( 53, ( ( _, ( MlyValue.thf_quantified_formula
+thf_quantified_formula, thf_quantified_formula1left,
+thf_quantified_formula1right)) :: rest671)) => let val result =
+MlyValue.thf_let_defn (
+(
+ let
+ val (_, vars, fmla) = extract_quant_info thf_quantified_formula
+ in [Let_fmla (hd vars, fmla)]
+ end
+)
+)
+ in ( LrTable.NT 136, ( result, thf_quantified_formula1left,
+thf_quantified_formula1right), rest671)
+end
+| ( 54, ( ( _, ( MlyValue.thf_top_level_type thf_top_level_type, _,
+thf_top_level_type1right)) :: _ :: ( _, (
+MlyValue.thf_typeable_formula thf_typeable_formula,
+thf_typeable_formula1left, _)) :: rest671)) => let val result =
+MlyValue.thf_type_formula (
+( (thf_typeable_formula, thf_top_level_type) ))
+ in ( LrTable.NT 111, ( result, thf_typeable_formula1left,
+thf_top_level_type1right), rest671)
+end
+| ( 55, ( ( _, ( MlyValue.thf_atom thf_atom, thf_atom1left,
+thf_atom1right)) :: rest671)) => let val result =
+MlyValue.thf_typeable_formula (( thf_atom ))
+ in ( LrTable.NT 110, ( result, thf_atom1left, thf_atom1right),
rest671)
end
-| ( 11, ( ( _, ( MlyValue.general_list general_list,
-general_list1left, general_list1right)) :: rest671)) => let val
-result = MlyValue.general_term (( General_List general_list ))
- in ( LrTable.NT 7, ( result, general_list1left, general_list1right),
+| ( 56, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
+MlyValue.thf_logic_formula thf_logic_formula, _, _)) :: ( _, ( _,
+LPAREN1left, _)) :: rest671)) => let val result =
+MlyValue.thf_typeable_formula (( thf_logic_formula ))
+ in ( LrTable.NT 110, ( result, LPAREN1left, RPAREN1right), rest671)
+
+end
+| ( 57, ( ( _, ( MlyValue.constant constant2, _, constant2right)) ::
+ _ :: ( _, ( MlyValue.constant constant1, constant1left, _)) ::
+rest671)) => let val result = MlyValue.thf_subtype (
+( Subtype(constant1, constant2) ))
+ in ( LrTable.NT 109, ( result, constant1left, constant2right),
rest671)
end
-| ( 12, ( ( _, ( MlyValue.LOWER_WORD LOWER_WORD, LOWER_WORD1left,
-LOWER_WORD1right)) :: rest671)) => let val result =
-MlyValue.atomic_word (( LOWER_WORD ))
- in ( LrTable.NT 8, ( result, LOWER_WORD1left, LOWER_WORD1right),
+| ( 58, ( ( _, ( MlyValue.thf_logic_formula thf_logic_formula,
+thf_logic_formula1left, thf_logic_formula1right)) :: rest671)) => let
+ val result = MlyValue.thf_top_level_type (
+( Fmla_type thf_logic_formula ))
+ in ( LrTable.NT 108, ( result, thf_logic_formula1left,
+thf_logic_formula1right), rest671)
+end
+| ( 59, ( ( _, ( MlyValue.thf_unitary_formula thf_unitary_formula,
+thf_unitary_formula1left, thf_unitary_formula1right)) :: rest671)) =>
+ let val result = MlyValue.thf_unitary_type (
+( Fmla_type thf_unitary_formula ))
+ in ( LrTable.NT 107, ( result, thf_unitary_formula1left,
+thf_unitary_formula1right), rest671)
+end
+| ( 60, ( ( _, ( MlyValue.thf_mapping_type thf_mapping_type,
+thf_mapping_type1left, thf_mapping_type1right)) :: rest671)) => let
+ val result = MlyValue.thf_binary_type (( thf_mapping_type ))
+ in ( LrTable.NT 106, ( result, thf_mapping_type1left,
+thf_mapping_type1right), rest671)
+end
+| ( 61, ( ( _, ( MlyValue.thf_xprod_type thf_xprod_type,
+thf_xprod_type1left, thf_xprod_type1right)) :: rest671)) => let val
+result = MlyValue.thf_binary_type (( thf_xprod_type ))
+ in ( LrTable.NT 106, ( result, thf_xprod_type1left,
+thf_xprod_type1right), rest671)
+end
+| ( 62, ( ( _, ( MlyValue.thf_union_type thf_union_type,
+thf_union_type1left, thf_union_type1right)) :: rest671)) => let val
+result = MlyValue.thf_binary_type (( thf_union_type ))
+ in ( LrTable.NT 106, ( result, thf_union_type1left,
+thf_union_type1right), rest671)
+end
+| ( 63, ( ( _, ( MlyValue.thf_unitary_type thf_unitary_type2, _,
+thf_unitary_type2right)) :: _ :: ( _, ( MlyValue.thf_unitary_type
+thf_unitary_type1, thf_unitary_type1left, _)) :: rest671)) => let val
+ result = MlyValue.thf_mapping_type (
+( Fn_type(thf_unitary_type1, thf_unitary_type2) ))
+ in ( LrTable.NT 105, ( result, thf_unitary_type1left,
+thf_unitary_type2right), rest671)
+end
+| ( 64, ( ( _, ( MlyValue.thf_mapping_type thf_mapping_type, _,
+thf_mapping_type1right)) :: _ :: ( _, ( MlyValue.thf_unitary_type
+thf_unitary_type, thf_unitary_type1left, _)) :: rest671)) => let val
+result = MlyValue.thf_mapping_type (
+( Fn_type(thf_unitary_type, thf_mapping_type) ))
+ in ( LrTable.NT 105, ( result, thf_unitary_type1left,
+thf_mapping_type1right), rest671)
+end
+| ( 65, ( ( _, ( MlyValue.thf_unitary_type thf_unitary_type2, _,
+thf_unitary_type2right)) :: _ :: ( _, ( MlyValue.thf_unitary_type
+thf_unitary_type1, thf_unitary_type1left, _)) :: rest671)) => let val
+ result = MlyValue.thf_xprod_type (
+( Prod_type(thf_unitary_type1, thf_unitary_type2) ))
+ in ( LrTable.NT 104, ( result, thf_unitary_type1left,
+thf_unitary_type2right), rest671)
+end
+| ( 66, ( ( _, ( MlyValue.thf_unitary_type thf_unitary_type, _,
+thf_unitary_type1right)) :: _ :: ( _, ( MlyValue.thf_xprod_type
+thf_xprod_type, thf_xprod_type1left, _)) :: rest671)) => let val
+result = MlyValue.thf_xprod_type (
+( Prod_type(thf_xprod_type, thf_unitary_type) ))
+ in ( LrTable.NT 104, ( result, thf_xprod_type1left,
+thf_unitary_type1right), rest671)
+end
+| ( 67, ( ( _, ( MlyValue.thf_unitary_type thf_unitary_type2, _,
+thf_unitary_type2right)) :: _ :: ( _, ( MlyValue.thf_unitary_type
+thf_unitary_type1, thf_unitary_type1left, _)) :: rest671)) => let val
+ result = MlyValue.thf_union_type (
+( Sum_type(thf_unitary_type1, thf_unitary_type2) ))
+ in ( LrTable.NT 103, ( result, thf_unitary_type1left,
+thf_unitary_type2right), rest671)
+end
+| ( 68, ( ( _, ( MlyValue.thf_unitary_type thf_unitary_type, _,
+thf_unitary_type1right)) :: _ :: ( _, ( MlyValue.thf_union_type
+thf_union_type, thf_union_type1left, _)) :: rest671)) => let val
+result = MlyValue.thf_union_type (
+( Sum_type(thf_union_type, thf_unitary_type) ))
+ in ( LrTable.NT 103, ( result, thf_union_type1left,
+thf_unitary_type1right), rest671)
+end
+| ( 69, ( ( _, ( MlyValue.thf_tuple thf_tuple2, _, thf_tuple2right))
+ :: _ :: ( _, ( MlyValue.thf_tuple thf_tuple1, thf_tuple1left, _)) ::
+rest671)) => let val result = MlyValue.thf_sequent (
+( Sequent(thf_tuple1, thf_tuple2) ))
+ in ( LrTable.NT 99, ( result, thf_tuple1left, thf_tuple2right),
+rest671)
+end
+| ( 70, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.thf_sequent
+thf_sequent, _, _)) :: ( _, ( _, LPAREN1left, _)) :: rest671)) => let
+ val result = MlyValue.thf_sequent (( thf_sequent ))
+ in ( LrTable.NT 99, ( result, LPAREN1left, RPAREN1right), rest671)
+
+end
+| ( 71, ( ( _, ( _, _, RBRKT1right)) :: ( _, ( _, LBRKT1left, _)) ::
+rest671)) => let val result = MlyValue.thf_tuple (( [] ))
+ in ( LrTable.NT 97, ( result, LBRKT1left, RBRKT1right), rest671)
+end
+| ( 72, ( ( _, ( _, _, RBRKT1right)) :: ( _, (
+MlyValue.thf_tuple_list thf_tuple_list, _, _)) :: ( _, ( _, LBRKT1left
+, _)) :: rest671)) => let val result = MlyValue.thf_tuple (
+( thf_tuple_list ))
+ in ( LrTable.NT 97, ( result, LBRKT1left, RBRKT1right), rest671)
+end
+| ( 73, ( ( _, ( MlyValue.thf_logic_formula thf_logic_formula,
+thf_logic_formula1left, thf_logic_formula1right)) :: rest671)) => let
+ val result = MlyValue.thf_tuple_list (( [thf_logic_formula] ))
+ in ( LrTable.NT 98, ( result, thf_logic_formula1left,
+thf_logic_formula1right), rest671)
+end
+| ( 74, ( ( _, ( MlyValue.thf_tuple_list thf_tuple_list, _,
+thf_tuple_list1right)) :: _ :: ( _, ( MlyValue.thf_logic_formula
+thf_logic_formula, thf_logic_formula1left, _)) :: rest671)) => let
+ val result = MlyValue.thf_tuple_list (
+( thf_logic_formula :: thf_tuple_list ))
+ in ( LrTable.NT 98, ( result, thf_logic_formula1left,
+thf_tuple_list1right), rest671)
+end
+| ( 75, ( ( _, ( MlyValue.tff_logic_formula tff_logic_formula,
+tff_logic_formula1left, tff_logic_formula1right)) :: rest671)) => let
+ val result = MlyValue.tff_formula (( tff_logic_formula ))
+ in ( LrTable.NT 96, ( result, tff_logic_formula1left,
+tff_logic_formula1right), rest671)
+end
+| ( 76, ( ( _, ( MlyValue.tff_typed_atom tff_typed_atom,
+tff_typed_atom1left, tff_typed_atom1right)) :: rest671)) => let val
+result = MlyValue.tff_formula (
+( Atom (TFF_Typed_Atom tff_typed_atom) ))
+ in ( LrTable.NT 96, ( result, tff_typed_atom1left,
+tff_typed_atom1right), rest671)
+end
+| ( 77, ( ( _, ( MlyValue.tff_sequent tff_sequent, tff_sequent1left,
+tff_sequent1right)) :: rest671)) => let val result =
+MlyValue.tff_formula (( tff_sequent ))
+ in ( LrTable.NT 96, ( result, tff_sequent1left, tff_sequent1right),
rest671)
end
-| ( 13, ( ( _, ( MlyValue.SINGLE_QUOTED SINGLE_QUOTED,
-SINGLE_QUOTED1left, SINGLE_QUOTED1right)) :: rest671)) => let val
-result = MlyValue.atomic_word (( SINGLE_QUOTED ))
- in ( LrTable.NT 8, ( result, SINGLE_QUOTED1left, SINGLE_QUOTED1right)
-, rest671)
-end
-| ( 14, ( ( _, ( _, THF1left, THF1right)) :: rest671)) => let val
-result = MlyValue.atomic_word (( "thf" ))
- in ( LrTable.NT 8, ( result, THF1left, THF1right), rest671)
-end
-| ( 15, ( ( _, ( _, TFF1left, TFF1right)) :: rest671)) => let val
-result = MlyValue.atomic_word (( "tff" ))
- in ( LrTable.NT 8, ( result, TFF1left, TFF1right), rest671)
-end
-| ( 16, ( ( _, ( _, FOF1left, FOF1right)) :: rest671)) => let val
-result = MlyValue.atomic_word (( "fof" ))
- in ( LrTable.NT 8, ( result, FOF1left, FOF1right), rest671)
-end
-| ( 17, ( ( _, ( _, CNF1left, CNF1right)) :: rest671)) => let val
-result = MlyValue.atomic_word (( "cnf" ))
- in ( LrTable.NT 8, ( result, CNF1left, CNF1right), rest671)
-end
-| ( 18, ( ( _, ( _, INCLUDE1left, INCLUDE1right)) :: rest671)) => let
- val result = MlyValue.atomic_word (( "include" ))
- in ( LrTable.NT 8, ( result, INCLUDE1left, INCLUDE1right), rest671)
+| ( 78, ( ( _, ( MlyValue.tff_binary_formula tff_binary_formula,
+tff_binary_formula1left, tff_binary_formula1right)) :: rest671)) =>
+ let val result = MlyValue.tff_logic_formula (( tff_binary_formula ))
+ in ( LrTable.NT 95, ( result, tff_binary_formula1left,
+tff_binary_formula1right), rest671)
+end
+| ( 79, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula,
+tff_unitary_formula1left, tff_unitary_formula1right)) :: rest671)) =>
+ let val result = MlyValue.tff_logic_formula (( tff_unitary_formula )
+)
+ in ( LrTable.NT 95, ( result, tff_unitary_formula1left,
+tff_unitary_formula1right), rest671)
+end
+| ( 80, ( ( _, ( MlyValue.tff_binary_nonassoc tff_binary_nonassoc,
+tff_binary_nonassoc1left, tff_binary_nonassoc1right)) :: rest671)) =>
+ let val result = MlyValue.tff_binary_formula (
+( tff_binary_nonassoc ))
+ in ( LrTable.NT 94, ( result, tff_binary_nonassoc1left,
+tff_binary_nonassoc1right), rest671)
+end
+| ( 81, ( ( _, ( MlyValue.tff_binary_assoc tff_binary_assoc,
+tff_binary_assoc1left, tff_binary_assoc1right)) :: rest671)) => let
+ val result = MlyValue.tff_binary_formula (( tff_binary_assoc ))
+ in ( LrTable.NT 94, ( result, tff_binary_assoc1left,
+tff_binary_assoc1right), rest671)
+end
+| ( 82, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula2, _
+, tff_unitary_formula2right)) :: ( _, ( MlyValue.binary_connective
+binary_connective, _, _)) :: ( _, ( MlyValue.tff_unitary_formula
+tff_unitary_formula1, tff_unitary_formula1left, _)) :: rest671)) =>
+ let val result = MlyValue.tff_binary_nonassoc (
+( Fmla (binary_connective, [tff_unitary_formula1, tff_unitary_formula2]) )
+)
+ in ( LrTable.NT 93, ( result, tff_unitary_formula1left,
+tff_unitary_formula2right), rest671)
+end
+| ( 83, ( ( _, ( MlyValue.tff_or_formula tff_or_formula,
+tff_or_formula1left, tff_or_formula1right)) :: rest671)) => let val
+result = MlyValue.tff_binary_assoc (( tff_or_formula ))
+ in ( LrTable.NT 92, ( result, tff_or_formula1left,
+tff_or_formula1right), rest671)
+end
+| ( 84, ( ( _, ( MlyValue.tff_and_formula tff_and_formula,
+tff_and_formula1left, tff_and_formula1right)) :: rest671)) => let val
+ result = MlyValue.tff_binary_assoc (( tff_and_formula ))
+ in ( LrTable.NT 92, ( result, tff_and_formula1left,
+tff_and_formula1right), rest671)
+end
+| ( 85, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula2, _
+, tff_unitary_formula2right)) :: _ :: ( _, (
+MlyValue.tff_unitary_formula tff_unitary_formula1,
+tff_unitary_formula1left, _)) :: rest671)) => let val result =
+MlyValue.tff_or_formula (
+( Fmla (Interpreted_Logic Or, [tff_unitary_formula1, tff_unitary_formula2]) )
+)
+ in ( LrTable.NT 91, ( result, tff_unitary_formula1left,
+tff_unitary_formula2right), rest671)
+end
+| ( 86, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula, _,
+ tff_unitary_formula1right)) :: _ :: ( _, ( MlyValue.tff_or_formula
+tff_or_formula, tff_or_formula1left, _)) :: rest671)) => let val
+result = MlyValue.tff_or_formula (
+( Fmla (Interpreted_Logic Or, [tff_or_formula, tff_unitary_formula]) )
+)
+ in ( LrTable.NT 91, ( result, tff_or_formula1left,
+tff_unitary_formula1right), rest671)
+end
+| ( 87, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula2, _
+, tff_unitary_formula2right)) :: _ :: ( _, (
+MlyValue.tff_unitary_formula tff_unitary_formula1,
+tff_unitary_formula1left, _)) :: rest671)) => let val result =
+MlyValue.tff_and_formula (
+( Fmla (Interpreted_Logic And, [tff_unitary_formula1, tff_unitary_formula2]) )
+)
+ in ( LrTable.NT 90, ( result, tff_unitary_formula1left,
+tff_unitary_formula2right), rest671)
+end
+| ( 88, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula, _,
+ tff_unitary_formula1right)) :: _ :: ( _, ( MlyValue.tff_and_formula
+tff_and_formula, tff_and_formula1left, _)) :: rest671)) => let val
+result = MlyValue.tff_and_formula (
+( Fmla (Interpreted_Logic And, [tff_and_formula, tff_unitary_formula]) )
+)
+ in ( LrTable.NT 90, ( result, tff_and_formula1left,
+tff_unitary_formula1right), rest671)
+end
+| ( 89, ( ( _, ( MlyValue.tff_quantified_formula
+tff_quantified_formula, tff_quantified_formula1left,
+tff_quantified_formula1right)) :: rest671)) => let val result =
+MlyValue.tff_unitary_formula (( tff_quantified_formula ))
+ in ( LrTable.NT 89, ( result, tff_quantified_formula1left,
+tff_quantified_formula1right), rest671)
+end
+| ( 90, ( ( _, ( MlyValue.tff_unary_formula tff_unary_formula,
+tff_unary_formula1left, tff_unary_formula1right)) :: rest671)) => let
+ val result = MlyValue.tff_unitary_formula (( tff_unary_formula ))
+ in ( LrTable.NT 89, ( result, tff_unary_formula1left,
+tff_unary_formula1right), rest671)
+end
+| ( 91, ( ( _, ( MlyValue.atomic_formula atomic_formula,
+atomic_formula1left, atomic_formula1right)) :: rest671)) => let val
+result = MlyValue.tff_unitary_formula (( atomic_formula ))
+ in ( LrTable.NT 89, ( result, atomic_formula1left,
+atomic_formula1right), rest671)
+end
+| ( 92, ( ( _, ( MlyValue.tff_conditional tff_conditional,
+tff_conditional1left, tff_conditional1right)) :: rest671)) => let val
+ result = MlyValue.tff_unitary_formula (( tff_conditional ))
+ in ( LrTable.NT 89, ( result, tff_conditional1left,
+tff_conditional1right), rest671)
+end
+| ( 93, ( ( _, ( MlyValue.tff_let tff_let, tff_let1left,
+tff_let1right)) :: rest671)) => let val result =
+MlyValue.tff_unitary_formula (( tff_let ))
+ in ( LrTable.NT 89, ( result, tff_let1left, tff_let1right), rest671)
end
-| ( 19, ( ( _, ( MlyValue.UPPER_WORD UPPER_WORD, UPPER_WORD1left,
-UPPER_WORD1right)) :: rest671)) => let val result =
-MlyValue.variable_ (( UPPER_WORD ))
- in ( LrTable.NT 10, ( result, UPPER_WORD1left, UPPER_WORD1right),
-rest671)
-end
-| ( 20, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
-MlyValue.general_terms general_terms, _, _)) :: _ :: ( _, (
-MlyValue.atomic_word atomic_word, atomic_word1left, _)) :: rest671))
- => let val result = MlyValue.general_function (
-( Application (atomic_word, general_terms) ))
- in ( LrTable.NT 15, ( result, atomic_word1left, RPAREN1right),
+| ( 94, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
+MlyValue.tff_logic_formula tff_logic_formula, _, _)) :: ( _, ( _,
+LPAREN1left, _)) :: rest671)) => let val result =
+MlyValue.tff_unitary_formula (( tff_logic_formula ))
+ in ( LrTable.NT 89, ( result, LPAREN1left, RPAREN1right), rest671)
+
+end
+| ( 95, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula, _,
+ tff_unitary_formula1right)) :: _ :: _ :: ( _, (
+MlyValue.tff_variable_list tff_variable_list, _, _)) :: _ :: ( _, (
+MlyValue.fol_quantifier fol_quantifier, fol_quantifier1left, _)) ::
+rest671)) => let val result = MlyValue.tff_quantified_formula (
+(
+ Quant (fol_quantifier, tff_variable_list, tff_unitary_formula)
+))
+ in ( LrTable.NT 88, ( result, fol_quantifier1left,
+tff_unitary_formula1right), rest671)
+end
+| ( 96, ( ( _, ( MlyValue.tff_variable tff_variable,
+tff_variable1left, tff_variable1right)) :: rest671)) => let val
+result = MlyValue.tff_variable_list (( [tff_variable] ))
+ in ( LrTable.NT 87, ( result, tff_variable1left, tff_variable1right),
+ rest671)
+end
+| ( 97, ( ( _, ( MlyValue.tff_variable_list tff_variable_list, _,
+tff_variable_list1right)) :: _ :: ( _, ( MlyValue.tff_variable
+tff_variable, tff_variable1left, _)) :: rest671)) => let val result =
+ MlyValue.tff_variable_list (( tff_variable :: tff_variable_list ))
+ in ( LrTable.NT 87, ( result, tff_variable1left,
+tff_variable_list1right), rest671)
+end
+| ( 98, ( ( _, ( MlyValue.tff_typed_variable tff_typed_variable,
+tff_typed_variable1left, tff_typed_variable1right)) :: rest671)) =>
+ let val result = MlyValue.tff_variable (( tff_typed_variable ))
+ in ( LrTable.NT 86, ( result, tff_typed_variable1left,
+tff_typed_variable1right), rest671)
+end
+| ( 99, ( ( _, ( MlyValue.variable_ variable_, variable_1left,
+variable_1right)) :: rest671)) => let val result =
+MlyValue.tff_variable (( (variable_, NONE) ))
+ in ( LrTable.NT 86, ( result, variable_1left, variable_1right),
rest671)
end
-| ( 21, ( ( _, ( MlyValue.atomic_word atomic_word, atomic_word1left,
-atomic_word1right)) :: rest671)) => let val result =
-MlyValue.general_data (( Atomic_Word atomic_word ))
- in ( LrTable.NT 9, ( result, atomic_word1left, atomic_word1right),
-rest671)
-end
-| ( 22, ( ( _, ( MlyValue.general_function general_function,
-general_function1left, general_function1right)) :: rest671)) => let
- val result = MlyValue.general_data (( general_function ))
- in ( LrTable.NT 9, ( result, general_function1left,
-general_function1right), rest671)
-end
-| ( 23, ( ( _, ( MlyValue.variable_ variable_, variable_1left,
-variable_1right)) :: rest671)) => let val result =
-MlyValue.general_data (( V variable_ ))
- in ( LrTable.NT 9, ( result, variable_1left, variable_1right),
+| ( 100, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type, _,
+tff_atomic_type1right)) :: _ :: ( _, ( MlyValue.variable_ variable_,
+variable_1left, _)) :: rest671)) => let val result =
+MlyValue.tff_typed_variable (( (variable_, SOME tff_atomic_type) ))
+ in ( LrTable.NT 85, ( result, variable_1left, tff_atomic_type1right),
+ rest671)
+end
+| ( 101, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula, _
+, tff_unitary_formula1right)) :: ( _, ( MlyValue.unary_connective
+unary_connective, unary_connective1left, _)) :: rest671)) => let val
+result = MlyValue.tff_unary_formula (
+( Fmla (unary_connective, [tff_unitary_formula]) ))
+ in ( LrTable.NT 84, ( result, unary_connective1left,
+tff_unitary_formula1right), rest671)
+end
+| ( 102, ( ( _, ( MlyValue.fol_infix_unary fol_infix_unary,
+fol_infix_unary1left, fol_infix_unary1right)) :: rest671)) => let val
+ result = MlyValue.tff_unary_formula (( fol_infix_unary ))
+ in ( LrTable.NT 84, ( result, fol_infix_unary1left,
+fol_infix_unary1right), rest671)
+end
+| ( 103, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
+MlyValue.tff_logic_formula tff_logic_formula3, _, _)) :: _ :: ( _, (
+MlyValue.tff_logic_formula tff_logic_formula2, _, _)) :: _ :: ( _, (
+MlyValue.tff_logic_formula tff_logic_formula1, _, _)) :: _ :: ( _, ( _
+, ITE_F1left, _)) :: rest671)) => let val result =
+MlyValue.tff_conditional (
+(
+ Conditional (tff_logic_formula1, tff_logic_formula2, tff_logic_formula3)
+)
+)
+ in ( LrTable.NT 76, ( result, ITE_F1left, RPAREN1right), rest671)
+end
+| ( 104, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.tff_formula
+ tff_formula, _, _)) :: _ :: ( _, ( MlyValue.tff_let_term_defn
+tff_let_term_defn, _, _)) :: _ :: ( _, ( _, LET_TF1left, _)) ::
+rest671)) => let val result = MlyValue.tff_let (
+(Let (tff_let_term_defn, tff_formula) ))
+ in ( LrTable.NT 137, ( result, LET_TF1left, RPAREN1right), rest671)
+
+end
+| ( 105, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.tff_formula
+ tff_formula, _, _)) :: _ :: ( _, ( MlyValue.tff_let_formula_defn
+tff_let_formula_defn, _, _)) :: _ :: ( _, ( _, LET_FF1left, _)) ::
+rest671)) => let val result = MlyValue.tff_let (
+( Let (tff_let_formula_defn, tff_formula) ))
+ in ( LrTable.NT 137, ( result, LET_FF1left, RPAREN1right), rest671)
+
+end
+| ( 106, ( ( _, ( MlyValue.tff_quantified_formula
+tff_quantified_formula, tff_quantified_formula1left,
+tff_quantified_formula1right)) :: rest671)) => let val result =
+MlyValue.tff_let_term_defn (
+(
+ let
+ val (_, vars, fmla) = extract_quant_info tff_quantified_formula
+ in [Let_fmla (hd vars, fmla)]
+ end
+)
+)
+ in ( LrTable.NT 138, ( result, tff_quantified_formula1left,
+tff_quantified_formula1right), rest671)
+end
+| ( 107, ( ( _, ( MlyValue.tff_quantified_formula
+tff_quantified_formula, tff_quantified_formula1left,
+tff_quantified_formula1right)) :: rest671)) => let val result =
+MlyValue.tff_let_formula_defn (
+(
+ let
+ val (_, vars, fmla) = extract_quant_info tff_quantified_formula
+ in [Let_fmla (hd vars, fmla)]
+ end
+)
+)
+ in ( LrTable.NT 139, ( result, tff_quantified_formula1left,
+tff_quantified_formula1right), rest671)
+end
+| ( 108, ( ( _, ( MlyValue.tff_tuple tff_tuple2, _, tff_tuple2right))
+ :: _ :: ( _, ( MlyValue.tff_tuple tff_tuple1, tff_tuple1left, _)) ::
+rest671)) => let val result = MlyValue.tff_sequent (
+( Sequent (tff_tuple1, tff_tuple2) ))
+ in ( LrTable.NT 75, ( result, tff_tuple1left, tff_tuple2right),
rest671)
end
-| ( 24, ( ( _, ( MlyValue.number number, number1left, number1right))
- :: rest671)) => let val result = MlyValue.general_data (
-( Number number ))
- in ( LrTable.NT 9, ( result, number1left, number1right), rest671)
-end
-| ( 25, ( ( _, ( MlyValue.DISTINCT_OBJECT DISTINCT_OBJECT,
-DISTINCT_OBJECT1left, DISTINCT_OBJECT1right)) :: rest671)) => let val
- result = MlyValue.general_data (( Distinct_Object DISTINCT_OBJECT ))
- in ( LrTable.NT 9, ( result, DISTINCT_OBJECT1left,
-DISTINCT_OBJECT1right), rest671)
-end
-| ( 26, ( ( _, ( MlyValue.formula_data formula_data,
-formula_data1left, formula_data1right)) :: rest671)) => let val
-result = MlyValue.general_data (( formula_data ))
- in ( LrTable.NT 9, ( result, formula_data1left, formula_data1right),
+| ( 109, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.tff_sequent
+ tff_sequent, _, _)) :: ( _, ( _, LPAREN1left, _)) :: rest671)) => let
+ val result = MlyValue.tff_sequent (( tff_sequent ))
+ in ( LrTable.NT 75, ( result, LPAREN1left, RPAREN1right), rest671)
+
+end
+| ( 110, ( ( _, ( _, _, RBRKT1right)) :: ( _, ( _, LBRKT1left, _)) ::
+ rest671)) => let val result = MlyValue.tff_tuple (( [] ))
+ in ( LrTable.NT 73, ( result, LBRKT1left, RBRKT1right), rest671)
+end
+| ( 111, ( ( _, ( _, _, RBRKT1right)) :: ( _, (
+MlyValue.tff_tuple_list tff_tuple_list, _, _)) :: ( _, ( _, LBRKT1left
+, _)) :: rest671)) => let val result = MlyValue.tff_tuple (
+( tff_tuple_list ))
+ in ( LrTable.NT 73, ( result, LBRKT1left, RBRKT1right), rest671)
+end
+| ( 112, ( ( _, ( MlyValue.tff_tuple_list tff_tuple_list, _,
+tff_tuple_list1right)) :: _ :: ( _, ( MlyValue.tff_logic_formula
+tff_logic_formula, tff_logic_formula1left, _)) :: rest671)) => let
+ val result = MlyValue.tff_tuple_list (
+( tff_logic_formula :: tff_tuple_list ))
+ in ( LrTable.NT 74, ( result, tff_logic_formula1left,
+tff_tuple_list1right), rest671)
+end
+| ( 113, ( ( _, ( MlyValue.tff_logic_formula tff_logic_formula,
+tff_logic_formula1left, tff_logic_formula1right)) :: rest671)) => let
+ val result = MlyValue.tff_tuple_list (( [tff_logic_formula] ))
+ in ( LrTable.NT 74, ( result, tff_logic_formula1left,
+tff_logic_formula1right), rest671)
+end
+| ( 114, ( ( _, ( MlyValue.tff_top_level_type tff_top_level_type, _,
+tff_top_level_type1right)) :: _ :: ( _, ( MlyValue.tff_untyped_atom
+tff_untyped_atom, tff_untyped_atom1left, _)) :: rest671)) => let val
+result = MlyValue.tff_typed_atom (
+( (fst tff_untyped_atom, SOME tff_top_level_type) ))
+ in ( LrTable.NT 83, ( result, tff_untyped_atom1left,
+tff_top_level_type1right), rest671)
+end
+| ( 115, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
+MlyValue.tff_typed_atom tff_typed_atom, _, _)) :: ( _, ( _,
+LPAREN1left, _)) :: rest671)) => let val result =
+MlyValue.tff_typed_atom (( tff_typed_atom ))
+ in ( LrTable.NT 83, ( result, LPAREN1left, RPAREN1right), rest671)
+
+end
+| ( 116, ( ( _, ( MlyValue.functor_ functor_, functor_1left,
+functor_1right)) :: rest671)) => let val result =
+MlyValue.tff_untyped_atom (( (functor_, NONE) ))
+ in ( LrTable.NT 82, ( result, functor_1left, functor_1right), rest671
+)
+end
+| ( 117, ( ( _, ( MlyValue.system_functor system_functor,
+system_functor1left, system_functor1right)) :: rest671)) => let val
+result = MlyValue.tff_untyped_atom (( (system_functor, NONE) ))
+ in ( LrTable.NT 82, ( result, system_functor1left,
+system_functor1right), rest671)
+end
+| ( 118, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type,
+tff_atomic_type1left, tff_atomic_type1right)) :: rest671)) => let val
+ result = MlyValue.tff_top_level_type (( tff_atomic_type ))
+ in ( LrTable.NT 81, ( result, tff_atomic_type1left,
+tff_atomic_type1right), rest671)
+end
+| ( 119, ( ( _, ( MlyValue.tff_mapping_type tff_mapping_type,
+tff_mapping_type1left, tff_mapping_type1right)) :: rest671)) => let
+ val result = MlyValue.tff_top_level_type (( tff_mapping_type ))
+ in ( LrTable.NT 81, ( result, tff_mapping_type1left,
+tff_mapping_type1right), rest671)
+end
+| ( 120, ( ( _, ( MlyValue.tff_quantified_type tff_quantified_type,
+tff_quantified_type1left, tff_quantified_type1right)) :: rest671)) =>
+ let val result = MlyValue.tff_top_level_type (
+( tff_quantified_type ))
+ in ( LrTable.NT 81, ( result, tff_quantified_type1left,
+tff_quantified_type1right), rest671)
+end
+| ( 121, ( ( _, ( MlyValue.tff_monotype tff_monotype, _,
+tff_monotype1right)) :: _ :: _ :: ( _, ( MlyValue.tff_variable_list
+tff_variable_list, _, _)) :: _ :: ( _, ( _, DEP_PROD1left, _)) ::
+rest671)) => let val result = MlyValue.tff_quantified_type (
+(
+ Fmla_type (Quant (Dep_Prod, tff_variable_list, Type_fmla tff_monotype))
+)
+)
+ in ( LrTable.NT 140, ( result, DEP_PROD1left, tff_monotype1right),
rest671)
end
-| ( 27, ( ( _, ( MlyValue.integer integer, integer1left,
-integer1right)) :: rest671)) => let val result = MlyValue.number (
-( (Int_num, integer) ))
- in ( LrTable.NT 11, ( result, integer1left, integer1right), rest671)
+| ( 122, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
+MlyValue.tff_quantified_type tff_quantified_type, _, _)) :: ( _, ( _,
+LPAREN1left, _)) :: rest671)) => let val result =
+MlyValue.tff_quantified_type (( tff_quantified_type ))
+ in ( LrTable.NT 140, ( result, LPAREN1left, RPAREN1right), rest671)
+
+end
+| ( 123, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type,
+tff_atomic_type1left, tff_atomic_type1right)) :: rest671)) => let val
+ result = MlyValue.tff_monotype (( tff_atomic_type ))
+ in ( LrTable.NT 141, ( result, tff_atomic_type1left,
+tff_atomic_type1right), rest671)
+end
+| ( 124, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
+MlyValue.tff_mapping_type tff_mapping_type, _, _)) :: ( _, ( _,
+LPAREN1left, _)) :: rest671)) => let val result =
+MlyValue.tff_monotype (( tff_mapping_type ))
+ in ( LrTable.NT 141, ( result, LPAREN1left, RPAREN1right), rest671)
+
+end
+| ( 125, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type,
+tff_atomic_type1left, tff_atomic_type1right)) :: rest671)) => let val
+ result = MlyValue.tff_unitary_type (( tff_atomic_type ))
+ in ( LrTable.NT 80, ( result, tff_atomic_type1left,
+tff_atomic_type1right), rest671)
+end
+| ( 126, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
+MlyValue.tff_xprod_type tff_xprod_type, _, _)) :: ( _, ( _,
+LPAREN1left, _)) :: rest671)) => let val result =
+MlyValue.tff_unitary_type (( tff_xprod_type ))
+ in ( LrTable.NT 80, ( result, LPAREN1left, RPAREN1right), rest671)
end
-| ( 28, ( ( _, ( MlyValue.REAL REAL, REAL1left, REAL1right)) ::
-rest671)) => let val result = MlyValue.number (( (Real_num, REAL) ))
- in ( LrTable.NT 11, ( result, REAL1left, REAL1right), rest671)
-end
-| ( 29, ( ( _, ( MlyValue.RATIONAL RATIONAL, RATIONAL1left,
-RATIONAL1right)) :: rest671)) => let val result = MlyValue.number (
-( (Rat_num, RATIONAL) ))
- in ( LrTable.NT 11, ( result, RATIONAL1left, RATIONAL1right), rest671
+| ( 127, ( ( _, ( MlyValue.atomic_word atomic_word, atomic_word1left,
+ atomic_word1right)) :: rest671)) => let val result =
+MlyValue.tff_atomic_type (( Atom_type atomic_word ))
+ in ( LrTable.NT 79, ( result, atomic_word1left, atomic_word1right),
+rest671)
+end
+| ( 128, ( ( _, ( MlyValue.defined_type defined_type,
+defined_type1left, defined_type1right)) :: rest671)) => let val
+result = MlyValue.tff_atomic_type (( Defined_type defined_type ))
+ in ( LrTable.NT 79, ( result, defined_type1left, defined_type1right),
+ rest671)
+end
+| ( 129, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
+MlyValue.tff_type_arguments tff_type_arguments, _, _)) :: _ :: ( _, (
+MlyValue.atomic_word atomic_word, atomic_word1left, _)) :: rest671))
+ => let val result = MlyValue.tff_atomic_type (
+( Fmla_type (Fmla (Uninterpreted atomic_word, (map Type_fmla tff_type_arguments))) )
+)
+ in ( LrTable.NT 79, ( result, atomic_word1left, RPAREN1right),
+rest671)
+end
+| ( 130, ( ( _, ( MlyValue.variable_ variable_, variable_1left,
+variable_1right)) :: rest671)) => let val result =
+MlyValue.tff_atomic_type (
+( Fmla_type (Pred (Interpreted_ExtraLogic Apply, [Term_Var variable_])) )
+)
+ in ( LrTable.NT 79, ( result, variable_1left, variable_1right),
+rest671)
+end
+| ( 131, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type,
+tff_atomic_type1left, tff_atomic_type1right)) :: rest671)) => let val
+ result = MlyValue.tff_type_arguments (( [tff_atomic_type] ))
+ in ( LrTable.NT 142, ( result, tff_atomic_type1left,
+tff_atomic_type1right), rest671)
+end
+| ( 132, ( ( _, ( MlyValue.tff_type_arguments tff_type_arguments, _,
+tff_type_arguments1right)) :: _ :: ( _, ( MlyValue.tff_atomic_type
+tff_atomic_type, tff_atomic_type1left, _)) :: rest671)) => let val
+result = MlyValue.tff_type_arguments (
+( tff_atomic_type :: tff_type_arguments ))
+ in ( LrTable.NT 142, ( result, tff_atomic_type1left,
+tff_type_arguments1right), rest671)
+end
+| ( 133, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type, _,
+tff_atomic_type1right)) :: _ :: ( _, ( MlyValue.tff_unitary_type
+tff_unitary_type, tff_unitary_type1left, _)) :: rest671)) => let val
+result = MlyValue.tff_mapping_type (
+( Fn_type(tff_unitary_type, tff_atomic_type) ))
+ in ( LrTable.NT 78, ( result, tff_unitary_type1left,
+tff_atomic_type1right), rest671)
+end
+| ( 134, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
+MlyValue.tff_mapping_type tff_mapping_type, _, _)) :: ( _, ( _,
+LPAREN1left, _)) :: rest671)) => let val result =
+MlyValue.tff_mapping_type (( tff_mapping_type ))
+ in ( LrTable.NT 78, ( result, LPAREN1left, RPAREN1right), rest671)
+
+end
+| ( 135, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type2, _,
+tff_atomic_type2right)) :: _ :: ( _, ( MlyValue.tff_atomic_type
+tff_atomic_type1, tff_atomic_type1left, _)) :: rest671)) => let val
+result = MlyValue.tff_xprod_type (
+( Prod_type(tff_atomic_type1, tff_atomic_type2) ))
+ in ( LrTable.NT 77, ( result, tff_atomic_type1left,
+tff_atomic_type2right), rest671)
+end
+| ( 136, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type, _,
+tff_atomic_type1right)) :: _ :: ( _, ( MlyValue.tff_xprod_type
+tff_xprod_type, tff_xprod_type1left, _)) :: rest671)) => let val
+result = MlyValue.tff_xprod_type (
+( Prod_type(tff_xprod_type, tff_atomic_type) ))
+ in ( LrTable.NT 77, ( result, tff_xprod_type1left,
+tff_atomic_type1right), rest671)
+end
+| ( 137, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
+MlyValue.tff_xprod_type tff_xprod_type, _, _)) :: ( _, ( _,
+LPAREN1left, _)) :: rest671)) => let val result =
+MlyValue.tff_xprod_type (( tff_xprod_type ))
+ in ( LrTable.NT 77, ( result, LPAREN1left, RPAREN1right), rest671)
+
+end
+| ( 138, ( ( _, ( MlyValue.fof_logic_formula fof_logic_formula,
+fof_logic_formula1left, fof_logic_formula1right)) :: rest671)) => let
+ val result = MlyValue.fof_formula (( fof_logic_formula ))
+ in ( LrTable.NT 72, ( result, fof_logic_formula1left,
+fof_logic_formula1right), rest671)
+end
+| ( 139, ( ( _, ( MlyValue.fof_sequent fof_sequent, fof_sequent1left,
+ fof_sequent1right)) :: rest671)) => let val result =
+MlyValue.fof_formula (( fof_sequent ))
+ in ( LrTable.NT 72, ( result, fof_sequent1left, fof_sequent1right),
+rest671)
+end
+| ( 140, ( ( _, ( MlyValue.fof_binary_formula fof_binary_formula,
+fof_binary_formula1left, fof_binary_formula1right)) :: rest671)) =>
+ let val result = MlyValue.fof_logic_formula (( fof_binary_formula ))
+ in ( LrTable.NT 71, ( result, fof_binary_formula1left,
+fof_binary_formula1right), rest671)
+end
+| ( 141, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula,
+fof_unitary_formula1left, fof_unitary_formula1right)) :: rest671)) =>
+ let val result = MlyValue.fof_logic_formula (( fof_unitary_formula )
+)
+ in ( LrTable.NT 71, ( result, fof_unitary_formula1left,
+fof_unitary_formula1right), rest671)
+end
+| ( 142, ( ( _, ( MlyValue.fof_binary_nonassoc fof_binary_nonassoc,
+fof_binary_nonassoc1left, fof_binary_nonassoc1right)) :: rest671)) =>
+ let val result = MlyValue.fof_binary_formula (
+( fof_binary_nonassoc ))
+ in ( LrTable.NT 70, ( result, fof_binary_nonassoc1left,
+fof_binary_nonassoc1right), rest671)
+end
+| ( 143, ( ( _, ( MlyValue.fof_binary_assoc fof_binary_assoc,
+fof_binary_assoc1left, fof_binary_assoc1right)) :: rest671)) => let
+ val result = MlyValue.fof_binary_formula (( fof_binary_assoc ))
+ in ( LrTable.NT 70, ( result, fof_binary_assoc1left,
+fof_binary_assoc1right), rest671)
+end
+| ( 144, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula2,
+ _, fof_unitary_formula2right)) :: ( _, ( MlyValue.binary_connective
+binary_connective, _, _)) :: ( _, ( MlyValue.fof_unitary_formula
+fof_unitary_formula1, fof_unitary_formula1left, _)) :: rest671)) =>
+ let val result = MlyValue.fof_binary_nonassoc (
+(
+ Fmla (binary_connective, [fof_unitary_formula1, fof_unitary_formula2] )
+)
)
-end
-| ( 30, ( ( _, ( MlyValue.UNSIGNED_INTEGER UNSIGNED_INTEGER,
-UNSIGNED_INTEGER1left, UNSIGNED_INTEGER1right)) :: rest671)) => let
- val result = MlyValue.integer (( UNSIGNED_INTEGER ))
- in ( LrTable.NT 13, ( result, UNSIGNED_INTEGER1left,
-UNSIGNED_INTEGER1right), rest671)
-end
-| ( 31, ( ( _, ( MlyValue.SIGNED_INTEGER SIGNED_INTEGER,
-SIGNED_INTEGER1left, SIGNED_INTEGER1right)) :: rest671)) => let val
-result = MlyValue.integer (( SIGNED_INTEGER ))
- in ( LrTable.NT 13, ( result, SIGNED_INTEGER1left,
-SIGNED_INTEGER1right), rest671)
-end
-| ( 32, ( ( _, ( MlyValue.SINGLE_QUOTED SINGLE_QUOTED,
-SINGLE_QUOTED1left, SINGLE_QUOTED1right)) :: rest671)) => let val
-result = MlyValue.file_name (( SINGLE_QUOTED ))
- in ( LrTable.NT 17, ( result, SINGLE_QUOTED1left, SINGLE_QUOTED1right
+ in ( LrTable.NT 69, ( result, fof_unitary_formula1left,
+fof_unitary_formula2right), rest671)
+end
+| ( 145, ( ( _, ( MlyValue.fof_or_formula fof_or_formula,
+fof_or_formula1left, fof_or_formula1right)) :: rest671)) => let val
+result = MlyValue.fof_binary_assoc (( fof_or_formula ))
+ in ( LrTable.NT 68, ( result, fof_or_formula1left,
+fof_or_formula1right), rest671)
+end
+| ( 146, ( ( _, ( MlyValue.fof_and_formula fof_and_formula,
+fof_and_formula1left, fof_and_formula1right)) :: rest671)) => let val
+ result = MlyValue.fof_binary_assoc (( fof_and_formula ))
+ in ( LrTable.NT 68, ( result, fof_and_formula1left,
+fof_and_formula1right), rest671)
+end
+| ( 147, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula2,
+ _, fof_unitary_formula2right)) :: _ :: ( _, (
+MlyValue.fof_unitary_formula fof_unitary_formula1,
+fof_unitary_formula1left, _)) :: rest671)) => let val result =
+MlyValue.fof_or_formula (
+( Fmla (Interpreted_Logic Or, [fof_unitary_formula1, fof_unitary_formula2]) )
+)
+ in ( LrTable.NT 67, ( result, fof_unitary_formula1left,
+fof_unitary_formula2right), rest671)
+end
+| ( 148, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula, _
+, fof_unitary_formula1right)) :: _ :: ( _, ( MlyValue.fof_or_formula
+fof_or_formula, fof_or_formula1left, _)) :: rest671)) => let val
+result = MlyValue.fof_or_formula (
+( Fmla (Interpreted_Logic Or, [fof_or_formula, fof_unitary_formula]) )
+)
+ in ( LrTable.NT 67, ( result, fof_or_formula1left,
+fof_unitary_formula1right), rest671)
+end
+| ( 149, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula2,
+ _, fof_unitary_formula2right)) :: _ :: ( _, (
+MlyValue.fof_unitary_formula fof_unitary_formula1,
+fof_unitary_formula1left, _)) :: rest671)) => let val result =
+MlyValue.fof_and_formula (
+( Fmla (Interpreted_Logic And, [fof_unitary_formula1, fof_unitary_formula2]) )
+)
+ in ( LrTable.NT 66, ( result, fof_unitary_formula1left,
+fof_unitary_formula2right), rest671)
+end
+| ( 150, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula, _
+, fof_unitary_formula1right)) :: _ :: ( _, ( MlyValue.fof_and_formula
+fof_and_formula, fof_and_formula1left, _)) :: rest671)) => let val
+result = MlyValue.fof_and_formula (
+( Fmla (Interpreted_Logic And, [fof_and_formula, fof_unitary_formula]) )
+)
+ in ( LrTable.NT 66, ( result, fof_and_formula1left,
+fof_unitary_formula1right), rest671)
+end
+| ( 151, ( ( _, ( MlyValue.fof_quantified_formula
+fof_quantified_formula, fof_quantified_formula1left,
+fof_quantified_formula1right)) :: rest671)) => let val result =
+MlyValue.fof_unitary_formula (( fof_quantified_formula ))
+ in ( LrTable.NT 65, ( result, fof_quantified_formula1left,
+fof_quantified_formula1right), rest671)
+end
+| ( 152, ( ( _, ( MlyValue.fof_unary_formula fof_unary_formula,
+fof_unary_formula1left, fof_unary_formula1right)) :: rest671)) => let
+ val result = MlyValue.fof_unitary_formula (( fof_unary_formula ))
+ in ( LrTable.NT 65, ( result, fof_unary_formula1left,
+fof_unary_formula1right), rest671)
+end
+| ( 153, ( ( _, ( MlyValue.atomic_formula atomic_formula,
+atomic_formula1left, atomic_formula1right)) :: rest671)) => let val
+result = MlyValue.fof_unitary_formula (( atomic_formula ))
+ in ( LrTable.NT 65, ( result, atomic_formula1left,
+atomic_formula1right), rest671)
+end
+| ( 154, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
+MlyValue.fof_logic_formula fof_logic_formula, _, _)) :: ( _, ( _,
+LPAREN1left, _)) :: rest671)) => let val result =
+MlyValue.fof_unitary_formula (( fof_logic_formula ))
+ in ( LrTable.NT 65, ( result, LPAREN1left, RPAREN1right), rest671)
+
+end
+| ( 155, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula, _
+, fof_unitary_formula1right)) :: _ :: _ :: ( _, (
+MlyValue.fof_variable_list fof_variable_list, _, _)) :: _ :: ( _, (
+MlyValue.fol_quantifier fol_quantifier, fol_quantifier1left, _)) ::
+rest671)) => let val result = MlyValue.fof_quantified_formula (
+(
+ Quant (fol_quantifier, map (fn v => (v, NONE)) fof_variable_list, fof_unitary_formula)
+)
+)
+ in ( LrTable.NT 64, ( result, fol_quantifier1left,
+fof_unitary_formula1right), rest671)
+end
+| ( 156, ( ( _, ( MlyValue.variable_ variable_, variable_1left,
+variable_1right)) :: rest671)) => let val result =
+MlyValue.fof_variable_list (( [variable_] ))
+ in ( LrTable.NT 63, ( result, variable_1left, variable_1right),
+rest671)
+end
+| ( 157, ( ( _, ( MlyValue.fof_variable_list fof_variable_list, _,
+fof_variable_list1right)) :: _ :: ( _, ( MlyValue.variable_ variable_,
+ variable_1left, _)) :: rest671)) => let val result =
+MlyValue.fof_variable_list (( variable_ :: fof_variable_list ))
+ in ( LrTable.NT 63, ( result, variable_1left, fof_variable_list1right
), rest671)
end
-| ( 33, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.thf_formula
-thf_formula, _, _)) :: _ :: ( _, ( _, DTHF1left, _)) :: rest671)) =>
- let val result = MlyValue.formula_data (
-( Formula_Data (THF, thf_formula) ))
- in ( LrTable.NT 12, ( result, DTHF1left, RPAREN1right), rest671)
-end
-| ( 34, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.tff_formula
-tff_formula, _, _)) :: _ :: ( _, ( _, DTFF1left, _)) :: rest671)) =>
- let val result = MlyValue.formula_data (
-( Formula_Data (TFF, tff_formula) ))
- in ( LrTable.NT 12, ( result, DTFF1left, RPAREN1right), rest671)
-end
-| ( 35, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.fof_formula
-fof_formula, _, _)) :: _ :: ( _, ( _, DFOF1left, _)) :: rest671)) =>
- let val result = MlyValue.formula_data (
-( Formula_Data (FOF, fof_formula) ))
- in ( LrTable.NT 12, ( result, DFOF1left, RPAREN1right), rest671)
-end
-| ( 36, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.cnf_formula
-cnf_formula, _, _)) :: _ :: ( _, ( _, DCNF1left, _)) :: rest671)) =>
- let val result = MlyValue.formula_data (
-( Formula_Data (CNF, cnf_formula) ))
- in ( LrTable.NT 12, ( result, DCNF1left, RPAREN1right), rest671)
-end
-| ( 37, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.term term, _
-, _)) :: _ :: ( _, ( _, DFOT1left, _)) :: rest671)) => let val result
- = MlyValue.formula_data (( Term_Data term ))
- in ( LrTable.NT 12, ( result, DFOT1left, RPAREN1right), rest671)
-end
-| ( 38, ( ( _, ( MlyValue.ATOMIC_SYSTEM_WORD ATOMIC_SYSTEM_WORD,
-ATOMIC_SYSTEM_WORD1left, ATOMIC_SYSTEM_WORD1right)) :: rest671)) =>
- let val result = MlyValue.system_type (( ATOMIC_SYSTEM_WORD ))
- in ( LrTable.NT 47, ( result, ATOMIC_SYSTEM_WORD1left,
-ATOMIC_SYSTEM_WORD1right), rest671)
-end
-| ( 39, ( ( _, ( MlyValue.ATOMIC_DEFINED_WORD ATOMIC_DEFINED_WORD,
-ATOMIC_DEFINED_WORD1left, ATOMIC_DEFINED_WORD1right)) :: rest671)) =>
+| ( 158, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula, _
+, fof_unitary_formula1right)) :: ( _, ( MlyValue.unary_connective
+unary_connective, unary_connective1left, _)) :: rest671)) => let val
+result = MlyValue.fof_unary_formula (
+( Fmla (unary_connective, [fof_unitary_formula]) ))
+ in ( LrTable.NT 62, ( result, unary_connective1left,
+fof_unitary_formula1right), rest671)
+end
+| ( 159, ( ( _, ( MlyValue.fol_infix_unary fol_infix_unary,
+fol_infix_unary1left, fol_infix_unary1right)) :: rest671)) => let val
+ result = MlyValue.fof_unary_formula (( fol_infix_unary ))
+ in ( LrTable.NT 62, ( result, fol_infix_unary1left,
+fol_infix_unary1right), rest671)
+end
+| ( 160, ( ( _, ( MlyValue.fof_tuple fof_tuple2, _, fof_tuple2right))
+ :: _ :: ( _, ( MlyValue.fof_tuple fof_tuple1, fof_tuple1left, _)) ::
+rest671)) => let val result = MlyValue.fof_sequent (
+( Sequent (fof_tuple1, fof_tuple2) ))
+ in ( LrTable.NT 61, ( result, fof_tuple1left, fof_tuple2right),
+rest671)
+end
+| ( 161, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.fof_sequent
+ fof_sequent, _, _)) :: ( _, ( _, LPAREN1left, _)) :: rest671)) => let
+ val result = MlyValue.fof_sequent (( fof_sequent ))
+ in ( LrTable.NT 61, ( result, LPAREN1left, RPAREN1right), rest671)
+
+end
+| ( 162, ( ( _, ( _, _, RBRKT1right)) :: ( _, ( _, LBRKT1left, _)) ::
+ rest671)) => let val result = MlyValue.fof_tuple (( [] ))
+ in ( LrTable.NT 60, ( result, LBRKT1left, RBRKT1right), rest671)
+end
+| ( 163, ( ( _, ( _, _, RBRKT1right)) :: ( _, (
+MlyValue.fof_tuple_list fof_tuple_list, _, _)) :: ( _, ( _, LBRKT1left
+, _)) :: rest671)) => let val result = MlyValue.fof_tuple (
+( fof_tuple_list ))
+ in ( LrTable.NT 60, ( result, LBRKT1left, RBRKT1right), rest671)
+end
+| ( 164, ( ( _, ( MlyValue.fof_logic_formula fof_logic_formula,
+fof_logic_formula1left, fof_logic_formula1right)) :: rest671)) => let
+ val result = MlyValue.fof_tuple_list (( [fof_logic_formula] ))
+ in ( LrTable.NT 59, ( result, fof_logic_formula1left,
+fof_logic_formula1right), rest671)
+end
+| ( 165, ( ( _, ( MlyValue.fof_tuple_list fof_tuple_list, _,
+fof_tuple_list1right)) :: _ :: ( _, ( MlyValue.fof_logic_formula
+fof_logic_formula, fof_logic_formula1left, _)) :: rest671)) => let
+ val result = MlyValue.fof_tuple_list (
+( fof_logic_formula :: fof_tuple_list ))
+ in ( LrTable.NT 59, ( result, fof_logic_formula1left,
+fof_tuple_list1right), rest671)
+end
+| ( 166, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.disjunction
+ disjunction, _, _)) :: ( _, ( _, LPAREN1left, _)) :: rest671)) => let
+ val result = MlyValue.cnf_formula (( disjunction ))
+ in ( LrTable.NT 58, ( result, LPAREN1left, RPAREN1right), rest671)
+
+end
+| ( 167, ( ( _, ( MlyValue.disjunction disjunction, disjunction1left,
+ disjunction1right)) :: rest671)) => let val result =
+MlyValue.cnf_formula (( disjunction ))
+ in ( LrTable.NT 58, ( result, disjunction1left, disjunction1right),
+rest671)
+end
+| ( 168, ( ( _, ( MlyValue.literal literal, literal1left,
+literal1right)) :: rest671)) => let val result = MlyValue.disjunction
+ (( literal ))
+ in ( LrTable.NT 57, ( result, literal1left, literal1right), rest671)
+
+end
+| ( 169, ( ( _, ( MlyValue.literal literal, _, literal1right)) :: _
+ :: ( _, ( MlyValue.disjunction disjunction, disjunction1left, _)) ::
+rest671)) => let val result = MlyValue.disjunction (
+( Fmla (Interpreted_Logic Or, [disjunction, literal]) ))
+ in ( LrTable.NT 57, ( result, disjunction1left, literal1right),
+rest671)
+end
+| ( 170, ( ( _, ( MlyValue.atomic_formula atomic_formula,
+atomic_formula1left, atomic_formula1right)) :: rest671)) => let val
+result = MlyValue.literal (( atomic_formula ))
+ in ( LrTable.NT 56, ( result, atomic_formula1left,
+atomic_formula1right), rest671)
+end
+| ( 171, ( ( _, ( MlyValue.atomic_formula atomic_formula, _,
+atomic_formula1right)) :: ( _, ( _, TILDE1left, _)) :: rest671)) =>
+ let val result = MlyValue.literal (
+( Fmla (Interpreted_Logic Not, [atomic_formula]) ))
+ in ( LrTable.NT 56, ( result, TILDE1left, atomic_formula1right),
+rest671)
+end
+| ( 172, ( ( _, ( MlyValue.fol_infix_unary fol_infix_unary,
+fol_infix_unary1left, fol_infix_unary1right)) :: rest671)) => let val
+ result = MlyValue.literal (( fol_infix_unary ))
+ in ( LrTable.NT 56, ( result, fol_infix_unary1left,
+fol_infix_unary1right), rest671)
+end
+| ( 173, ( ( _, ( MlyValue.thf_pair_connective thf_pair_connective,
+thf_pair_connective1left, thf_pair_connective1right)) :: rest671)) =>
+ let val result = MlyValue.thf_conn_term (( thf_pair_connective ))
+ in ( LrTable.NT 55, ( result, thf_pair_connective1left,
+thf_pair_connective1right), rest671)
+end
+| ( 174, ( ( _, ( MlyValue.assoc_connective assoc_connective,
+assoc_connective1left, assoc_connective1right)) :: rest671)) => let
+ val result = MlyValue.thf_conn_term (( assoc_connective ))
+ in ( LrTable.NT 55, ( result, assoc_connective1left,
+assoc_connective1right), rest671)
+end
+| ( 175, ( ( _, ( MlyValue.thf_unary_connective thf_unary_connective,
+ thf_unary_connective1left, thf_unary_connective1right)) :: rest671))
+ => let val result = MlyValue.thf_conn_term (( thf_unary_connective )
+)
+ in ( LrTable.NT 55, ( result, thf_unary_connective1left,
+thf_unary_connective1right), rest671)
+end
+| ( 176, ( ( _, ( MlyValue.term term2, _, term2right)) :: ( _, (
+MlyValue.infix_inequality infix_inequality, _, _)) :: ( _, (
+MlyValue.term term1, term1left, _)) :: rest671)) => let val result =
+MlyValue.fol_infix_unary (( Pred (infix_inequality, [term1, term2]) ))
+ in ( LrTable.NT 54, ( result, term1left, term2right), rest671)
+end
+| ( 177, ( ( _, ( MlyValue.fol_quantifier fol_quantifier,
+fol_quantifier1left, fol_quantifier1right)) :: rest671)) => let val
+result = MlyValue.thf_quantifier (( fol_quantifier ))
+ in ( LrTable.NT 53, ( result, fol_quantifier1left,
+fol_quantifier1right), rest671)
+end
+| ( 178, ( ( _, ( _, CARET1left, CARET1right)) :: rest671)) => let
+ val result = MlyValue.thf_quantifier (( Lambda ))
+ in ( LrTable.NT 53, ( result, CARET1left, CARET1right), rest671)
+end
+| ( 179, ( ( _, ( _, DEP_PROD1left, DEP_PROD1right)) :: rest671)) =>
+ let val result = MlyValue.thf_quantifier (( Dep_Prod ))
+ in ( LrTable.NT 53, ( result, DEP_PROD1left, DEP_PROD1right), rest671
+)
+end
+| ( 180, ( ( _, ( _, DEP_SUM1left, DEP_SUM1right)) :: rest671)) =>
+ let val result = MlyValue.thf_quantifier (( Dep_Sum ))
+ in ( LrTable.NT 53, ( result, DEP_SUM1left, DEP_SUM1right), rest671)
+
+end
+| ( 181, ( ( _, ( _, INDEF_CHOICE1left, INDEF_CHOICE1right)) ::
+rest671)) => let val result = MlyValue.thf_quantifier (( Epsilon ))
+ in ( LrTable.NT 53, ( result, INDEF_CHOICE1left, INDEF_CHOICE1right),
+ rest671)
+end
+| ( 182, ( ( _, ( _, DEFIN_CHOICE1left, DEFIN_CHOICE1right)) ::
+rest671)) => let val result = MlyValue.thf_quantifier (( Iota ))
+ in ( LrTable.NT 53, ( result, DEFIN_CHOICE1left, DEFIN_CHOICE1right),
+ rest671)
+end
+| ( 183, ( ( _, ( MlyValue.infix_equality infix_equality,
+infix_equality1left, infix_equality1right)) :: rest671)) => let val
+result = MlyValue.thf_pair_connective (( infix_equality ))
+ in ( LrTable.NT 52, ( result, infix_equality1left,
+infix_equality1right), rest671)
+end
+| ( 184, ( ( _, ( MlyValue.infix_inequality infix_inequality,
+infix_inequality1left, infix_inequality1right)) :: rest671)) => let
+ val result = MlyValue.thf_pair_connective (( infix_inequality ))
+ in ( LrTable.NT 52, ( result, infix_inequality1left,
+infix_inequality1right), rest671)
+end
+| ( 185, ( ( _, ( MlyValue.binary_connective binary_connective,
+binary_connective1left, binary_connective1right)) :: rest671)) => let
+ val result = MlyValue.thf_pair_connective (( binary_connective ))
+ in ( LrTable.NT 52, ( result, binary_connective1left,
+binary_connective1right), rest671)
+end
+| ( 186, ( ( _, ( MlyValue.unary_connective unary_connective,
+unary_connective1left, unary_connective1right)) :: rest671)) => let
+ val result = MlyValue.thf_unary_connective (( unary_connective ))
+ in ( LrTable.NT 51, ( result, unary_connective1left,
+unary_connective1right), rest671)
+end
+| ( 187, ( ( _, ( _, OPERATOR_FORALL1left, OPERATOR_FORALL1right)) ::
+ rest671)) => let val result = MlyValue.thf_unary_connective (
+( Interpreted_Logic Op_Forall ))
+ in ( LrTable.NT 51, ( result, OPERATOR_FORALL1left,
+OPERATOR_FORALL1right), rest671)
+end
+| ( 188, ( ( _, ( _, OPERATOR_EXISTS1left, OPERATOR_EXISTS1right)) ::
+ rest671)) => let val result = MlyValue.thf_unary_connective (
+( Interpreted_Logic Op_Exists ))
+ in ( LrTable.NT 51, ( result, OPERATOR_EXISTS1left,
+OPERATOR_EXISTS1right), rest671)
+end
+| ( 189, ( ( _, ( _, EXCLAMATION1left, EXCLAMATION1right)) :: rest671
+)) => let val result = MlyValue.fol_quantifier (( Forall ))
+ in ( LrTable.NT 50, ( result, EXCLAMATION1left, EXCLAMATION1right),
+rest671)
+end
+| ( 190, ( ( _, ( _, QUESTION1left, QUESTION1right)) :: rest671)) =>
+ let val result = MlyValue.fol_quantifier (( Exists ))
+ in ( LrTable.NT 50, ( result, QUESTION1left, QUESTION1right), rest671
+)
+end
+| ( 191, ( ( _, ( _, IFF1left, IFF1right)) :: rest671)) => let val
+result = MlyValue.binary_connective (( Interpreted_Logic Iff ))
+ in ( LrTable.NT 49, ( result, IFF1left, IFF1right), rest671)
+end
+| ( 192, ( ( _, ( _, IMPLIES1left, IMPLIES1right)) :: rest671)) =>
+ let val result = MlyValue.binary_connective (
+( Interpreted_Logic If ))
+ in ( LrTable.NT 49, ( result, IMPLIES1left, IMPLIES1right), rest671)
+
+end
+| ( 193, ( ( _, ( _, FI1left, FI1right)) :: rest671)) => let val
+result = MlyValue.binary_connective (( Interpreted_Logic Fi ))
+ in ( LrTable.NT 49, ( result, FI1left, FI1right), rest671)
+end
+| ( 194, ( ( _, ( _, XOR1left, XOR1right)) :: rest671)) => let val
+result = MlyValue.binary_connective (( Interpreted_Logic Xor ))
+ in ( LrTable.NT 49, ( result, XOR1left, XOR1right), rest671)
+end
+| ( 195, ( ( _, ( _, NOR1left, NOR1right)) :: rest671)) => let val
+result = MlyValue.binary_connective (( Interpreted_Logic Nor ))
+ in ( LrTable.NT 49, ( result, NOR1left, NOR1right), rest671)
+end
+| ( 196, ( ( _, ( _, NAND1left, NAND1right)) :: rest671)) => let val
+ result = MlyValue.binary_connective (( Interpreted_Logic Nand ))
+ in ( LrTable.NT 49, ( result, NAND1left, NAND1right), rest671)
+end
+| ( 197, ( ( _, ( _, VLINE1left, VLINE1right)) :: rest671)) => let
+ val result = MlyValue.assoc_connective (( Interpreted_Logic Or ))
+ in ( LrTable.NT 48, ( result, VLINE1left, VLINE1right), rest671)
+end
+| ( 198, ( ( _, ( _, AMPERSAND1left, AMPERSAND1right)) :: rest671))
+ => let val result = MlyValue.assoc_connective (
+( Interpreted_Logic And ))
+ in ( LrTable.NT 48, ( result, AMPERSAND1left, AMPERSAND1right),
+rest671)
+end
+| ( 199, ( ( _, ( _, TILDE1left, TILDE1right)) :: rest671)) => let
+ val result = MlyValue.unary_connective (( Interpreted_Logic Not ))
+ in ( LrTable.NT 45, ( result, TILDE1left, TILDE1right), rest671)
+end
+| ( 200, ( ( _, ( MlyValue.atomic_defined_word atomic_defined_word,
+atomic_defined_word1left, atomic_defined_word1right)) :: rest671)) =>
let val result = MlyValue.defined_type (
(
- case ATOMIC_DEFINED_WORD of
- "$i" => Type_Ind
+ case atomic_defined_word of
+ "$oType" => Type_Bool
| "$o" => Type_Bool
| "$iType" => Type_Ind
- | "$oType" => Type_Bool
- | "$int" => Type_Int
+ | "$i" => Type_Ind
+ | "$tType" => Type_Type
| "$real" => Type_Real
| "$rat" => Type_Rat
- | "$tType" => Type_Type
+ | "$int" => Type_Int
| thing => raise UNRECOGNISED_SYMBOL ("defined_type", thing)
)
)
- in ( LrTable.NT 46, ( result, ATOMIC_DEFINED_WORD1left,
-ATOMIC_DEFINED_WORD1right), rest671)
-end
-| ( 40, ( ( _, ( MlyValue.atomic_word atomic_word, atomic_word1left,
-atomic_word1right)) :: rest671)) => let val result =
+ in ( LrTable.NT 46, ( result, atomic_defined_word1left,
+atomic_defined_word1right), rest671)
+end
+| ( 201, ( ( _, ( MlyValue.atomic_system_word atomic_system_word,
+atomic_system_word1left, atomic_system_word1right)) :: rest671)) =>
+ let val result = MlyValue.system_type (( atomic_system_word ))
+ in ( LrTable.NT 47, ( result, atomic_system_word1left,
+atomic_system_word1right), rest671)
+end
+| ( 202, ( ( _, ( MlyValue.plain_atomic_formula plain_atomic_formula,
+ plain_atomic_formula1left, plain_atomic_formula1right)) :: rest671))
+ => let val result = MlyValue.atomic_formula (
+( plain_atomic_formula ))
+ in ( LrTable.NT 44, ( result, plain_atomic_formula1left,
+plain_atomic_formula1right), rest671)
+end
+| ( 203, ( ( _, ( MlyValue.defined_atomic_formula
+defined_atomic_formula, defined_atomic_formula1left,
+defined_atomic_formula1right)) :: rest671)) => let val result =
+MlyValue.atomic_formula (( defined_atomic_formula ))
+ in ( LrTable.NT 44, ( result, defined_atomic_formula1left,
+defined_atomic_formula1right), rest671)
+end
+| ( 204, ( ( _, ( MlyValue.system_atomic_formula
+system_atomic_formula, system_atomic_formula1left,
+system_atomic_formula1right)) :: rest671)) => let val result =
+MlyValue.atomic_formula (( system_atomic_formula ))
+ in ( LrTable.NT 44, ( result, system_atomic_formula1left,
+system_atomic_formula1right), rest671)
+end
+| ( 205, ( ( _, ( MlyValue.plain_term plain_term, plain_term1left,
+plain_term1right)) :: rest671)) => let val result =
+MlyValue.plain_atomic_formula (( Pred plain_term ))
+ in ( LrTable.NT 43, ( result, plain_term1left, plain_term1right),
+rest671)
+end
+| ( 206, ( ( _, ( MlyValue.defined_plain_formula
+defined_plain_formula, defined_plain_formula1left,
+defined_plain_formula1right)) :: rest671)) => let val result =
+MlyValue.defined_atomic_formula (( defined_plain_formula ))
+ in ( LrTable.NT 42, ( result, defined_plain_formula1left,
+defined_plain_formula1right), rest671)
+end
+| ( 207, ( ( _, ( MlyValue.defined_infix_formula
+defined_infix_formula, defined_infix_formula1left,
+defined_infix_formula1right)) :: rest671)) => let val result =
+MlyValue.defined_atomic_formula (( defined_infix_formula ))
+ in ( LrTable.NT 42, ( result, defined_infix_formula1left,
+defined_infix_formula1right), rest671)
+end
+| ( 208, ( ( _, ( MlyValue.defined_plain_term defined_plain_term,
+defined_plain_term1left, defined_plain_term1right)) :: rest671)) =>
+ let val result = MlyValue.defined_plain_formula (
+( Pred defined_plain_term ))
+ in ( LrTable.NT 41, ( result, defined_plain_term1left,
+defined_plain_term1right), rest671)
+end
+| ( 209, ( ( _, ( MlyValue.atomic_defined_word atomic_defined_word,
+atomic_defined_word1left, atomic_defined_word1right)) :: rest671)) =>
+ let val result = MlyValue.defined_prop (
+(
+ case atomic_defined_word of
+ "$true" => "$true"
+ | "$false" => "$false"
+ | thing => raise UNRECOGNISED_SYMBOL ("defined_prop", thing)
+)
+)
+ in ( LrTable.NT 39, ( result, atomic_defined_word1left,
+atomic_defined_word1right), rest671)
+end
+| ( 210, ( ( _, ( MlyValue.atomic_defined_word atomic_defined_word,
+atomic_defined_word1left, atomic_defined_word1right)) :: rest671)) =>
+ let val result = MlyValue.defined_pred (
+(
+ case atomic_defined_word of
+ "$distinct" => "$distinct"
+ | "$ite_f" => "$ite_f"
+ | "$less" => "$less"
+ | "$lesseq" => "$lesseq"
+ | "$greater" => "$greater"
+ | "$greatereq" => "$greatereq"
+ | "$is_int" => "$is_int"
+ | "$is_rat" => "$is_rat"
+ | thing => raise UNRECOGNISED_SYMBOL ("defined_pred", thing)
+)
+)
+ in ( LrTable.NT 40, ( result, atomic_defined_word1left,
+atomic_defined_word1right), rest671)
+end
+| ( 211, ( ( _, ( MlyValue.term term2, _, term2right)) :: ( _, (
+MlyValue.defined_infix_pred defined_infix_pred, _, _)) :: ( _, (
+MlyValue.term term1, term1left, _)) :: rest671)) => let val result =
+MlyValue.defined_infix_formula (
+(Pred (defined_infix_pred, [term1, term2])))
+ in ( LrTable.NT 38, ( result, term1left, term2right), rest671)
+end
+| ( 212, ( ( _, ( MlyValue.infix_equality infix_equality,
+infix_equality1left, infix_equality1right)) :: rest671)) => let val
+result = MlyValue.defined_infix_pred (( infix_equality ))
+ in ( LrTable.NT 37, ( result, infix_equality1left,
+infix_equality1right), rest671)
+end
+| ( 213, ( ( _, ( _, EQUALS1left, EQUALS1right)) :: rest671)) => let
+ val result = MlyValue.infix_equality (( Interpreted_Logic Equals ))
+ in ( LrTable.NT 35, ( result, EQUALS1left, EQUALS1right), rest671)
+
+end
+| ( 214, ( ( _, ( _, NEQUALS1left, NEQUALS1right)) :: rest671)) =>
+ let val result = MlyValue.infix_inequality (
+( Interpreted_Logic NEquals ))
+ in ( LrTable.NT 36, ( result, NEQUALS1left, NEQUALS1right), rest671)
+
+end
+| ( 215, ( ( _, ( MlyValue.system_term system_term, system_term1left,
+ system_term1right)) :: rest671)) => let val result =
+MlyValue.system_atomic_formula (( Pred system_term ))
+ in ( LrTable.NT 34, ( result, system_term1left, system_term1right),
+rest671)
+end
+| ( 216, ( ( _, ( MlyValue.function_term function_term,
+function_term1left, function_term1right)) :: rest671)) => let val
+result = MlyValue.term (( function_term ))
+ in ( LrTable.NT 19, ( result, function_term1left, function_term1right
+), rest671)
+end
+| ( 217, ( ( _, ( MlyValue.variable_ variable_, variable_1left,
+variable_1right)) :: rest671)) => let val result = MlyValue.term (
+( Term_Var variable_ ))
+ in ( LrTable.NT 19, ( result, variable_1left, variable_1right),
+rest671)
+end
+| ( 218, ( ( _, ( MlyValue.conditional_term conditional_term,
+conditional_term1left, conditional_term1right)) :: rest671)) => let
+ val result = MlyValue.term (( conditional_term ))
+ in ( LrTable.NT 19, ( result, conditional_term1left,
+conditional_term1right), rest671)
+end
+| ( 219, ( ( _, ( MlyValue.let_term let_term, let_term1left,
+let_term1right)) :: rest671)) => let val result = MlyValue.term (
+( let_term ))
+ in ( LrTable.NT 19, ( result, let_term1left, let_term1right), rest671
+)
+end
+| ( 220, ( ( _, ( MlyValue.plain_term plain_term, plain_term1left,
+plain_term1right)) :: rest671)) => let val result =
+MlyValue.function_term (( Term_Func plain_term ))
+ in ( LrTable.NT 32, ( result, plain_term1left, plain_term1right),
+rest671)
+end
+| ( 221, ( ( _, ( MlyValue.defined_term defined_term,
+defined_term1left, defined_term1right)) :: rest671)) => let val
+result = MlyValue.function_term (( defined_term ))
+ in ( LrTable.NT 32, ( result, defined_term1left, defined_term1right),
+ rest671)
+end
+| ( 222, ( ( _, ( MlyValue.system_term system_term, system_term1left,
+ system_term1right)) :: rest671)) => let val result =
+MlyValue.function_term (( Term_Func system_term ))
+ in ( LrTable.NT 32, ( result, system_term1left, system_term1right),
+rest671)
+end
+| ( 223, ( ( _, ( MlyValue.constant constant, constant1left,
+constant1right)) :: rest671)) => let val result = MlyValue.plain_term
+ (( (constant, []) ))
+ in ( LrTable.NT 31, ( result, constant1left, constant1right), rest671
+)
+end
+| ( 224, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.arguments
+arguments, _, _)) :: _ :: ( _, ( MlyValue.functor_ functor_,
+functor_1left, _)) :: rest671)) => let val result =
+MlyValue.plain_term (( (functor_, arguments) ))
+ in ( LrTable.NT 31, ( result, functor_1left, RPAREN1right), rest671)
+
+end
+| ( 225, ( ( _, ( MlyValue.functor_ functor_, functor_1left,
+functor_1right)) :: rest671)) => let val result = MlyValue.constant (
+( functor_ ))
+ in ( LrTable.NT 30, ( result, functor_1left, functor_1right), rest671
+)
+end
+| ( 226, ( ( _, ( MlyValue.atomic_word atomic_word, atomic_word1left,
+ atomic_word1right)) :: rest671)) => let val result =
MlyValue.functor_ (( Uninterpreted atomic_word ))
in ( LrTable.NT 18, ( result, atomic_word1left, atomic_word1right),
rest671)
end
-| ( 41, ( ( _, ( MlyValue.term term, term1left, term1right)) ::
-rest671)) => let val result = MlyValue.arguments (( [term] ))
- in ( LrTable.NT 20, ( result, term1left, term1right), rest671)
-end
-| ( 42, ( ( _, ( MlyValue.arguments arguments, _, arguments1right))
- :: _ :: ( _, ( MlyValue.term term, term1left, _)) :: rest671)) => let
- val result = MlyValue.arguments (( term :: arguments ))
- in ( LrTable.NT 20, ( result, term1left, arguments1right), rest671)
+| ( 227, ( ( _, ( MlyValue.defined_atom defined_atom,
+defined_atom1left, defined_atom1right)) :: rest671)) => let val
+result = MlyValue.defined_term (( defined_atom ))
+ in ( LrTable.NT 29, ( result, defined_atom1left, defined_atom1right),
+ rest671)
+end
+| ( 228, ( ( _, ( MlyValue.defined_atomic_term defined_atomic_term,
+defined_atomic_term1left, defined_atomic_term1right)) :: rest671)) =>
+ let val result = MlyValue.defined_term (( defined_atomic_term ))
+ in ( LrTable.NT 29, ( result, defined_atomic_term1left,
+defined_atomic_term1right), rest671)
+end
+| ( 229, ( ( _, ( MlyValue.number number, number1left, number1right))
+ :: rest671)) => let val result = MlyValue.defined_atom (
+( Term_Num number ))
+ in ( LrTable.NT 28, ( result, number1left, number1right), rest671)
end
-| ( 43, ( ( _, ( MlyValue.ATOMIC_SYSTEM_WORD ATOMIC_SYSTEM_WORD,
-ATOMIC_SYSTEM_WORD1left, ATOMIC_SYSTEM_WORD1right)) :: rest671)) =>
- let val result = MlyValue.system_functor (
-( System ATOMIC_SYSTEM_WORD ))
- in ( LrTable.NT 22, ( result, ATOMIC_SYSTEM_WORD1left,
-ATOMIC_SYSTEM_WORD1right), rest671)
-end
-| ( 44, ( ( _, ( MlyValue.system_functor system_functor,
-system_functor1left, system_functor1right)) :: rest671)) => let val
-result = MlyValue.system_constant (( system_functor ))
- in ( LrTable.NT 23, ( result, system_functor1left,
-system_functor1right), rest671)
-end
-| ( 45, ( ( _, ( MlyValue.system_constant system_constant,
-system_constant1left, system_constant1right)) :: rest671)) => let val
- result = MlyValue.system_term (( (system_constant, []) ))
- in ( LrTable.NT 24, ( result, system_constant1left,
-system_constant1right), rest671)
-end
-| ( 46, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.arguments
-arguments, _, _)) :: _ :: ( _, ( MlyValue.system_functor
-system_functor, system_functor1left, _)) :: rest671)) => let val
-result = MlyValue.system_term (( (system_functor, arguments) ))
- in ( LrTable.NT 24, ( result, system_functor1left, RPAREN1right),
+| ( 230, ( ( _, ( MlyValue.DISTINCT_OBJECT DISTINCT_OBJECT,
+DISTINCT_OBJECT1left, DISTINCT_OBJECT1right)) :: rest671)) => let val
+ result = MlyValue.defined_atom (
+( Term_Distinct_Object DISTINCT_OBJECT ))
+ in ( LrTable.NT 28, ( result, DISTINCT_OBJECT1left,
+DISTINCT_OBJECT1right), rest671)
+end
+| ( 231, ( ( _, ( MlyValue.defined_plain_term defined_plain_term,
+defined_plain_term1left, defined_plain_term1right)) :: rest671)) =>
+ let val result = MlyValue.defined_atomic_term (
+( Term_Func defined_plain_term ))
+ in ( LrTable.NT 27, ( result, defined_plain_term1left,
+defined_plain_term1right), rest671)
+end
+| ( 232, ( ( _, ( MlyValue.defined_constant defined_constant,
+defined_constant1left, defined_constant1right)) :: rest671)) => let
+ val result = MlyValue.defined_plain_term (( (defined_constant, []) )
+)
+ in ( LrTable.NT 26, ( result, defined_constant1left,
+defined_constant1right), rest671)
+end
+| ( 233, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.arguments
+arguments, _, _)) :: _ :: ( _, ( MlyValue.defined_functor
+defined_functor, defined_functor1left, _)) :: rest671)) => let val
+result = MlyValue.defined_plain_term (( (defined_functor, arguments) )
+)
+ in ( LrTable.NT 26, ( result, defined_functor1left, RPAREN1right),
rest671)
end
-| ( 47, ( ( _, ( MlyValue.ATOMIC_DEFINED_WORD ATOMIC_DEFINED_WORD,
-ATOMIC_DEFINED_WORD1left, ATOMIC_DEFINED_WORD1right)) :: rest671)) =>
+| ( 234, ( ( _, ( MlyValue.defined_functor defined_functor,
+defined_functor1left, defined_functor1right)) :: rest671)) => let val
+ result = MlyValue.defined_constant (( defined_functor ))
+ in ( LrTable.NT 25, ( result, defined_functor1left,
+defined_functor1right), rest671)
+end
+| ( 235, ( ( _, ( MlyValue.atomic_defined_word atomic_defined_word,
+atomic_defined_word1left, atomic_defined_word1right)) :: rest671)) =>
let val result = MlyValue.defined_functor (
(
- case ATOMIC_DEFINED_WORD of
- "$sum" => Interpreted_ExtraLogic Sum
+ case atomic_defined_word of
+ "$uminus" => Interpreted_ExtraLogic UMinus
+ | "$sum" => Interpreted_ExtraLogic Sum
| "$difference" => Interpreted_ExtraLogic Difference
| "$product" => Interpreted_ExtraLogic Product
| "$quotient" => Interpreted_ExtraLogic Quotient
@@ -3786,7 +5404,6 @@
| "$to_int" => Interpreted_ExtraLogic To_Int
| "$to_rat" => Interpreted_ExtraLogic To_Rat
| "$to_real" => Interpreted_ExtraLogic To_Real
- | "$uminus" => Interpreted_ExtraLogic UMinus
| "$i" => TypeSymbol Type_Ind
| "$o" => TypeSymbol Type_Bool
@@ -3809,103 +5426,57 @@
| "$is_int" => Interpreted_ExtraLogic Is_Int
| "$is_rat" => Interpreted_ExtraLogic Is_Rat
+ | "$distinct" => Interpreted_ExtraLogic Distinct
+
| thing => raise UNRECOGNISED_SYMBOL ("defined_functor", thing)
)
)
- in ( LrTable.NT 21, ( result, ATOMIC_DEFINED_WORD1left,
-ATOMIC_DEFINED_WORD1right), rest671)
-end
-| ( 48, ( ( _, ( MlyValue.defined_functor defined_functor,
-defined_functor1left, defined_functor1right)) :: rest671)) => let val
- result = MlyValue.defined_constant (( defined_functor ))
- in ( LrTable.NT 25, ( result, defined_functor1left,
-defined_functor1right), rest671)
-end
-| ( 49, ( ( _, ( MlyValue.defined_constant defined_constant,
-defined_constant1left, defined_constant1right)) :: rest671)) => let
- val result = MlyValue.defined_plain_term (( (defined_constant, []) )
-)
- in ( LrTable.NT 26, ( result, defined_constant1left,
-defined_constant1right), rest671)
-end
-| ( 50, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.arguments
-arguments, _, _)) :: _ :: ( _, ( MlyValue.defined_functor
-defined_functor, defined_functor1left, _)) :: rest671)) => let val
-result = MlyValue.defined_plain_term (( (defined_functor, arguments) )
-)
- in ( LrTable.NT 26, ( result, defined_functor1left, RPAREN1right),
+ in ( LrTable.NT 21, ( result, atomic_defined_word1left,
+atomic_defined_word1right), rest671)
+end
+| ( 236, ( ( _, ( MlyValue.system_constant system_constant,
+system_constant1left, system_constant1right)) :: rest671)) => let val
+ result = MlyValue.system_term (( (system_constant, []) ))
+ in ( LrTable.NT 24, ( result, system_constant1left,
+system_constant1right), rest671)
+end
+| ( 237, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.arguments
+arguments, _, _)) :: _ :: ( _, ( MlyValue.system_functor
+system_functor, system_functor1left, _)) :: rest671)) => let val
+result = MlyValue.system_term (( (system_functor, arguments) ))
+ in ( LrTable.NT 24, ( result, system_functor1left, RPAREN1right),
rest671)
end
-| ( 51, ( ( _, ( MlyValue.defined_plain_term defined_plain_term,
-defined_plain_term1left, defined_plain_term1right)) :: rest671)) =>
- let val result = MlyValue.defined_atomic_term (
-( Term_Func defined_plain_term ))
- in ( LrTable.NT 27, ( result, defined_plain_term1left,
-defined_plain_term1right), rest671)
-end
-| ( 52, ( ( _, ( MlyValue.number number, number1left, number1right))
- :: rest671)) => let val result = MlyValue.defined_atom (
-( Term_Num number ))
- in ( LrTable.NT 28, ( result, number1left, number1right), rest671)
+| ( 238, ( ( _, ( MlyValue.system_functor system_functor,
+system_functor1left, system_functor1right)) :: rest671)) => let val
+result = MlyValue.system_constant (( system_functor ))
+ in ( LrTable.NT 23, ( result, system_functor1left,
+system_functor1right), rest671)
+end
+| ( 239, ( ( _, ( MlyValue.atomic_system_word atomic_system_word,
+atomic_system_word1left, atomic_system_word1right)) :: rest671)) =>
+ let val result = MlyValue.system_functor (
+( System atomic_system_word ))
+ in ( LrTable.NT 22, ( result, atomic_system_word1left,
+atomic_system_word1right), rest671)
+end
+| ( 240, ( ( _, ( MlyValue.UPPER_WORD UPPER_WORD, UPPER_WORD1left,
+UPPER_WORD1right)) :: rest671)) => let val result =
+MlyValue.variable_ (( UPPER_WORD ))
+ in ( LrTable.NT 10, ( result, UPPER_WORD1left, UPPER_WORD1right),
+rest671)
+end
+| ( 241, ( ( _, ( MlyValue.term term, term1left, term1right)) ::
+rest671)) => let val result = MlyValue.arguments (( [term] ))
+ in ( LrTable.NT 20, ( result, term1left, term1right), rest671)
+end
+| ( 242, ( ( _, ( MlyValue.arguments arguments, _, arguments1right))
+ :: _ :: ( _, ( MlyValue.term term, term1left, _)) :: rest671)) => let
+ val result = MlyValue.arguments (( term :: arguments ))
+ in ( LrTable.NT 20, ( result, term1left, arguments1right), rest671)
end
-| ( 53, ( ( _, ( MlyValue.DISTINCT_OBJECT DISTINCT_OBJECT,
-DISTINCT_OBJECT1left, DISTINCT_OBJECT1right)) :: rest671)) => let val
- result = MlyValue.defined_atom (
-( Term_Distinct_Object DISTINCT_OBJECT ))
- in ( LrTable.NT 28, ( result, DISTINCT_OBJECT1left,
-DISTINCT_OBJECT1right), rest671)
-end
-| ( 54, ( ( _, ( MlyValue.defined_atom defined_atom,
-defined_atom1left, defined_atom1right)) :: rest671)) => let val
-result = MlyValue.defined_term (( defined_atom ))
- in ( LrTable.NT 29, ( result, defined_atom1left, defined_atom1right),
- rest671)
-end
-| ( 55, ( ( _, ( MlyValue.defined_atomic_term defined_atomic_term,
-defined_atomic_term1left, defined_atomic_term1right)) :: rest671)) =>
- let val result = MlyValue.defined_term (( defined_atomic_term ))
- in ( LrTable.NT 29, ( result, defined_atomic_term1left,
-defined_atomic_term1right), rest671)
-end
-| ( 56, ( ( _, ( MlyValue.functor_ functor_, functor_1left,
-functor_1right)) :: rest671)) => let val result = MlyValue.constant (
-( functor_ ))
- in ( LrTable.NT 30, ( result, functor_1left, functor_1right), rest671
-)
-end
-| ( 57, ( ( _, ( MlyValue.constant constant, constant1left,
-constant1right)) :: rest671)) => let val result = MlyValue.plain_term
- (( (constant, []) ))
- in ( LrTable.NT 31, ( result, constant1left, constant1right), rest671
-)
-end
-| ( 58, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.arguments
-arguments, _, _)) :: _ :: ( _, ( MlyValue.functor_ functor_,
-functor_1left, _)) :: rest671)) => let val result =
-MlyValue.plain_term (( (functor_, arguments) ))
- in ( LrTable.NT 31, ( result, functor_1left, RPAREN1right), rest671)
-
-end
-| ( 59, ( ( _, ( MlyValue.plain_term plain_term, plain_term1left,
-plain_term1right)) :: rest671)) => let val result =
-MlyValue.function_term (( Term_Func plain_term ))
- in ( LrTable.NT 32, ( result, plain_term1left, plain_term1right),
-rest671)
-end
-| ( 60, ( ( _, ( MlyValue.defined_term defined_term,
-defined_term1left, defined_term1right)) :: rest671)) => let val
-result = MlyValue.function_term (( defined_term ))
- in ( LrTable.NT 32, ( result, defined_term1left, defined_term1right),
- rest671)
-end
-| ( 61, ( ( _, ( MlyValue.system_term system_term, system_term1left,
-system_term1right)) :: rest671)) => let val result =
-MlyValue.function_term (( Term_Func system_term ))
- in ( LrTable.NT 32, ( result, system_term1left, system_term1right),
-rest671)
-end
-| ( 62, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.term term2,
+| ( 243, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.term term2,
_, _)) :: _ :: ( _, ( MlyValue.term term1, _, _)) :: _ :: ( _, (
MlyValue.tff_logic_formula tff_logic_formula, _, _)) :: _ :: ( _, ( _,
ITE_T1left, _)) :: rest671)) => let val result =
@@ -3915,1522 +5486,271 @@
))
in ( LrTable.NT 33, ( result, ITE_T1left, RPAREN1right), rest671)
end
-| ( 63, ( ( _, ( MlyValue.function_term function_term,
-function_term1left, function_term1right)) :: rest671)) => let val
-result = MlyValue.term (( function_term ))
- in ( LrTable.NT 19, ( result, function_term1left, function_term1right
-), rest671)
-end
-| ( 64, ( ( _, ( MlyValue.variable_ variable_, variable_1left,
-variable_1right)) :: rest671)) => let val result = MlyValue.term (
-( Term_Var variable_ ))
- in ( LrTable.NT 19, ( result, variable_1left, variable_1right),
-rest671)
-end
-| ( 65, ( ( _, ( MlyValue.conditional_term conditional_term,
-conditional_term1left, conditional_term1right)) :: rest671)) => let
- val result = MlyValue.term (( conditional_term ))
- in ( LrTable.NT 19, ( result, conditional_term1left,
-conditional_term1right), rest671)
-end
-| ( 66, ( ( _, ( MlyValue.system_term system_term, system_term1left,
-system_term1right)) :: rest671)) => let val result =
-MlyValue.system_atomic_formula (( Pred system_term ))
- in ( LrTable.NT 34, ( result, system_term1left, system_term1right),
-rest671)
-end
-| ( 67, ( ( _, ( _, EQUALS1left, EQUALS1right)) :: rest671)) => let
- val result = MlyValue.infix_equality (( Interpreted_Logic Equals ))
- in ( LrTable.NT 35, ( result, EQUALS1left, EQUALS1right), rest671)
-
-end
-| ( 68, ( ( _, ( _, NEQUALS1left, NEQUALS1right)) :: rest671)) => let
- val result = MlyValue.infix_inequality (
-( Interpreted_Logic NEquals ))
- in ( LrTable.NT 36, ( result, NEQUALS1left, NEQUALS1right), rest671)
-
-end
-| ( 69, ( ( _, ( MlyValue.infix_equality infix_equality,
-infix_equality1left, infix_equality1right)) :: rest671)) => let val
-result = MlyValue.defined_infix_pred (( infix_equality ))
- in ( LrTable.NT 37, ( result, infix_equality1left,
-infix_equality1right), rest671)
-end
-| ( 70, ( ( _, ( MlyValue.term term2, _, term2right)) :: ( _, (
-MlyValue.defined_infix_pred defined_infix_pred, _, _)) :: ( _, (
-MlyValue.term term1, term1left, _)) :: rest671)) => let val result =
-MlyValue.defined_infix_formula (
-(Pred (defined_infix_pred, [term1, term2])))
- in ( LrTable.NT 38, ( result, term1left, term2right), rest671)
-end
-| ( 71, ( ( _, ( MlyValue.ATOMIC_DEFINED_WORD ATOMIC_DEFINED_WORD,
-ATOMIC_DEFINED_WORD1left, ATOMIC_DEFINED_WORD1right)) :: rest671)) =>
- let val result = MlyValue.defined_prop (
-(
- case ATOMIC_DEFINED_WORD of
- "$true" => "$true"
- | "$false" => "$false"
- | thing => raise UNRECOGNISED_SYMBOL ("defined_prop", thing)
-)
-)
- in ( LrTable.NT 39, ( result, ATOMIC_DEFINED_WORD1left,
-ATOMIC_DEFINED_WORD1right), rest671)
-end
-| ( 72, ( ( _, ( MlyValue.ATOMIC_DEFINED_WORD ATOMIC_DEFINED_WORD,
-ATOMIC_DEFINED_WORD1left, ATOMIC_DEFINED_WORD1right)) :: rest671)) =>
- let val result = MlyValue.defined_pred (
-(
- case ATOMIC_DEFINED_WORD of
- "$distinct" => "$distinct"
- | "$ite_f" => "$ite_f"
- | "$less" => "$less"
- | "$lesseq" => "$lesseq"
- | "$greater" => "$greater"
- | "$greatereq" => "$greatereq"
- | "$is_int" => "$is_int"
- | "$is_rat" => "$is_rat"
- | thing => raise UNRECOGNISED_SYMBOL ("defined_pred", thing)
-)
-)
- in ( LrTable.NT 40, ( result, ATOMIC_DEFINED_WORD1left,
-ATOMIC_DEFINED_WORD1right), rest671)
-end
-| ( 73, ( ( _, ( MlyValue.defined_plain_term defined_plain_term,
-defined_plain_term1left, defined_plain_term1right)) :: rest671)) =>
- let val result = MlyValue.defined_plain_formula (
-( Pred defined_plain_term ))
- in ( LrTable.NT 41, ( result, defined_plain_term1left,
-defined_plain_term1right), rest671)
-end
-| ( 74, ( ( _, ( MlyValue.defined_plain_formula defined_plain_formula
-, defined_plain_formula1left, defined_plain_formula1right)) :: rest671
-)) => let val result = MlyValue.defined_atomic_formula (
-( defined_plain_formula ))
- in ( LrTable.NT 42, ( result, defined_plain_formula1left,
-defined_plain_formula1right), rest671)
-end
-| ( 75, ( ( _, ( MlyValue.defined_infix_formula defined_infix_formula
-, defined_infix_formula1left, defined_infix_formula1right)) :: rest671
-)) => let val result = MlyValue.defined_atomic_formula (
-( defined_infix_formula ))
- in ( LrTable.NT 42, ( result, defined_infix_formula1left,
-defined_infix_formula1right), rest671)
-end
-| ( 76, ( ( _, ( MlyValue.plain_term plain_term, plain_term1left,
-plain_term1right)) :: rest671)) => let val result =
-MlyValue.plain_atomic_formula (( Pred plain_term ))
- in ( LrTable.NT 43, ( result, plain_term1left, plain_term1right),
-rest671)
-end
-| ( 77, ( ( _, ( MlyValue.plain_atomic_formula plain_atomic_formula,
-plain_atomic_formula1left, plain_atomic_formula1right)) :: rest671))
- => let val result = MlyValue.atomic_formula (
-( plain_atomic_formula ))
- in ( LrTable.NT 44, ( result, plain_atomic_formula1left,
-plain_atomic_formula1right), rest671)
-end
-| ( 78, ( ( _, ( MlyValue.defined_atomic_formula
-defined_atomic_formula, defined_atomic_formula1left,
-defined_atomic_formula1right)) :: rest671)) => let val result =
-MlyValue.atomic_formula (( defined_atomic_formula ))
- in ( LrTable.NT 44, ( result, defined_atomic_formula1left,
-defined_atomic_formula1right), rest671)
-end
-| ( 79, ( ( _, ( MlyValue.system_atomic_formula system_atomic_formula
-, system_atomic_formula1left, system_atomic_formula1right)) :: rest671
-)) => let val result = MlyValue.atomic_formula (
-( system_atomic_formula ))
- in ( LrTable.NT 44, ( result, system_atomic_formula1left,
-system_atomic_formula1right), rest671)
-end
-| ( 80, ( ( _, ( _, VLINE1left, VLINE1right)) :: rest671)) => let
- val result = MlyValue.assoc_connective (( Interpreted_Logic Or ))
- in ( LrTable.NT 48, ( result, VLINE1left, VLINE1right), rest671)
-end
-| ( 81, ( ( _, ( _, AMPERSAND1left, AMPERSAND1right)) :: rest671)) =>
- let val result = MlyValue.assoc_connective (
-( Interpreted_Logic And ))
- in ( LrTable.NT 48, ( result, AMPERSAND1left, AMPERSAND1right),
-rest671)
-end
-| ( 82, ( ( _, ( _, IFF1left, IFF1right)) :: rest671)) => let val
-result = MlyValue.binary_connective (( Interpreted_Logic Iff ))
- in ( LrTable.NT 49, ( result, IFF1left, IFF1right), rest671)
-end
-| ( 83, ( ( _, ( _, IMPLIES1left, IMPLIES1right)) :: rest671)) => let
- val result = MlyValue.binary_connective (( Interpreted_Logic If ))
- in ( LrTable.NT 49, ( result, IMPLIES1left, IMPLIES1right), rest671)
-
-end
-| ( 84, ( ( _, ( _, IF1left, IF1right)) :: rest671)) => let val
-result = MlyValue.binary_connective (( Interpreted_Logic Fi ))
- in ( LrTable.NT 49, ( result, IF1left, IF1right), rest671)
-end
-| ( 85, ( ( _, ( _, XOR1left, XOR1right)) :: rest671)) => let val
-result = MlyValue.binary_connective (( Interpreted_Logic Xor ))
- in ( LrTable.NT 49, ( result, XOR1left, XOR1right), rest671)
-end
-| ( 86, ( ( _, ( _, NOR1left, NOR1right)) :: rest671)) => let val
-result = MlyValue.binary_connective (( Interpreted_Logic Nor ))
- in ( LrTable.NT 49, ( result, NOR1left, NOR1right), rest671)
-end
-| ( 87, ( ( _, ( _, NAND1left, NAND1right)) :: rest671)) => let val
-result = MlyValue.binary_connective (( Interpreted_Logic Nand ))
- in ( LrTable.NT 49, ( result, NAND1left, NAND1right), rest671)
-end
-| ( 88, ( ( _, ( _, EXCLAMATION1left, EXCLAMATION1right)) :: rest671)
-) => let val result = MlyValue.fol_quantifier (( Forall ))
- in ( LrTable.NT 50, ( result, EXCLAMATION1left, EXCLAMATION1right),
-rest671)
-end
-| ( 89, ( ( _, ( _, QUESTION1left, QUESTION1right)) :: rest671)) =>
- let val result = MlyValue.fol_quantifier (( Exists ))
- in ( LrTable.NT 50, ( result, QUESTION1left, QUESTION1right), rest671
-)
-end
-| ( 90, ( ( _, ( MlyValue.unary_connective unary_connective,
-unary_connective1left, unary_connective1right)) :: rest671)) => let
- val result = MlyValue.thf_unary_connective (( unary_connective ))
- in ( LrTable.NT 51, ( result, unary_connective1left,
-unary_connective1right), rest671)
-end
-| ( 91, ( ( _, ( _, OPERATOR_FORALL1left, OPERATOR_FORALL1right)) ::
-rest671)) => let val result = MlyValue.thf_unary_connective (
-( Interpreted_Logic Op_Forall ))
- in ( LrTable.NT 51, ( result, OPERATOR_FORALL1left,
-OPERATOR_FORALL1right), rest671)
-end
-| ( 92, ( ( _, ( _, OPERATOR_EXISTS1left, OPERATOR_EXISTS1right)) ::
-rest671)) => let val result = MlyValue.thf_unary_connective (
-( Interpreted_Logic Op_Exists ))
- in ( LrTable.NT 51, ( result, OPERATOR_EXISTS1left,
-OPERATOR_EXISTS1right), rest671)
-end
-| ( 93, ( ( _, ( MlyValue.infix_equality infix_equality,
-infix_equality1left, infix_equality1right)) :: rest671)) => let val
-result = MlyValue.thf_pair_connective (( infix_equality ))
- in ( LrTable.NT 52, ( result, infix_equality1left,
-infix_equality1right), rest671)
-end
-| ( 94, ( ( _, ( MlyValue.infix_inequality infix_inequality,
-infix_inequality1left, infix_inequality1right)) :: rest671)) => let
- val result = MlyValue.thf_pair_connective (( infix_inequality ))
- in ( LrTable.NT 52, ( result, infix_inequality1left,
-infix_inequality1right), rest671)
-end
-| ( 95, ( ( _, ( MlyValue.binary_connective binary_connective,
-binary_connective1left, binary_connective1right)) :: rest671)) => let
- val result = MlyValue.thf_pair_connective (( binary_connective ))
- in ( LrTable.NT 52, ( result, binary_connective1left,
-binary_connective1right), rest671)
-end
-| ( 96, ( ( _, ( MlyValue.fol_quantifier fol_quantifier,
-fol_quantifier1left, fol_quantifier1right)) :: rest671)) => let val
-result = MlyValue.thf_quantifier (( fol_quantifier ))
- in ( LrTable.NT 53, ( result, fol_quantifier1left,
-fol_quantifier1right), rest671)
-end
-| ( 97, ( ( _, ( _, CARET1left, CARET1right)) :: rest671)) => let
- val result = MlyValue.thf_quantifier (( Lambda ))
- in ( LrTable.NT 53, ( result, CARET1left, CARET1right), rest671)
-end
-| ( 98, ( ( _, ( _, DEP_PROD1left, DEP_PROD1right)) :: rest671)) =>
- let val result = MlyValue.thf_quantifier (( Dep_Prod ))
- in ( LrTable.NT 53, ( result, DEP_PROD1left, DEP_PROD1right), rest671
-)
-end
-| ( 99, ( ( _, ( _, DEP_SUM1left, DEP_SUM1right)) :: rest671)) => let
- val result = MlyValue.thf_quantifier (( Dep_Sum ))
- in ( LrTable.NT 53, ( result, DEP_SUM1left, DEP_SUM1right), rest671)
-
-end
-| ( 100, ( ( _, ( _, INDEF_CHOICE1left, INDEF_CHOICE1right)) ::
-rest671)) => let val result = MlyValue.thf_quantifier (( Epsilon ))
- in ( LrTable.NT 53, ( result, INDEF_CHOICE1left, INDEF_CHOICE1right),
- rest671)
-end
-| ( 101, ( ( _, ( _, DEFIN_CHOICE1left, DEFIN_CHOICE1right)) ::
-rest671)) => let val result = MlyValue.thf_quantifier (( Iota ))
- in ( LrTable.NT 53, ( result, DEFIN_CHOICE1left, DEFIN_CHOICE1right),
- rest671)
-end
-| ( 102, ( ( _, ( MlyValue.term term2, _, term2right)) :: ( _, (
-MlyValue.infix_inequality infix_inequality, _, _)) :: ( _, (
-MlyValue.term term1, term1left, _)) :: rest671)) => let val result =
-MlyValue.fol_infix_unary (( Pred (infix_inequality, [term1, term2]) ))
- in ( LrTable.NT 54, ( result, term1left, term2right), rest671)
-end
-| ( 103, ( ( _, ( MlyValue.thf_pair_connective thf_pair_connective,
-thf_pair_connective1left, thf_pair_connective1right)) :: rest671)) =>
- let val result = MlyValue.thf_conn_term (( thf_pair_connective ))
- in ( LrTable.NT 55, ( result, thf_pair_connective1left,
-thf_pair_connective1right), rest671)
-end
-| ( 104, ( ( _, ( MlyValue.assoc_connective assoc_connective,
-assoc_connective1left, assoc_connective1right)) :: rest671)) => let
- val result = MlyValue.thf_conn_term (( assoc_connective ))
- in ( LrTable.NT 55, ( result, assoc_connective1left,
-assoc_connective1right), rest671)
-end
-| ( 105, ( ( _, ( MlyValue.thf_unary_connective thf_unary_connective,
- thf_unary_connective1left, thf_unary_connective1right)) :: rest671))
- => let val result = MlyValue.thf_conn_term (( thf_unary_connective )
-)
- in ( LrTable.NT 55, ( result, thf_unary_connective1left,
-thf_unary_connective1right), rest671)
-end
-| ( 106, ( ( _, ( MlyValue.atomic_formula atomic_formula,
-atomic_formula1left, atomic_formula1right)) :: rest671)) => let val
-result = MlyValue.literal (( atomic_formula ))
- in ( LrTable.NT 56, ( result, atomic_formula1left,
-atomic_formula1right), rest671)
-end
-| ( 107, ( ( _, ( MlyValue.atomic_formula atomic_formula, _,
-atomic_formula1right)) :: ( _, ( _, TILDE1left, _)) :: rest671)) =>
- let val result = MlyValue.literal (
-( Fmla (Interpreted_Logic Not, [atomic_formula]) ))
- in ( LrTable.NT 56, ( result, TILDE1left, atomic_formula1right),
-rest671)
-end
-| ( 108, ( ( _, ( MlyValue.fol_infix_unary fol_infix_unary,
-fol_infix_unary1left, fol_infix_unary1right)) :: rest671)) => let val
- result = MlyValue.literal (( fol_infix_unary ))
- in ( LrTable.NT 56, ( result, fol_infix_unary1left,
-fol_infix_unary1right), rest671)
-end
-| ( 109, ( ( _, ( MlyValue.literal literal, literal1left,
-literal1right)) :: rest671)) => let val result = MlyValue.disjunction
- (( literal ))
- in ( LrTable.NT 57, ( result, literal1left, literal1right), rest671)
-
-end
-| ( 110, ( ( _, ( MlyValue.literal literal, _, literal1right)) :: _
- :: ( _, ( MlyValue.disjunction disjunction, disjunction1left, _)) ::
-rest671)) => let val result = MlyValue.disjunction (
-( Fmla (Interpreted_Logic Or, [disjunction, literal]) ))
- in ( LrTable.NT 57, ( result, disjunction1left, literal1right),
-rest671)
-end
-| ( 111, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.disjunction
- disjunction, _, _)) :: ( _, ( _, LPAREN1left, _)) :: rest671)) => let
- val result = MlyValue.cnf_formula (( disjunction ))
- in ( LrTable.NT 58, ( result, LPAREN1left, RPAREN1right), rest671)
-
-end
-| ( 112, ( ( _, ( MlyValue.disjunction disjunction, disjunction1left,
- disjunction1right)) :: rest671)) => let val result =
-MlyValue.cnf_formula (( disjunction ))
- in ( LrTable.NT 58, ( result, disjunction1left, disjunction1right),
-rest671)
-end
-| ( 113, ( ( _, ( MlyValue.fof_logic_formula fof_logic_formula,
-fof_logic_formula1left, fof_logic_formula1right)) :: rest671)) => let
- val result = MlyValue.fof_tuple_list (( [fof_logic_formula] ))
- in ( LrTable.NT 59, ( result, fof_logic_formula1left,
-fof_logic_formula1right), rest671)
-end
-| ( 114, ( ( _, ( MlyValue.fof_tuple_list fof_tuple_list, _,
-fof_tuple_list1right)) :: _ :: ( _, ( MlyValue.fof_logic_formula
-fof_logic_formula, fof_logic_formula1left, _)) :: rest671)) => let
- val result = MlyValue.fof_tuple_list (
-( fof_logic_formula :: fof_tuple_list ))
- in ( LrTable.NT 59, ( result, fof_logic_formula1left,
-fof_tuple_list1right), rest671)
-end
-| ( 115, ( ( _, ( _, _, RBRKT1right)) :: ( _, ( _, LBRKT1left, _)) ::
- rest671)) => let val result = MlyValue.fof_tuple (( [] ))
- in ( LrTable.NT 60, ( result, LBRKT1left, RBRKT1right), rest671)
-end
-| ( 116, ( ( _, ( _, _, RBRKT1right)) :: ( _, (
-MlyValue.fof_tuple_list fof_tuple_list, _, _)) :: ( _, ( _, LBRKT1left
-, _)) :: rest671)) => let val result = MlyValue.fof_tuple (
-( fof_tuple_list ))
- in ( LrTable.NT 60, ( result, LBRKT1left, RBRKT1right), rest671)
-end
-| ( 117, ( ( _, ( MlyValue.fof_tuple fof_tuple2, _, fof_tuple2right))
- :: _ :: ( _, ( MlyValue.fof_tuple fof_tuple1, fof_tuple1left, _)) ::
-rest671)) => let val result = MlyValue.fof_sequent (
-( Sequent (fof_tuple1, fof_tuple2) ))
- in ( LrTable.NT 61, ( result, fof_tuple1left, fof_tuple2right),
-rest671)
-end
-| ( 118, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.fof_sequent
- fof_sequent, _, _)) :: ( _, ( _, LPAREN1left, _)) :: rest671)) => let
- val result = MlyValue.fof_sequent (( fof_sequent ))
- in ( LrTable.NT 61, ( result, LPAREN1left, RPAREN1right), rest671)
+| ( 244, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.term term,
+ _, _)) :: _ :: ( _, ( MlyValue.tff_let_formula_defn
+tff_let_formula_defn, _, _)) :: _ :: ( _, ( _, LET_FT1left, _)) ::
+rest671)) => let val result = MlyValue.let_term (
+(Term_Let (tff_let_formula_defn, term) ))
+ in ( LrTable.NT 143, ( result, LET_FT1left, RPAREN1right), rest671)
end
-| ( 119, ( ( _, ( _, TILDE1left, TILDE1right)) :: rest671)) => let
- val result = MlyValue.unary_connective (( Interpreted_Logic Not ))
- in ( LrTable.NT 45, ( result, TILDE1left, TILDE1right), rest671)
-end
-| ( 120, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula, _
-, fof_unitary_formula1right)) :: ( _, ( MlyValue.unary_connective
-unary_connective, unary_connective1left, _)) :: rest671)) => let val
-result = MlyValue.fof_unary_formula (
-( Fmla (unary_connective, [fof_unitary_formula]) ))
- in ( LrTable.NT 62, ( result, unary_connective1left,
-fof_unitary_formula1right), rest671)
-end
-| ( 121, ( ( _, ( MlyValue.fol_infix_unary fol_infix_unary,
-fol_infix_unary1left, fol_infix_unary1right)) :: rest671)) => let val
- result = MlyValue.fof_unary_formula (( fol_infix_unary ))
- in ( LrTable.NT 62, ( result, fol_infix_unary1left,
-fol_infix_unary1right), rest671)
-end
-| ( 122, ( ( _, ( MlyValue.variable_ variable_, variable_1left,
-variable_1right)) :: rest671)) => let val result =
-MlyValue.fof_variable_list (( [variable_] ))
- in ( LrTable.NT 63, ( result, variable_1left, variable_1right),
-rest671)
-end
-| ( 123, ( ( _, ( MlyValue.fof_variable_list fof_variable_list, _,
-fof_variable_list1right)) :: _ :: ( _, ( MlyValue.variable_ variable_,
- variable_1left, _)) :: rest671)) => let val result =
-MlyValue.fof_variable_list (( variable_ :: fof_variable_list ))
- in ( LrTable.NT 63, ( result, variable_1left, fof_variable_list1right
-), rest671)
-end
-| ( 124, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula, _
-, fof_unitary_formula1right)) :: _ :: _ :: ( _, (
-MlyValue.fof_variable_list fof_variable_list, _, _)) :: _ :: ( _, (
-MlyValue.fol_quantifier fol_quantifier, fol_quantifier1left, _)) ::
-rest671)) => let val result = MlyValue.fof_quantified_formula (
-(
- Quant (fol_quantifier, map (fn v => (v, NONE)) fof_variable_list, fof_unitary_formula)
-)
-)
- in ( LrTable.NT 64, ( result, fol_quantifier1left,
-fof_unitary_formula1right), rest671)
-end
-| ( 125, ( ( _, ( MlyValue.fof_quantified_formula
-fof_quantified_formula, fof_quantified_formula1left,
-fof_quantified_formula1right)) :: rest671)) => let val result =
-MlyValue.fof_unitary_formula (( fof_quantified_formula ))
- in ( LrTable.NT 65, ( result, fof_quantified_formula1left,
-fof_quantified_formula1right), rest671)
-end
-| ( 126, ( ( _, ( MlyValue.fof_unary_formula fof_unary_formula,
-fof_unary_formula1left, fof_unary_formula1right)) :: rest671)) => let
- val result = MlyValue.fof_unitary_formula (( fof_unary_formula ))
- in ( LrTable.NT 65, ( result, fof_unary_formula1left,
-fof_unary_formula1right), rest671)
-end
-| ( 127, ( ( _, ( MlyValue.atomic_formula atomic_formula,
-atomic_formula1left, atomic_formula1right)) :: rest671)) => let val
-result = MlyValue.fof_unitary_formula (( atomic_formula ))
- in ( LrTable.NT 65, ( result, atomic_formula1left,
-atomic_formula1right), rest671)
-end
-| ( 128, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
-MlyValue.fof_logic_formula fof_logic_formula, _, _)) :: ( _, ( _,
-LPAREN1left, _)) :: rest671)) => let val result =
-MlyValue.fof_unitary_formula (( fof_logic_formula ))
- in ( LrTable.NT 65, ( result, LPAREN1left, RPAREN1right), rest671)
-
-end
-| ( 129, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula2,
- _, fof_unitary_formula2right)) :: _ :: ( _, (
-MlyValue.fof_unitary_formula fof_unitary_formula1,
-fof_unitary_formula1left, _)) :: rest671)) => let val result =
-MlyValue.fof_and_formula (
-( Fmla (Interpreted_Logic And, [fof_unitary_formula1, fof_unitary_formula2]) )
-)
- in ( LrTable.NT 66, ( result, fof_unitary_formula1left,
-fof_unitary_formula2right), rest671)
-end
-| ( 130, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula, _
-, fof_unitary_formula1right)) :: _ :: ( _, ( MlyValue.fof_and_formula
-fof_and_formula, fof_and_formula1left, _)) :: rest671)) => let val
-result = MlyValue.fof_and_formula (
-( Fmla (Interpreted_Logic And, [fof_and_formula, fof_unitary_formula]) )
-)
- in ( LrTable.NT 66, ( result, fof_and_formula1left,
-fof_unitary_formula1right), rest671)
-end
-| ( 131, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula2,
- _, fof_unitary_formula2right)) :: _ :: ( _, (
-MlyValue.fof_unitary_formula fof_unitary_formula1,
-fof_unitary_formula1left, _)) :: rest671)) => let val result =
-MlyValue.fof_or_formula (
-( Fmla (Interpreted_Logic Or, [fof_unitary_formula1, fof_unitary_formula2]) )
-)
- in ( LrTable.NT 67, ( result, fof_unitary_formula1left,
-fof_unitary_formula2right), rest671)
-end
-| ( 132, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula, _
-, fof_unitary_formula1right)) :: _ :: ( _, ( MlyValue.fof_or_formula
-fof_or_formula, fof_or_formula1left, _)) :: rest671)) => let val
-result = MlyValue.fof_or_formula (
-( Fmla (Interpreted_Logic Or, [fof_or_formula, fof_unitary_formula]) )
-)
- in ( LrTable.NT 67, ( result, fof_or_formula1left,
-fof_unitary_formula1right), rest671)
-end
-| ( 133, ( ( _, ( MlyValue.fof_or_formula fof_or_formula,
-fof_or_formula1left, fof_or_formula1right)) :: rest671)) => let val
-result = MlyValue.fof_binary_assoc (( fof_or_formula ))
- in ( LrTable.NT 68, ( result, fof_or_formula1left,
-fof_or_formula1right), rest671)
-end
-| ( 134, ( ( _, ( MlyValue.fof_and_formula fof_and_formula,
-fof_and_formula1left, fof_and_formula1right)) :: rest671)) => let val
- result = MlyValue.fof_binary_assoc (( fof_and_formula ))
- in ( LrTable.NT 68, ( result, fof_and_formula1left,
-fof_and_formula1right), rest671)
-end
-| ( 135, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula2,
- _, fof_unitary_formula2right)) :: ( _, ( MlyValue.binary_connective
-binary_connective, _, _)) :: ( _, ( MlyValue.fof_unitary_formula
-fof_unitary_formula1, fof_unitary_formula1left, _)) :: rest671)) =>
- let val result = MlyValue.fof_binary_nonassoc (
-(
- Fmla (binary_connective, [fof_unitary_formula1, fof_unitary_formula2] )
-)
-)
- in ( LrTable.NT 69, ( result, fof_unitary_formula1left,
-fof_unitary_formula2right), rest671)
-end
-| ( 136, ( ( _, ( MlyValue.fof_binary_nonassoc fof_binary_nonassoc,
-fof_binary_nonassoc1left, fof_binary_nonassoc1right)) :: rest671)) =>
- let val result = MlyValue.fof_binary_formula (
-( fof_binary_nonassoc ))
- in ( LrTable.NT 70, ( result, fof_binary_nonassoc1left,
-fof_binary_nonassoc1right), rest671)
-end
-| ( 137, ( ( _, ( MlyValue.fof_binary_assoc fof_binary_assoc,
-fof_binary_assoc1left, fof_binary_assoc1right)) :: rest671)) => let
- val result = MlyValue.fof_binary_formula (( fof_binary_assoc ))
- in ( LrTable.NT 70, ( result, fof_binary_assoc1left,
-fof_binary_assoc1right), rest671)
-end
-| ( 138, ( ( _, ( MlyValue.fof_binary_formula fof_binary_formula,
-fof_binary_formula1left, fof_binary_formula1right)) :: rest671)) =>
- let val result = MlyValue.fof_logic_formula (( fof_binary_formula ))
- in ( LrTable.NT 71, ( result, fof_binary_formula1left,
-fof_binary_formula1right), rest671)
-end
-| ( 139, ( ( _, ( MlyValue.fof_unitary_formula fof_unitary_formula,
-fof_unitary_formula1left, fof_unitary_formula1right)) :: rest671)) =>
- let val result = MlyValue.fof_logic_formula (( fof_unitary_formula )
-)
- in ( LrTable.NT 71, ( result, fof_unitary_formula1left,
-fof_unitary_formula1right), rest671)
-end
-| ( 140, ( ( _, ( MlyValue.fof_logic_formula fof_logic_formula,
-fof_logic_formula1left, fof_logic_formula1right)) :: rest671)) => let
- val result = MlyValue.fof_formula (( fof_logic_formula ))
- in ( LrTable.NT 72, ( result, fof_logic_formula1left,
-fof_logic_formula1right), rest671)
-end
-| ( 141, ( ( _, ( MlyValue.fof_sequent fof_sequent, fof_sequent1left,
- fof_sequent1right)) :: rest671)) => let val result =
-MlyValue.fof_formula (( fof_sequent ))
- in ( LrTable.NT 72, ( result, fof_sequent1left, fof_sequent1right),
-rest671)
-end
-| ( 142, ( ( _, ( _, _, RBRKT1right)) :: ( _, ( _, LBRKT1left, _)) ::
- rest671)) => let val result = MlyValue.tff_tuple (( [] ))
- in ( LrTable.NT 73, ( result, LBRKT1left, RBRKT1right), rest671)
-end
-| ( 143, ( ( _, ( _, _, RBRKT1right)) :: ( _, (
-MlyValue.tff_tuple_list tff_tuple_list, _, _)) :: ( _, ( _, LBRKT1left
-, _)) :: rest671)) => let val result = MlyValue.tff_tuple (
-( tff_tuple_list ))
- in ( LrTable.NT 73, ( result, LBRKT1left, RBRKT1right), rest671)
-end
-| ( 144, ( ( _, ( MlyValue.tff_tuple_list tff_tuple_list, _,
-tff_tuple_list1right)) :: _ :: ( _, ( MlyValue.tff_logic_formula
-tff_logic_formula, tff_logic_formula1left, _)) :: rest671)) => let
- val result = MlyValue.tff_tuple_list (
-( tff_logic_formula :: tff_tuple_list ))
- in ( LrTable.NT 74, ( result, tff_logic_formula1left,
-tff_tuple_list1right), rest671)
-end
-| ( 145, ( ( _, ( MlyValue.tff_logic_formula tff_logic_formula,
-tff_logic_formula1left, tff_logic_formula1right)) :: rest671)) => let
- val result = MlyValue.tff_tuple_list (( [tff_logic_formula] ))
- in ( LrTable.NT 74, ( result, tff_logic_formula1left,
-tff_logic_formula1right), rest671)
-end
-| ( 146, ( ( _, ( MlyValue.tff_tuple tff_tuple2, _, tff_tuple2right))
- :: _ :: ( _, ( MlyValue.tff_tuple tff_tuple1, tff_tuple1left, _)) ::
-rest671)) => let val result = MlyValue.tff_sequent (
-( Sequent (tff_tuple1, tff_tuple2) ))
- in ( LrTable.NT 75, ( result, tff_tuple1left, tff_tuple2right),
-rest671)
-end
-| ( 147, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.tff_sequent
- tff_sequent, _, _)) :: ( _, ( _, LPAREN1left, _)) :: rest671)) => let
- val result = MlyValue.tff_sequent (( tff_sequent ))
- in ( LrTable.NT 75, ( result, LPAREN1left, RPAREN1right), rest671)
-
-end
-| ( 148, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
-MlyValue.tff_logic_formula tff_logic_formula3, _, _)) :: _ :: ( _, (
-MlyValue.tff_logic_formula tff_logic_formula2, _, _)) :: _ :: ( _, (
-MlyValue.tff_logic_formula tff_logic_formula1, _, _)) :: _ :: ( _, ( _
-, ITE_F1left, _)) :: rest671)) => let val result =
-MlyValue.tff_conditional (
-(
- Conditional (tff_logic_formula1, tff_logic_formula2, tff_logic_formula3)
-)
-)
- in ( LrTable.NT 76, ( result, ITE_F1left, RPAREN1right), rest671)
-end
-| ( 149, ( ( _, ( MlyValue.tff_logic_formula tff_logic_formula, _,
-tff_logic_formula1right)) :: _ :: ( _, ( MlyValue.variable_ variable_,
- variable_1left, _)) :: rest671)) => let val result =
-MlyValue.tff_defined_var (
-( Let_fmla ((variable_, NONE), tff_logic_formula) ))
- in ( LrTable.NT 77, ( result, variable_1left, tff_logic_formula1right
-), rest671)
-end
-| ( 150, ( ( _, ( MlyValue.term term, _, term1right)) :: _ :: ( _, (
-MlyValue.variable_ variable_, variable_1left, _)) :: rest671)) => let
- val result = MlyValue.tff_defined_var (
-( Let_term ((variable_, NONE), term) ))
- in ( LrTable.NT 77, ( result, variable_1left, term1right), rest671)
-
-end
-| ( 151, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
-MlyValue.tff_defined_var tff_defined_var, _, _)) :: ( _, ( _,
-LPAREN1left, _)) :: rest671)) => let val result =
-MlyValue.tff_defined_var (( tff_defined_var ))
- in ( LrTable.NT 77, ( result, LPAREN1left, RPAREN1right), rest671)
-
-end
-| ( 152, ( ( _, ( MlyValue.tff_defined_var tff_defined_var,
-tff_defined_var1left, tff_defined_var1right)) :: rest671)) => let val
- result = MlyValue.tff_let_list (( [tff_defined_var] ))
- in ( LrTable.NT 78, ( result, tff_defined_var1left,
-tff_defined_var1right), rest671)
-end
-| ( 153, ( ( _, ( MlyValue.tff_let_list tff_let_list, _,
-tff_let_list1right)) :: _ :: ( _, ( MlyValue.tff_defined_var
-tff_defined_var, tff_defined_var1left, _)) :: rest671)) => let val
-result = MlyValue.tff_let_list (( tff_defined_var :: tff_let_list ))
- in ( LrTable.NT 78, ( result, tff_defined_var1left,
-tff_let_list1right), rest671)
-end
-| ( 154, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula, _
-, tff_unitary_formula1right)) :: _ :: _ :: ( _, (
-MlyValue.tff_let_list tff_let_list, _, _)) :: _ :: ( _, ( _, LET1left,
- _)) :: rest671)) => let val result = MlyValue.tptp_let (
-(
- Let (tff_let_list, tff_unitary_formula)
-))
- in ( LrTable.NT 79, ( result, LET1left, tff_unitary_formula1right),
-rest671)
-end
-| ( 155, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type2, _,
-tff_atomic_type2right)) :: _ :: ( _, ( MlyValue.tff_atomic_type
-tff_atomic_type1, tff_atomic_type1left, _)) :: rest671)) => let val
-result = MlyValue.tff_xprod_type (
-( Prod_type(tff_atomic_type1, tff_atomic_type2) ))
- in ( LrTable.NT 80, ( result, tff_atomic_type1left,
-tff_atomic_type2right), rest671)
-end
-| ( 156, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type, _,
-tff_atomic_type1right)) :: _ :: ( _, ( MlyValue.tff_xprod_type
-tff_xprod_type, tff_xprod_type1left, _)) :: rest671)) => let val
-result = MlyValue.tff_xprod_type (
-( Prod_type(tff_xprod_type, tff_atomic_type) ))
- in ( LrTable.NT 80, ( result, tff_xprod_type1left,
-tff_atomic_type1right), rest671)
-end
-| ( 157, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
-MlyValue.tff_xprod_type tff_xprod_type, _, _)) :: ( _, ( _,
-LPAREN1left, _)) :: rest671)) => let val result =
-MlyValue.tff_xprod_type (( tff_xprod_type ))
- in ( LrTable.NT 80, ( result, LPAREN1left, RPAREN1right), rest671)
-
-end
-| ( 158, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type, _,
-tff_atomic_type1right)) :: _ :: ( _, ( MlyValue.tff_unitary_type
-tff_unitary_type, tff_unitary_type1left, _)) :: rest671)) => let val
-result = MlyValue.tff_mapping_type (
-( Fn_type(tff_unitary_type, tff_atomic_type) ))
- in ( LrTable.NT 81, ( result, tff_unitary_type1left,
-tff_atomic_type1right), rest671)
-end
-| ( 159, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
-MlyValue.tff_mapping_type tff_mapping_type, _, _)) :: ( _, ( _,
-LPAREN1left, _)) :: rest671)) => let val result =
-MlyValue.tff_mapping_type (( tff_mapping_type ))
- in ( LrTable.NT 81, ( result, LPAREN1left, RPAREN1right), rest671)
-
-end
-| ( 160, ( ( _, ( MlyValue.atomic_word atomic_word, atomic_word1left,
- atomic_word1right)) :: rest671)) => let val result =
-MlyValue.tff_atomic_type (( Atom_type atomic_word ))
- in ( LrTable.NT 82, ( result, atomic_word1left, atomic_word1right),
-rest671)
-end
-| ( 161, ( ( _, ( MlyValue.defined_type defined_type,
-defined_type1left, defined_type1right)) :: rest671)) => let val
-result = MlyValue.tff_atomic_type (( Defined_type defined_type ))
- in ( LrTable.NT 82, ( result, defined_type1left, defined_type1right),
- rest671)
-end
-| ( 162, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type,
-tff_atomic_type1left, tff_atomic_type1right)) :: rest671)) => let val
- result = MlyValue.tff_unitary_type (( tff_atomic_type ))
- in ( LrTable.NT 83, ( result, tff_atomic_type1left,
-tff_atomic_type1right), rest671)
-end
-| ( 163, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
-MlyValue.tff_xprod_type tff_xprod_type, _, _)) :: ( _, ( _,
-LPAREN1left, _)) :: rest671)) => let val result =
-MlyValue.tff_unitary_type (( tff_xprod_type ))
- in ( LrTable.NT 83, ( result, LPAREN1left, RPAREN1right), rest671)
-
-end
-| ( 164, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type,
-tff_atomic_type1left, tff_atomic_type1right)) :: rest671)) => let val
- result = MlyValue.tff_top_level_type (( tff_atomic_type ))
- in ( LrTable.NT 84, ( result, tff_atomic_type1left,
-tff_atomic_type1right), rest671)
-end
-| ( 165, ( ( _, ( MlyValue.tff_mapping_type tff_mapping_type,
-tff_mapping_type1left, tff_mapping_type1right)) :: rest671)) => let
- val result = MlyValue.tff_top_level_type (( tff_mapping_type ))
- in ( LrTable.NT 84, ( result, tff_mapping_type1left,
-tff_mapping_type1right), rest671)
-end
-| ( 166, ( ( _, ( MlyValue.functor_ functor_, functor_1left,
-functor_1right)) :: rest671)) => let val result =
-MlyValue.tff_untyped_atom (( (functor_, NONE) ))
- in ( LrTable.NT 85, ( result, functor_1left, functor_1right), rest671
-)
-end
-| ( 167, ( ( _, ( MlyValue.system_functor system_functor,
-system_functor1left, system_functor1right)) :: rest671)) => let val
-result = MlyValue.tff_untyped_atom (( (system_functor, NONE) ))
- in ( LrTable.NT 85, ( result, system_functor1left,
-system_functor1right), rest671)
-end
-| ( 168, ( ( _, ( MlyValue.tff_top_level_type tff_top_level_type, _,
-tff_top_level_type1right)) :: _ :: ( _, ( MlyValue.tff_untyped_atom
-tff_untyped_atom, tff_untyped_atom1left, _)) :: rest671)) => let val
-result = MlyValue.tff_typed_atom (
-( (fst tff_untyped_atom, SOME tff_top_level_type) ))
- in ( LrTable.NT 86, ( result, tff_untyped_atom1left,
-tff_top_level_type1right), rest671)
-end
-| ( 169, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
-MlyValue.tff_typed_atom tff_typed_atom, _, _)) :: ( _, ( _,
-LPAREN1left, _)) :: rest671)) => let val result =
-MlyValue.tff_typed_atom (( tff_typed_atom ))
- in ( LrTable.NT 86, ( result, LPAREN1left, RPAREN1right), rest671)
+| ( 245, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.term term,
+ _, _)) :: _ :: ( _, ( MlyValue.tff_let_term_defn tff_let_term_defn, _
+, _)) :: _ :: ( _, ( _, LET_TT1left, _)) :: rest671)) => let val
+result = MlyValue.let_term ((Term_Let (tff_let_term_defn, term) ))
+ in ( LrTable.NT 143, ( result, LET_TT1left, RPAREN1right), rest671)
end
-| ( 170, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula, _
-, tff_unitary_formula1right)) :: ( _, ( MlyValue.unary_connective
-unary_connective, unary_connective1left, _)) :: rest671)) => let val
-result = MlyValue.tff_unary_formula (
-( Fmla (unary_connective, [tff_unitary_formula]) ))
- in ( LrTable.NT 87, ( result, unary_connective1left,
-tff_unitary_formula1right), rest671)
-end
-| ( 171, ( ( _, ( MlyValue.fol_infix_unary fol_infix_unary,
-fol_infix_unary1left, fol_infix_unary1right)) :: rest671)) => let val
- result = MlyValue.tff_unary_formula (( fol_infix_unary ))
- in ( LrTable.NT 87, ( result, fol_infix_unary1left,
-fol_infix_unary1right), rest671)
-end
-| ( 172, ( ( _, ( MlyValue.tff_atomic_type tff_atomic_type, _,
-tff_atomic_type1right)) :: _ :: ( _, ( MlyValue.variable_ variable_,
-variable_1left, _)) :: rest671)) => let val result =
-MlyValue.tff_typed_variable (( (variable_, SOME tff_atomic_type) ))
- in ( LrTable.NT 88, ( result, variable_1left, tff_atomic_type1right),
- rest671)
-end
-| ( 173, ( ( _, ( MlyValue.tff_typed_variable tff_typed_variable,
-tff_typed_variable1left, tff_typed_variable1right)) :: rest671)) =>
- let val result = MlyValue.tff_variable (( tff_typed_variable ))
- in ( LrTable.NT 89, ( result, tff_typed_variable1left,
-tff_typed_variable1right), rest671)
-end
-| ( 174, ( ( _, ( MlyValue.variable_ variable_, variable_1left,
-variable_1right)) :: rest671)) => let val result =
-MlyValue.tff_variable (( (variable_, NONE) ))
- in ( LrTable.NT 89, ( result, variable_1left, variable_1right),
-rest671)
-end
-| ( 175, ( ( _, ( MlyValue.tff_variable tff_variable,
-tff_variable1left, tff_variable1right)) :: rest671)) => let val
-result = MlyValue.tff_variable_list (( [tff_variable] ))
- in ( LrTable.NT 90, ( result, tff_variable1left, tff_variable1right),
- rest671)
-end
-| ( 176, ( ( _, ( MlyValue.tff_variable_list tff_variable_list, _,
-tff_variable_list1right)) :: _ :: ( _, ( MlyValue.tff_variable
-tff_variable, tff_variable1left, _)) :: rest671)) => let val result =
- MlyValue.tff_variable_list (( tff_variable :: tff_variable_list ))
- in ( LrTable.NT 90, ( result, tff_variable1left,
-tff_variable_list1right), rest671)
-end
-| ( 177, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula, _
-, tff_unitary_formula1right)) :: _ :: _ :: ( _, (
-MlyValue.tff_variable_list tff_variable_list, _, _)) :: _ :: ( _, (
-MlyValue.fol_quantifier fol_quantifier, fol_quantifier1left, _)) ::
-rest671)) => let val result = MlyValue.tff_quantified_formula (
-(
- Quant (fol_quantifier, tff_variable_list, tff_unitary_formula)
-))
- in ( LrTable.NT 91, ( result, fol_quantifier1left,
-tff_unitary_formula1right), rest671)
-end
-| ( 178, ( ( _, ( MlyValue.tff_quantified_formula
-tff_quantified_formula, tff_quantified_formula1left,
-tff_quantified_formula1right)) :: rest671)) => let val result =
-MlyValue.tff_unitary_formula (( tff_quantified_formula ))
- in ( LrTable.NT 92, ( result, tff_quantified_formula1left,
-tff_quantified_formula1right), rest671)
-end
-| ( 179, ( ( _, ( MlyValue.tff_unary_formula tff_unary_formula,
-tff_unary_formula1left, tff_unary_formula1right)) :: rest671)) => let
- val result = MlyValue.tff_unitary_formula (( tff_unary_formula ))
- in ( LrTable.NT 92, ( result, tff_unary_formula1left,
-tff_unary_formula1right), rest671)
-end
-| ( 180, ( ( _, ( MlyValue.atomic_formula atomic_formula,
-atomic_formula1left, atomic_formula1right)) :: rest671)) => let val
-result = MlyValue.tff_unitary_formula (( atomic_formula ))
- in ( LrTable.NT 92, ( result, atomic_formula1left,
-atomic_formula1right), rest671)
-end
-| ( 181, ( ( _, ( MlyValue.tptp_let tptp_let, tptp_let1left,
-tptp_let1right)) :: rest671)) => let val result =
-MlyValue.tff_unitary_formula (( tptp_let ))
- in ( LrTable.NT 92, ( result, tptp_let1left, tptp_let1right), rest671
-)
-end
-| ( 182, ( ( _, ( MlyValue.variable_ variable_, variable_1left,
-variable_1right)) :: rest671)) => let val result =
-MlyValue.tff_unitary_formula (( Pred (Uninterpreted variable_, []) ))
- in ( LrTable.NT 92, ( result, variable_1left, variable_1right),
-rest671)
-end
-| ( 183, ( ( _, ( MlyValue.tff_conditional tff_conditional,
-tff_conditional1left, tff_conditional1right)) :: rest671)) => let val
- result = MlyValue.tff_unitary_formula (( tff_conditional ))
- in ( LrTable.NT 92, ( result, tff_conditional1left,
-tff_conditional1right), rest671)
-end
-| ( 184, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
-MlyValue.tff_logic_formula tff_logic_formula, _, _)) :: ( _, ( _,
-LPAREN1left, _)) :: rest671)) => let val result =
-MlyValue.tff_unitary_formula (( tff_logic_formula ))
- in ( LrTable.NT 92, ( result, LPAREN1left, RPAREN1right), rest671)
-
-end
-| ( 185, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula2,
- _, tff_unitary_formula2right)) :: _ :: ( _, (
-MlyValue.tff_unitary_formula tff_unitary_formula1,
-tff_unitary_formula1left, _)) :: rest671)) => let val result =
-MlyValue.tff_and_formula (
-( Fmla (Interpreted_Logic And, [tff_unitary_formula1, tff_unitary_formula2]) )
-)
- in ( LrTable.NT 93, ( result, tff_unitary_formula1left,
-tff_unitary_formula2right), rest671)
-end
-| ( 186, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula, _
-, tff_unitary_formula1right)) :: _ :: ( _, ( MlyValue.tff_and_formula
-tff_and_formula, tff_and_formula1left, _)) :: rest671)) => let val
-result = MlyValue.tff_and_formula (
-( Fmla (Interpreted_Logic And, [tff_and_formula, tff_unitary_formula]) )
-)
- in ( LrTable.NT 93, ( result, tff_and_formula1left,
-tff_unitary_formula1right), rest671)
-end
-| ( 187, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula2,
- _, tff_unitary_formula2right)) :: _ :: ( _, (
-MlyValue.tff_unitary_formula tff_unitary_formula1,
-tff_unitary_formula1left, _)) :: rest671)) => let val result =
-MlyValue.tff_or_formula (
-( Fmla (Interpreted_Logic Or, [tff_unitary_formula1, tff_unitary_formula2]) )
-)
- in ( LrTable.NT 94, ( result, tff_unitary_formula1left,
-tff_unitary_formula2right), rest671)
-end
-| ( 188, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula, _
-, tff_unitary_formula1right)) :: _ :: ( _, ( MlyValue.tff_or_formula
-tff_or_formula, tff_or_formula1left, _)) :: rest671)) => let val
-result = MlyValue.tff_or_formula (
-( Fmla (Interpreted_Logic Or, [tff_or_formula, tff_unitary_formula]) )
-)
- in ( LrTable.NT 94, ( result, tff_or_formula1left,
-tff_unitary_formula1right), rest671)
-end
-| ( 189, ( ( _, ( MlyValue.tff_or_formula tff_or_formula,
-tff_or_formula1left, tff_or_formula1right)) :: rest671)) => let val
-result = MlyValue.tff_binary_assoc (( tff_or_formula ))
- in ( LrTable.NT 95, ( result, tff_or_formula1left,
-tff_or_formula1right), rest671)
-end
-| ( 190, ( ( _, ( MlyValue.tff_and_formula tff_and_formula,
-tff_and_formula1left, tff_and_formula1right)) :: rest671)) => let val
- result = MlyValue.tff_binary_assoc (( tff_and_formula ))
- in ( LrTable.NT 95, ( result, tff_and_formula1left,
-tff_and_formula1right), rest671)
-end
-| ( 191, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula2,
- _, tff_unitary_formula2right)) :: ( _, ( MlyValue.binary_connective
-binary_connective, _, _)) :: ( _, ( MlyValue.tff_unitary_formula
-tff_unitary_formula1, tff_unitary_formula1left, _)) :: rest671)) =>
- let val result = MlyValue.tff_binary_nonassoc (
-( Fmla (binary_connective, [tff_unitary_formula1, tff_unitary_formula2]) )
-)
- in ( LrTable.NT 96, ( result, tff_unitary_formula1left,
-tff_unitary_formula2right), rest671)
-end
-| ( 192, ( ( _, ( MlyValue.tff_binary_nonassoc tff_binary_nonassoc,
-tff_binary_nonassoc1left, tff_binary_nonassoc1right)) :: rest671)) =>
- let val result = MlyValue.tff_binary_formula (
-( tff_binary_nonassoc ))
- in ( LrTable.NT 97, ( result, tff_binary_nonassoc1left,
-tff_binary_nonassoc1right), rest671)
-end
-| ( 193, ( ( _, ( MlyValue.tff_binary_assoc tff_binary_assoc,
-tff_binary_assoc1left, tff_binary_assoc1right)) :: rest671)) => let
- val result = MlyValue.tff_binary_formula (( tff_binary_assoc ))
- in ( LrTable.NT 97, ( result, tff_binary_assoc1left,
-tff_binary_assoc1right), rest671)
-end
-| ( 194, ( ( _, ( MlyValue.tff_binary_formula tff_binary_formula,
-tff_binary_formula1left, tff_binary_formula1right)) :: rest671)) =>
- let val result = MlyValue.tff_logic_formula (( tff_binary_formula ))
- in ( LrTable.NT 98, ( result, tff_binary_formula1left,
-tff_binary_formula1right), rest671)
-end
-| ( 195, ( ( _, ( MlyValue.tff_unitary_formula tff_unitary_formula,
-tff_unitary_formula1left, tff_unitary_formula1right)) :: rest671)) =>
- let val result = MlyValue.tff_logic_formula (( tff_unitary_formula )
-)
- in ( LrTable.NT 98, ( result, tff_unitary_formula1left,
-tff_unitary_formula1right), rest671)
-end
-| ( 196, ( ( _, ( MlyValue.tff_logic_formula tff_logic_formula,
-tff_logic_formula1left, tff_logic_formula1right)) :: rest671)) => let
- val result = MlyValue.tff_formula (( tff_logic_formula ))
- in ( LrTable.NT 99, ( result, tff_logic_formula1left,
-tff_logic_formula1right), rest671)
-end
-| ( 197, ( ( _, ( MlyValue.tff_typed_atom tff_typed_atom,
-tff_typed_atom1left, tff_typed_atom1right)) :: rest671)) => let val
-result = MlyValue.tff_formula (
-( Atom (TFF_Typed_Atom tff_typed_atom) ))
- in ( LrTable.NT 99, ( result, tff_typed_atom1left,
-tff_typed_atom1right), rest671)
-end
-| ( 198, ( ( _, ( MlyValue.tff_sequent tff_sequent, tff_sequent1left,
- tff_sequent1right)) :: rest671)) => let val result =
-MlyValue.tff_formula (( tff_sequent ))
- in ( LrTable.NT 99, ( result, tff_sequent1left, tff_sequent1right),
-rest671)
-end
-| ( 199, ( ( _, ( _, _, RBRKT1right)) :: ( _, ( _, LBRKT1left, _)) ::
- rest671)) => let val result = MlyValue.thf_tuple (( [] ))
- in ( LrTable.NT 100, ( result, LBRKT1left, RBRKT1right), rest671)
-end
-| ( 200, ( ( _, ( _, _, RBRKT1right)) :: ( _, (
-MlyValue.thf_tuple_list thf_tuple_list, _, _)) :: ( _, ( _, LBRKT1left
-, _)) :: rest671)) => let val result = MlyValue.thf_tuple (
-( thf_tuple_list ))
- in ( LrTable.NT 100, ( result, LBRKT1left, RBRKT1right), rest671)
-end
-| ( 201, ( ( _, ( MlyValue.thf_logic_formula thf_logic_formula,
-thf_logic_formula1left, thf_logic_formula1right)) :: rest671)) => let
- val result = MlyValue.thf_tuple_list (( [thf_logic_formula] ))
- in ( LrTable.NT 101, ( result, thf_logic_formula1left,
-thf_logic_formula1right), rest671)
-end
-| ( 202, ( ( _, ( MlyValue.thf_tuple_list thf_tuple_list, _,
-thf_tuple_list1right)) :: _ :: ( _, ( MlyValue.thf_logic_formula
-thf_logic_formula, thf_logic_formula1left, _)) :: rest671)) => let
- val result = MlyValue.thf_tuple_list (
-( thf_logic_formula :: thf_tuple_list ))
- in ( LrTable.NT 101, ( result, thf_logic_formula1left,
-thf_tuple_list1right), rest671)
-end
-| ( 203, ( ( _, ( MlyValue.thf_tuple thf_tuple2, _, thf_tuple2right))
- :: _ :: ( _, ( MlyValue.thf_tuple thf_tuple1, thf_tuple1left, _)) ::
-rest671)) => let val result = MlyValue.thf_sequent (
-( Sequent(thf_tuple1, thf_tuple2) ))
- in ( LrTable.NT 102, ( result, thf_tuple1left, thf_tuple2right),
-rest671)
-end
-| ( 204, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.thf_sequent
- thf_sequent, _, _)) :: ( _, ( _, LPAREN1left, _)) :: rest671)) => let
- val result = MlyValue.thf_sequent (( thf_sequent ))
- in ( LrTable.NT 102, ( result, LPAREN1left, RPAREN1right), rest671)
-
-end
-| ( 205, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
-MlyValue.thf_logic_formula thf_logic_formula3, _, _)) :: _ :: ( _, (
-MlyValue.thf_logic_formula thf_logic_formula2, _, _)) :: _ :: ( _, (
-MlyValue.thf_logic_formula thf_logic_formula1, _, _)) :: _ :: ( _, ( _
-, ITE_F1left, _)) :: rest671)) => let val result =
-MlyValue.thf_conditional (
-(
- Conditional (thf_logic_formula1, thf_logic_formula2, thf_logic_formula3)
-)
-)
- in ( LrTable.NT 103, ( result, ITE_F1left, RPAREN1right), rest671)
-
-end
-| ( 206, ( ( _, ( MlyValue.thf_logic_formula thf_logic_formula, _,
-thf_logic_formula1right)) :: _ :: ( _, ( MlyValue.thf_variable
-thf_variable, thf_variable1left, _)) :: rest671)) => let val result =
- MlyValue.thf_defined_var (
-( Let_fmla (thf_variable, thf_logic_formula) ))
- in ( LrTable.NT 104, ( result, thf_variable1left,
-thf_logic_formula1right), rest671)
-end
-| ( 207, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
-MlyValue.thf_defined_var thf_defined_var, _, _)) :: ( _, ( _,
-LPAREN1left, _)) :: rest671)) => let val result =
-MlyValue.thf_defined_var (( thf_defined_var ))
- in ( LrTable.NT 104, ( result, LPAREN1left, RPAREN1right), rest671)
+| ( 246, ( ( _, ( MlyValue.useful_info useful_info, _,
+useful_info1right)) :: ( _, ( _, COMMA1left, _)) :: rest671)) => let
+ val result = MlyValue.optional_info (( useful_info ))
+ in ( LrTable.NT 4, ( result, COMMA1left, useful_info1right), rest671)
end
-| ( 208, ( ( _, ( MlyValue.thf_defined_var thf_defined_var,
-thf_defined_var1left, thf_defined_var1right)) :: rest671)) => let val
- result = MlyValue.thf_let_list (( [thf_defined_var] ))
- in ( LrTable.NT 105, ( result, thf_defined_var1left,
-thf_defined_var1right), rest671)
-end
-| ( 209, ( ( _, ( MlyValue.thf_let_list thf_let_list, _,
-thf_let_list1right)) :: _ :: ( _, ( MlyValue.thf_defined_var
-thf_defined_var, thf_defined_var1left, _)) :: rest671)) => let val
-result = MlyValue.thf_let_list (( thf_defined_var :: thf_let_list ))
- in ( LrTable.NT 105, ( result, thf_defined_var1left,
-thf_let_list1right), rest671)
-end
-| ( 210, ( ( _, ( MlyValue.thf_unitary_formula thf_unitary_formula, _
-, thf_unitary_formula1right)) :: _ :: _ :: ( _, (
-MlyValue.thf_let_list thf_let_list, _, _)) :: _ :: ( _, ( _, LET1left,
- _)) :: rest671)) => let val result = MlyValue.thf_let (
-(
- Let (thf_let_list, thf_unitary_formula)
-))
- in ( LrTable.NT 106, ( result, LET1left, thf_unitary_formula1right),
-rest671)
-end
-| ( 211, ( ( _, ( MlyValue.term term, term1left, term1right)) ::
-rest671)) => let val result = MlyValue.thf_atom (
-( Atom (THF_Atom_term term) ))
- in ( LrTable.NT 107, ( result, term1left, term1right), rest671)
-end
-| ( 212, ( ( _, ( MlyValue.thf_conn_term thf_conn_term,
-thf_conn_term1left, thf_conn_term1right)) :: rest671)) => let val
-result = MlyValue.thf_atom (
-( Atom (THF_Atom_conn_term thf_conn_term) ))
- in ( LrTable.NT 107, ( result, thf_conn_term1left,
-thf_conn_term1right), rest671)
-end
-| ( 213, ( ( _, ( MlyValue.thf_unitary_type thf_unitary_type2, _,
-thf_unitary_type2right)) :: _ :: ( _, ( MlyValue.thf_unitary_type
-thf_unitary_type1, thf_unitary_type1left, _)) :: rest671)) => let val
- result = MlyValue.thf_union_type (
-( Sum_type(thf_unitary_type1, thf_unitary_type2) ))
- in ( LrTable.NT 108, ( result, thf_unitary_type1left,
-thf_unitary_type2right), rest671)
-end
-| ( 214, ( ( _, ( MlyValue.thf_unitary_type thf_unitary_type, _,
-thf_unitary_type1right)) :: _ :: ( _, ( MlyValue.thf_union_type
-thf_union_type, thf_union_type1left, _)) :: rest671)) => let val
-result = MlyValue.thf_union_type (
-( Sum_type(thf_union_type, thf_unitary_type) ))
- in ( LrTable.NT 108, ( result, thf_union_type1left,
-thf_unitary_type1right), rest671)
-end
-| ( 215, ( ( _, ( MlyValue.thf_unitary_type thf_unitary_type2, _,
-thf_unitary_type2right)) :: _ :: ( _, ( MlyValue.thf_unitary_type
-thf_unitary_type1, thf_unitary_type1left, _)) :: rest671)) => let val
- result = MlyValue.thf_xprod_type (
-( Prod_type(thf_unitary_type1, thf_unitary_type2) ))
- in ( LrTable.NT 109, ( result, thf_unitary_type1left,
-thf_unitary_type2right), rest671)
-end
-| ( 216, ( ( _, ( MlyValue.thf_unitary_type thf_unitary_type, _,
-thf_unitary_type1right)) :: _ :: ( _, ( MlyValue.thf_xprod_type
-thf_xprod_type, thf_xprod_type1left, _)) :: rest671)) => let val
-result = MlyValue.thf_xprod_type (
-( Prod_type(thf_xprod_type, thf_unitary_type) ))
- in ( LrTable.NT 109, ( result, thf_xprod_type1left,
-thf_unitary_type1right), rest671)
-end
-| ( 217, ( ( _, ( MlyValue.thf_unitary_type thf_unitary_type2, _,
-thf_unitary_type2right)) :: _ :: ( _, ( MlyValue.thf_unitary_type
-thf_unitary_type1, thf_unitary_type1left, _)) :: rest671)) => let val
- result = MlyValue.thf_mapping_type (
-( Fn_type(thf_unitary_type1, thf_unitary_type2) ))
- in ( LrTable.NT 110, ( result, thf_unitary_type1left,
-thf_unitary_type2right), rest671)
-end
-| ( 218, ( ( _, ( MlyValue.thf_mapping_type thf_mapping_type, _,
-thf_mapping_type1right)) :: _ :: ( _, ( MlyValue.thf_unitary_type
-thf_unitary_type, thf_unitary_type1left, _)) :: rest671)) => let val
-result = MlyValue.thf_mapping_type (
-( Fn_type(thf_unitary_type, thf_mapping_type) ))
- in ( LrTable.NT 110, ( result, thf_unitary_type1left,
-thf_mapping_type1right), rest671)
-end
-| ( 219, ( ( _, ( MlyValue.thf_mapping_type thf_mapping_type,
-thf_mapping_type1left, thf_mapping_type1right)) :: rest671)) => let
- val result = MlyValue.thf_binary_type (( thf_mapping_type ))
- in ( LrTable.NT 111, ( result, thf_mapping_type1left,
-thf_mapping_type1right), rest671)
-end
-| ( 220, ( ( _, ( MlyValue.thf_xprod_type thf_xprod_type,
-thf_xprod_type1left, thf_xprod_type1right)) :: rest671)) => let val
-result = MlyValue.thf_binary_type (( thf_xprod_type ))
- in ( LrTable.NT 111, ( result, thf_xprod_type1left,
-thf_xprod_type1right), rest671)
-end
-| ( 221, ( ( _, ( MlyValue.thf_union_type thf_union_type,
-thf_union_type1left, thf_union_type1right)) :: rest671)) => let val
-result = MlyValue.thf_binary_type (( thf_union_type ))
- in ( LrTable.NT 111, ( result, thf_union_type1left,
-thf_union_type1right), rest671)
-end
-| ( 222, ( ( _, ( MlyValue.thf_unitary_formula thf_unitary_formula,
-thf_unitary_formula1left, thf_unitary_formula1right)) :: rest671)) =>
- let val result = MlyValue.thf_unitary_type (
-( Fmla_type thf_unitary_formula ))
- in ( LrTable.NT 112, ( result, thf_unitary_formula1left,
-thf_unitary_formula1right), rest671)
-end
-| ( 223, ( ( _, ( MlyValue.thf_logic_formula thf_logic_formula,
-thf_logic_formula1left, thf_logic_formula1right)) :: rest671)) => let
- val result = MlyValue.thf_top_level_type (
-( Fmla_type thf_logic_formula ))
- in ( LrTable.NT 113, ( result, thf_logic_formula1left,
-thf_logic_formula1right), rest671)
-end
-| ( 224, ( ( _, ( MlyValue.constant constant2, _, constant2right)) ::
- _ :: ( _, ( MlyValue.constant constant1, constant1left, _)) ::
-rest671)) => let val result = MlyValue.thf_subtype (
-( Subtype(constant1, constant2) ))
- in ( LrTable.NT 114, ( result, constant1left, constant2right),
-rest671)
-end
-| ( 225, ( ( _, ( MlyValue.thf_atom thf_atom, thf_atom1left,
-thf_atom1right)) :: rest671)) => let val result =
-MlyValue.thf_typeable_formula (( thf_atom ))
- in ( LrTable.NT 115, ( result, thf_atom1left, thf_atom1right),
-rest671)
-end
-| ( 226, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
-MlyValue.thf_logic_formula thf_logic_formula, _, _)) :: ( _, ( _,
-LPAREN1left, _)) :: rest671)) => let val result =
-MlyValue.thf_typeable_formula (( thf_logic_formula ))
- in ( LrTable.NT 115, ( result, LPAREN1left, RPAREN1right), rest671)
-
-end
-| ( 227, ( ( _, ( MlyValue.thf_top_level_type thf_top_level_type, _,
-thf_top_level_type1right)) :: _ :: ( _, (
-MlyValue.thf_typeable_formula thf_typeable_formula,
-thf_typeable_formula1left, _)) :: rest671)) => let val result =
-MlyValue.thf_type_formula (
-( (thf_typeable_formula, thf_top_level_type) ))
- in ( LrTable.NT 116, ( result, thf_typeable_formula1left,
-thf_top_level_type1right), rest671)
-end
-| ( 228, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
-MlyValue.thf_logic_formula thf_logic_formula, _, _)) :: _ :: ( _, (
-MlyValue.thf_unary_connective thf_unary_connective,
-thf_unary_connective1left, _)) :: rest671)) => let val result =
-MlyValue.thf_unary_formula (
-(
- Fmla (thf_unary_connective, [thf_logic_formula])
-))
- in ( LrTable.NT 117, ( result, thf_unary_connective1left,
-RPAREN1right), rest671)
-end
-| ( 229, ( ( _, ( MlyValue.thf_top_level_type thf_top_level_type, _,
-thf_top_level_type1right)) :: _ :: ( _, ( MlyValue.variable_ variable_
-, variable_1left, _)) :: rest671)) => let val result =
-MlyValue.thf_typed_variable (( (variable_, SOME thf_top_level_type) ))
- in ( LrTable.NT 118, ( result, variable_1left,
-thf_top_level_type1right), rest671)
-end
-| ( 230, ( ( _, ( MlyValue.thf_typed_variable thf_typed_variable,
-thf_typed_variable1left, thf_typed_variable1right)) :: rest671)) =>
- let val result = MlyValue.thf_variable (( thf_typed_variable ))
- in ( LrTable.NT 119, ( result, thf_typed_variable1left,
-thf_typed_variable1right), rest671)
-end
-| ( 231, ( ( _, ( MlyValue.variable_ variable_, variable_1left,
-variable_1right)) :: rest671)) => let val result =
-MlyValue.thf_variable (( (variable_, NONE) ))
- in ( LrTable.NT 119, ( result, variable_1left, variable_1right),
-rest671)
-end
-| ( 232, ( ( _, ( MlyValue.thf_variable thf_variable,
-thf_variable1left, thf_variable1right)) :: rest671)) => let val
-result = MlyValue.thf_variable_list (( [thf_variable] ))
- in ( LrTable.NT 120, ( result, thf_variable1left, thf_variable1right)
-, rest671)
-end
-| ( 233, ( ( _, ( MlyValue.thf_variable_list thf_variable_list, _,
-thf_variable_list1right)) :: _ :: ( _, ( MlyValue.thf_variable
-thf_variable, thf_variable1left, _)) :: rest671)) => let val result =
- MlyValue.thf_variable_list (( thf_variable :: thf_variable_list ))
- in ( LrTable.NT 120, ( result, thf_variable1left,
-thf_variable_list1right), rest671)
-end
-| ( 234, ( ( _, ( MlyValue.thf_unitary_formula thf_unitary_formula, _
-, thf_unitary_formula1right)) :: _ :: _ :: ( _, (
-MlyValue.thf_variable_list thf_variable_list, _, _)) :: _ :: ( _, (
-MlyValue.thf_quantifier thf_quantifier, thf_quantifier1left, _)) ::
-rest671)) => let val result = MlyValue.thf_quantified_formula (
-(
- Quant (thf_quantifier, thf_variable_list, thf_unitary_formula)
-))
- in ( LrTable.NT 121, ( result, thf_quantifier1left,
-thf_unitary_formula1right), rest671)
-end
-| ( 235, ( ( _, ( MlyValue.thf_quantified_formula
-thf_quantified_formula, thf_quantified_formula1left,
-thf_quantified_formula1right)) :: rest671)) => let val result =
-MlyValue.thf_unitary_formula (( thf_quantified_formula ))
- in ( LrTable.NT 122, ( result, thf_quantified_formula1left,
-thf_quantified_formula1right), rest671)
-end
-| ( 236, ( ( _, ( MlyValue.thf_unary_formula thf_unary_formula,
-thf_unary_formula1left, thf_unary_formula1right)) :: rest671)) => let
- val result = MlyValue.thf_unitary_formula (( thf_unary_formula ))
- in ( LrTable.NT 122, ( result, thf_unary_formula1left,
-thf_unary_formula1right), rest671)
-end
-| ( 237, ( ( _, ( MlyValue.thf_atom thf_atom, thf_atom1left,
-thf_atom1right)) :: rest671)) => let val result =
-MlyValue.thf_unitary_formula (( thf_atom ))
- in ( LrTable.NT 122, ( result, thf_atom1left, thf_atom1right),
-rest671)
-end
-| ( 238, ( ( _, ( MlyValue.thf_let thf_let, thf_let1left,
-thf_let1right)) :: rest671)) => let val result =
-MlyValue.thf_unitary_formula (( thf_let ))
- in ( LrTable.NT 122, ( result, thf_let1left, thf_let1right), rest671)
-
-end
-| ( 239, ( ( _, ( MlyValue.thf_conditional thf_conditional,
-thf_conditional1left, thf_conditional1right)) :: rest671)) => let val
- result = MlyValue.thf_unitary_formula (( thf_conditional ))
- in ( LrTable.NT 122, ( result, thf_conditional1left,
-thf_conditional1right), rest671)
-end
-| ( 240, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
-MlyValue.thf_logic_formula thf_logic_formula, _, _)) :: ( _, ( _,
-LPAREN1left, _)) :: rest671)) => let val result =
-MlyValue.thf_unitary_formula (( thf_logic_formula ))
- in ( LrTable.NT 122, ( result, LPAREN1left, RPAREN1right), rest671)
-
-end
-| ( 241, ( ( _, ( MlyValue.thf_unitary_formula thf_unitary_formula2,
- _, thf_unitary_formula2right)) :: _ :: ( _, (
-MlyValue.thf_unitary_formula thf_unitary_formula1,
-thf_unitary_formula1left, _)) :: rest671)) => let val result =
-MlyValue.thf_apply_formula (
-( Fmla (Interpreted_ExtraLogic Apply, [thf_unitary_formula1, thf_unitary_formula2]) )
-)
- in ( LrTable.NT 123, ( result, thf_unitary_formula1left,
-thf_unitary_formula2right), rest671)
-end
-| ( 242, ( ( _, ( MlyValue.thf_unitary_formula thf_unitary_formula, _
-, thf_unitary_formula1right)) :: _ :: ( _, (
-MlyValue.thf_apply_formula thf_apply_formula, thf_apply_formula1left,
- _)) :: rest671)) => let val result = MlyValue.thf_apply_formula (
-( Fmla (Interpreted_ExtraLogic Apply, [thf_apply_formula, thf_unitary_formula]) )
-)
- in ( LrTable.NT 123, ( result, thf_apply_formula1left,
-thf_unitary_formula1right), rest671)
-end
-| ( 243, ( ( _, ( MlyValue.thf_unitary_formula thf_unitary_formula2,
- _, thf_unitary_formula2right)) :: _ :: ( _, (
-MlyValue.thf_unitary_formula thf_unitary_formula1,
-thf_unitary_formula1left, _)) :: rest671)) => let val result =
-MlyValue.thf_and_formula (
-( Fmla (Interpreted_Logic And, [thf_unitary_formula1, thf_unitary_formula2]) )
-)
- in ( LrTable.NT 124, ( result, thf_unitary_formula1left,
-thf_unitary_formula2right), rest671)
-end
-| ( 244, ( ( _, ( MlyValue.thf_unitary_formula thf_unitary_formula, _
-, thf_unitary_formula1right)) :: _ :: ( _, ( MlyValue.thf_and_formula
-thf_and_formula, thf_and_formula1left, _)) :: rest671)) => let val
-result = MlyValue.thf_and_formula (
-( Fmla (Interpreted_Logic And, [thf_and_formula, thf_unitary_formula]) )
-)
- in ( LrTable.NT 124, ( result, thf_and_formula1left,
-thf_unitary_formula1right), rest671)
-end
-| ( 245, ( ( _, ( MlyValue.thf_unitary_formula thf_unitary_formula2,
- _, thf_unitary_formula2right)) :: _ :: ( _, (
-MlyValue.thf_unitary_formula thf_unitary_formula1,
-thf_unitary_formula1left, _)) :: rest671)) => let val result =
-MlyValue.thf_or_formula (
-( Fmla (Interpreted_Logic Or, [thf_unitary_formula1, thf_unitary_formula2]) )
-)
- in ( LrTable.NT 125, ( result, thf_unitary_formula1left,
-thf_unitary_formula2right), rest671)
-end
-| ( 246, ( ( _, ( MlyValue.thf_unitary_formula thf_unitary_formula, _
-, thf_unitary_formula1right)) :: _ :: ( _, ( MlyValue.thf_or_formula
-thf_or_formula, thf_or_formula1left, _)) :: rest671)) => let val
-result = MlyValue.thf_or_formula (
-( Fmla (Interpreted_Logic Or, [thf_or_formula, thf_unitary_formula]) )
-)
- in ( LrTable.NT 125, ( result, thf_or_formula1left,
-thf_unitary_formula1right), rest671)
-end
-| ( 247, ( ( _, ( MlyValue.thf_or_formula thf_or_formula,
-thf_or_formula1left, thf_or_formula1right)) :: rest671)) => let val
-result = MlyValue.thf_binary_tuple (( thf_or_formula ))
- in ( LrTable.NT 126, ( result, thf_or_formula1left,
-thf_or_formula1right), rest671)
-end
-| ( 248, ( ( _, ( MlyValue.thf_and_formula thf_and_formula,
-thf_and_formula1left, thf_and_formula1right)) :: rest671)) => let val
- result = MlyValue.thf_binary_tuple (( thf_and_formula ))
- in ( LrTable.NT 126, ( result, thf_and_formula1left,
-thf_and_formula1right), rest671)
-end
-| ( 249, ( ( _, ( MlyValue.thf_apply_formula thf_apply_formula,
-thf_apply_formula1left, thf_apply_formula1right)) :: rest671)) => let
- val result = MlyValue.thf_binary_tuple (( thf_apply_formula ))
- in ( LrTable.NT 126, ( result, thf_apply_formula1left,
-thf_apply_formula1right), rest671)
-end
-| ( 250, ( ( _, ( MlyValue.thf_unitary_formula thf_unitary_formula2,
- _, thf_unitary_formula2right)) :: ( _, ( MlyValue.thf_pair_connective
- thf_pair_connective, _, _)) :: ( _, ( MlyValue.thf_unitary_formula
-thf_unitary_formula1, thf_unitary_formula1left, _)) :: rest671)) =>
- let val result = MlyValue.thf_binary_pair (
-(
- Fmla (thf_pair_connective, [thf_unitary_formula1, thf_unitary_formula2])
-)
-)
- in ( LrTable.NT 127, ( result, thf_unitary_formula1left,
-thf_unitary_formula2right), rest671)
-end
-| ( 251, ( ( _, ( MlyValue.thf_binary_pair thf_binary_pair,
-thf_binary_pair1left, thf_binary_pair1right)) :: rest671)) => let val
- result = MlyValue.thf_binary_formula (( thf_binary_pair ))
- in ( LrTable.NT 128, ( result, thf_binary_pair1left,
-thf_binary_pair1right), rest671)
-end
-| ( 252, ( ( _, ( MlyValue.thf_binary_tuple thf_binary_tuple,
-thf_binary_tuple1left, thf_binary_tuple1right)) :: rest671)) => let
- val result = MlyValue.thf_binary_formula (( thf_binary_tuple ))
- in ( LrTable.NT 128, ( result, thf_binary_tuple1left,
-thf_binary_tuple1right), rest671)
-end
-| ( 253, ( ( _, ( MlyValue.thf_binary_type thf_binary_type,
-thf_binary_type1left, thf_binary_type1right)) :: rest671)) => let val
- result = MlyValue.thf_binary_formula (( THF_type thf_binary_type ))
- in ( LrTable.NT 128, ( result, thf_binary_type1left,
-thf_binary_type1right), rest671)
-end
-| ( 254, ( ( _, ( MlyValue.thf_binary_formula thf_binary_formula,
-thf_binary_formula1left, thf_binary_formula1right)) :: rest671)) =>
- let val result = MlyValue.thf_logic_formula (( thf_binary_formula ))
- in ( LrTable.NT 129, ( result, thf_binary_formula1left,
-thf_binary_formula1right), rest671)
-end
-| ( 255, ( ( _, ( MlyValue.thf_unitary_formula thf_unitary_formula,
-thf_unitary_formula1left, thf_unitary_formula1right)) :: rest671)) =>
- let val result = MlyValue.thf_logic_formula (( thf_unitary_formula )
-)
- in ( LrTable.NT 129, ( result, thf_unitary_formula1left,
-thf_unitary_formula1right), rest671)
-end
-| ( 256, ( ( _, ( MlyValue.thf_type_formula thf_type_formula,
-thf_type_formula1left, thf_type_formula1right)) :: rest671)) => let
- val result = MlyValue.thf_logic_formula (
-( THF_typing thf_type_formula ))
- in ( LrTable.NT 129, ( result, thf_type_formula1left,
-thf_type_formula1right), rest671)
-end
-| ( 257, ( ( _, ( MlyValue.thf_subtype thf_subtype, thf_subtype1left,
- thf_subtype1right)) :: rest671)) => let val result =
-MlyValue.thf_logic_formula (( THF_type thf_subtype ))
- in ( LrTable.NT 129, ( result, thf_subtype1left, thf_subtype1right),
-rest671)
-end
-| ( 258, ( ( _, ( MlyValue.thf_logic_formula thf_logic_formula,
-thf_logic_formula1left, thf_logic_formula1right)) :: rest671)) => let
- val result = MlyValue.thf_formula (( thf_logic_formula ))
- in ( LrTable.NT 130, ( result, thf_logic_formula1left,
-thf_logic_formula1right), rest671)
-end
-| ( 259, ( ( _, ( MlyValue.thf_sequent thf_sequent, thf_sequent1left,
- thf_sequent1right)) :: rest671)) => let val result =
-MlyValue.thf_formula (( thf_sequent ))
- in ( LrTable.NT 130, ( result, thf_sequent1left, thf_sequent1right),
-rest671)
-end
-| ( 260, ( ( _, ( MlyValue.LOWER_WORD LOWER_WORD, LOWER_WORD1left,
-LOWER_WORD1right)) :: rest671)) => let val result =
-MlyValue.formula_role (( classify_role LOWER_WORD ))
- in ( LrTable.NT 131, ( result, LOWER_WORD1left, LOWER_WORD1right),
-rest671)
-end
-| ( 261, ( ( _, ( _, _, PERIOD1right)) :: _ :: ( _, (
-MlyValue.annotations annotations, _, _)) :: ( _, (
-MlyValue.thf_formula thf_formula, _, _)) :: _ :: ( _, (
-MlyValue.formula_role formula_role, _, _)) :: _ :: ( _, (
-MlyValue.name name, _, _)) :: _ :: ( _, ( _, (THFleft as THF1left),
-THFright)) :: rest671)) => let val result = MlyValue.thf_annotated (
-(
- Annotated_Formula ((file_name, THFleft + 1, THFright + 1),
- THF, name, formula_role, thf_formula, annotations)
-)
-)
- in ( LrTable.NT 135, ( result, THF1left, PERIOD1right), rest671)
-end
-| ( 262, ( ( _, ( _, _, PERIOD1right)) :: _ :: ( _, (
-MlyValue.annotations annotations, _, _)) :: ( _, (
-MlyValue.tff_formula tff_formula, _, _)) :: _ :: ( _, (
-MlyValue.formula_role formula_role, _, _)) :: _ :: ( _, (
-MlyValue.name name, _, _)) :: _ :: ( _, ( _, (TFFleft as TFF1left),
-TFFright)) :: rest671)) => let val result = MlyValue.tff_annotated (
-(
- Annotated_Formula ((file_name, TFFleft + 1, TFFright + 1),
- TFF, name, formula_role, tff_formula, annotations)
-)
-)
- in ( LrTable.NT 134, ( result, TFF1left, PERIOD1right), rest671)
-end
-| ( 263, ( ( _, ( _, _, PERIOD1right)) :: _ :: ( _, (
-MlyValue.annotations annotations, _, _)) :: ( _, (
-MlyValue.fof_formula fof_formula, _, _)) :: _ :: ( _, (
-MlyValue.formula_role formula_role, _, _)) :: _ :: ( _, (
-MlyValue.name name, _, _)) :: _ :: ( _, ( _, (FOFleft as FOF1left),
-FOFright)) :: rest671)) => let val result = MlyValue.fof_annotated (
-(
- Annotated_Formula ((file_name, FOFleft + 1, FOFright + 1),
- FOF, name, formula_role, fof_formula, annotations)
-)
-)
- in ( LrTable.NT 133, ( result, FOF1left, PERIOD1right), rest671)
-end
-| ( 264, ( ( _, ( _, _, PERIOD1right)) :: _ :: ( _, (
-MlyValue.annotations annotations, _, _)) :: ( _, (
-MlyValue.cnf_formula cnf_formula, _, _)) :: _ :: ( _, (
-MlyValue.formula_role formula_role, _, _)) :: _ :: ( _, (
-MlyValue.name name, _, _)) :: _ :: ( _, ( _, (CNFleft as CNF1left),
-CNFright)) :: rest671)) => let val result = MlyValue.cnf_annotated (
-(
- Annotated_Formula ((file_name, CNFleft + 1, CNFright + 1),
- CNF, name, formula_role, cnf_formula, annotations)
-)
-)
- in ( LrTable.NT 132, ( result, CNF1left, PERIOD1right), rest671)
-end
-| ( 265, ( ( _, ( MlyValue.cnf_annotated cnf_annotated,
-cnf_annotated1left, cnf_annotated1right)) :: rest671)) => let val
-result = MlyValue.annotated_formula (( cnf_annotated ))
- in ( LrTable.NT 136, ( result, cnf_annotated1left,
-cnf_annotated1right), rest671)
-end
-| ( 266, ( ( _, ( MlyValue.fof_annotated fof_annotated,
-fof_annotated1left, fof_annotated1right)) :: rest671)) => let val
-result = MlyValue.annotated_formula (( fof_annotated ))
- in ( LrTable.NT 136, ( result, fof_annotated1left,
-fof_annotated1right), rest671)
-end
-| ( 267, ( ( _, ( MlyValue.tff_annotated tff_annotated,
-tff_annotated1left, tff_annotated1right)) :: rest671)) => let val
-result = MlyValue.annotated_formula (( tff_annotated ))
- in ( LrTable.NT 136, ( result, tff_annotated1left,
-tff_annotated1right), rest671)
-end
-| ( 268, ( ( _, ( MlyValue.thf_annotated thf_annotated,
-thf_annotated1left, thf_annotated1right)) :: rest671)) => let val
-result = MlyValue.annotated_formula (( thf_annotated ))
- in ( LrTable.NT 136, ( result, thf_annotated1left,
-thf_annotated1right), rest671)
-end
-| ( 269, ( ( _, ( _, _, PERIOD1right)) :: _ :: ( _, (
+| ( 247, ( rest671)) => let val result = MlyValue.optional_info (
+( [] ))
+ in ( LrTable.NT 4, ( result, defaultPos, defaultPos), rest671)
+end
+| ( 248, ( ( _, ( MlyValue.general_list general_list,
+general_list1left, general_list1right)) :: rest671)) => let val
+result = MlyValue.useful_info (( general_list ))
+ in ( LrTable.NT 16, ( result, general_list1left, general_list1right),
+ rest671)
+end
+| ( 249, ( ( _, ( _, _, PERIOD1right)) :: _ :: ( _, (
MlyValue.formula_selection formula_selection, _, _)) :: ( _, (
MlyValue.file_name file_name, _, _)) :: _ :: ( _, ( _, INCLUDE1left, _
)) :: rest671)) => let val result = MlyValue.include_ (
(
Include (file_name, formula_selection)
))
- in ( LrTable.NT 137, ( result, INCLUDE1left, PERIOD1right), rest671)
+ in ( LrTable.NT 132, ( result, INCLUDE1left, PERIOD1right), rest671)
end
-| ( 270, ( ( _, ( _, _, RBRKT1right)) :: ( _, ( MlyValue.name_list
+| ( 250, ( ( _, ( _, _, RBRKT1right)) :: ( _, ( MlyValue.name_list
name_list, _, _)) :: _ :: ( _, ( _, COMMA1left, _)) :: rest671)) =>
let val result = MlyValue.formula_selection (( name_list ))
in ( LrTable.NT 3, ( result, COMMA1left, RBRKT1right), rest671)
end
-| ( 271, ( rest671)) => let val result = MlyValue.formula_selection
+| ( 251, ( rest671)) => let val result = MlyValue.formula_selection
(( [] ))
in ( LrTable.NT 3, ( result, defaultPos, defaultPos), rest671)
end
-| ( 272, ( ( _, ( MlyValue.name_list name_list, _, name_list1right))
+| ( 252, ( ( _, ( MlyValue.name_list name_list, _, name_list1right))
:: _ :: ( _, ( MlyValue.name name, name1left, _)) :: rest671)) => let
val result = MlyValue.name_list (( name :: name_list ))
in ( LrTable.NT 2, ( result, name1left, name_list1right), rest671)
end
-| ( 273, ( ( _, ( MlyValue.name name, name1left, name1right)) ::
+| ( 253, ( ( _, ( MlyValue.name name, name1left, name1right)) ::
rest671)) => let val result = MlyValue.name_list (( [name] ))
in ( LrTable.NT 2, ( result, name1left, name1right), rest671)
end
-| ( 274, ( ( _, ( MlyValue.atomic_word atomic_word, atomic_word1left,
+| ( 254, ( ( _, ( MlyValue.general_data general_data,
+general_data1left, general_data1right)) :: rest671)) => let val
+result = MlyValue.general_term (( General_Data general_data ))
+ in ( LrTable.NT 7, ( result, general_data1left, general_data1right),
+rest671)
+end
+| ( 255, ( ( _, ( MlyValue.general_term general_term, _,
+general_term1right)) :: _ :: ( _, ( MlyValue.general_data general_data
+, general_data1left, _)) :: rest671)) => let val result =
+MlyValue.general_term (( General_Term (general_data, general_term) ))
+ in ( LrTable.NT 7, ( result, general_data1left, general_term1right),
+rest671)
+end
+| ( 256, ( ( _, ( MlyValue.general_list general_list,
+general_list1left, general_list1right)) :: rest671)) => let val
+result = MlyValue.general_term (( General_List general_list ))
+ in ( LrTable.NT 7, ( result, general_list1left, general_list1right),
+rest671)
+end
+| ( 257, ( ( _, ( MlyValue.atomic_word atomic_word, atomic_word1left,
+ atomic_word1right)) :: rest671)) => let val result =
+MlyValue.general_data (( Atomic_Word atomic_word ))
+ in ( LrTable.NT 9, ( result, atomic_word1left, atomic_word1right),
+rest671)
+end
+| ( 258, ( ( _, ( MlyValue.general_function general_function,
+general_function1left, general_function1right)) :: rest671)) => let
+ val result = MlyValue.general_data (( general_function ))
+ in ( LrTable.NT 9, ( result, general_function1left,
+general_function1right), rest671)
+end
+| ( 259, ( ( _, ( MlyValue.variable_ variable_, variable_1left,
+variable_1right)) :: rest671)) => let val result =
+MlyValue.general_data (( V variable_ ))
+ in ( LrTable.NT 9, ( result, variable_1left, variable_1right),
+rest671)
+end
+| ( 260, ( ( _, ( MlyValue.number number, number1left, number1right))
+ :: rest671)) => let val result = MlyValue.general_data (
+( Number number ))
+ in ( LrTable.NT 9, ( result, number1left, number1right), rest671)
+end
+| ( 261, ( ( _, ( MlyValue.DISTINCT_OBJECT DISTINCT_OBJECT,
+DISTINCT_OBJECT1left, DISTINCT_OBJECT1right)) :: rest671)) => let val
+ result = MlyValue.general_data (( Distinct_Object DISTINCT_OBJECT ))
+ in ( LrTable.NT 9, ( result, DISTINCT_OBJECT1left,
+DISTINCT_OBJECT1right), rest671)
+end
+| ( 262, ( ( _, ( MlyValue.formula_data formula_data,
+formula_data1left, formula_data1right)) :: rest671)) => let val
+result = MlyValue.general_data (( formula_data ))
+ in ( LrTable.NT 9, ( result, formula_data1left, formula_data1right),
+rest671)
+end
+| ( 263, ( ( _, ( _, _, RPAREN1right)) :: ( _, (
+MlyValue.general_terms general_terms, _, _)) :: _ :: ( _, (
+MlyValue.atomic_word atomic_word, atomic_word1left, _)) :: rest671))
+ => let val result = MlyValue.general_function (
+( Application (atomic_word, general_terms) ))
+ in ( LrTable.NT 15, ( result, atomic_word1left, RPAREN1right),
+rest671)
+end
+| ( 264, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.thf_formula
+ thf_formula, _, _)) :: _ :: ( _, ( _, DTHF1left, _)) :: rest671)) =>
+ let val result = MlyValue.formula_data (
+( Formula_Data (THF, thf_formula) ))
+ in ( LrTable.NT 12, ( result, DTHF1left, RPAREN1right), rest671)
+end
+| ( 265, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.tff_formula
+ tff_formula, _, _)) :: _ :: ( _, ( _, DTFF1left, _)) :: rest671)) =>
+ let val result = MlyValue.formula_data (
+( Formula_Data (TFF, tff_formula) ))
+ in ( LrTable.NT 12, ( result, DTFF1left, RPAREN1right), rest671)
+end
+| ( 266, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.fof_formula
+ fof_formula, _, _)) :: _ :: ( _, ( _, DFOF1left, _)) :: rest671)) =>
+ let val result = MlyValue.formula_data (
+( Formula_Data (FOF, fof_formula) ))
+ in ( LrTable.NT 12, ( result, DFOF1left, RPAREN1right), rest671)
+end
+| ( 267, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.cnf_formula
+ cnf_formula, _, _)) :: _ :: ( _, ( _, DCNF1left, _)) :: rest671)) =>
+ let val result = MlyValue.formula_data (
+( Formula_Data (CNF, cnf_formula) ))
+ in ( LrTable.NT 12, ( result, DCNF1left, RPAREN1right), rest671)
+end
+| ( 268, ( ( _, ( _, _, RPAREN1right)) :: ( _, ( MlyValue.term term,
+ _, _)) :: _ :: ( _, ( _, DFOT1left, _)) :: rest671)) => let val
+result = MlyValue.formula_data (( Term_Data term ))
+ in ( LrTable.NT 12, ( result, DFOT1left, RPAREN1right), rest671)
+end
+| ( 269, ( ( _, ( _, _, RBRKT1right)) :: ( _, (
+MlyValue.general_terms general_terms, _, _)) :: ( _, ( _, LBRKT1left,
+ _)) :: rest671)) => let val result = MlyValue.general_list (
+( general_terms ))
+ in ( LrTable.NT 5, ( result, LBRKT1left, RBRKT1right), rest671)
+end
+| ( 270, ( ( _, ( _, _, RBRKT1right)) :: ( _, ( _, LBRKT1left, _)) ::
+ rest671)) => let val result = MlyValue.general_list (( [] ))
+ in ( LrTable.NT 5, ( result, LBRKT1left, RBRKT1right), rest671)
+end
+| ( 271, ( ( _, ( MlyValue.general_terms general_terms, _,
+general_terms1right)) :: _ :: ( _, ( MlyValue.general_term
+general_term, general_term1left, _)) :: rest671)) => let val result =
+ MlyValue.general_terms (( general_term :: general_terms ))
+ in ( LrTable.NT 6, ( result, general_term1left, general_terms1right),
+ rest671)
+end
+| ( 272, ( ( _, ( MlyValue.general_term general_term,
+general_term1left, general_term1right)) :: rest671)) => let val
+result = MlyValue.general_terms (( [general_term] ))
+ in ( LrTable.NT 6, ( result, general_term1left, general_term1right),
+rest671)
+end
+| ( 273, ( ( _, ( MlyValue.atomic_word atomic_word, atomic_word1left,
atomic_word1right)) :: rest671)) => let val result = MlyValue.name (
( atomic_word ))
in ( LrTable.NT 1, ( result, atomic_word1left, atomic_word1right),
rest671)
end
-| ( 275, ( ( _, ( MlyValue.integer integer, integer1left,
+| ( 274, ( ( _, ( MlyValue.integer integer, integer1left,
integer1right)) :: rest671)) => let val result = MlyValue.name (
( integer ))
in ( LrTable.NT 1, ( result, integer1left, integer1right), rest671)
end
-| ( 276, ( ( _, ( MlyValue.annotated_formula annotated_formula,
-annotated_formula1left, annotated_formula1right)) :: rest671)) => let
- val result = MlyValue.tptp_input (( annotated_formula ))
- in ( LrTable.NT 138, ( result, annotated_formula1left,
-annotated_formula1right), rest671)
-end
-| ( 277, ( ( _, ( MlyValue.include_ include_, include_1left,
-include_1right)) :: rest671)) => let val result = MlyValue.tptp_input
- (( include_ ))
- in ( LrTable.NT 138, ( result, include_1left, include_1right),
+| ( 275, ( ( _, ( MlyValue.LOWER_WORD LOWER_WORD, LOWER_WORD1left,
+LOWER_WORD1right)) :: rest671)) => let val result =
+MlyValue.atomic_word (( LOWER_WORD ))
+ in ( LrTable.NT 8, ( result, LOWER_WORD1left, LOWER_WORD1right),
+rest671)
+end
+| ( 276, ( ( _, ( MlyValue.SINGLE_QUOTED SINGLE_QUOTED,
+SINGLE_QUOTED1left, SINGLE_QUOTED1right)) :: rest671)) => let val
+result = MlyValue.atomic_word (( SINGLE_QUOTED ))
+ in ( LrTable.NT 8, ( result, SINGLE_QUOTED1left, SINGLE_QUOTED1right)
+, rest671)
+end
+| ( 277, ( ( _, ( _, THF1left, THF1right)) :: rest671)) => let val
+result = MlyValue.atomic_word (( "thf" ))
+ in ( LrTable.NT 8, ( result, THF1left, THF1right), rest671)
+end
+| ( 278, ( ( _, ( _, TFF1left, TFF1right)) :: rest671)) => let val
+result = MlyValue.atomic_word (( "tff" ))
+ in ( LrTable.NT 8, ( result, TFF1left, TFF1right), rest671)
+end
+| ( 279, ( ( _, ( _, FOF1left, FOF1right)) :: rest671)) => let val
+result = MlyValue.atomic_word (( "fof" ))
+ in ( LrTable.NT 8, ( result, FOF1left, FOF1right), rest671)
+end
+| ( 280, ( ( _, ( _, CNF1left, CNF1right)) :: rest671)) => let val
+result = MlyValue.atomic_word (( "cnf" ))
+ in ( LrTable.NT 8, ( result, CNF1left, CNF1right), rest671)
+end
+| ( 281, ( ( _, ( _, INCLUDE1left, INCLUDE1right)) :: rest671)) =>
+ let val result = MlyValue.atomic_word (( "include" ))
+ in ( LrTable.NT 8, ( result, INCLUDE1left, INCLUDE1right), rest671)
+
+end
+| ( 282, ( ( _, ( MlyValue.DOLLAR_WORD DOLLAR_WORD, DOLLAR_WORD1left,
+ DOLLAR_WORD1right)) :: rest671)) => let val result =
+MlyValue.atomic_defined_word (( DOLLAR_WORD ))
+ in ( LrTable.NT 144, ( result, DOLLAR_WORD1left, DOLLAR_WORD1right),
rest671)
end
-| ( 278, ( ( _, ( MlyValue.tptp_file tptp_file, _, tptp_file1right))
- :: ( _, ( MlyValue.tptp_input tptp_input, tptp_input1left, _)) ::
-rest671)) => let val result = MlyValue.tptp_file (
-( tptp_input :: tptp_file ))
- in ( LrTable.NT 139, ( result, tptp_input1left, tptp_file1right),
-rest671)
-end
-| ( 279, ( ( _, ( MlyValue.tptp_file tptp_file, _, tptp_file1right))
- :: ( _, ( _, COMMENT1left, _)) :: rest671)) => let val result =
-MlyValue.tptp_file (( tptp_file ))
- in ( LrTable.NT 139, ( result, COMMENT1left, tptp_file1right),
-rest671)
-end
-| ( 280, ( rest671)) => let val result = MlyValue.tptp_file (( [] ))
- in ( LrTable.NT 139, ( result, defaultPos, defaultPos), rest671)
-end
-| ( 281, ( ( _, ( MlyValue.tptp_file tptp_file, tptp_file1left,
-tptp_file1right)) :: rest671)) => let val result = MlyValue.tptp (
-( tptp_file ))
- in ( LrTable.NT 140, ( result, tptp_file1left, tptp_file1right),
-rest671)
+| ( 283, ( ( _, ( MlyValue.DOLLAR_DOLLAR_WORD DOLLAR_DOLLAR_WORD,
+DOLLAR_DOLLAR_WORD1left, DOLLAR_DOLLAR_WORD1right)) :: rest671)) =>
+ let val result = MlyValue.atomic_system_word (( DOLLAR_DOLLAR_WORD )
+)
+ in ( LrTable.NT 145, ( result, DOLLAR_DOLLAR_WORD1left,
+DOLLAR_DOLLAR_WORD1right), rest671)
+end
+| ( 284, ( ( _, ( MlyValue.UNSIGNED_INTEGER UNSIGNED_INTEGER,
+UNSIGNED_INTEGER1left, UNSIGNED_INTEGER1right)) :: rest671)) => let
+ val result = MlyValue.integer (( UNSIGNED_INTEGER ))
+ in ( LrTable.NT 13, ( result, UNSIGNED_INTEGER1left,
+UNSIGNED_INTEGER1right), rest671)
+end
+| ( 285, ( ( _, ( MlyValue.SIGNED_INTEGER SIGNED_INTEGER,
+SIGNED_INTEGER1left, SIGNED_INTEGER1right)) :: rest671)) => let val
+result = MlyValue.integer (( SIGNED_INTEGER ))
+ in ( LrTable.NT 13, ( result, SIGNED_INTEGER1left,
+SIGNED_INTEGER1right), rest671)
+end
+| ( 286, ( ( _, ( MlyValue.integer integer, integer1left,
+integer1right)) :: rest671)) => let val result = MlyValue.number (
+( (Int_num, integer) ))
+ in ( LrTable.NT 11, ( result, integer1left, integer1right), rest671)
+
+end
+| ( 287, ( ( _, ( MlyValue.REAL REAL, REAL1left, REAL1right)) ::
+rest671)) => let val result = MlyValue.number (( (Real_num, REAL) ))
+ in ( LrTable.NT 11, ( result, REAL1left, REAL1right), rest671)
+end
+| ( 288, ( ( _, ( MlyValue.RATIONAL RATIONAL, RATIONAL1left,
+RATIONAL1right)) :: rest671)) => let val result = MlyValue.number (
+( (Rat_num, RATIONAL) ))
+ in ( LrTable.NT 11, ( result, RATIONAL1left, RATIONAL1right), rest671
+)
+end
+| ( 289, ( ( _, ( MlyValue.SINGLE_QUOTED SINGLE_QUOTED,
+SINGLE_QUOTED1left, SINGLE_QUOTED1right)) :: rest671)) => let val
+result = MlyValue.file_name (( SINGLE_QUOTED ))
+ in ( LrTable.NT 17, ( result, SINGLE_QUOTED1left, SINGLE_QUOTED1right
+), rest671)
end
| _ => raise (mlyAction i392)
end
@@ -5462,7 +5782,7 @@
ParserData.MlyValue.VOID,p1,p2))
fun ARROW (p1,p2) = Token.TOKEN (ParserData.LrTable.T 8,(
ParserData.MlyValue.VOID,p1,p2))
-fun IF (p1,p2) = Token.TOKEN (ParserData.LrTable.T 9,(
+fun FI (p1,p2) = Token.TOKEN (ParserData.LrTable.T 9,(
ParserData.MlyValue.VOID,p1,p2))
fun IFF (p1,p2) = Token.TOKEN (ParserData.LrTable.T 10,(
ParserData.MlyValue.VOID,p1,p2))
@@ -5570,10 +5890,10 @@
ParserData.MlyValue.VOID,p1,p2))
fun DEP_PROD (p1,p2) = Token.TOKEN (ParserData.LrTable.T 62,(
ParserData.MlyValue.VOID,p1,p2))
-fun ATOMIC_DEFINED_WORD (i,p1,p2) = Token.TOKEN (ParserData.LrTable.T
-63,(ParserData.MlyValue.ATOMIC_DEFINED_WORD i,p1,p2))
-fun ATOMIC_SYSTEM_WORD (i,p1,p2) = Token.TOKEN (ParserData.LrTable.T
-64,(ParserData.MlyValue.ATOMIC_SYSTEM_WORD i,p1,p2))
+fun DOLLAR_WORD (i,p1,p2) = Token.TOKEN (ParserData.LrTable.T 63,(
+ParserData.MlyValue.DOLLAR_WORD i,p1,p2))
+fun DOLLAR_DOLLAR_WORD (i,p1,p2) = Token.TOKEN (ParserData.LrTable.T
+64,(ParserData.MlyValue.DOLLAR_DOLLAR_WORD i,p1,p2))
fun SUBTYPE (p1,p2) = Token.TOKEN (ParserData.LrTable.T 65,(
ParserData.MlyValue.VOID,p1,p2))
fun LET_TERM (p1,p2) = Token.TOKEN (ParserData.LrTable.T 66,(
@@ -5590,5 +5910,13 @@
ParserData.MlyValue.VOID,p1,p2))
fun ITE_T (p1,p2) = Token.TOKEN (ParserData.LrTable.T 72,(
ParserData.MlyValue.VOID,p1,p2))
-end
-end
+fun LET_TF (p1,p2) = Token.TOKEN (ParserData.LrTable.T 73,(
+ParserData.MlyValue.VOID,p1,p2))
+fun LET_FF (p1,p2) = Token.TOKEN (ParserData.LrTable.T 74,(
+ParserData.MlyValue.VOID,p1,p2))
+fun LET_FT (p1,p2) = Token.TOKEN (ParserData.LrTable.T 75,(
+ParserData.MlyValue.VOID,p1,p2))
+fun LET_TT (p1,p2) = Token.TOKEN (ParserData.LrTable.T 76,(
+ParserData.MlyValue.VOID,p1,p2))
+end
+end