setup for Transfer and Lifting from BNF; tuned thm names
authorkuncar
Thu, 10 Apr 2014 17:48:18 +0200
changeset 56524 f4ba736040fa
parent 56523 2ae16e3d8b6d
child 56525 b5b6ad5dc2ae
setup for Transfer and Lifting from BNF; tuned thm names
src/HOL/Library/FSet.thy
src/HOL/Lifting.thy
src/HOL/Lifting_Set.thy
src/HOL/Tools/Lifting/lifting_bnf.ML
src/HOL/Tools/Lifting/lifting_def.ML
src/HOL/Tools/Quotient/quotient_def.ML
src/HOL/Tools/Transfer/transfer.ML
src/HOL/Tools/Transfer/transfer_bnf.ML
src/HOL/Tools/transfer.ML
src/HOL/Topological_Spaces.thy
src/HOL/Transfer.thy
--- a/src/HOL/Library/FSet.thy	Thu Apr 10 17:48:17 2014 +0200
+++ b/src/HOL/Library/FSet.thy	Thu Apr 10 17:48:18 2014 +0200
@@ -846,10 +846,10 @@
 thm right_unique_rel_fset left_unique_rel_fset
 
 lemma bi_unique_rel_fset[transfer_rule]: "bi_unique A \<Longrightarrow> bi_unique (rel_fset A)"
-by (auto intro: right_unique_rel_fset left_unique_rel_fset iff: bi_unique_iff)
+by (auto intro: right_unique_rel_fset left_unique_rel_fset iff: bi_unique_alt_def)
 
 lemma bi_total_rel_fset[transfer_rule]: "bi_total A \<Longrightarrow> bi_total (rel_fset A)"
-by (auto intro: right_total_rel_fset left_total_rel_fset iff: bi_total_iff)
+by (auto intro: right_total_rel_fset left_total_rel_fset iff: bi_total_alt_def)
 
 lemmas fset_relator_eq_onp [relator_eq_onp] = set_relator_eq_onp[Transfer.transferred]
 
--- a/src/HOL/Lifting.thy	Thu Apr 10 17:48:17 2014 +0200
+++ b/src/HOL/Lifting.thy	Thu Apr 10 17:48:18 2014 +0200
@@ -161,6 +161,11 @@
     (\<forall>a b. T a b \<longrightarrow> Abs a = b) \<and> (\<forall>b. T (Rep b) b) \<and> R = T OO conversep T"
   unfolding Quotient_alt_def3 fun_eq_iff by auto
 
+lemma Quotient_alt_def5:
+  "Quotient R Abs Rep T \<longleftrightarrow>
+    T \<le> BNF_Util.Grp UNIV Abs \<and> BNF_Util.Grp UNIV Rep \<le> T\<inverse>\<inverse> \<and> R = T OO T\<inverse>\<inverse>"
+  unfolding Quotient_alt_def4 Grp_def by blast
+
 lemma fun_quotient:
   assumes 1: "Quotient R1 abs1 rep1 T1"
   assumes 2: "Quotient R2 abs2 rep2 T2"
@@ -210,32 +215,6 @@
 lemma in_respects: "x \<in> Respects R \<longleftrightarrow> R x x"
   unfolding Respects_def by simp
 
-subsection {* Invariant *}
-
-definition eq_onp :: "('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" 
-  where "eq_onp R = (\<lambda>x y. R x \<and> x = y)"
-
-lemma eq_onp_to_eq:
-  assumes "eq_onp P x y"
-  shows "x = y"
-using assms by (simp add: eq_onp_def)
-
-lemma rel_fun_eq_eq_onp: "(op= ===> eq_onp P) = eq_onp (\<lambda>f. \<forall>x. P(f x))"
-unfolding eq_onp_def rel_fun_def by auto
-
-lemma rel_fun_eq_onp_rel:
-  shows "((eq_onp R) ===> S) = (\<lambda>f g. \<forall>x. R x \<longrightarrow> S (f x) (g x))"
-by (auto simp add: eq_onp_def rel_fun_def)
-
-lemma eq_onp_same_args:
-  shows "eq_onp P x x \<equiv> P x"
-using assms by (auto simp add: eq_onp_def)
-
-lemma eq_onp_transfer [transfer_rule]:
-  assumes [transfer_rule]: "bi_unique A"
-  shows "((A ===> op=) ===> A ===> A ===> op=) eq_onp eq_onp"
-unfolding eq_onp_def[abs_def] by transfer_prover
-
 lemma UNIV_typedef_to_Quotient:
   assumes "type_definition Rep Abs UNIV"
   and T_def: "T \<equiv> (\<lambda>x y. x = Rep y)"
@@ -574,6 +553,8 @@
 declare fun_mono[relator_mono]
 lemmas [relator_distr] = pos_fun_distr neg_fun_distr1 neg_fun_distr2
 
+ML_file "Tools/Lifting/lifting_bnf.ML"
+
 ML_file "Tools/Lifting/lifting_term.ML"
 
 ML_file "Tools/Lifting/lifting_def.ML"
--- a/src/HOL/Lifting_Set.thy	Thu Apr 10 17:48:17 2014 +0200
+++ b/src/HOL/Lifting_Set.thy	Thu Apr 10 17:48:18 2014 +0200
@@ -75,7 +75,7 @@
 
 lemma bi_total_rel_set [transfer_rule]:
   "bi_total A \<Longrightarrow> bi_total (rel_set A)"
-by(simp add: bi_total_conv_left_right left_total_rel_set right_total_rel_set)
+by(simp add: bi_total_alt_def left_total_rel_set right_total_rel_set)
 
 lemma bi_unique_rel_set [transfer_rule]:
   "bi_unique A \<Longrightarrow> bi_unique (rel_set A)"
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Lifting/lifting_bnf.ML	Thu Apr 10 17:48:18 2014 +0200
@@ -0,0 +1,118 @@
+(*  Title:      HOL/Tools/Transfer/transfer_bnf.ML
+    Author:     Ondrej Kuncar, TU Muenchen
+
+Setup for Lifting for types that are BNF.
+*)
+
+signature LIFTING_BNF =
+sig
+end
+
+structure Lifting_BNF : LIFTING_BNF =
+struct
+
+open BNF_Util
+open BNF_Def
+open Transfer_BNF
+
+(* Quotient map theorem *)
+
+fun Quotient_tac bnf ctxt i =
+  let
+    val rel_Grp = rel_Grp_of_bnf bnf
+    fun get_lhs thm = thm |> concl_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> fst
+    val vars = get_lhs rel_Grp |> strip_comb |> snd |> map_filter (try (strip_comb #> snd #> hd))
+    val UNIVs = map (fn var => HOLogic.mk_UNIV (var |> dest_Var |> snd |> dest_Type |> snd |> hd)) vars
+    val inst = map2 (curry(pairself (certify ctxt))) vars UNIVs
+    val rel_Grp_UNIV_sym = rel_Grp |> Drule.instantiate_normalize ([], inst) 
+      |> Local_Defs.unfold ctxt @{thms subset_UNIV[THEN eqTrueI] UNIV_def[symmetric] simp_thms(21)}
+      |> (fn thm => thm RS sym)
+    val rel_mono = rel_mono_of_bnf bnf
+    val rel_conversep_sym = rel_conversep_of_bnf bnf RS sym
+  in
+    EVERY' [SELECT_GOAL (Local_Defs.unfold_tac ctxt [@{thm Quotient_alt_def5}]), 
+      REPEAT_DETERM o (etac conjE), rtac conjI, SELECT_GOAL (Local_Defs.unfold_tac ctxt [rel_Grp_UNIV_sym]),
+      rtac rel_mono THEN_ALL_NEW atac, rtac conjI, SELECT_GOAL (Local_Defs.unfold_tac ctxt
+        [rel_conversep_sym, rel_Grp_UNIV_sym]), rtac rel_mono THEN_ALL_NEW atac,
+      SELECT_GOAL (Local_Defs.unfold_tac ctxt [rel_conversep_sym, rel_OO_of_bnf bnf RS sym]),
+      hyp_subst_tac ctxt, rtac refl] i
+  end
+
+fun mk_Quotient args =
+  let
+    val argTs = map fastype_of args
+  in
+    list_comb (Const (@{const_name Quotient}, argTs ---> HOLogic.boolT), args)
+  end
+
+fun prove_Quotient_map bnf ctxt =
+  let
+    val live = live_of_bnf bnf
+    val old_ctxt = ctxt
+    val (((As, Bs), Ds), ctxt) = ctxt
+      |> mk_TFrees live
+      ||>> mk_TFrees live
+      ||>> mk_TFrees (dead_of_bnf bnf)
+    val argTss = map2 (fn a => fn b => [mk_pred2T a a, a --> b, b --> a,mk_pred2T a b]) As Bs
+    val ((argss, argss'), ctxt) = fold_map2 mk_Frees ["R", "Abs", "Rep", "T"] (transpose argTss) ctxt
+      |>> `transpose
+   
+    val assms = map (mk_Quotient #> HOLogic.mk_Trueprop) argss
+    val R_rel = list_comb (mk_rel_of_bnf Ds As As bnf, nth argss' 0)
+    val Abs_map = list_comb (mk_map_of_bnf Ds As Bs bnf, nth argss' 1)
+    val Rep_map = list_comb (mk_map_of_bnf Ds Bs As bnf, nth argss' 2)
+    val T_rel = list_comb (mk_rel_of_bnf Ds As Bs bnf, nth argss' 3)
+    val concl = mk_Quotient [R_rel, Abs_map, Rep_map, T_rel] |> HOLogic.mk_Trueprop
+    val goal = Logic.list_implies (assms, concl)
+    val thm = Goal.prove ctxt [] [] goal 
+      (fn {context = ctxt, prems = _} => Quotient_tac bnf ctxt 1)
+  in
+    Drule.zero_var_indexes (singleton (Variable.export ctxt old_ctxt) thm)
+  end
+
+
+fun Quotient_map bnf ctxt =
+  let
+    val Quotient = prove_Quotient_map bnf ctxt
+    fun qualify defname suffix = Binding.qualified true suffix defname
+    val Quotient_thm_name = qualify (base_name_of_bnf bnf) "Quotient"
+    val notes = [((Quotient_thm_name, []), [([Quotient], @{attributes [quot_map]})])]
+  in
+    notes
+  end
+
+(* relator_eq_onp  *)
+
+fun relator_eq_onp bnf ctxt =
+  let
+    val pred_data = lookup_defined_pred_data ctxt (type_name_of_bnf bnf)
+  in
+    [((Binding.empty, []), [([Transfer.rel_eq_onp pred_data], @{attributes [relator_eq_onp]})])]    
+  end
+
+(* relator_mono  *)
+
+fun relator_mono bnf =
+  [((Binding.empty, []), [([rel_mono_of_bnf bnf], @{attributes [relator_mono]})])]    
+  
+(* relator_distr  *)
+
+fun relator_distr bnf =
+  [((Binding.empty, []), [([rel_OO_of_bnf bnf RS sym], @{attributes [relator_distr]})])]
+
+(* interpretation *)
+
+fun lifting_bnf_interpretation bnf lthy =
+  if dead_of_bnf bnf > 0 then lthy
+  else
+    let
+      val notes = relator_eq_onp bnf lthy @ Quotient_map bnf lthy @ relator_mono bnf
+        @ relator_distr bnf
+    in
+      snd (Local_Theory.notes notes lthy)
+    end
+
+val _ = Context.>> (Context.map_theory (bnf_interpretation
+  (bnf_only_type_ctr (fn bnf => map_local_theory (lifting_bnf_interpretation bnf)))))
+
+end
--- a/src/HOL/Tools/Lifting/lifting_def.ML	Thu Apr 10 17:48:17 2014 +0200
+++ b/src/HOL/Tools/Lifting/lifting_def.ML	Thu Apr 10 17:48:18 2014 +0200
@@ -534,7 +534,7 @@
       end
     
     val unfold_ret_val_invs = Conv.bottom_conv 
-      (K (Conv.try_conv (Conv.rewr_conv @{thm eq_onp_same_args}))) lthy
+      (K (Conv.try_conv (Conv.rewr_conv @{thm eq_onp_same_args[THEN eq_reflection]}))) lthy
     val cr_to_pcr_conv = Raw_Simplifier.rewrite lthy false (get_cr_pcr_eqs lthy)
     val unfold_inv_conv = 
       Conv.top_sweep_conv (K (Conv.rewr_conv @{thm eq_onp_def[THEN eq_reflection]})) lthy
--- a/src/HOL/Tools/Quotient/quotient_def.ML	Thu Apr 10 17:48:17 2014 +0200
+++ b/src/HOL/Tools/Quotient/quotient_def.ML	Thu Apr 10 17:48:18 2014 +0200
@@ -121,7 +121,7 @@
       end
 
     val unfold_ret_val_invs = Conv.bottom_conv 
-      (K (Conv.try_conv (Conv.rewr_conv @{thm eq_onp_same_args}))) lthy 
+      (K (Conv.try_conv (Conv.rewr_conv @{thm eq_onp_same_args[THEN eq_reflection]}))) lthy 
     val simp_conv = Conv.arg_conv (Conv.fun2_conv simp_arrows_conv)
     val univq_conv = Conv.rewr_conv @{thm HOL.all_simps(6)[symmetric, THEN eq_reflection]}
     val univq_prenex_conv = Conv.top_conv (K (Conv.try_conv univq_conv)) lthy
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Transfer/transfer.ML	Thu Apr 10 17:48:18 2014 +0200
@@ -0,0 +1,868 @@
+(*  Title:      HOL/Tools/Transfer/transfer.ML
+    Author:     Brian Huffman, TU Muenchen
+    Author:     Ondrej Kuncar, TU Muenchen
+
+Generic theorem transfer method.
+*)
+
+signature TRANSFER =
+sig
+  type pred_data
+  val rel_eq_onp: pred_data -> thm
+
+  val bottom_rewr_conv: thm list -> conv
+  val top_rewr_conv: thm list -> conv
+
+  val prep_conv: conv
+  val get_transfer_raw: Proof.context -> thm list
+  val get_relator_eq_item_net: Proof.context -> thm Item_Net.T
+  val get_relator_eq: Proof.context -> thm list
+  val get_sym_relator_eq: Proof.context -> thm list
+  val get_relator_eq_raw: Proof.context -> thm list
+  val get_relator_domain: Proof.context -> thm list
+  val morph_pred_data: morphism -> pred_data -> pred_data
+  val lookup_pred_data: Proof.context -> string -> pred_data option
+  val update_pred_data: string -> pred_data -> Context.generic -> Context.generic
+  val get_compound_lhs: Proof.context -> (term * thm) Item_Net.T
+  val get_compound_rhs: Proof.context -> (term * thm) Item_Net.T
+  val transfer_add: attribute
+  val transfer_del: attribute
+  val transfer_raw_add: thm -> Context.generic -> Context.generic
+  val transfer_raw_del: thm -> Context.generic -> Context.generic
+  val transferred_attribute: thm list -> attribute
+  val untransferred_attribute: thm list -> attribute
+  val prep_transfer_domain_thm: Proof.context -> thm -> thm
+  val transfer_domain_add: attribute
+  val transfer_domain_del: attribute
+  val transfer_rule_of_term: Proof.context -> bool -> term -> thm
+  val transfer_rule_of_lhs: Proof.context -> term -> thm
+  val eq_tac: Proof.context -> int -> tactic
+  val transfer_step_tac: Proof.context -> int -> tactic
+  val transfer_tac: bool -> Proof.context -> int -> tactic
+  val transfer_prover_tac: Proof.context -> int -> tactic
+  val gen_frees_tac: (string * typ) list -> Proof.context -> int -> tactic
+  val setup: theory -> theory
+end
+
+structure Transfer : TRANSFER =
+struct
+
+(** Theory Data **)
+
+val compound_xhs_empty_net = Item_Net.init (Thm.eq_thm_prop o pairself snd) (single o fst);
+val rewr_rules = Item_Net.init Thm.eq_thm_prop (single o fst o HOLogic.dest_eq 
+  o HOLogic.dest_Trueprop o Thm.concl_of);
+
+type pred_data = {rel_eq_onp: thm}
+
+val rel_eq_onp = #rel_eq_onp
+
+structure Data = Generic_Data
+(
+  type T =
+    { transfer_raw : thm Item_Net.T,
+      known_frees : (string * typ) list,
+      compound_lhs : (term * thm) Item_Net.T,
+      compound_rhs : (term * thm) Item_Net.T,
+      relator_eq : thm Item_Net.T,
+      relator_eq_raw : thm Item_Net.T,
+      relator_domain : thm Item_Net.T,
+      pred_data : pred_data Symtab.table }
+  val empty =
+    { transfer_raw = Thm.intro_rules,
+      known_frees = [],
+      compound_lhs = compound_xhs_empty_net,
+      compound_rhs = compound_xhs_empty_net,
+      relator_eq = rewr_rules,
+      relator_eq_raw = Thm.full_rules,
+      relator_domain = Thm.full_rules,
+      pred_data = Symtab.empty }
+  val extend = I
+  fun merge
+    ( { transfer_raw = t1, known_frees = k1,
+        compound_lhs = l1,
+        compound_rhs = c1, relator_eq = r1,
+        relator_eq_raw = rw1, relator_domain = rd1,
+        pred_data = pd1 },
+      { transfer_raw = t2, known_frees = k2,
+        compound_lhs = l2,
+        compound_rhs = c2, relator_eq = r2,
+        relator_eq_raw = rw2, relator_domain = rd2,
+        pred_data = pd2 } ) =
+    { transfer_raw = Item_Net.merge (t1, t2),
+      known_frees = Library.merge (op =) (k1, k2),
+      compound_lhs = Item_Net.merge (l1, l2),
+      compound_rhs = Item_Net.merge (c1, c2),
+      relator_eq = Item_Net.merge (r1, r2),
+      relator_eq_raw = Item_Net.merge (rw1, rw2),
+      relator_domain = Item_Net.merge (rd1, rd2),
+      pred_data = Symtab.merge (K true) (pd1, pd2) }
+)
+
+fun get_transfer_raw ctxt = ctxt
+  |> (Item_Net.content o #transfer_raw o Data.get o Context.Proof)
+
+fun get_known_frees ctxt = ctxt
+  |> (#known_frees o Data.get o Context.Proof)
+
+fun get_compound_lhs ctxt = ctxt
+  |> (#compound_lhs o Data.get o Context.Proof)
+
+fun get_compound_rhs ctxt = ctxt
+  |> (#compound_rhs o Data.get o Context.Proof)
+
+fun get_relator_eq_item_net ctxt = (#relator_eq o Data.get o Context.Proof) ctxt
+
+fun get_relator_eq ctxt = ctxt
+  |> (Item_Net.content o #relator_eq o Data.get o Context.Proof)
+  |> map safe_mk_meta_eq
+
+fun get_sym_relator_eq ctxt = ctxt
+  |> (Item_Net.content o #relator_eq o Data.get o Context.Proof)
+  |> map (Thm.symmetric o safe_mk_meta_eq)
+
+fun get_relator_eq_raw ctxt = ctxt
+  |> (Item_Net.content o #relator_eq_raw o Data.get o Context.Proof)
+
+fun get_relator_domain ctxt = ctxt
+  |> (Item_Net.content o #relator_domain o Data.get o Context.Proof)
+
+fun get_pred_data ctxt = ctxt
+  |> (#pred_data o Data.get o Context.Proof)
+
+fun map_data f1 f2 f3 f4 f5 f6 f7 f8
+  { transfer_raw, known_frees, compound_lhs, compound_rhs,
+    relator_eq, relator_eq_raw, relator_domain, pred_data } =
+  { transfer_raw = f1 transfer_raw,
+    known_frees = f2 known_frees,
+    compound_lhs = f3 compound_lhs,
+    compound_rhs = f4 compound_rhs,
+    relator_eq = f5 relator_eq,
+    relator_eq_raw = f6 relator_eq_raw,
+    relator_domain = f7 relator_domain,
+    pred_data = f8 pred_data }
+
+fun map_transfer_raw   f = map_data f I I I I I I I
+fun map_known_frees    f = map_data I f I I I I I I
+fun map_compound_lhs   f = map_data I I f I I I I I
+fun map_compound_rhs   f = map_data I I I f I I I I
+fun map_relator_eq     f = map_data I I I I f I I I
+fun map_relator_eq_raw f = map_data I I I I I f I I
+fun map_relator_domain f = map_data I I I I I I f I
+fun map_pred_data      f = map_data I I I I I I I f
+
+fun add_transfer_thm thm = Data.map
+  (map_transfer_raw (Item_Net.update thm) o
+   map_compound_lhs
+     (case HOLogic.dest_Trueprop (Thm.concl_of thm) of
+        Const (@{const_name Rel}, _) $ _ $ (lhs as (_ $ _)) $ _ =>
+          Item_Net.update (lhs, thm)
+      | _ => I) o
+   map_compound_rhs
+     (case HOLogic.dest_Trueprop (Thm.concl_of thm) of
+        Const (@{const_name Rel}, _) $ _ $ _ $ (rhs as (_ $ _)) =>
+          Item_Net.update (rhs, thm)
+      | _ => I) o
+   map_known_frees (Term.add_frees (Thm.concl_of thm)))
+
+fun del_transfer_thm thm = Data.map 
+  (map_transfer_raw (Item_Net.remove thm) o
+   map_compound_lhs
+     (case HOLogic.dest_Trueprop (Thm.concl_of thm) of
+        Const (@{const_name Rel}, _) $ _ $ (lhs as (_ $ _)) $ _ =>
+          Item_Net.remove (lhs, thm)
+      | _ => I) o
+   map_compound_rhs
+     (case HOLogic.dest_Trueprop (Thm.concl_of thm) of
+        Const (@{const_name Rel}, _) $ _ $ _ $ (rhs as (_ $ _)) =>
+          Item_Net.remove (rhs, thm)
+      | _ => I))
+
+fun transfer_raw_add thm ctxt = add_transfer_thm thm ctxt
+fun transfer_raw_del thm ctxt = del_transfer_thm thm ctxt
+
+(** Conversions **)
+
+fun bottom_rewr_conv rewrs = Conv.bottom_conv (K (Conv.try_conv (Conv.rewrs_conv rewrs))) @{context}
+fun top_rewr_conv rewrs = Conv.top_conv (K (Conv.try_conv (Conv.rewrs_conv rewrs))) @{context}
+
+fun transfer_rel_conv conv = 
+  Conv.concl_conv ~1 (HOLogic.Trueprop_conv (Conv.fun2_conv (Conv.arg_conv conv)))
+
+val Rel_rule = Thm.symmetric @{thm Rel_def}
+
+fun dest_funcT cT =
+  (case Thm.dest_ctyp cT of [T, U] => (T, U)
+    | _ => raise TYPE ("dest_funcT", [Thm.typ_of cT], []))
+
+fun Rel_conv ct =
+  let val (cT, cT') = dest_funcT (Thm.ctyp_of_term ct)
+      val (cU, _) = dest_funcT cT'
+  in Drule.instantiate' [SOME cT, SOME cU] [SOME ct] Rel_rule end
+
+(* Conversion to preprocess a transfer rule *)
+fun safe_Rel_conv ct =
+  Conv.try_conv (HOLogic.Trueprop_conv (Conv.fun_conv (Conv.fun_conv Rel_conv))) ct
+
+fun prep_conv ct = (
+      Conv.implies_conv safe_Rel_conv prep_conv
+      else_conv
+      safe_Rel_conv
+      else_conv
+      Conv.all_conv) ct
+
+(** Replacing explicit equalities with is_equality premises **)
+
+fun mk_is_equality t =
+  Const (@{const_name is_equality}, Term.fastype_of t --> HOLogic.boolT) $ t
+
+val is_equality_lemma =
+  @{lemma "(!!R. is_equality R ==> PROP (P R)) == PROP (P (op =))"
+    by (unfold is_equality_def, rule, drule meta_spec,
+      erule meta_mp, rule refl, simp)}
+
+fun gen_abstract_equalities ctxt (dest : term -> term * (term -> term)) thm =
+  let
+    val thy = Thm.theory_of_thm thm
+    val prop = Thm.prop_of thm
+    val (t, mk_prop') = dest prop
+    (* Only consider "op =" at non-base types *)
+    fun is_eq (Const (@{const_name HOL.eq}, Type ("fun", [T, _]))) =
+        (case T of Type (_, []) => false | _ => true)
+      | is_eq _ = false
+    val add_eqs = Term.fold_aterms (fn t => if is_eq t then insert (op =) t else I)
+    val eq_consts = rev (add_eqs t [])
+    val eqTs = map (snd o dest_Const) eq_consts
+    val used = Term.add_free_names prop []
+    val names = map (K "") eqTs |> Name.variant_list used
+    val frees = map Free (names ~~ eqTs)
+    val prems = map (HOLogic.mk_Trueprop o mk_is_equality) frees
+    val prop1 = mk_prop' (Term.subst_atomic (eq_consts ~~ frees) t)
+    val prop2 = fold Logic.all frees (Logic.list_implies (prems, prop1))
+    val cprop = Thm.cterm_of thy prop2
+    val equal_thm = Raw_Simplifier.rewrite ctxt false [is_equality_lemma] cprop
+    fun forall_elim thm = Thm.forall_elim_vars (Thm.maxidx_of thm + 1) thm
+  in
+    forall_elim (thm COMP (equal_thm COMP @{thm equal_elim_rule2}))
+  end
+    handle TERM _ => thm
+
+fun abstract_equalities_transfer ctxt thm =
+  let
+    fun dest prop =
+      let
+        val prems = Logic.strip_imp_prems prop
+        val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop)
+        val ((rel, x), y) = apfst Term.dest_comb (Term.dest_comb concl)
+      in
+        (rel, fn rel' =>
+          Logic.list_implies (prems, HOLogic.mk_Trueprop (rel' $ x $ y)))
+      end
+    val contracted_eq_thm = 
+      Conv.fconv_rule (transfer_rel_conv (bottom_rewr_conv (get_relator_eq ctxt))) thm
+      handle CTERM _ => thm
+  in
+    gen_abstract_equalities ctxt dest contracted_eq_thm
+  end
+
+fun abstract_equalities_relator_eq ctxt rel_eq_thm =
+  gen_abstract_equalities ctxt (fn x => (x, I))
+    (rel_eq_thm RS @{thm is_equality_def [THEN iffD2]})
+
+fun abstract_equalities_domain ctxt thm =
+  let
+    fun dest prop =
+      let
+        val prems = Logic.strip_imp_prems prop
+        val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop)
+        val ((eq, dom), y) = apfst Term.dest_comb (Term.dest_comb concl)
+      in
+        (dom, fn dom' => Logic.list_implies (prems, HOLogic.mk_Trueprop (eq $ dom' $ y)))
+      end
+    fun transfer_rel_conv conv = 
+      Conv.concl_conv ~1 (HOLogic.Trueprop_conv (Conv.arg1_conv (Conv.arg_conv conv)))
+    val contracted_eq_thm = 
+      Conv.fconv_rule (transfer_rel_conv (bottom_rewr_conv (get_relator_eq ctxt))) thm
+  in
+    gen_abstract_equalities ctxt dest contracted_eq_thm
+  end 
+
+
+(** Replacing explicit Domainp predicates with Domainp assumptions **)
+
+fun mk_Domainp_assm (T, R) =
+  HOLogic.mk_eq ((Const (@{const_name Domainp}, Term.fastype_of T --> Term.fastype_of R) $ T), R)
+
+val Domainp_lemma =
+  @{lemma "(!!R. Domainp T = R ==> PROP (P R)) == PROP (P (Domainp T))"
+    by (rule, drule meta_spec,
+      erule meta_mp, rule refl, simp)}
+
+fun fold_Domainp f (t as Const (@{const_name Domainp},_) $ (Var (_,_))) = f t
+  | fold_Domainp f (t $ u) = fold_Domainp f t #> fold_Domainp f u
+  | fold_Domainp f (Abs (_, _, t)) = fold_Domainp f t
+  | fold_Domainp _ _ = I
+
+fun subst_terms tab t = 
+  let
+    val t' = Termtab.lookup tab t
+  in
+    case t' of
+      SOME t' => t'
+      | NONE => 
+        (case t of
+          u $ v => (subst_terms tab u) $ (subst_terms tab v)
+          | Abs (a, T, t) => Abs (a, T, subst_terms tab t)
+          | t => t)
+  end
+
+fun gen_abstract_domains ctxt (dest : term -> term * (term -> term)) thm =
+  let
+    val thy = Thm.theory_of_thm thm
+    val prop = Thm.prop_of thm
+    val (t, mk_prop') = dest prop
+    val Domainp_tms = rev (fold_Domainp (fn t => insert op= t) t [])
+    val Domainp_Ts = map (snd o dest_funT o snd o dest_Const o fst o dest_comb) Domainp_tms
+    val used = Term.add_free_names t []
+    val rels = map (snd o dest_comb) Domainp_tms
+    val rel_names = map (fst o fst o dest_Var) rels
+    val names = map (fn name => ("D" ^ name)) rel_names |> Name.variant_list used
+    val frees = map Free (names ~~ Domainp_Ts)
+    val prems = map (HOLogic.mk_Trueprop o mk_Domainp_assm) (rels ~~ frees);
+    val t' = subst_terms (fold Termtab.update (Domainp_tms ~~ frees) Termtab.empty) t
+    val prop1 = fold Logic.all frees (Logic.list_implies (prems, mk_prop' t'))
+    val prop2 = Logic.list_rename_params (rev names) prop1
+    val cprop = Thm.cterm_of thy prop2
+    val equal_thm = Raw_Simplifier.rewrite ctxt false [Domainp_lemma] cprop
+    fun forall_elim thm = Thm.forall_elim_vars (Thm.maxidx_of thm + 1) thm;
+  in
+    forall_elim (thm COMP (equal_thm COMP @{thm equal_elim_rule2}))
+  end
+    handle TERM _ => thm
+
+fun abstract_domains_transfer ctxt thm =
+  let
+    fun dest prop =
+      let
+        val prems = Logic.strip_imp_prems prop
+        val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop)
+        val ((rel, x), y) = apfst Term.dest_comb (Term.dest_comb concl)
+      in
+        (x, fn x' =>
+          Logic.list_implies (prems, HOLogic.mk_Trueprop (rel $ x' $ y)))
+      end
+  in
+    gen_abstract_domains ctxt dest thm
+  end
+
+fun abstract_domains_relator_domain ctxt thm =
+  let
+    fun dest prop =
+      let
+        val prems = Logic.strip_imp_prems prop
+        val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop)
+        val ((rel, x), y) = apfst Term.dest_comb (Term.dest_comb concl)
+      in
+        (y, fn y' =>
+          Logic.list_implies (prems, HOLogic.mk_Trueprop (rel $ x $ y')))
+      end
+  in
+    gen_abstract_domains ctxt dest thm
+  end
+
+fun detect_transfer_rules thm =
+  let
+    fun is_transfer_rule tm = case (HOLogic.dest_Trueprop tm) of
+      (Const (@{const_name HOL.eq}, _)) $ ((Const (@{const_name Domainp}, _)) $ _) $ _ => false
+      | _ $ _ $ _ => true
+      | _ => false
+    fun safe_transfer_rule_conv ctm =
+      if is_transfer_rule (term_of ctm) then safe_Rel_conv ctm else Conv.all_conv ctm
+  in
+    Conv.fconv_rule (Conv.prems_conv ~1 safe_transfer_rule_conv) thm
+  end
+
+(** Adding transfer domain rules **)
+
+fun prep_transfer_domain_thm ctxt thm = 
+  (abstract_equalities_domain ctxt o detect_transfer_rules) thm 
+
+fun add_transfer_domain_thm thm ctxt = (add_transfer_thm o 
+  prep_transfer_domain_thm (Context.proof_of ctxt)) thm ctxt
+
+fun del_transfer_domain_thm thm ctxt = (del_transfer_thm o 
+  prep_transfer_domain_thm (Context.proof_of ctxt)) thm ctxt
+
+(** Transfer proof method **)
+
+val post_simps =
+  @{thms transfer_forall_eq [symmetric]
+    transfer_implies_eq [symmetric] transfer_bforall_unfold}
+
+fun gen_frees_tac keepers ctxt = SUBGOAL (fn (t, i) =>
+  let
+    val keepers = keepers @ get_known_frees ctxt
+    val vs = rev (Term.add_frees t [])
+    val vs' = filter_out (member (op =) keepers) vs
+  in
+    Induct.arbitrary_tac ctxt 0 vs' i
+  end)
+
+fun mk_relT (T, U) = T --> U --> HOLogic.boolT
+
+fun mk_Rel t =
+  let val T = fastype_of t
+  in Const (@{const_name Transfer.Rel}, T --> T) $ t end
+
+fun transfer_rule_of_terms (prj : typ * typ -> typ) ctxt tab t u =
+  let
+    val thy = Proof_Context.theory_of ctxt
+    (* precondition: prj(T,U) must consist of only TFrees and type "fun" *)
+    fun rel (T as Type ("fun", [T1, T2])) (U as Type ("fun", [U1, U2])) =
+        let
+          val r1 = rel T1 U1
+          val r2 = rel T2 U2
+          val rT = fastype_of r1 --> fastype_of r2 --> mk_relT (T, U)
+        in
+          Const (@{const_name rel_fun}, rT) $ r1 $ r2
+        end
+      | rel T U =
+        let
+          val (a, _) = dest_TFree (prj (T, U))
+        in
+          Free (the (AList.lookup (op =) tab a), mk_relT (T, U))
+        end
+    fun zip _ thms (Bound i) (Bound _) = (nth thms i, [])
+      | zip ctxt thms (Abs (x, T, t)) (Abs (y, U, u)) =
+        let
+          val ([x', y'], ctxt') = Variable.variant_fixes [x, y] ctxt
+          val prop = mk_Rel (rel T U) $ Free (x', T) $ Free (y', U)
+          val cprop = Thm.cterm_of thy (HOLogic.mk_Trueprop prop)
+          val thm0 = Thm.assume cprop
+          val (thm1, hyps) = zip ctxt' (thm0 :: thms) t u
+          val ((r1, x), y) = apfst Thm.dest_comb (Thm.dest_comb (Thm.dest_arg cprop))
+          val r2 = Thm.dest_fun2 (Thm.dest_arg (cprop_of thm1))
+          val (a1, (b1, _)) = apsnd dest_funcT (dest_funcT (ctyp_of_term r1))
+          val (a2, (b2, _)) = apsnd dest_funcT (dest_funcT (ctyp_of_term r2))
+          val tinsts = [SOME a1, SOME b1, SOME a2, SOME b2]
+          val insts = [SOME (Thm.dest_arg r1), SOME (Thm.dest_arg r2)]
+          val rule = Drule.instantiate' tinsts insts @{thm Rel_abs}
+          val thm2 = Thm.forall_intr x (Thm.forall_intr y (Thm.implies_intr cprop thm1))
+        in
+          (thm2 COMP rule, hyps)
+        end
+      | zip ctxt thms (f $ t) (g $ u) =
+        let
+          val (thm1, hyps1) = zip ctxt thms f g
+          val (thm2, hyps2) = zip ctxt thms t u
+        in
+          (thm2 RS (thm1 RS @{thm Rel_app}), hyps1 @ hyps2)
+        end
+      | zip _ _ t u =
+        let
+          val T = fastype_of t
+          val U = fastype_of u
+          val prop = mk_Rel (rel T U) $ t $ u
+          val cprop = Thm.cterm_of thy (HOLogic.mk_Trueprop prop)
+        in
+          (Thm.assume cprop, [cprop])
+        end
+    val r = mk_Rel (rel (fastype_of t) (fastype_of u))
+    val goal = HOLogic.mk_Trueprop (r $ t $ u)
+    val rename = Thm.trivial (cterm_of thy goal)
+    val (thm, hyps) = zip ctxt [] t u
+  in
+    Drule.implies_intr_list hyps (thm RS rename)
+  end
+
+(* create a lambda term of the same shape as the given term *)
+fun skeleton (is_atom : term -> bool) ctxt t =
+  let
+    fun dummy ctxt =
+      let
+        val (c, ctxt) = yield_singleton Variable.variant_fixes "a" ctxt
+      in
+        (Free (c, dummyT), ctxt)
+      end
+    fun go (Bound i) ctxt = (Bound i, ctxt)
+      | go (Abs (x, _, t)) ctxt =
+        let
+          val (t', ctxt) = go t ctxt
+        in
+          (Abs (x, dummyT, t'), ctxt)
+        end
+      | go (tu as (t $ u)) ctxt =
+        if is_atom tu andalso not (Term.is_open tu) then dummy ctxt else
+        let
+          val (t', ctxt) = go t ctxt
+          val (u', ctxt) = go u ctxt
+        in
+          (t' $ u', ctxt)
+        end
+      | go _ ctxt = dummy ctxt
+  in
+    go t ctxt |> fst |> Syntax.check_term ctxt |>
+      map_types (map_type_tfree (fn (a, _) => TFree (a, @{sort type})))
+  end
+
+(** Monotonicity analysis **)
+
+(* TODO: Put extensible table in theory data *)
+val monotab =
+  Symtab.make
+    [(@{const_name transfer_implies}, [~1, 1]),
+     (@{const_name transfer_forall}, [1])(*,
+     (@{const_name implies}, [~1, 1]),
+     (@{const_name All}, [1])*)]
+
+(*
+Function bool_insts determines the set of boolean-relation variables
+that can be instantiated to implies, rev_implies, or iff.
+
+Invariants: bool_insts p (t, u) requires that
+  u :: _ => _ => ... => bool, and
+  t is a skeleton of u
+*)
+fun bool_insts p (t, u) =
+  let
+    fun strip2 (t1 $ t2, u1 $ u2, tus) =
+        strip2 (t1, u1, (t2, u2) :: tus)
+      | strip2 x = x
+    fun or3 ((a, b, c), (x, y, z)) = (a orelse x, b orelse y, c orelse z)
+    fun go Ts p (Abs (_, T, t), Abs (_, _, u)) tab = go (T :: Ts) p (t, u) tab
+      | go Ts p (t, u) tab =
+        let
+          val (a, _) = dest_TFree (Term.body_type (Term.fastype_of1 (Ts, t)))
+          val (_, tf, tus) = strip2 (t, u, [])
+          val ps_opt = case tf of Const (c, _) => Symtab.lookup monotab c | _ => NONE
+          val tab1 =
+            case ps_opt of
+              SOME ps =>
+              let
+                val ps' = map (fn x => p * x) (take (length tus) ps)
+              in
+                fold I (map2 (go Ts) ps' tus) tab
+              end
+            | NONE => tab
+          val tab2 = Symtab.make [(a, (p >= 0, p <= 0, is_none ps_opt))]
+        in
+          Symtab.join (K or3) (tab1, tab2)
+        end
+    val tab = go [] p (t, u) Symtab.empty
+    fun f (a, (true, false, false)) = SOME (a, @{const implies})
+      | f (a, (false, true, false)) = SOME (a, @{const rev_implies})
+      | f (a, (true, true, _))      = SOME (a, HOLogic.eq_const HOLogic.boolT)
+      | f _                         = NONE
+  in
+    map_filter f (Symtab.dest tab)
+  end
+
+fun retrieve_terms t net = map fst (Item_Net.retrieve net t)
+  
+fun matches_list ctxt term = 
+  is_some o find_first (fn pat => Pattern.matches (Proof_Context.theory_of ctxt) (pat, term))
+
+fun transfer_rule_of_term ctxt equiv t : thm =
+  let
+    val compound_rhs = get_compound_rhs ctxt
+    fun is_rhs t = compound_rhs |> retrieve_terms t |> matches_list ctxt t
+    val s = skeleton is_rhs ctxt t
+    val frees = map fst (Term.add_frees s [])
+    val tfrees = map fst (Term.add_tfrees s [])
+    fun prep a = "R" ^ Library.unprefix "'" a
+    val (rnames, ctxt') = Variable.variant_fixes (map prep tfrees) ctxt
+    val tab = tfrees ~~ rnames
+    fun prep a = the (AList.lookup (op =) tab a)
+    val thm = transfer_rule_of_terms fst ctxt' tab s t
+    val binsts = bool_insts (if equiv then 0 else 1) (s, t)
+    val cbool = @{ctyp bool}
+    val relT = @{typ "bool => bool => bool"}
+    val idx = Thm.maxidx_of thm + 1
+    val thy = Proof_Context.theory_of ctxt
+    fun tinst (a, _) = (ctyp_of thy (TVar ((a, idx), @{sort type})), cbool)
+    fun inst (a, t) = (cterm_of thy (Var (Name.clean_index (prep a, idx), relT)), cterm_of thy t)
+  in
+    thm
+      |> Thm.generalize (tfrees, rnames @ frees) idx
+      |> Thm.instantiate (map tinst binsts, map inst binsts)
+  end
+
+fun transfer_rule_of_lhs ctxt t : thm =
+  let
+    val compound_lhs = get_compound_lhs ctxt
+    fun is_lhs t = compound_lhs |> retrieve_terms t |> matches_list ctxt t
+    val s = skeleton is_lhs ctxt t
+    val frees = map fst (Term.add_frees s [])
+    val tfrees = map fst (Term.add_tfrees s [])
+    fun prep a = "R" ^ Library.unprefix "'" a
+    val (rnames, ctxt') = Variable.variant_fixes (map prep tfrees) ctxt
+    val tab = tfrees ~~ rnames
+    fun prep a = the (AList.lookup (op =) tab a)
+    val thm = transfer_rule_of_terms snd ctxt' tab t s
+    val binsts = bool_insts 1 (s, t)
+    val cbool = @{ctyp bool}
+    val relT = @{typ "bool => bool => bool"}
+    val idx = Thm.maxidx_of thm + 1
+    val thy = Proof_Context.theory_of ctxt
+    fun tinst (a, _) = (ctyp_of thy (TVar ((a, idx), @{sort type})), cbool)
+    fun inst (a, t) = (cterm_of thy (Var (Name.clean_index (prep a, idx), relT)), cterm_of thy t)
+  in
+    thm
+      |> Thm.generalize (tfrees, rnames @ frees) idx
+      |> Thm.instantiate (map tinst binsts, map inst binsts)
+  end
+
+fun eq_rules_tac eq_rules = TRY o REPEAT_ALL_NEW (resolve_tac eq_rules) 
+  THEN_ALL_NEW rtac @{thm is_equality_eq}
+
+fun eq_tac ctxt = eq_rules_tac (get_relator_eq_raw ctxt)
+
+fun transfer_step_tac ctxt = (REPEAT_ALL_NEW (resolve_tac (get_transfer_raw ctxt)) 
+  THEN_ALL_NEW (DETERM o eq_rules_tac (get_relator_eq_raw ctxt)))
+
+fun transfer_tac equiv ctxt i =
+  let
+    val pre_simps = @{thms transfer_forall_eq transfer_implies_eq}
+    val start_rule =
+      if equiv then @{thm transfer_start} else @{thm transfer_start'}
+    val rules = get_transfer_raw ctxt
+    val eq_rules = get_relator_eq_raw ctxt
+    (* allow unsolved subgoals only for standard transfer method, not for transfer' *)
+    val end_tac = if equiv then K all_tac else K no_tac
+    val err_msg = "Transfer failed to convert goal to an object-logic formula"
+    fun main_tac (t, i) =
+      rtac start_rule i THEN
+      (rtac (transfer_rule_of_term ctxt equiv (HOLogic.dest_Trueprop t))
+        THEN_ALL_NEW
+          (SOLVED' (REPEAT_ALL_NEW (resolve_tac rules) THEN_ALL_NEW (DETERM o eq_rules_tac eq_rules))
+            ORELSE' end_tac)) (i + 1)
+        handle TERM (_, ts) => raise TERM (err_msg, ts)
+  in
+    EVERY
+      [rewrite_goal_tac ctxt pre_simps i THEN
+       SUBGOAL main_tac i,
+       (* FIXME: rewrite_goal_tac does unwanted eta-contraction *)
+       rewrite_goal_tac ctxt post_simps i,
+       Goal.norm_hhf_tac ctxt i]
+  end
+
+fun transfer_prover_tac ctxt = SUBGOAL (fn (t, i) =>
+  let
+    val rhs = (snd o Term.dest_comb o HOLogic.dest_Trueprop) t
+    val rule1 = transfer_rule_of_term ctxt false rhs
+    val rules = get_transfer_raw ctxt
+    val eq_rules = get_relator_eq_raw ctxt
+    val expand_eq_in_rel = transfer_rel_conv (top_rewr_conv [@{thm rel_fun_eq[symmetric,THEN eq_reflection]}])
+  in
+    EVERY
+      [CONVERSION prep_conv i,
+       rtac @{thm transfer_prover_start} i,
+       ((rtac rule1 ORELSE' (CONVERSION expand_eq_in_rel THEN' rtac rule1))
+        THEN_ALL_NEW
+         (REPEAT_ALL_NEW (resolve_tac rules) THEN_ALL_NEW (DETERM o eq_rules_tac eq_rules))) (i+1),
+       rtac @{thm refl} i]
+  end)
+
+(** Transfer attribute **)
+
+fun transferred ctxt extra_rules thm =
+  let
+    val start_rule = @{thm transfer_start}
+    val start_rule' = @{thm transfer_start'}
+    val rules = extra_rules @ get_transfer_raw ctxt
+    val eq_rules = get_relator_eq_raw ctxt
+    val err_msg = "Transfer failed to convert goal to an object-logic formula"
+    val pre_simps = @{thms transfer_forall_eq transfer_implies_eq}
+    val thm1 = Drule.forall_intr_vars thm
+    val instT = rev (Term.add_tvars (Thm.full_prop_of thm1) [])
+                |> map (fn v as ((a, _), S) => (v, TFree (a, S)))
+    val thm2 = thm1
+      |> Thm.certify_instantiate (instT, [])
+      |> Raw_Simplifier.rewrite_rule ctxt pre_simps
+    val ctxt' = Variable.declare_names (Thm.full_prop_of thm2) ctxt
+    val t = HOLogic.dest_Trueprop (Thm.concl_of thm2)
+    val rule = transfer_rule_of_lhs ctxt' t
+    val tac =
+      resolve_tac [thm2 RS start_rule', thm2 RS start_rule] 1 THEN
+      (rtac rule
+        THEN_ALL_NEW
+          (SOLVED' (REPEAT_ALL_NEW (resolve_tac rules)
+            THEN_ALL_NEW (DETERM o eq_rules_tac eq_rules)))) 1
+        handle TERM (_, ts) => raise TERM (err_msg, ts)
+    val thm3 = Goal.prove_internal ctxt' [] @{cpat "Trueprop ?P"} (K tac)
+    val tnames = map (fst o dest_TFree o snd) instT
+  in
+    thm3
+      |> Raw_Simplifier.rewrite_rule ctxt' post_simps
+      |> Simplifier.norm_hhf ctxt'
+      |> Drule.generalize (tnames, [])
+      |> Drule.zero_var_indexes
+  end
+(*
+    handle THM _ => thm
+*)
+
+fun untransferred ctxt extra_rules thm =
+  let
+    val start_rule = @{thm untransfer_start}
+    val rules = extra_rules @ get_transfer_raw ctxt
+    val eq_rules = get_relator_eq_raw ctxt
+    val err_msg = "Transfer failed to convert goal to an object-logic formula"
+    val pre_simps = @{thms transfer_forall_eq transfer_implies_eq}
+    val thm1 = Drule.forall_intr_vars thm
+    val instT = rev (Term.add_tvars (Thm.full_prop_of thm1) [])
+                |> map (fn v as ((a, _), S) => (v, TFree (a, S)))
+    val thm2 = thm1
+      |> Thm.certify_instantiate (instT, [])
+      |> Raw_Simplifier.rewrite_rule ctxt pre_simps
+    val ctxt' = Variable.declare_names (Thm.full_prop_of thm2) ctxt
+    val t = HOLogic.dest_Trueprop (Thm.concl_of thm2)
+    val rule = transfer_rule_of_term ctxt' true t
+    val tac =
+      rtac (thm2 RS start_rule) 1 THEN
+      (rtac rule
+        THEN_ALL_NEW
+          (SOLVED' (REPEAT_ALL_NEW (resolve_tac rules)
+            THEN_ALL_NEW (DETERM o eq_rules_tac eq_rules)))) 1
+        handle TERM (_, ts) => raise TERM (err_msg, ts)
+    val thm3 = Goal.prove_internal ctxt' [] @{cpat "Trueprop ?P"} (K tac)
+    val tnames = map (fst o dest_TFree o snd) instT
+  in
+    thm3
+      |> Raw_Simplifier.rewrite_rule ctxt' post_simps
+      |> Simplifier.norm_hhf ctxt'
+      |> Drule.generalize (tnames, [])
+      |> Drule.zero_var_indexes
+  end
+
+(** Methods and attributes **)
+
+val free = Args.context -- Args.term >> (fn (_, Free v) => v | (ctxt, t) =>
+  error ("Bad free variable: " ^ Syntax.string_of_term ctxt t))
+
+val fixing = Scan.optional (Scan.lift (Args.$$$ "fixing" -- Args.colon)
+  |-- Scan.repeat free) []
+
+fun transfer_method equiv : (Proof.context -> Proof.method) context_parser =
+  fixing >> (fn vs => fn ctxt =>
+    SIMPLE_METHOD' (gen_frees_tac vs ctxt THEN' transfer_tac equiv ctxt))
+
+val transfer_prover_method : (Proof.context -> Proof.method) context_parser =
+  Scan.succeed (fn ctxt => SIMPLE_METHOD' (transfer_prover_tac ctxt))
+
+(* Attribute for transfer rules *)
+
+fun prep_rule ctxt = 
+  abstract_domains_transfer ctxt o abstract_equalities_transfer ctxt o Conv.fconv_rule prep_conv
+
+val transfer_add =
+  Thm.declaration_attribute (fn thm => fn ctxt => 
+    (add_transfer_thm o prep_rule (Context.proof_of ctxt)) thm ctxt)
+
+val transfer_del =
+  Thm.declaration_attribute (fn thm => fn ctxt => 
+    (del_transfer_thm o prep_rule (Context.proof_of ctxt)) thm ctxt)
+
+val transfer_attribute =
+  Attrib.add_del transfer_add transfer_del
+
+(* Attributes for transfer domain rules *)
+
+val transfer_domain_add = Thm.declaration_attribute add_transfer_domain_thm
+
+val transfer_domain_del = Thm.declaration_attribute del_transfer_domain_thm
+
+val transfer_domain_attribute =
+  Attrib.add_del transfer_domain_add transfer_domain_del
+
+(* Attributes for transferred rules *)
+
+fun transferred_attribute thms = Thm.rule_attribute
+  (fn context => transferred (Context.proof_of context) thms)
+
+fun untransferred_attribute thms = Thm.rule_attribute
+  (fn context => untransferred (Context.proof_of context) thms)
+
+val transferred_attribute_parser =
+  Attrib.thms >> transferred_attribute
+
+val untransferred_attribute_parser =
+  Attrib.thms >> untransferred_attribute
+
+fun morph_pred_data phi {rel_eq_onp} = {rel_eq_onp = Morphism.thm phi rel_eq_onp}
+
+fun lookup_pred_data ctxt type_name = Symtab.lookup (get_pred_data ctxt) type_name
+  |> Option.map (morph_pred_data (Morphism.transfer_morphism (Proof_Context.theory_of ctxt)))
+
+fun update_pred_data type_name qinfo ctxt = 
+  Data.map (map_pred_data (Symtab.update (type_name, qinfo))) ctxt
+
+(* Theory setup *)
+
+val relator_eq_setup =
+  let
+    val name = @{binding relator_eq}
+    fun add_thm thm context = context
+      |> Data.map (map_relator_eq (Item_Net.update thm))
+      |> Data.map (map_relator_eq_raw
+          (Item_Net.update (abstract_equalities_relator_eq (Context.proof_of context) thm)))
+    fun del_thm thm context = context
+      |> Data.map (map_relator_eq (Item_Net.remove thm))
+      |> Data.map (map_relator_eq_raw
+          (Item_Net.remove (abstract_equalities_relator_eq (Context.proof_of context) thm)))
+    val add = Thm.declaration_attribute add_thm
+    val del = Thm.declaration_attribute del_thm
+    val text = "declaration of relator equality rule (used by transfer method)"
+    val content = Item_Net.content o #relator_eq o Data.get
+  in
+    Attrib.setup name (Attrib.add_del add del) text
+    #> Global_Theory.add_thms_dynamic (name, content)
+  end
+
+val relator_domain_setup =
+  let
+    val name = @{binding relator_domain}
+    fun add_thm thm context = 
+      let
+        val thm = abstract_domains_relator_domain (Context.proof_of context) thm
+      in
+        context |> Data.map (map_relator_domain (Item_Net.update thm)) |> add_transfer_domain_thm thm
+      end
+    fun del_thm thm context = 
+      let
+        val thm = abstract_domains_relator_domain (Context.proof_of context) thm
+      in
+        context |> Data.map (map_relator_domain (Item_Net.remove thm)) |> del_transfer_domain_thm thm
+      end
+    val add = Thm.declaration_attribute add_thm
+    val del = Thm.declaration_attribute del_thm
+    val text = "declaration of relator domain rule (used by transfer method)"
+    val content = Item_Net.content o #relator_domain o Data.get
+  in
+    Attrib.setup name (Attrib.add_del add del) text
+    #> Global_Theory.add_thms_dynamic (name, content)
+  end
+
+val setup =
+  relator_eq_setup
+  #> relator_domain_setup
+  #> Attrib.setup @{binding transfer_rule} transfer_attribute
+     "transfer rule for transfer method"
+  #> Global_Theory.add_thms_dynamic
+     (@{binding transfer_raw}, Item_Net.content o #transfer_raw o Data.get)
+  #> Attrib.setup @{binding transfer_domain_rule} transfer_domain_attribute
+     "transfer domain rule for transfer method"
+  #> Attrib.setup @{binding transferred} transferred_attribute_parser
+     "raw theorem transferred to abstract theorem using transfer rules"
+  #> Attrib.setup @{binding untransferred} untransferred_attribute_parser
+     "abstract theorem transferred to raw theorem using transfer rules"
+  #> Global_Theory.add_thms_dynamic
+     (@{binding relator_eq_raw}, Item_Net.content o #relator_eq_raw o Data.get)
+  #> Method.setup @{binding transfer} (transfer_method true)
+     "generic theorem transfer method"
+  #> Method.setup @{binding transfer'} (transfer_method false)
+     "generic theorem transfer method"
+  #> Method.setup @{binding transfer_prover} transfer_prover_method
+     "for proving transfer rules"
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Transfer/transfer_bnf.ML	Thu Apr 10 17:48:18 2014 +0200
@@ -0,0 +1,353 @@
+(*  Title:      HOL/Tools/Transfer/transfer_bnf.ML
+    Author:     Ondrej Kuncar, TU Muenchen
+
+Setup for Transfer for types that are BNF.
+*)
+
+signature TRANSFER_BNF =
+sig
+  val base_name_of_bnf: BNF_Def.bnf -> binding
+  val type_name_of_bnf: BNF_Def.bnf -> string
+  val lookup_defined_pred_data: Proof.context -> string -> Transfer.pred_data
+  val map_local_theory: (local_theory -> local_theory) -> theory -> theory
+  val bnf_only_type_ctr: (BNF_Def.bnf -> 'a -> 'a) -> BNF_Def.bnf -> 'a -> 'a
+end
+
+structure Transfer_BNF : TRANSFER_BNF =
+struct
+
+open BNF_Util
+open BNF_Def
+open BNF_FP_Def_Sugar
+
+(* util functions *)
+
+fun base_name_of_bnf bnf = Binding.name (Binding.name_of (name_of_bnf bnf))
+fun mk_Frees_free x Ts ctxt = Variable.variant_frees ctxt [] (mk_names (length Ts) x ~~ Ts) |> map Free
+
+fun mk_Domainp P =
+  let
+    val PT = fastype_of P
+    val argT = hd (binder_types PT)
+  in
+    Const (@{const_name Domainp}, PT --> argT --> HOLogic.boolT) $ P
+  end
+
+fun mk_pred pred_def args T =
+  let
+    val pred_name = pred_def |> prop_of |> HOLogic.dest_Trueprop |> fst o HOLogic.dest_eq 
+      |> head_of |> fst o dest_Const
+    val argsT = map fastype_of args
+  in
+    list_comb (Const (pred_name, argsT ---> (T --> HOLogic.boolT)), args)
+  end
+
+fun mk_eq_onp arg = 
+  let
+    val argT = domain_type (fastype_of arg)
+  in
+    Const (@{const_name eq_onp}, (argT --> HOLogic.boolT) --> argT --> argT --> HOLogic.boolT)
+      $ arg
+  end
+
+fun subst_conv thm =
+  Conv.top_sweep_conv (K (Conv.rewr_conv (safe_mk_meta_eq thm))) @{context}
+
+fun type_name_of_bnf bnf = T_of_bnf bnf |> dest_Type |> fst
+
+fun is_Type (Type _) = true
+  | is_Type _ = false
+
+fun map_local_theory f = Named_Target.theory_init #> f #> Local_Theory.exit_global
+
+fun bnf_only_type_ctr f bnf = if is_Type (T_of_bnf bnf) then f bnf else I
+
+fun bnf_of_fp_sugar (fp_sugar:fp_sugar) = nth (#bnfs (#fp_res fp_sugar)) (#fp_res_index fp_sugar)
+
+fun fp_sugar_only_type_ctr f fp_sugar = 
+  if is_Type (T_of_bnf (bnf_of_fp_sugar fp_sugar)) then f fp_sugar else I
+
+(* relation constraints - bi_total & co. *)
+
+fun mk_relation_constraint name arg =
+  (Const (name, fastype_of arg --> HOLogic.boolT)) $ arg
+
+fun side_constraint_tac bnf constr_defs ctxt i = 
+  let
+    val thms = constr_defs @ map mk_sym [rel_eq_of_bnf bnf, rel_conversep_of_bnf bnf,
+      rel_OO_of_bnf bnf]
+  in                
+    (SELECT_GOAL (Local_Defs.unfold_tac ctxt thms) THEN' rtac (rel_mono_of_bnf bnf)
+      THEN_ALL_NEW atac) i
+  end
+
+fun bi_constraint_tac constr_iff sided_constr_intros ctxt i = 
+  (SELECT_GOAL (Local_Defs.unfold_tac ctxt [constr_iff]) THEN' 
+    CONJ_WRAP' (fn thm => rtac thm THEN_ALL_NEW (REPEAT_DETERM o etac conjE THEN' atac)) sided_constr_intros) i
+
+fun generate_relation_constraint_goal ctxt bnf constraint_def =
+  let
+    val constr_name = constraint_def |> prop_of |> HOLogic.dest_Trueprop |> fst o HOLogic.dest_eq
+      |> head_of |> fst o dest_Const
+    val live = live_of_bnf bnf
+    val (((As, Bs), Ds), ctxt) = ctxt
+      |> mk_TFrees live
+      ||>> mk_TFrees live
+      ||>> mk_TFrees (dead_of_bnf bnf)
+      
+    val relator = mk_rel_of_bnf Ds As Bs bnf
+    val relsT = map2 mk_pred2T As Bs
+    val (args, ctxt) = Ctr_Sugar_Util.mk_Frees "R" relsT ctxt
+    val concl = HOLogic.mk_Trueprop (mk_relation_constraint constr_name (list_comb (relator, args)))
+    val assms = map (HOLogic.mk_Trueprop o (mk_relation_constraint constr_name)) args
+    val goal = Logic.list_implies (assms, concl)
+  in
+    (goal, ctxt)
+  end
+
+fun prove_relation_side_constraint ctxt bnf constraint_def =
+  let
+    val old_ctxt = ctxt
+    val (goal, ctxt) = generate_relation_constraint_goal ctxt bnf constraint_def
+    val thm = Goal.prove ctxt [] [] goal 
+      (fn {context = ctxt, prems = _} => side_constraint_tac bnf [constraint_def] ctxt 1)
+  in
+    Drule.zero_var_indexes (singleton (Variable.export ctxt old_ctxt) thm)
+  end
+
+fun prove_relation_bi_constraint ctxt bnf constraint_def side_constraints =
+  let
+    val old_ctxt = ctxt
+    val (goal, ctxt) = generate_relation_constraint_goal ctxt bnf constraint_def
+    val thm = Goal.prove ctxt [] [] goal 
+      (fn {context = ctxt, prems = _} => bi_constraint_tac constraint_def side_constraints ctxt 1)
+  in
+    Drule.zero_var_indexes (singleton (Variable.export ctxt old_ctxt) thm)
+  end
+
+val defs = [("left_total_rel", @{thm left_total_alt_def}), ("right_total_rel", @{thm right_total_alt_def}),
+  ("left_unique_rel", @{thm left_unique_alt_def}), ("right_unique_rel", @{thm right_unique_alt_def})]
+
+fun prove_relation_constraints bnf lthy =
+  let
+    val transfer_attr = @{attributes [transfer_rule]}
+    val Tname = base_name_of_bnf bnf
+    fun qualify suffix = Binding.qualified true suffix Tname
+    
+    val defs = map (apsnd (prove_relation_side_constraint lthy bnf)) defs
+    val bi_total = prove_relation_bi_constraint lthy bnf @{thm bi_total_alt_def} 
+      [snd (nth defs 0), snd (nth defs 1)]
+    val bi_unique = prove_relation_bi_constraint lthy bnf @{thm bi_unique_alt_def} 
+      [snd (nth defs 2), snd (nth defs 3)]
+    val defs = ("bi_total_rel", bi_total) :: ("bi_unique_rel", bi_unique) :: defs
+    val notes = maps (fn (name, thm) => [((qualify name, []), [([thm], transfer_attr)])]) defs
+  in
+    notes
+  end
+
+(* relator_eq *)
+
+fun relator_eq bnf =
+  [((Binding.empty, []), [([rel_eq_of_bnf bnf], @{attributes [relator_eq]})])]
+
+(* predicator definition and Domainp and eq_onp theorem *)
+
+fun define_pred bnf lthy =
+  let
+    fun mk_pred_name c = Binding.prefix_name "pred_" c
+    val live = live_of_bnf bnf
+    val Tname = base_name_of_bnf bnf
+    val ((As, Ds), lthy) = lthy
+      |> mk_TFrees live
+      ||>> mk_TFrees (dead_of_bnf bnf)
+    val T = mk_T_of_bnf Ds As bnf
+    val sets = mk_sets_of_bnf (replicate live Ds) (replicate live As) bnf
+    val argTs = map mk_pred1T As
+    val args = mk_Frees_free "P" argTs lthy
+    val conjs = map (fn (set, arg) => mk_Ball (set $ Bound 0) arg) (sets ~~ args)
+    val rhs = Abs ("x", T, foldr1 HOLogic.mk_conj conjs)
+    val pred_name = mk_pred_name Tname
+    val headT = argTs ---> (T --> HOLogic.boolT)
+    val head = Free (Binding.name_of pred_name, headT)
+    val lhs = list_comb (head, args)
+    val def = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
+    val ((_, (_, pred_def)), lthy) = Specification.definition ((SOME (pred_name, SOME headT, NoSyn)), 
+      ((Binding.empty, []), def)) lthy
+  in
+    (pred_def, lthy)
+  end
+
+fun Domainp_tac bnf pred_def ctxt i =
+  let
+    val n = live_of_bnf bnf
+    val set_map's = set_map_of_bnf bnf
+  in
+    EVERY' [rtac ext, SELECT_GOAL (Local_Defs.unfold_tac ctxt [@{thm Domainp.simps}, 
+        in_rel_of_bnf bnf, pred_def]), rtac iffI,
+        REPEAT_DETERM o eresolve_tac [exE, conjE, CollectE], hyp_subst_tac ctxt,
+        CONJ_WRAP' (fn set_map => EVERY' [rtac ballI, dtac (set_map RS equalityD1 RS set_mp),
+          etac imageE, dtac set_rev_mp, atac, REPEAT_DETERM o eresolve_tac [CollectE, @{thm case_prodE}],
+          hyp_subst_tac ctxt, rtac @{thm iffD2[OF arg_cong2[of _ _ _ _ Domainp, OF refl fst_conv]]},
+          etac @{thm DomainPI}]) set_map's, 
+        REPEAT_DETERM o etac conjE, REPEAT_DETERM o resolve_tac [exI, (refl RS conjI), rotate_prems 1 conjI], 
+        rtac refl, rtac (box_equals OF [map_cong0_of_bnf bnf, map_comp_of_bnf bnf RS sym,
+          map_id_of_bnf bnf]),
+        REPEAT_DETERM_N n o (EVERY' [rtac @{thm box_equals[OF _ sym[OF o_apply] sym[OF id_apply]]},
+          rtac @{thm fst_conv}]), rtac CollectI,
+        CONJ_WRAP' (fn set_map => EVERY' [rtac (set_map RS @{thm ord_eq_le_trans}), 
+          REPEAT_DETERM o resolve_tac [@{thm image_subsetI}, CollectI, @{thm case_prodI}],
+          dtac (rotate_prems 1 bspec), atac, etac @{thm DomainpE}, etac @{thm someI}]) set_map's
+      ] i
+  end
+
+fun prove_Domainp_rel ctxt bnf pred_def =
+  let
+    val live = live_of_bnf bnf
+    val old_ctxt = ctxt
+    val (((As, Bs), Ds), ctxt) = ctxt
+      |> mk_TFrees live
+      ||>> mk_TFrees live
+      ||>> mk_TFrees (dead_of_bnf bnf)
+
+    val relator = mk_rel_of_bnf Ds As Bs bnf
+    val relsT = map2 mk_pred2T As Bs
+    val T = mk_T_of_bnf Ds As bnf
+    val (args, ctxt) = Ctr_Sugar_Util.mk_Frees "R" relsT ctxt
+    val lhs = mk_Domainp (list_comb (relator, args))
+    val rhs = mk_pred pred_def (map mk_Domainp args) T
+    val goal = HOLogic.mk_eq (lhs, rhs) |> HOLogic.mk_Trueprop
+    val thm = Goal.prove ctxt [] [] goal 
+      (fn {context = ctxt, prems = _} => Domainp_tac bnf pred_def ctxt 1)
+  in
+    Drule.zero_var_indexes (singleton (Variable.export ctxt old_ctxt) thm)
+  end
+
+fun pred_eq_onp_tac bnf pred_def ctxt i =
+  (SELECT_GOAL (Local_Defs.unfold_tac ctxt [@{thm eq_onp_Grp}, 
+    @{thm Ball_Collect}, pred_def]) THEN' CONVERSION (subst_conv (map_id0_of_bnf bnf RS sym))
+  THEN' rtac (rel_Grp_of_bnf bnf)) i
+
+fun prove_rel_eq_onp ctxt bnf pred_def =
+  let
+    val live = live_of_bnf bnf
+    val old_ctxt = ctxt
+    val ((As, Ds), ctxt) = ctxt
+      |> mk_TFrees live
+      ||>> mk_TFrees (dead_of_bnf bnf)
+    val T = mk_T_of_bnf Ds As bnf
+    val argTs = map mk_pred1T As
+    val (args, ctxt) = mk_Frees "P" argTs ctxt
+    val relator = mk_rel_of_bnf Ds As As bnf
+    val lhs = list_comb (relator, map mk_eq_onp args)
+    val rhs = mk_eq_onp (mk_pred pred_def args T)
+    val goal = HOLogic.mk_eq (lhs, rhs) |> HOLogic.mk_Trueprop
+    val thm = Goal.prove ctxt [] [] goal 
+      (fn {context = ctxt, prems = _} => pred_eq_onp_tac bnf pred_def ctxt 1)
+  in
+    Drule.zero_var_indexes (singleton (Variable.export ctxt old_ctxt) thm)
+  end
+
+fun predicator bnf lthy =
+  let
+    val (pred_def, lthy) = define_pred bnf lthy
+    val pred_def = Morphism.thm (Local_Theory.target_morphism lthy) pred_def
+    val Domainp_rel = prove_Domainp_rel lthy bnf pred_def
+    val rel_eq_onp = prove_rel_eq_onp lthy bnf pred_def
+    fun qualify defname suffix = Binding.qualified true suffix defname
+    val Domainp_rel_thm_name = qualify (base_name_of_bnf bnf) "Domainp_rel"
+    val rel_eq_onp_thm_name = qualify (base_name_of_bnf bnf) "rel_eq_onp"
+    val pred_data = {rel_eq_onp = rel_eq_onp}
+    val type_name = type_name_of_bnf bnf
+    val relator_domain_attr = @{attributes [relator_domain]}
+    val notes = [((Domainp_rel_thm_name, []), [([Domainp_rel], relator_domain_attr)]),
+      ((rel_eq_onp_thm_name, []), [([rel_eq_onp], [])])]
+    val lthy = Local_Theory.declaration {syntax = false, pervasive = true}
+      (fn phi => Transfer.update_pred_data type_name (Transfer.morph_pred_data phi pred_data)) lthy
+  in
+    (notes, lthy)
+  end
+
+(* BNF interpretation *)
+
+fun transfer_bnf_interpretation bnf lthy =
+  let
+    val constr_notes = if dead_of_bnf bnf > 0 then []
+      else prove_relation_constraints bnf lthy
+    val relator_eq_notes = if dead_of_bnf bnf > 0 then [] 
+      else relator_eq bnf
+    val (pred_notes, lthy) = predicator bnf lthy
+  in
+    snd (Local_Theory.notes (constr_notes @ relator_eq_notes @ pred_notes) lthy)
+  end
+
+val _ = Context.>> (Context.map_theory (bnf_interpretation
+  (bnf_only_type_ctr (fn bnf => map_local_theory (transfer_bnf_interpretation bnf)))))
+
+(* simplification rules for the predicator *)
+
+fun lookup_defined_pred_data lthy name =
+  case (Transfer.lookup_pred_data lthy name) of
+    SOME data => data
+    | NONE => (error "lookup_pred_data: something went utterly wrong")
+
+fun prove_pred_inject lthy (fp_sugar:fp_sugar) =
+  let
+    val involved_types = distinct op= (
+        map type_name_of_bnf (#nested_bnfs fp_sugar) 
+      @ map type_name_of_bnf (#nesting_bnfs fp_sugar)
+      @ map type_name_of_bnf (#bnfs (#fp_res fp_sugar)))
+    val eq_onps = map (Transfer.rel_eq_onp o lookup_defined_pred_data lthy) involved_types
+    val live = live_of_bnf (bnf_of_fp_sugar fp_sugar)
+    val old_lthy = lthy
+    val (As, lthy) = mk_TFrees live lthy
+    val predTs = map mk_pred1T As
+    val (preds, lthy) = mk_Frees "P" predTs lthy
+    val args = map mk_eq_onp preds
+    val cTs = map (SOME o certifyT lthy) (maps (replicate 2) As)
+    val cts = map (SOME o certify lthy) args
+    fun get_rhs thm = thm |> concl_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> snd
+    fun is_eqn thm = can get_rhs thm
+    fun rel2pred_massage thm =
+      let
+        fun pred_eq_onp_conj 0 = error "not defined"
+          | pred_eq_onp_conj 1 = @{thm eq_onp_same_args}
+          | pred_eq_onp_conj n = 
+            let
+              val conj_cong = @{thm arg_cong2[of _ _ _ _ "op \<and>"]}
+              val start = @{thm eq_onp_same_args} RS conj_cong
+            in
+              @{thm eq_onp_same_args} RS (funpow (n - 2) (fn thm => start RS thm) start)
+            end
+        val n = if is_eqn thm then thm |> get_rhs |> HOLogic.dest_conj |> length else 0
+      in
+        thm
+        |> Drule.instantiate' cTs cts
+        |> Local_Defs.unfold lthy eq_onps
+        |> (fn thm => if n > 0 then @{thm box_equals} 
+              OF [thm, @{thm eq_onp_same_args}, pred_eq_onp_conj n]
+            else thm RS (@{thm eq_onp_same_args} RS iffD1))
+      end
+    val rel_injects = #rel_injects fp_sugar
+  in
+    rel_injects
+    |> map rel2pred_massage
+    |> Variable.export lthy old_lthy
+    |> map Drule.zero_var_indexes
+  end
+
+(* fp_sugar interpretation *)
+
+fun transfer_fp_sugar_interpretation fp_sugar lthy =
+  let
+    val pred_injects = prove_pred_inject lthy fp_sugar
+    fun qualify defname suffix = Binding.qualified true suffix defname
+    val pred_inject_thm_name = qualify (base_name_of_bnf (bnf_of_fp_sugar fp_sugar)) "pred_inject"
+    val simp_attrs = @{attributes [simp]}
+  in
+    snd (Local_Theory.note ((pred_inject_thm_name, simp_attrs), pred_injects) lthy)
+  end
+
+val _ = Context.>> (Context.map_theory (fp_sugar_interpretation
+  (fp_sugar_only_type_ctr (fn fp_sugar => map_local_theory (transfer_fp_sugar_interpretation fp_sugar)))))
+
+end
--- a/src/HOL/Tools/transfer.ML	Thu Apr 10 17:48:17 2014 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,840 +0,0 @@
-(*  Title:      HOL/Tools/transfer.ML
-    Author:     Brian Huffman, TU Muenchen
-    Author:     Ondrej Kuncar, TU Muenchen
-
-Generic theorem transfer method.
-*)
-
-signature TRANSFER =
-sig
-  val bottom_rewr_conv: thm list -> conv
-  val top_rewr_conv: thm list -> conv
-
-  val prep_conv: conv
-  val get_transfer_raw: Proof.context -> thm list
-  val get_relator_eq_item_net: Proof.context -> thm Item_Net.T
-  val get_relator_eq: Proof.context -> thm list
-  val get_sym_relator_eq: Proof.context -> thm list
-  val get_relator_eq_raw: Proof.context -> thm list
-  val get_relator_domain: Proof.context -> thm list
-  val get_compound_lhs: Proof.context -> (term * thm) Item_Net.T
-  val get_compound_rhs: Proof.context -> (term * thm) Item_Net.T
-  val transfer_add: attribute
-  val transfer_del: attribute
-  val transfer_raw_add: thm -> Context.generic -> Context.generic
-  val transfer_raw_del: thm -> Context.generic -> Context.generic
-  val transferred_attribute: thm list -> attribute
-  val untransferred_attribute: thm list -> attribute
-  val prep_transfer_domain_thm: Proof.context -> thm -> thm
-  val transfer_domain_add: attribute
-  val transfer_domain_del: attribute
-  val transfer_rule_of_term: Proof.context -> bool -> term -> thm
-  val transfer_rule_of_lhs: Proof.context -> term -> thm
-  val eq_tac: Proof.context -> int -> tactic
-  val transfer_step_tac: Proof.context -> int -> tactic
-  val transfer_tac: bool -> Proof.context -> int -> tactic
-  val transfer_prover_tac: Proof.context -> int -> tactic
-  val gen_frees_tac: (string * typ) list -> Proof.context -> int -> tactic
-  val setup: theory -> theory
-end
-
-structure Transfer : TRANSFER =
-struct
-
-(** Theory Data **)
-
-val compound_xhs_empty_net = Item_Net.init (Thm.eq_thm_prop o pairself snd) (single o fst);
-val rewr_rules = Item_Net.init Thm.eq_thm_prop (single o fst o HOLogic.dest_eq 
-  o HOLogic.dest_Trueprop o Thm.concl_of);
-
-structure Data = Generic_Data
-(
-  type T =
-    { transfer_raw : thm Item_Net.T,
-      known_frees : (string * typ) list,
-      compound_lhs : (term * thm) Item_Net.T,
-      compound_rhs : (term * thm) Item_Net.T,
-      relator_eq : thm Item_Net.T,
-      relator_eq_raw : thm Item_Net.T,
-      relator_domain : thm Item_Net.T }
-  val empty =
-    { transfer_raw = Thm.intro_rules,
-      known_frees = [],
-      compound_lhs = compound_xhs_empty_net,
-      compound_rhs = compound_xhs_empty_net,
-      relator_eq = rewr_rules,
-      relator_eq_raw = Thm.full_rules,
-      relator_domain = Thm.full_rules }
-  val extend = I
-  fun merge
-    ( { transfer_raw = t1, known_frees = k1,
-        compound_lhs = l1,
-        compound_rhs = c1, relator_eq = r1,
-        relator_eq_raw = rw1, relator_domain = rd1 },
-      { transfer_raw = t2, known_frees = k2,
-        compound_lhs = l2,
-        compound_rhs = c2, relator_eq = r2,
-        relator_eq_raw = rw2, relator_domain = rd2 } ) =
-    { transfer_raw = Item_Net.merge (t1, t2),
-      known_frees = Library.merge (op =) (k1, k2),
-      compound_lhs = Item_Net.merge (l1, l2),
-      compound_rhs = Item_Net.merge (c1, c2),
-      relator_eq = Item_Net.merge (r1, r2),
-      relator_eq_raw = Item_Net.merge (rw1, rw2),
-      relator_domain = Item_Net.merge (rd1, rd2) }
-)
-
-fun get_transfer_raw ctxt = ctxt
-  |> (Item_Net.content o #transfer_raw o Data.get o Context.Proof)
-
-fun get_known_frees ctxt = ctxt
-  |> (#known_frees o Data.get o Context.Proof)
-
-fun get_compound_lhs ctxt = ctxt
-  |> (#compound_lhs o Data.get o Context.Proof)
-
-fun get_compound_rhs ctxt = ctxt
-  |> (#compound_rhs o Data.get o Context.Proof)
-
-fun get_relator_eq_item_net ctxt = (#relator_eq o Data.get o Context.Proof) ctxt
-
-fun get_relator_eq ctxt = ctxt
-  |> (Item_Net.content o #relator_eq o Data.get o Context.Proof)
-  |> map safe_mk_meta_eq
-
-fun get_sym_relator_eq ctxt = ctxt
-  |> (Item_Net.content o #relator_eq o Data.get o Context.Proof)
-  |> map (Thm.symmetric o safe_mk_meta_eq)
-
-fun get_relator_eq_raw ctxt = ctxt
-  |> (Item_Net.content o #relator_eq_raw o Data.get o Context.Proof)
-
-fun get_relator_domain ctxt = ctxt
-  |> (Item_Net.content o #relator_domain o Data.get o Context.Proof)
-
-fun map_data f1 f2 f3 f4 f5 f6 f7
-  { transfer_raw, known_frees, compound_lhs, compound_rhs,
-    relator_eq, relator_eq_raw, relator_domain } =
-  { transfer_raw = f1 transfer_raw,
-    known_frees = f2 known_frees,
-    compound_lhs = f3 compound_lhs,
-    compound_rhs = f4 compound_rhs,
-    relator_eq = f5 relator_eq,
-    relator_eq_raw = f6 relator_eq_raw,
-    relator_domain = f7 relator_domain }
-
-fun map_transfer_raw   f = map_data f I I I I I I
-fun map_known_frees    f = map_data I f I I I I I
-fun map_compound_lhs   f = map_data I I f I I I I
-fun map_compound_rhs   f = map_data I I I f I I I
-fun map_relator_eq     f = map_data I I I I f I I
-fun map_relator_eq_raw f = map_data I I I I I f I
-fun map_relator_domain f = map_data I I I I I I f
-
-fun add_transfer_thm thm = Data.map
-  (map_transfer_raw (Item_Net.update thm) o
-   map_compound_lhs
-     (case HOLogic.dest_Trueprop (Thm.concl_of thm) of
-        Const (@{const_name Rel}, _) $ _ $ (lhs as (_ $ _)) $ _ =>
-          Item_Net.update (lhs, thm)
-      | _ => I) o
-   map_compound_rhs
-     (case HOLogic.dest_Trueprop (Thm.concl_of thm) of
-        Const (@{const_name Rel}, _) $ _ $ _ $ (rhs as (_ $ _)) =>
-          Item_Net.update (rhs, thm)
-      | _ => I) o
-   map_known_frees (Term.add_frees (Thm.concl_of thm)))
-
-fun del_transfer_thm thm = Data.map 
-  (map_transfer_raw (Item_Net.remove thm) o
-   map_compound_lhs
-     (case HOLogic.dest_Trueprop (Thm.concl_of thm) of
-        Const (@{const_name Rel}, _) $ _ $ (lhs as (_ $ _)) $ _ =>
-          Item_Net.remove (lhs, thm)
-      | _ => I) o
-   map_compound_rhs
-     (case HOLogic.dest_Trueprop (Thm.concl_of thm) of
-        Const (@{const_name Rel}, _) $ _ $ _ $ (rhs as (_ $ _)) =>
-          Item_Net.remove (rhs, thm)
-      | _ => I))
-
-fun transfer_raw_add thm ctxt = add_transfer_thm thm ctxt
-fun transfer_raw_del thm ctxt = del_transfer_thm thm ctxt
-
-(** Conversions **)
-
-fun bottom_rewr_conv rewrs = Conv.bottom_conv (K (Conv.try_conv (Conv.rewrs_conv rewrs))) @{context}
-fun top_rewr_conv rewrs = Conv.top_conv (K (Conv.try_conv (Conv.rewrs_conv rewrs))) @{context}
-
-fun transfer_rel_conv conv = 
-  Conv.concl_conv ~1 (HOLogic.Trueprop_conv (Conv.fun2_conv (Conv.arg_conv conv)))
-
-val Rel_rule = Thm.symmetric @{thm Rel_def}
-
-fun dest_funcT cT =
-  (case Thm.dest_ctyp cT of [T, U] => (T, U)
-    | _ => raise TYPE ("dest_funcT", [Thm.typ_of cT], []))
-
-fun Rel_conv ct =
-  let val (cT, cT') = dest_funcT (Thm.ctyp_of_term ct)
-      val (cU, _) = dest_funcT cT'
-  in Drule.instantiate' [SOME cT, SOME cU] [SOME ct] Rel_rule end
-
-(* Conversion to preprocess a transfer rule *)
-fun safe_Rel_conv ct =
-  Conv.try_conv (HOLogic.Trueprop_conv (Conv.fun_conv (Conv.fun_conv Rel_conv))) ct
-
-fun prep_conv ct = (
-      Conv.implies_conv safe_Rel_conv prep_conv
-      else_conv
-      safe_Rel_conv
-      else_conv
-      Conv.all_conv) ct
-
-(** Replacing explicit equalities with is_equality premises **)
-
-fun mk_is_equality t =
-  Const (@{const_name is_equality}, Term.fastype_of t --> HOLogic.boolT) $ t
-
-val is_equality_lemma =
-  @{lemma "(!!R. is_equality R ==> PROP (P R)) == PROP (P (op =))"
-    by (unfold is_equality_def, rule, drule meta_spec,
-      erule meta_mp, rule refl, simp)}
-
-fun gen_abstract_equalities ctxt (dest : term -> term * (term -> term)) thm =
-  let
-    val thy = Thm.theory_of_thm thm
-    val prop = Thm.prop_of thm
-    val (t, mk_prop') = dest prop
-    (* Only consider "op =" at non-base types *)
-    fun is_eq (Const (@{const_name HOL.eq}, Type ("fun", [T, _]))) =
-        (case T of Type (_, []) => false | _ => true)
-      | is_eq _ = false
-    val add_eqs = Term.fold_aterms (fn t => if is_eq t then insert (op =) t else I)
-    val eq_consts = rev (add_eqs t [])
-    val eqTs = map (snd o dest_Const) eq_consts
-    val used = Term.add_free_names prop []
-    val names = map (K "") eqTs |> Name.variant_list used
-    val frees = map Free (names ~~ eqTs)
-    val prems = map (HOLogic.mk_Trueprop o mk_is_equality) frees
-    val prop1 = mk_prop' (Term.subst_atomic (eq_consts ~~ frees) t)
-    val prop2 = fold Logic.all frees (Logic.list_implies (prems, prop1))
-    val cprop = Thm.cterm_of thy prop2
-    val equal_thm = Raw_Simplifier.rewrite ctxt false [is_equality_lemma] cprop
-    fun forall_elim thm = Thm.forall_elim_vars (Thm.maxidx_of thm + 1) thm
-  in
-    forall_elim (thm COMP (equal_thm COMP @{thm equal_elim_rule2}))
-  end
-    handle TERM _ => thm
-
-fun abstract_equalities_transfer ctxt thm =
-  let
-    fun dest prop =
-      let
-        val prems = Logic.strip_imp_prems prop
-        val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop)
-        val ((rel, x), y) = apfst Term.dest_comb (Term.dest_comb concl)
-      in
-        (rel, fn rel' =>
-          Logic.list_implies (prems, HOLogic.mk_Trueprop (rel' $ x $ y)))
-      end
-    val contracted_eq_thm = 
-      Conv.fconv_rule (transfer_rel_conv (bottom_rewr_conv (get_relator_eq ctxt))) thm
-      handle CTERM _ => thm
-  in
-    gen_abstract_equalities ctxt dest contracted_eq_thm
-  end
-
-fun abstract_equalities_relator_eq ctxt rel_eq_thm =
-  gen_abstract_equalities ctxt (fn x => (x, I))
-    (rel_eq_thm RS @{thm is_equality_def [THEN iffD2]})
-
-fun abstract_equalities_domain ctxt thm =
-  let
-    fun dest prop =
-      let
-        val prems = Logic.strip_imp_prems prop
-        val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop)
-        val ((eq, dom), y) = apfst Term.dest_comb (Term.dest_comb concl)
-      in
-        (dom, fn dom' => Logic.list_implies (prems, HOLogic.mk_Trueprop (eq $ dom' $ y)))
-      end
-    fun transfer_rel_conv conv = 
-      Conv.concl_conv ~1 (HOLogic.Trueprop_conv (Conv.arg1_conv (Conv.arg_conv conv)))
-    val contracted_eq_thm = 
-      Conv.fconv_rule (transfer_rel_conv (bottom_rewr_conv (get_relator_eq ctxt))) thm
-  in
-    gen_abstract_equalities ctxt dest contracted_eq_thm
-  end 
-
-
-(** Replacing explicit Domainp predicates with Domainp assumptions **)
-
-fun mk_Domainp_assm (T, R) =
-  HOLogic.mk_eq ((Const (@{const_name Domainp}, Term.fastype_of T --> Term.fastype_of R) $ T), R)
-
-val Domainp_lemma =
-  @{lemma "(!!R. Domainp T = R ==> PROP (P R)) == PROP (P (Domainp T))"
-    by (rule, drule meta_spec,
-      erule meta_mp, rule refl, simp)}
-
-fun fold_Domainp f (t as Const (@{const_name Domainp},_) $ (Var (_,_))) = f t
-  | fold_Domainp f (t $ u) = fold_Domainp f t #> fold_Domainp f u
-  | fold_Domainp f (Abs (_, _, t)) = fold_Domainp f t
-  | fold_Domainp _ _ = I
-
-fun subst_terms tab t = 
-  let
-    val t' = Termtab.lookup tab t
-  in
-    case t' of
-      SOME t' => t'
-      | NONE => 
-        (case t of
-          u $ v => (subst_terms tab u) $ (subst_terms tab v)
-          | Abs (a, T, t) => Abs (a, T, subst_terms tab t)
-          | t => t)
-  end
-
-fun gen_abstract_domains ctxt (dest : term -> term * (term -> term)) thm =
-  let
-    val thy = Thm.theory_of_thm thm
-    val prop = Thm.prop_of thm
-    val (t, mk_prop') = dest prop
-    val Domainp_tms = rev (fold_Domainp (fn t => insert op= t) t [])
-    val Domainp_Ts = map (snd o dest_funT o snd o dest_Const o fst o dest_comb) Domainp_tms
-    val used = Term.add_free_names t []
-    val rels = map (snd o dest_comb) Domainp_tms
-    val rel_names = map (fst o fst o dest_Var) rels
-    val names = map (fn name => ("D" ^ name)) rel_names |> Name.variant_list used
-    val frees = map Free (names ~~ Domainp_Ts)
-    val prems = map (HOLogic.mk_Trueprop o mk_Domainp_assm) (rels ~~ frees);
-    val t' = subst_terms (fold Termtab.update (Domainp_tms ~~ frees) Termtab.empty) t
-    val prop1 = fold Logic.all frees (Logic.list_implies (prems, mk_prop' t'))
-    val prop2 = Logic.list_rename_params (rev names) prop1
-    val cprop = Thm.cterm_of thy prop2
-    val equal_thm = Raw_Simplifier.rewrite ctxt false [Domainp_lemma] cprop
-    fun forall_elim thm = Thm.forall_elim_vars (Thm.maxidx_of thm + 1) thm;
-  in
-    forall_elim (thm COMP (equal_thm COMP @{thm equal_elim_rule2}))
-  end
-    handle TERM _ => thm
-
-fun abstract_domains_transfer ctxt thm =
-  let
-    fun dest prop =
-      let
-        val prems = Logic.strip_imp_prems prop
-        val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop)
-        val ((rel, x), y) = apfst Term.dest_comb (Term.dest_comb concl)
-      in
-        (x, fn x' =>
-          Logic.list_implies (prems, HOLogic.mk_Trueprop (rel $ x' $ y)))
-      end
-  in
-    gen_abstract_domains ctxt dest thm
-  end
-
-fun abstract_domains_relator_domain ctxt thm =
-  let
-    fun dest prop =
-      let
-        val prems = Logic.strip_imp_prems prop
-        val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop)
-        val ((rel, x), y) = apfst Term.dest_comb (Term.dest_comb concl)
-      in
-        (y, fn y' =>
-          Logic.list_implies (prems, HOLogic.mk_Trueprop (rel $ x $ y')))
-      end
-  in
-    gen_abstract_domains ctxt dest thm
-  end
-
-fun detect_transfer_rules thm =
-  let
-    fun is_transfer_rule tm = case (HOLogic.dest_Trueprop tm) of
-      (Const (@{const_name HOL.eq}, _)) $ ((Const (@{const_name Domainp}, _)) $ _) $ _ => false
-      | _ $ _ $ _ => true
-      | _ => false
-    fun safe_transfer_rule_conv ctm =
-      if is_transfer_rule (term_of ctm) then safe_Rel_conv ctm else Conv.all_conv ctm
-  in
-    Conv.fconv_rule (Conv.prems_conv ~1 safe_transfer_rule_conv) thm
-  end
-
-(** Adding transfer domain rules **)
-
-fun prep_transfer_domain_thm ctxt thm = 
-  (abstract_equalities_domain ctxt o detect_transfer_rules) thm 
-
-fun add_transfer_domain_thm thm ctxt = (add_transfer_thm o 
-  prep_transfer_domain_thm (Context.proof_of ctxt)) thm ctxt
-
-fun del_transfer_domain_thm thm ctxt = (del_transfer_thm o 
-  prep_transfer_domain_thm (Context.proof_of ctxt)) thm ctxt
-
-(** Transfer proof method **)
-
-val post_simps =
-  @{thms transfer_forall_eq [symmetric]
-    transfer_implies_eq [symmetric] transfer_bforall_unfold}
-
-fun gen_frees_tac keepers ctxt = SUBGOAL (fn (t, i) =>
-  let
-    val keepers = keepers @ get_known_frees ctxt
-    val vs = rev (Term.add_frees t [])
-    val vs' = filter_out (member (op =) keepers) vs
-  in
-    Induct.arbitrary_tac ctxt 0 vs' i
-  end)
-
-fun mk_relT (T, U) = T --> U --> HOLogic.boolT
-
-fun mk_Rel t =
-  let val T = fastype_of t
-  in Const (@{const_name Transfer.Rel}, T --> T) $ t end
-
-fun transfer_rule_of_terms (prj : typ * typ -> typ) ctxt tab t u =
-  let
-    val thy = Proof_Context.theory_of ctxt
-    (* precondition: prj(T,U) must consist of only TFrees and type "fun" *)
-    fun rel (T as Type ("fun", [T1, T2])) (U as Type ("fun", [U1, U2])) =
-        let
-          val r1 = rel T1 U1
-          val r2 = rel T2 U2
-          val rT = fastype_of r1 --> fastype_of r2 --> mk_relT (T, U)
-        in
-          Const (@{const_name rel_fun}, rT) $ r1 $ r2
-        end
-      | rel T U =
-        let
-          val (a, _) = dest_TFree (prj (T, U))
-        in
-          Free (the (AList.lookup (op =) tab a), mk_relT (T, U))
-        end
-    fun zip _ thms (Bound i) (Bound _) = (nth thms i, [])
-      | zip ctxt thms (Abs (x, T, t)) (Abs (y, U, u)) =
-        let
-          val ([x', y'], ctxt') = Variable.variant_fixes [x, y] ctxt
-          val prop = mk_Rel (rel T U) $ Free (x', T) $ Free (y', U)
-          val cprop = Thm.cterm_of thy (HOLogic.mk_Trueprop prop)
-          val thm0 = Thm.assume cprop
-          val (thm1, hyps) = zip ctxt' (thm0 :: thms) t u
-          val ((r1, x), y) = apfst Thm.dest_comb (Thm.dest_comb (Thm.dest_arg cprop))
-          val r2 = Thm.dest_fun2 (Thm.dest_arg (cprop_of thm1))
-          val (a1, (b1, _)) = apsnd dest_funcT (dest_funcT (ctyp_of_term r1))
-          val (a2, (b2, _)) = apsnd dest_funcT (dest_funcT (ctyp_of_term r2))
-          val tinsts = [SOME a1, SOME b1, SOME a2, SOME b2]
-          val insts = [SOME (Thm.dest_arg r1), SOME (Thm.dest_arg r2)]
-          val rule = Drule.instantiate' tinsts insts @{thm Rel_abs}
-          val thm2 = Thm.forall_intr x (Thm.forall_intr y (Thm.implies_intr cprop thm1))
-        in
-          (thm2 COMP rule, hyps)
-        end
-      | zip ctxt thms (f $ t) (g $ u) =
-        let
-          val (thm1, hyps1) = zip ctxt thms f g
-          val (thm2, hyps2) = zip ctxt thms t u
-        in
-          (thm2 RS (thm1 RS @{thm Rel_app}), hyps1 @ hyps2)
-        end
-      | zip _ _ t u =
-        let
-          val T = fastype_of t
-          val U = fastype_of u
-          val prop = mk_Rel (rel T U) $ t $ u
-          val cprop = Thm.cterm_of thy (HOLogic.mk_Trueprop prop)
-        in
-          (Thm.assume cprop, [cprop])
-        end
-    val r = mk_Rel (rel (fastype_of t) (fastype_of u))
-    val goal = HOLogic.mk_Trueprop (r $ t $ u)
-    val rename = Thm.trivial (cterm_of thy goal)
-    val (thm, hyps) = zip ctxt [] t u
-  in
-    Drule.implies_intr_list hyps (thm RS rename)
-  end
-
-(* create a lambda term of the same shape as the given term *)
-fun skeleton (is_atom : term -> bool) ctxt t =
-  let
-    fun dummy ctxt =
-      let
-        val (c, ctxt) = yield_singleton Variable.variant_fixes "a" ctxt
-      in
-        (Free (c, dummyT), ctxt)
-      end
-    fun go (Bound i) ctxt = (Bound i, ctxt)
-      | go (Abs (x, _, t)) ctxt =
-        let
-          val (t', ctxt) = go t ctxt
-        in
-          (Abs (x, dummyT, t'), ctxt)
-        end
-      | go (tu as (t $ u)) ctxt =
-        if is_atom tu andalso not (Term.is_open tu) then dummy ctxt else
-        let
-          val (t', ctxt) = go t ctxt
-          val (u', ctxt) = go u ctxt
-        in
-          (t' $ u', ctxt)
-        end
-      | go _ ctxt = dummy ctxt
-  in
-    go t ctxt |> fst |> Syntax.check_term ctxt |>
-      map_types (map_type_tfree (fn (a, _) => TFree (a, @{sort type})))
-  end
-
-(** Monotonicity analysis **)
-
-(* TODO: Put extensible table in theory data *)
-val monotab =
-  Symtab.make
-    [(@{const_name transfer_implies}, [~1, 1]),
-     (@{const_name transfer_forall}, [1])(*,
-     (@{const_name implies}, [~1, 1]),
-     (@{const_name All}, [1])*)]
-
-(*
-Function bool_insts determines the set of boolean-relation variables
-that can be instantiated to implies, rev_implies, or iff.
-
-Invariants: bool_insts p (t, u) requires that
-  u :: _ => _ => ... => bool, and
-  t is a skeleton of u
-*)
-fun bool_insts p (t, u) =
-  let
-    fun strip2 (t1 $ t2, u1 $ u2, tus) =
-        strip2 (t1, u1, (t2, u2) :: tus)
-      | strip2 x = x
-    fun or3 ((a, b, c), (x, y, z)) = (a orelse x, b orelse y, c orelse z)
-    fun go Ts p (Abs (_, T, t), Abs (_, _, u)) tab = go (T :: Ts) p (t, u) tab
-      | go Ts p (t, u) tab =
-        let
-          val (a, _) = dest_TFree (Term.body_type (Term.fastype_of1 (Ts, t)))
-          val (_, tf, tus) = strip2 (t, u, [])
-          val ps_opt = case tf of Const (c, _) => Symtab.lookup monotab c | _ => NONE
-          val tab1 =
-            case ps_opt of
-              SOME ps =>
-              let
-                val ps' = map (fn x => p * x) (take (length tus) ps)
-              in
-                fold I (map2 (go Ts) ps' tus) tab
-              end
-            | NONE => tab
-          val tab2 = Symtab.make [(a, (p >= 0, p <= 0, is_none ps_opt))]
-        in
-          Symtab.join (K or3) (tab1, tab2)
-        end
-    val tab = go [] p (t, u) Symtab.empty
-    fun f (a, (true, false, false)) = SOME (a, @{const implies})
-      | f (a, (false, true, false)) = SOME (a, @{const rev_implies})
-      | f (a, (true, true, _))      = SOME (a, HOLogic.eq_const HOLogic.boolT)
-      | f _                         = NONE
-  in
-    map_filter f (Symtab.dest tab)
-  end
-
-fun retrieve_terms t net = map fst (Item_Net.retrieve net t)
-  
-fun matches_list ctxt term = 
-  is_some o find_first (fn pat => Pattern.matches (Proof_Context.theory_of ctxt) (pat, term))
-
-fun transfer_rule_of_term ctxt equiv t : thm =
-  let
-    val compound_rhs = get_compound_rhs ctxt
-    fun is_rhs t = compound_rhs |> retrieve_terms t |> matches_list ctxt t
-    val s = skeleton is_rhs ctxt t
-    val frees = map fst (Term.add_frees s [])
-    val tfrees = map fst (Term.add_tfrees s [])
-    fun prep a = "R" ^ Library.unprefix "'" a
-    val (rnames, ctxt') = Variable.variant_fixes (map prep tfrees) ctxt
-    val tab = tfrees ~~ rnames
-    fun prep a = the (AList.lookup (op =) tab a)
-    val thm = transfer_rule_of_terms fst ctxt' tab s t
-    val binsts = bool_insts (if equiv then 0 else 1) (s, t)
-    val cbool = @{ctyp bool}
-    val relT = @{typ "bool => bool => bool"}
-    val idx = Thm.maxidx_of thm + 1
-    val thy = Proof_Context.theory_of ctxt
-    fun tinst (a, _) = (ctyp_of thy (TVar ((a, idx), @{sort type})), cbool)
-    fun inst (a, t) = (cterm_of thy (Var (Name.clean_index (prep a, idx), relT)), cterm_of thy t)
-  in
-    thm
-      |> Thm.generalize (tfrees, rnames @ frees) idx
-      |> Thm.instantiate (map tinst binsts, map inst binsts)
-  end
-
-fun transfer_rule_of_lhs ctxt t : thm =
-  let
-    val compound_lhs = get_compound_lhs ctxt
-    fun is_lhs t = compound_lhs |> retrieve_terms t |> matches_list ctxt t
-    val s = skeleton is_lhs ctxt t
-    val frees = map fst (Term.add_frees s [])
-    val tfrees = map fst (Term.add_tfrees s [])
-    fun prep a = "R" ^ Library.unprefix "'" a
-    val (rnames, ctxt') = Variable.variant_fixes (map prep tfrees) ctxt
-    val tab = tfrees ~~ rnames
-    fun prep a = the (AList.lookup (op =) tab a)
-    val thm = transfer_rule_of_terms snd ctxt' tab t s
-    val binsts = bool_insts 1 (s, t)
-    val cbool = @{ctyp bool}
-    val relT = @{typ "bool => bool => bool"}
-    val idx = Thm.maxidx_of thm + 1
-    val thy = Proof_Context.theory_of ctxt
-    fun tinst (a, _) = (ctyp_of thy (TVar ((a, idx), @{sort type})), cbool)
-    fun inst (a, t) = (cterm_of thy (Var (Name.clean_index (prep a, idx), relT)), cterm_of thy t)
-  in
-    thm
-      |> Thm.generalize (tfrees, rnames @ frees) idx
-      |> Thm.instantiate (map tinst binsts, map inst binsts)
-  end
-
-fun eq_rules_tac eq_rules = TRY o REPEAT_ALL_NEW (resolve_tac eq_rules) 
-  THEN_ALL_NEW rtac @{thm is_equality_eq}
-
-fun eq_tac ctxt = eq_rules_tac (get_relator_eq_raw ctxt)
-
-fun transfer_step_tac ctxt = (REPEAT_ALL_NEW (resolve_tac (get_transfer_raw ctxt)) 
-  THEN_ALL_NEW (DETERM o eq_rules_tac (get_relator_eq_raw ctxt)))
-
-fun transfer_tac equiv ctxt i =
-  let
-    val pre_simps = @{thms transfer_forall_eq transfer_implies_eq}
-    val start_rule =
-      if equiv then @{thm transfer_start} else @{thm transfer_start'}
-    val rules = get_transfer_raw ctxt
-    val eq_rules = get_relator_eq_raw ctxt
-    (* allow unsolved subgoals only for standard transfer method, not for transfer' *)
-    val end_tac = if equiv then K all_tac else K no_tac
-    val err_msg = "Transfer failed to convert goal to an object-logic formula"
-    fun main_tac (t, i) =
-      rtac start_rule i THEN
-      (rtac (transfer_rule_of_term ctxt equiv (HOLogic.dest_Trueprop t))
-        THEN_ALL_NEW
-          (SOLVED' (REPEAT_ALL_NEW (resolve_tac rules) THEN_ALL_NEW (DETERM o eq_rules_tac eq_rules))
-            ORELSE' end_tac)) (i + 1)
-        handle TERM (_, ts) => raise TERM (err_msg, ts)
-  in
-    EVERY
-      [rewrite_goal_tac ctxt pre_simps i THEN
-       SUBGOAL main_tac i,
-       (* FIXME: rewrite_goal_tac does unwanted eta-contraction *)
-       rewrite_goal_tac ctxt post_simps i,
-       Goal.norm_hhf_tac ctxt i]
-  end
-
-fun transfer_prover_tac ctxt = SUBGOAL (fn (t, i) =>
-  let
-    val rhs = (snd o Term.dest_comb o HOLogic.dest_Trueprop) t
-    val rule1 = transfer_rule_of_term ctxt false rhs
-    val rules = get_transfer_raw ctxt
-    val eq_rules = get_relator_eq_raw ctxt
-    val expand_eq_in_rel = transfer_rel_conv (top_rewr_conv [@{thm rel_fun_eq[symmetric,THEN eq_reflection]}])
-  in
-    EVERY
-      [CONVERSION prep_conv i,
-       rtac @{thm transfer_prover_start} i,
-       ((rtac rule1 ORELSE' (CONVERSION expand_eq_in_rel THEN' rtac rule1))
-        THEN_ALL_NEW
-         (REPEAT_ALL_NEW (resolve_tac rules) THEN_ALL_NEW (DETERM o eq_rules_tac eq_rules))) (i+1),
-       rtac @{thm refl} i]
-  end)
-
-(** Transfer attribute **)
-
-fun transferred ctxt extra_rules thm =
-  let
-    val start_rule = @{thm transfer_start}
-    val start_rule' = @{thm transfer_start'}
-    val rules = extra_rules @ get_transfer_raw ctxt
-    val eq_rules = get_relator_eq_raw ctxt
-    val err_msg = "Transfer failed to convert goal to an object-logic formula"
-    val pre_simps = @{thms transfer_forall_eq transfer_implies_eq}
-    val thm1 = Drule.forall_intr_vars thm
-    val instT = rev (Term.add_tvars (Thm.full_prop_of thm1) [])
-                |> map (fn v as ((a, _), S) => (v, TFree (a, S)))
-    val thm2 = thm1
-      |> Thm.certify_instantiate (instT, [])
-      |> Raw_Simplifier.rewrite_rule ctxt pre_simps
-    val ctxt' = Variable.declare_names (Thm.full_prop_of thm2) ctxt
-    val t = HOLogic.dest_Trueprop (Thm.concl_of thm2)
-    val rule = transfer_rule_of_lhs ctxt' t
-    val tac =
-      resolve_tac [thm2 RS start_rule', thm2 RS start_rule] 1 THEN
-      (rtac rule
-        THEN_ALL_NEW
-          (SOLVED' (REPEAT_ALL_NEW (resolve_tac rules)
-            THEN_ALL_NEW (DETERM o eq_rules_tac eq_rules)))) 1
-        handle TERM (_, ts) => raise TERM (err_msg, ts)
-    val thm3 = Goal.prove_internal ctxt' [] @{cpat "Trueprop ?P"} (K tac)
-    val tnames = map (fst o dest_TFree o snd) instT
-  in
-    thm3
-      |> Raw_Simplifier.rewrite_rule ctxt' post_simps
-      |> Simplifier.norm_hhf ctxt'
-      |> Drule.generalize (tnames, [])
-      |> Drule.zero_var_indexes
-  end
-(*
-    handle THM _ => thm
-*)
-
-fun untransferred ctxt extra_rules thm =
-  let
-    val start_rule = @{thm untransfer_start}
-    val rules = extra_rules @ get_transfer_raw ctxt
-    val eq_rules = get_relator_eq_raw ctxt
-    val err_msg = "Transfer failed to convert goal to an object-logic formula"
-    val pre_simps = @{thms transfer_forall_eq transfer_implies_eq}
-    val thm1 = Drule.forall_intr_vars thm
-    val instT = rev (Term.add_tvars (Thm.full_prop_of thm1) [])
-                |> map (fn v as ((a, _), S) => (v, TFree (a, S)))
-    val thm2 = thm1
-      |> Thm.certify_instantiate (instT, [])
-      |> Raw_Simplifier.rewrite_rule ctxt pre_simps
-    val ctxt' = Variable.declare_names (Thm.full_prop_of thm2) ctxt
-    val t = HOLogic.dest_Trueprop (Thm.concl_of thm2)
-    val rule = transfer_rule_of_term ctxt' true t
-    val tac =
-      rtac (thm2 RS start_rule) 1 THEN
-      (rtac rule
-        THEN_ALL_NEW
-          (SOLVED' (REPEAT_ALL_NEW (resolve_tac rules)
-            THEN_ALL_NEW (DETERM o eq_rules_tac eq_rules)))) 1
-        handle TERM (_, ts) => raise TERM (err_msg, ts)
-    val thm3 = Goal.prove_internal ctxt' [] @{cpat "Trueprop ?P"} (K tac)
-    val tnames = map (fst o dest_TFree o snd) instT
-  in
-    thm3
-      |> Raw_Simplifier.rewrite_rule ctxt' post_simps
-      |> Simplifier.norm_hhf ctxt'
-      |> Drule.generalize (tnames, [])
-      |> Drule.zero_var_indexes
-  end
-
-(** Methods and attributes **)
-
-val free = Args.context -- Args.term >> (fn (_, Free v) => v | (ctxt, t) =>
-  error ("Bad free variable: " ^ Syntax.string_of_term ctxt t))
-
-val fixing = Scan.optional (Scan.lift (Args.$$$ "fixing" -- Args.colon)
-  |-- Scan.repeat free) []
-
-fun transfer_method equiv : (Proof.context -> Proof.method) context_parser =
-  fixing >> (fn vs => fn ctxt =>
-    SIMPLE_METHOD' (gen_frees_tac vs ctxt THEN' transfer_tac equiv ctxt))
-
-val transfer_prover_method : (Proof.context -> Proof.method) context_parser =
-  Scan.succeed (fn ctxt => SIMPLE_METHOD' (transfer_prover_tac ctxt))
-
-(* Attribute for transfer rules *)
-
-fun prep_rule ctxt = 
-  abstract_domains_transfer ctxt o abstract_equalities_transfer ctxt o Conv.fconv_rule prep_conv
-
-val transfer_add =
-  Thm.declaration_attribute (fn thm => fn ctxt => 
-    (add_transfer_thm o prep_rule (Context.proof_of ctxt)) thm ctxt)
-
-val transfer_del =
-  Thm.declaration_attribute (fn thm => fn ctxt => 
-    (del_transfer_thm o prep_rule (Context.proof_of ctxt)) thm ctxt)
-
-val transfer_attribute =
-  Attrib.add_del transfer_add transfer_del
-
-(* Attributes for transfer domain rules *)
-
-val transfer_domain_add = Thm.declaration_attribute add_transfer_domain_thm
-
-val transfer_domain_del = Thm.declaration_attribute del_transfer_domain_thm
-
-val transfer_domain_attribute =
-  Attrib.add_del transfer_domain_add transfer_domain_del
-
-(* Attributes for transferred rules *)
-
-fun transferred_attribute thms = Thm.rule_attribute
-  (fn context => transferred (Context.proof_of context) thms)
-
-fun untransferred_attribute thms = Thm.rule_attribute
-  (fn context => untransferred (Context.proof_of context) thms)
-
-val transferred_attribute_parser =
-  Attrib.thms >> transferred_attribute
-
-val untransferred_attribute_parser =
-  Attrib.thms >> untransferred_attribute
-
-(* Theory setup *)
-
-val relator_eq_setup =
-  let
-    val name = @{binding relator_eq}
-    fun add_thm thm context = context
-      |> Data.map (map_relator_eq (Item_Net.update thm))
-      |> Data.map (map_relator_eq_raw
-          (Item_Net.update (abstract_equalities_relator_eq (Context.proof_of context) thm)))
-    fun del_thm thm context = context
-      |> Data.map (map_relator_eq (Item_Net.remove thm))
-      |> Data.map (map_relator_eq_raw
-          (Item_Net.remove (abstract_equalities_relator_eq (Context.proof_of context) thm)))
-    val add = Thm.declaration_attribute add_thm
-    val del = Thm.declaration_attribute del_thm
-    val text = "declaration of relator equality rule (used by transfer method)"
-    val content = Item_Net.content o #relator_eq o Data.get
-  in
-    Attrib.setup name (Attrib.add_del add del) text
-    #> Global_Theory.add_thms_dynamic (name, content)
-  end
-
-val relator_domain_setup =
-  let
-    val name = @{binding relator_domain}
-    fun add_thm thm context = 
-      let
-        val thm = abstract_domains_relator_domain (Context.proof_of context) thm
-      in
-        context |> Data.map (map_relator_domain (Item_Net.update thm)) |> add_transfer_domain_thm thm
-      end
-    fun del_thm thm context = 
-      let
-        val thm = abstract_domains_relator_domain (Context.proof_of context) thm
-      in
-        context |> Data.map (map_relator_domain (Item_Net.remove thm)) |> del_transfer_domain_thm thm
-      end
-    val add = Thm.declaration_attribute add_thm
-    val del = Thm.declaration_attribute del_thm
-    val text = "declaration of relator domain rule (used by transfer method)"
-    val content = Item_Net.content o #relator_domain o Data.get
-  in
-    Attrib.setup name (Attrib.add_del add del) text
-    #> Global_Theory.add_thms_dynamic (name, content)
-  end
-
-val setup =
-  relator_eq_setup
-  #> relator_domain_setup
-  #> Attrib.setup @{binding transfer_rule} transfer_attribute
-     "transfer rule for transfer method"
-  #> Global_Theory.add_thms_dynamic
-     (@{binding transfer_raw}, Item_Net.content o #transfer_raw o Data.get)
-  #> Attrib.setup @{binding transfer_domain_rule} transfer_domain_attribute
-     "transfer domain rule for transfer method"
-  #> Attrib.setup @{binding transferred} transferred_attribute_parser
-     "raw theorem transferred to abstract theorem using transfer rules"
-  #> Attrib.setup @{binding untransferred} untransferred_attribute_parser
-     "abstract theorem transferred to raw theorem using transfer rules"
-  #> Global_Theory.add_thms_dynamic
-     (@{binding relator_eq_raw}, Item_Net.content o #relator_eq_raw o Data.get)
-  #> Method.setup @{binding transfer} (transfer_method true)
-     "generic theorem transfer method"
-  #> Method.setup @{binding transfer'} (transfer_method false)
-     "generic theorem transfer method"
-  #> Method.setup @{binding transfer_prover} transfer_prover_method
-     "for proving transfer rules"
-
-end
--- a/src/HOL/Topological_Spaces.thy	Thu Apr 10 17:48:17 2014 +0200
+++ b/src/HOL/Topological_Spaces.thy	Thu Apr 10 17:48:18 2014 +0200
@@ -2508,7 +2508,7 @@
 lemma bi_total_rel_filter [transfer_rule]:
   assumes "bi_total A" "bi_unique A"
   shows "bi_total (rel_filter A)"
-unfolding bi_total_conv_left_right using assms
+unfolding bi_total_alt_def using assms
 by(simp add: left_total_rel_filter right_total_rel_filter)
 
 lemma left_unique_rel_filter [transfer_rule]:
@@ -2535,7 +2535,7 @@
 
 lemma bi_unique_rel_filter [transfer_rule]:
   "bi_unique A \<Longrightarrow> bi_unique (rel_filter A)"
-by(simp add: bi_unique_conv_left_right left_unique_rel_filter right_unique_rel_filter)
+by(simp add: bi_unique_alt_def left_unique_rel_filter right_unique_rel_filter)
 
 lemma top_filter_parametric [transfer_rule]:
   "bi_total A \<Longrightarrow> (rel_filter A) top top"
--- a/src/HOL/Transfer.thy	Thu Apr 10 17:48:17 2014 +0200
+++ b/src/HOL/Transfer.thy	Thu Apr 10 17:48:18 2014 +0200
@@ -6,9 +6,13 @@
 header {* Generic theorem transfer using relations *}
 
 theory Transfer
-imports Hilbert_Choice Basic_BNFs Metis
+imports Hilbert_Choice Basic_BNFs BNF_FP_Base Metis Option
 begin
 
+(* We include Option here altough it's not needed here. 
+   By doing this, we avoid a diamond problem for BNF and 
+   FP sugar interpretation defined in this file. *)
+
 subsection {* Relator for function space *}
 
 locale lifting_syntax
@@ -105,33 +109,6 @@
   shows "Rel (A ===> B) (\<lambda>x. f x) (\<lambda>y. g y)"
   using assms unfolding Rel_def rel_fun_def by fast
 
-end
-
-ML_file "Tools/transfer.ML"
-setup Transfer.setup
-
-declare refl [transfer_rule]
-
-declare rel_fun_eq [relator_eq]
-
-hide_const (open) Rel
-
-context
-begin
-interpretation lifting_syntax .
-
-text {* Handling of domains *}
-
-lemma Domainp_iff: "Domainp T x \<longleftrightarrow> (\<exists>y. T x y)"
-  by auto
-
-lemma Domaimp_refl[transfer_domain_rule]:
-  "Domainp T = Domainp T" ..
-
-lemma Domainp_prod_fun_eq[relator_domain]:
-  "Domainp (op= ===> T) = (\<lambda>f. \<forall>x. (Domainp T) (f x))"
-by (auto intro: choice simp: Domainp_iff rel_fun_def fun_eq_iff)
-
 subsection {* Predicates on relations, i.e. ``class constraints'' *}
 
 definition left_total :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool"
@@ -181,7 +158,7 @@
 lemma right_uniqueD: "\<lbrakk> right_unique A; A x y; A x z \<rbrakk> \<Longrightarrow> y = z"
 unfolding right_unique_def by fast
 
-lemma right_total_alt_def:
+lemma right_total_alt_def2:
   "right_total R \<longleftrightarrow> ((R ===> op \<longrightarrow>) ===> op \<longrightarrow>) All All"
   unfolding right_total_def rel_fun_def
   apply (rule iffI, fast)
@@ -191,11 +168,11 @@
   apply fast
   done
 
-lemma right_unique_alt_def:
+lemma right_unique_alt_def2:
   "right_unique R \<longleftrightarrow> (R ===> R ===> op \<longrightarrow>) (op =) (op =)"
   unfolding right_unique_def rel_fun_def by auto
 
-lemma bi_total_alt_def:
+lemma bi_total_alt_def2:
   "bi_total R \<longleftrightarrow> ((R ===> op =) ===> op =) All All"
   unfolding bi_total_def rel_fun_def
   apply (rule iffI, fast)
@@ -208,7 +185,7 @@
   apply fast
   done
 
-lemma bi_unique_alt_def:
+lemma bi_unique_alt_def2:
   "bi_unique R \<longleftrightarrow> (R ===> R ===> op =) (op =) (op =)"
   unfolding bi_unique_def rel_fun_def by auto
 
@@ -228,24 +205,72 @@
 lemma bi_total_conversep [simp]: "bi_total R\<inverse>\<inverse> = bi_total R"
 by(auto simp add: bi_total_def)
 
-lemma bi_total_iff: "bi_total A = (right_total A \<and> left_total A)"
+lemma right_unique_alt_def: "right_unique R = (conversep R OO R \<le> op=)" unfolding right_unique_def by blast
+lemma left_unique_alt_def: "left_unique R = (R OO (conversep R) \<le> op=)" unfolding left_unique_def by blast
+
+lemma right_total_alt_def: "right_total R = (conversep R OO R \<ge> op=)" unfolding right_total_def by blast
+lemma left_total_alt_def: "left_total R = (R OO conversep R \<ge> op=)" unfolding left_total_def by blast
+
+lemma bi_total_alt_def: "bi_total A = (left_total A \<and> right_total A)"
 unfolding left_total_def right_total_def bi_total_def by blast
 
-lemma bi_total_conv_left_right: "bi_total R \<longleftrightarrow> left_total R \<and> right_total R"
-by(simp add: left_total_def right_total_def bi_total_def)
-
-lemma bi_unique_iff: "bi_unique A  \<longleftrightarrow> right_unique A \<and> left_unique A"
+lemma bi_unique_alt_def: "bi_unique A = (left_unique A \<and> right_unique A)"
 unfolding left_unique_def right_unique_def bi_unique_def by blast
 
-lemma bi_unique_conv_left_right: "bi_unique R \<longleftrightarrow> left_unique R \<and> right_unique R"
-by(auto simp add: left_unique_def right_unique_def bi_unique_def)
-
 lemma bi_totalI: "left_total R \<Longrightarrow> right_total R \<Longrightarrow> bi_total R"
-unfolding bi_total_iff ..
+unfolding bi_total_alt_def ..
 
 lemma bi_uniqueI: "left_unique R \<Longrightarrow> right_unique R \<Longrightarrow> bi_unique R"
-unfolding bi_unique_iff ..
+unfolding bi_unique_alt_def ..
+
+end
+
+subsection {* Equality restricted by a predicate *}
+
+definition eq_onp :: "('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" 
+  where "eq_onp R = (\<lambda>x y. R x \<and> x = y)"
+
+lemma eq_onp_Grp: "eq_onp P = BNF_Util.Grp (Collect P) id" 
+unfolding eq_onp_def Grp_def by auto 
+
+lemma eq_onp_to_eq:
+  assumes "eq_onp P x y"
+  shows "x = y"
+using assms by (simp add: eq_onp_def)
+
+lemma eq_onp_same_args:
+  shows "eq_onp P x x = P x"
+using assms by (auto simp add: eq_onp_def)
+
+lemma Ball_Collect: "Ball A P = (A \<subseteq> (Collect P))"
+by (metis mem_Collect_eq subset_eq)
 
+ML_file "Tools/Transfer/transfer.ML"
+setup Transfer.setup
+declare refl [transfer_rule]
+
+ML_file "Tools/Transfer/transfer_bnf.ML" 
+
+declare pred_fun_def [simp]
+declare rel_fun_eq [relator_eq]
+
+hide_const (open) Rel
+
+context
+begin
+interpretation lifting_syntax .
+
+text {* Handling of domains *}
+
+lemma Domainp_iff: "Domainp T x \<longleftrightarrow> (\<exists>y. T x y)"
+  by auto
+
+lemma Domaimp_refl[transfer_domain_rule]:
+  "Domainp T = Domainp T" ..
+
+lemma Domainp_prod_fun_eq[relator_domain]:
+  "Domainp (op= ===> T) = (\<lambda>f. \<forall>x. (Domainp T) (f x))"
+by (auto intro: choice simp: Domainp_iff rel_fun_def fun_eq_iff)
 
 text {* Properties are preserved by relation composition. *}
 
@@ -333,12 +358,12 @@
 
 lemma bi_total_fun[transfer_rule]:
   "\<lbrakk>bi_unique A; bi_total B\<rbrakk> \<Longrightarrow> bi_total (A ===> B)"
-  unfolding bi_unique_iff bi_total_iff
+  unfolding bi_unique_alt_def bi_total_alt_def
   by (blast intro: right_total_fun left_total_fun)
 
 lemma bi_unique_fun[transfer_rule]:
   "\<lbrakk>bi_total A; bi_unique B\<rbrakk> \<Longrightarrow> bi_unique (A ===> B)"
-  unfolding bi_unique_iff bi_total_iff
+  unfolding bi_unique_alt_def bi_total_alt_def
   by (blast intro: right_unique_fun left_unique_fun)
 
 subsection {* Transfer rules *}
@@ -376,7 +401,7 @@
 
 lemma eq_imp_transfer [transfer_rule]:
   "right_unique A \<Longrightarrow> (A ===> A ===> op \<longrightarrow>) (op =) (op =)"
-  unfolding right_unique_alt_def .
+  unfolding right_unique_alt_def2 .
 
 text {* Transfer rules using equality. *}
 
@@ -490,6 +515,18 @@
 using assms unfolding right_unique_def[abs_def] right_total_def bi_unique_def rel_fun_def
 by metis
 
+lemma rel_fun_eq_eq_onp: "(op= ===> eq_onp P) = eq_onp (\<lambda>f. \<forall>x. P(f x))"
+unfolding eq_onp_def rel_fun_def by auto
+
+lemma rel_fun_eq_onp_rel:
+  shows "((eq_onp R) ===> S) = (\<lambda>f g. \<forall>x. R x \<longrightarrow> S (f x) (g x))"
+by (auto simp add: eq_onp_def rel_fun_def)
+
+lemma eq_onp_transfer [transfer_rule]:
+  assumes [transfer_rule]: "bi_unique A"
+  shows "((A ===> op=) ===> A ===> A ===> op=) eq_onp eq_onp"
+unfolding eq_onp_def[abs_def] by transfer_prover
+
 end
 
 end