simplified ML setup;
authorwenzelm
Sun, 21 Jan 2007 16:43:46 +0100
changeset 22147 f4ed4d940d44
parent 22146 d8cbb198e096
child 22148 3b99944136ef
simplified ML setup;
src/HOL/simpdata.ML
--- a/src/HOL/simpdata.ML	Sun Jan 21 16:43:45 2007 +0100
+++ b/src/HOL/simpdata.ML	Sun Jan 21 16:43:46 2007 +0100
@@ -20,60 +20,47 @@
   val conj = HOLogic.conj
   val imp  = HOLogic.imp
   (*rules*)
-  val iff_reflection = thm "eq_reflection"
-  val iffI = thm "iffI"
-  val iff_trans = thm "trans"
-  val conjI= thm "conjI"
-  val conjE= thm "conjE"
-  val impI = thm "impI"
-  val mp   = thm "mp"
-  val uncurry = thm "uncurry"
-  val exI  = thm "exI"
-  val exE  = thm "exE"
-  val iff_allI = thm "iff_allI"
-  val iff_exI = thm "iff_exI"
-  val all_comm = thm "all_comm"
-  val ex_comm = thm "ex_comm"
+  val iff_reflection = @{thm eq_reflection}
+  val iffI = @{thm iffI}
+  val iff_trans = @{thm trans}
+  val conjI= @{thm conjI}
+  val conjE= @{thm conjE}
+  val impI = @{thm impI}
+  val mp   = @{thm mp}
+  val uncurry = @{thm uncurry}
+  val exI  = @{thm exI}
+  val exE  = @{thm exE}
+  val iff_allI = @{thm iff_allI}
+  val iff_exI = @{thm iff_exI}
+  val all_comm = @{thm all_comm}
+  val ex_comm = @{thm ex_comm}
 end);
 
 structure Simpdata =
 struct
 
-local
-  val eq_reflection = thm "eq_reflection"
-in fun mk_meta_eq r = r RS eq_reflection end;
+fun mk_meta_eq r = r RS @{thm eq_reflection};
 fun safe_mk_meta_eq r = mk_meta_eq r handle Thm.THM _ => r;
 
-local
-  val Eq_FalseI = thm "Eq_FalseI"
-  val Eq_TrueI = thm "Eq_TrueI"
-in fun mk_eq th = case concl_of th
+fun mk_eq th = case concl_of th
   (*expects Trueprop if not == *)
   of Const ("==",_) $ _ $ _ => th
    | _ $ (Const ("op =", _) $ _ $ _) => mk_meta_eq th
-   | _ $ (Const ("Not", _) $ _) => th RS Eq_FalseI
-   | _ => th RS Eq_TrueI
-end;
+   | _ $ (Const ("Not", _) $ _) => th RS @{thm Eq_FalseI}
+   | _ => th RS @{thm Eq_TrueI}
 
-local
-  val meta_eq_to_obj_eq = thm "meta_eq_to_obj_eq"
-  val Eq_TrueI = thm "Eq_TrueI"
-in fun mk_eq_True r =
-  SOME (r RS meta_eq_to_obj_eq RS Eq_TrueI) handle Thm.THM _ => NONE;
-end;
+fun mk_eq_True r =
+  SOME (r RS @{thm meta_eq_to_obj_eq} RS @{thm Eq_TrueI}) handle Thm.THM _ => NONE;
 
 (* Produce theorems of the form
   (P1 =simp=> ... =simp=> Pn => x == y) ==> (P1 =simp=> ... =simp=> Pn => x = y)
 *)
-local
-  val meta_eq_to_obj_eq = thm "meta_eq_to_obj_eq"
-  val simp_implies_def = thm "simp_implies_def"
-in fun lift_meta_eq_to_obj_eq i st =
+fun lift_meta_eq_to_obj_eq i st =
   let
     fun count_imp (Const ("HOL.simp_implies", _) $ P $ Q) = 1 + count_imp Q
       | count_imp _ = 0;
     val j = count_imp (Logic.strip_assums_concl (List.nth (prems_of st, i - 1)))
-  in if j = 0 then meta_eq_to_obj_eq
+  in if j = 0 then @{thm meta_eq_to_obj_eq}
     else
       let
         val Ps = map (fn k => Free ("P" ^ string_of_int k, propT)) (1 upto j);
@@ -86,11 +73,11 @@
         [mk_simp_implies (Logic.mk_equals (x, y))]
         (mk_simp_implies (HOLogic.mk_Trueprop (HOLogic.mk_eq (x, y))))
         (fn prems => EVERY
-         [rewrite_goals_tac [simp_implies_def],
-          REPEAT (ares_tac (meta_eq_to_obj_eq :: map (rewrite_rule [simp_implies_def]) prems) 1)])
+         [rewrite_goals_tac @{thms simp_implies_def},
+          REPEAT (ares_tac (@{thm meta_eq_to_obj_eq} ::
+            map (rewrite_rule @{thms simp_implies_def}) prems) 1)])
       end
   end;
-end;
 
 (*Congruence rules for = (instead of ==)*)
 fun mk_meta_cong rl = zero_var_indexes
@@ -123,42 +110,33 @@
 fun mksimps pairs =
   map_filter (try mk_eq) o mk_atomize pairs o gen_all;
 
-local
-  val simp_impliesI = thm "simp_impliesI"
-  val TrueI = thm "TrueI"
-  val FalseE = thm "FalseE"
-  val refl = thm "refl"
-in fun unsafe_solver_tac prems =
-  (fn i => REPEAT_DETERM (match_tac [simp_impliesI] i)) THEN'
-  FIRST'[resolve_tac(reflexive_thm :: TrueI :: refl :: prems), atac, etac FalseE];
-end;
+fun unsafe_solver_tac prems =
+  (fn i => REPEAT_DETERM (match_tac @{thms simp_impliesI} i)) THEN'
+  FIRST' [resolve_tac (reflexive_thm :: @{thm TrueI} :: @{thm refl} :: prems), atac,
+    etac @{thm FalseE}];
+
 val unsafe_solver = mk_solver "HOL unsafe" unsafe_solver_tac;
 
 (*No premature instantiation of variables during simplification*)
-local
-  val simp_impliesI = thm "simp_impliesI"
-  val TrueI = thm "TrueI"
-  val FalseE = thm "FalseE"
-  val refl = thm "refl"
-in fun safe_solver_tac prems =
-  (fn i => REPEAT_DETERM (match_tac [simp_impliesI] i)) THEN'
-  FIRST'[match_tac(reflexive_thm :: TrueI :: refl :: prems),
-         eq_assume_tac, ematch_tac [FalseE]];
-end;
+fun safe_solver_tac prems =
+  (fn i => REPEAT_DETERM (match_tac @{thms simp_impliesI} i)) THEN'
+  FIRST' [match_tac (reflexive_thm :: @{thm TrueI} :: @{thm refl} :: prems),
+         eq_assume_tac, ematch_tac @{thms FalseE}];
+
 val safe_solver = mk_solver "HOL safe" safe_solver_tac;
 
 structure SplitterData =
 struct
   structure Simplifier = Simplifier
   val mk_eq           = mk_eq
-  val meta_eq_to_iff  = thm "meta_eq_to_obj_eq"
-  val iffD            = thm "iffD2"
-  val disjE           = thm "disjE"
-  val conjE           = thm "conjE"
-  val exE             = thm "exE"
-  val contrapos       = thm "contrapos_nn"
-  val contrapos2      = thm "contrapos_pp"
-  val notnotD         = thm "notnotD"
+  val meta_eq_to_iff  = @{thm meta_eq_to_obj_eq}
+  val iffD            = @{thm iffD2}
+  val disjE           = @{thm disjE}
+  val conjE           = @{thm conjE}
+  val exE             = @{thm exE}
+  val contrapos       = @{thm contrapos_nn}
+  val contrapos2      = @{thm contrapos_pp}
+  val notnotD         = @{thm notnotD}
 end;
 
 structure Splitter = SplitterFun(SplitterData);
@@ -177,19 +155,19 @@
 structure Clasimp = ClasimpFun
  (structure Simplifier = Simplifier and Splitter = Splitter
   and Classical  = Classical and Blast = Blast
-  val iffD1 = thm "iffD1" val iffD2 = thm "iffD2" val notE = thm "notE");
+  val iffD1 = @{thm iffD1} val iffD2 = @{thm iffD2} val notE = @{thm notE});
 open Clasimp;
 
 val _ = ML_Context.value_antiq "clasimpset"
   (Scan.succeed ("clasimpset", "Clasimp.local_clasimpset_of (ML_Context.the_local_context ())"));
 
 val mksimps_pairs =
-  [("op -->", [thm "mp"]), ("op &", [thm "conjunct1", thm "conjunct2"]),
-   ("All", [thm "spec"]), ("True", []), ("False", []),
-   ("HOL.If", [thm "if_bool_eq_conj" RS thm "iffD1"])];
+  [("op -->", [@{thm mp}]), ("op &", [@{thm conjunct1}, @{thm conjunct2}]),
+   ("All", [@{thm spec}]), ("True", []), ("False", []),
+   ("HOL.If", [@{thm if_bool_eq_conj} RS @{thm iffD1}])];
 
 val HOL_basic_ss =
-  Simplifier.theory_context (the_context ()) empty_ss
+  Simplifier.theory_context @{theory} empty_ss
     setsubgoaler asm_simp_tac
     setSSolver safe_solver
     setSolver unsafe_solver
@@ -212,8 +190,7 @@
 val use_neq_simproc = ref true;
 
 local
-  val thy = the_context ();
-  val neq_to_EQ_False = thm "not_sym" RS thm "Eq_FalseI";
+  val neq_to_EQ_False = @{thm not_sym} RS @{thm Eq_FalseI};
   fun neq_prover sg ss (eq $ lhs $ rhs) =
     let
       fun test thm = (case #prop (rep_thm thm) of
@@ -228,7 +205,7 @@
     end
 in
 
-val neq_simproc = Simplifier.simproc thy "neq_simproc" ["x = y"] neq_prover;
+val neq_simproc = Simplifier.simproc @{theory} "neq_simproc" ["x = y"] neq_prover;
 
 end;
 
@@ -238,22 +215,18 @@
 val use_let_simproc = ref true;
 
 local
-  val thy = the_context ();
-  val Let_folded = thm "Let_folded";
-  val Let_unfold = thm "Let_unfold";
-  val Let_def = thm "Let_def";
   val (f_Let_unfold, x_Let_unfold) =
-      let val [(_$(f$x)$_)] = prems_of Let_unfold
-      in (cterm_of thy f, cterm_of thy x) end
+      let val [(_$(f$x)$_)] = prems_of @{thm Let_unfold}
+      in (cterm_of @{theory} f, cterm_of @{theory} x) end
   val (f_Let_folded, x_Let_folded) =
-      let val [(_$(f$x)$_)] = prems_of Let_folded
-      in (cterm_of thy f, cterm_of thy x) end;
+      let val [(_$(f$x)$_)] = prems_of @{thm Let_folded}
+      in (cterm_of @{theory} f, cterm_of @{theory} x) end;
   val g_Let_folded =
-      let val [(_$_$(g$_))] = prems_of Let_folded in cterm_of thy g end;
+      let val [(_$_$(g$_))] = prems_of @{thm Let_folded} in cterm_of @{theory} g end;
 in
 
 val let_simproc =
-  Simplifier.simproc thy "let_simp" ["Let x f"]
+  Simplifier.simproc @{theory} "let_simp" ["Let x f"]
    (fn sg => fn ss => fn t =>
      let val ctxt = Simplifier.the_context ss;
          val ([t'], ctxt') = Variable.import_terms false [t] ctxt;
@@ -261,7 +234,7 @@
       (case t' of (Const ("Let",_)$x$f) => (* x and f are already in normal form *)
          if not (!use_let_simproc) then NONE
          else if is_Free x orelse is_Bound x orelse is_Const x
-         then SOME Let_def
+         then SOME @{thm Let_def}
          else
           let
              val n = case f of (Abs (x,_,_)) => x | _ => "x";
@@ -274,7 +247,8 @@
            in (if (g aconv g')
                then
                   let
-                    val rl = cterm_instantiate [(f_Let_unfold,cf),(x_Let_unfold,cx)] Let_unfold;
+                    val rl =
+                      cterm_instantiate [(f_Let_unfold,cf),(x_Let_unfold,cx)] @{thm Let_unfold};
                   in SOME (rl OF [fx_g]) end
                else if Term.betapply (f,x) aconv g then NONE (*avoid identity conversion*)
                else let
@@ -284,7 +258,7 @@
                      val rl = cterm_instantiate
                                [(f_Let_folded,cterm_of sg f),(x_Let_folded,cx),
                                 (g_Let_folded,cterm_of sg abs_g')]
-                               Let_folded;
+                               @{thm Let_folded};
                    in SOME (rl OF [transitive fx_g g_g'x])
                    end)
            end
@@ -314,40 +288,34 @@
 *)
 
 local
-  val conjE = thm "conjE"
-  val exE = thm "exE"
-  val disjE = thm "disjE"
-  val notE = thm "notE"
-  val rev_mp = thm "rev_mp"
-  val ccontr = thm "ccontr"
   val nnf_simpset =
     empty_ss setmkeqTrue mk_eq_True
     setmksimps (mksimps mksimps_pairs)
-    addsimps [thm "imp_conv_disj", thm "iff_conv_conj_imp", thm "de_Morgan_disj", thm "de_Morgan_conj",
-      thm "not_all", thm "not_ex", thm "not_not"];
+    addsimps [@{thm imp_conv_disj}, @{thm iff_conv_conj_imp}, @{thm de_Morgan_disj},
+      @{thm de_Morgan_conj}, @{thm not_all}, @{thm not_ex}, @{thm not_not}];
   fun prem_nnf_tac i st =
     full_simp_tac (Simplifier.theory_context (Thm.theory_of_thm st) nnf_simpset) i st;
 in
 fun refute_tac test prep_tac ref_tac =
   let val refute_prems_tac =
         REPEAT_DETERM
-              (eresolve_tac [conjE, exE] 1 ORELSE
+              (eresolve_tac [@{thm conjE}, @{thm exE}] 1 ORELSE
                filter_prems_tac test 1 ORELSE
-               etac disjE 1) THEN
-        ((etac notE 1 THEN eq_assume_tac 1) ORELSE
+               etac @{thm disjE} 1) THEN
+        ((etac @{thm notE} 1 THEN eq_assume_tac 1) ORELSE
          ref_tac 1);
   in EVERY'[TRY o filter_prems_tac test,
-            REPEAT_DETERM o etac rev_mp, prep_tac, rtac ccontr, prem_nnf_tac,
+            REPEAT_DETERM o etac @{thm rev_mp}, prep_tac, rtac @{thm ccontr}, prem_nnf_tac,
             SELECT_GOAL (DEPTH_SOLVE refute_prems_tac)]
   end;
 end;
 
 val defALL_regroup =
-  Simplifier.simproc (the_context ())
+  Simplifier.simproc @{theory}
     "defined ALL" ["ALL x. P x"] Quantifier1.rearrange_all;
 
 val defEX_regroup =
-  Simplifier.simproc (the_context ())
+  Simplifier.simproc @{theory}
     "defined EX" ["EX x. P x"] Quantifier1.rearrange_ex;