--- a/NEWS Thu Aug 29 05:41:58 2013 +0200
+++ b/NEWS Thu Aug 29 05:42:37 2013 +0200
@@ -90,6 +90,11 @@
according to Isabelle/Scala plugin option "jedit_font_reset_size"
(cf. keyboard shortcut C+0).
+* More reactive and less intrusive completion. Plain words need to be
+at least 3 characters long to be completed (was 2 before). Symbols
+are only completed in backslash forms, e.g. \forall or \<forall> that
+both produce the Isabelle symbol \<forall> in its Unicode rendering.
+
*** Pure ***
--- a/etc/symbols Thu Aug 29 05:41:58 2013 +0200
+++ b/etc/symbols Thu Aug 29 05:42:37 2013 +0200
@@ -240,10 +240,10 @@
\<sqsupset> code: 0x002290 group: relation
\<sqsubseteq> code: 0x002291 group: relation abbrev: [=
\<sqsupseteq> code: 0x002292 group: relation abbrev: =]
-\<inter> code: 0x002229 group: operator abbrev: Int
-\<Inter> code: 0x0022c2 group: operator abbrev: Inter
-\<union> code: 0x00222a group: operator abbrev: Un
-\<Union> code: 0x0022c3 group: operator abbrev: Union
+\<inter> code: 0x002229 group: operator
+\<Inter> code: 0x0022c2 group: operator
+\<union> code: 0x00222a group: operator
+\<Union> code: 0x0022c3 group: operator
\<squnion> code: 0x002294 group: operator
\<Squnion> code: 0x002a06 group: operator
\<sqinter> code: 0x002293 group: operator
--- a/src/HOL/Hoare_Parallel/Gar_Coll.thy Thu Aug 29 05:41:58 2013 +0200
+++ b/src/HOL/Hoare_Parallel/Gar_Coll.thy Thu Aug 29 05:42:37 2013 +0200
@@ -40,15 +40,15 @@
edge but has not yet colored the new target. *}
definition Redirect_Edge :: "gar_coll_state ann_com" where
- "Redirect_Edge \<equiv> .{\<acute>Mut_init \<and> \<acute>z}. \<langle>\<acute>E:=\<acute>E[R:=(fst(\<acute>E!R), T)],, \<acute>z:= (\<not>\<acute>z)\<rangle>"
+ "Redirect_Edge \<equiv> \<lbrace>\<acute>Mut_init \<and> \<acute>z\<rbrace> \<langle>\<acute>E:=\<acute>E[R:=(fst(\<acute>E!R), T)],, \<acute>z:= (\<not>\<acute>z)\<rangle>"
definition Color_Target :: "gar_coll_state ann_com" where
- "Color_Target \<equiv> .{\<acute>Mut_init \<and> \<not>\<acute>z}. \<langle>\<acute>M:=\<acute>M[T:=Black],, \<acute>z:= (\<not>\<acute>z)\<rangle>"
+ "Color_Target \<equiv> \<lbrace>\<acute>Mut_init \<and> \<not>\<acute>z\<rbrace> \<langle>\<acute>M:=\<acute>M[T:=Black],, \<acute>z:= (\<not>\<acute>z)\<rangle>"
definition Mutator :: "gar_coll_state ann_com" where
"Mutator \<equiv>
- .{\<acute>Mut_init \<and> \<acute>z}.
- WHILE True INV .{\<acute>Mut_init \<and> \<acute>z}.
+ \<lbrace>\<acute>Mut_init \<and> \<acute>z\<rbrace>
+ WHILE True INV \<lbrace>\<acute>Mut_init \<and> \<acute>z\<rbrace>
DO Redirect_Edge ;; Color_Target OD"
subsubsection {* Correctness of the mutator *}
@@ -64,14 +64,14 @@
done
lemma Color_Target:
- "\<turnstile> Color_Target .{\<acute>Mut_init \<and> \<acute>z}."
+ "\<turnstile> Color_Target \<lbrace>\<acute>Mut_init \<and> \<acute>z\<rbrace>"
apply (unfold mutator_defs)
apply annhoare
apply(simp_all)
done
lemma Mutator:
- "\<turnstile> Mutator .{False}."
+ "\<turnstile> Mutator \<lbrace>False\<rbrace>"
apply(unfold Mutator_def)
apply annhoare
apply(simp_all add:Redirect_Edge Color_Target)
@@ -101,21 +101,21 @@
definition Blacken_Roots :: " gar_coll_state ann_com" where
"Blacken_Roots \<equiv>
- .{\<acute>Proper}.
+ \<lbrace>\<acute>Proper\<rbrace>
\<acute>ind:=0;;
- .{\<acute>Proper \<and> \<acute>ind=0}.
+ \<lbrace>\<acute>Proper \<and> \<acute>ind=0\<rbrace>
WHILE \<acute>ind<length \<acute>M
- INV .{\<acute>Proper \<and> (\<forall>i<\<acute>ind. i \<in> Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind\<le>length \<acute>M}.
- DO .{\<acute>Proper \<and> (\<forall>i<\<acute>ind. i \<in> Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M}.
+ INV \<lbrace>\<acute>Proper \<and> (\<forall>i<\<acute>ind. i \<in> Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind\<le>length \<acute>M\<rbrace>
+ DO \<lbrace>\<acute>Proper \<and> (\<forall>i<\<acute>ind. i \<in> Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M\<rbrace>
IF \<acute>ind\<in>Roots THEN
- .{\<acute>Proper \<and> (\<forall>i<\<acute>ind. i \<in> Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M \<and> \<acute>ind\<in>Roots}.
+ \<lbrace>\<acute>Proper \<and> (\<forall>i<\<acute>ind. i \<in> Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M \<and> \<acute>ind\<in>Roots\<rbrace>
\<acute>M:=\<acute>M[\<acute>ind:=Black] FI;;
- .{\<acute>Proper \<and> (\<forall>i<\<acute>ind+1. i \<in> Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M}.
+ \<lbrace>\<acute>Proper \<and> (\<forall>i<\<acute>ind+1. i \<in> Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M\<rbrace>
\<acute>ind:=\<acute>ind+1
OD"
lemma Blacken_Roots:
- "\<turnstile> Blacken_Roots .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M}."
+ "\<turnstile> Blacken_Roots \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M\<rbrace>"
apply (unfold Blacken_Roots_def)
apply annhoare
apply(simp_all add:collector_defs Graph_defs)
@@ -135,28 +135,28 @@
definition Propagate_Black_aux :: "gar_coll_state ann_com" where
"Propagate_Black_aux \<equiv>
- .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M}.
+ \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M\<rbrace>
\<acute>ind:=0;;
- .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M \<and> \<acute>ind=0}.
+ \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M \<and> \<acute>ind=0\<rbrace>
WHILE \<acute>ind<length \<acute>E
- INV .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
- \<and> \<acute>PBInv \<acute>ind \<and> \<acute>ind\<le>length \<acute>E}.
- DO .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
- \<and> \<acute>PBInv \<acute>ind \<and> \<acute>ind<length \<acute>E}.
+ INV \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
+ \<and> \<acute>PBInv \<acute>ind \<and> \<acute>ind\<le>length \<acute>E\<rbrace>
+ DO \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
+ \<and> \<acute>PBInv \<acute>ind \<and> \<acute>ind<length \<acute>E\<rbrace>
IF \<acute>M!(fst (\<acute>E!\<acute>ind)) = Black THEN
- .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
- \<and> \<acute>PBInv \<acute>ind \<and> \<acute>ind<length \<acute>E \<and> \<acute>M!fst(\<acute>E!\<acute>ind)=Black}.
+ \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
+ \<and> \<acute>PBInv \<acute>ind \<and> \<acute>ind<length \<acute>E \<and> \<acute>M!fst(\<acute>E!\<acute>ind)=Black\<rbrace>
\<acute>M:=\<acute>M[snd(\<acute>E!\<acute>ind):=Black];;
- .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
- \<and> \<acute>PBInv (\<acute>ind + 1) \<and> \<acute>ind<length \<acute>E}.
+ \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
+ \<and> \<acute>PBInv (\<acute>ind + 1) \<and> \<acute>ind<length \<acute>E\<rbrace>
\<acute>ind:=\<acute>ind+1
FI
OD"
lemma Propagate_Black_aux:
"\<turnstile> Propagate_Black_aux
- .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
- \<and> ( \<acute>obc < Blacks \<acute>M \<or> \<acute>Safe)}."
+ \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
+ \<and> ( \<acute>obc < Blacks \<acute>M \<or> \<acute>Safe)\<rbrace>"
apply (unfold Propagate_Black_aux_def PBInv_def collector_defs)
apply annhoare
apply(simp_all add:Graph6 Graph7 Graph8 Graph12)
@@ -215,32 +215,32 @@
definition Propagate_Black :: " gar_coll_state ann_com" where
"Propagate_Black \<equiv>
- .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M}.
+ \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M\<rbrace>
\<acute>ind:=0;;
- .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M \<and> \<acute>ind=0}.
+ \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M \<and> \<acute>ind=0\<rbrace>
WHILE \<acute>ind<length \<acute>E
- INV .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
- \<and> \<acute>PBInv \<acute>ind \<and> \<acute>ind\<le>length \<acute>E}.
- DO .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
- \<and> \<acute>PBInv \<acute>ind \<and> \<acute>ind<length \<acute>E}.
+ INV \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
+ \<and> \<acute>PBInv \<acute>ind \<and> \<acute>ind\<le>length \<acute>E\<rbrace>
+ DO \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
+ \<and> \<acute>PBInv \<acute>ind \<and> \<acute>ind<length \<acute>E\<rbrace>
IF (\<acute>M!(fst (\<acute>E!\<acute>ind)))=Black THEN
- .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
- \<and> \<acute>PBInv \<acute>ind \<and> \<acute>ind<length \<acute>E \<and> (\<acute>M!fst(\<acute>E!\<acute>ind))=Black}.
+ \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
+ \<and> \<acute>PBInv \<acute>ind \<and> \<acute>ind<length \<acute>E \<and> (\<acute>M!fst(\<acute>E!\<acute>ind))=Black\<rbrace>
\<acute>k:=(snd(\<acute>E!\<acute>ind));;
- .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
+ \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
\<and> \<acute>PBInv \<acute>ind \<and> \<acute>ind<length \<acute>E \<and> (\<acute>M!fst(\<acute>E!\<acute>ind))=Black
- \<and> \<acute>Auxk}.
+ \<and> \<acute>Auxk\<rbrace>
\<langle>\<acute>M:=\<acute>M[\<acute>k:=Black],, \<acute>ind:=\<acute>ind+1\<rangle>
- ELSE .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
- \<and> \<acute>PBInv \<acute>ind \<and> \<acute>ind<length \<acute>E}.
+ ELSE \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
+ \<and> \<acute>PBInv \<acute>ind \<and> \<acute>ind<length \<acute>E\<rbrace>
\<langle>IF (\<acute>M!(fst (\<acute>E!\<acute>ind)))\<noteq>Black THEN \<acute>ind:=\<acute>ind+1 FI\<rangle>
FI
OD"
lemma Propagate_Black:
"\<turnstile> Propagate_Black
- .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
- \<and> ( \<acute>obc < Blacks \<acute>M \<or> \<acute>Safe)}."
+ \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
+ \<and> ( \<acute>obc < Blacks \<acute>M \<or> \<acute>Safe)\<rbrace>"
apply (unfold Propagate_Black_def PBInv_def Auxk_def collector_defs)
apply annhoare
apply(simp_all add: Graph6 Graph7 Graph8 Graph12)
@@ -325,42 +325,42 @@
definition Count :: " gar_coll_state ann_com" where
"Count \<equiv>
- .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M
+ \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
- \<and> length \<acute>Ma=length \<acute>M \<and> (\<acute>obc < Blacks \<acute>Ma \<or> \<acute>Safe) \<and> \<acute>bc={}}.
+ \<and> length \<acute>Ma=length \<acute>M \<and> (\<acute>obc < Blacks \<acute>Ma \<or> \<acute>Safe) \<and> \<acute>bc={}\<rbrace>
\<acute>ind:=0;;
- .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M
+ \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
\<and> length \<acute>Ma=length \<acute>M \<and> (\<acute>obc < Blacks \<acute>Ma \<or> \<acute>Safe) \<and> \<acute>bc={}
- \<and> \<acute>ind=0}.
+ \<and> \<acute>ind=0\<rbrace>
WHILE \<acute>ind<length \<acute>M
- INV .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M
+ INV \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
\<and> length \<acute>Ma=length \<acute>M \<and> \<acute>CountInv \<acute>ind
- \<and> ( \<acute>obc < Blacks \<acute>Ma \<or> \<acute>Safe) \<and> \<acute>ind\<le>length \<acute>M}.
- DO .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M
+ \<and> ( \<acute>obc < Blacks \<acute>Ma \<or> \<acute>Safe) \<and> \<acute>ind\<le>length \<acute>M\<rbrace>
+ DO \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
\<and> length \<acute>Ma=length \<acute>M \<and> \<acute>CountInv \<acute>ind
- \<and> ( \<acute>obc < Blacks \<acute>Ma \<or> \<acute>Safe) \<and> \<acute>ind<length \<acute>M}.
+ \<and> ( \<acute>obc < Blacks \<acute>Ma \<or> \<acute>Safe) \<and> \<acute>ind<length \<acute>M\<rbrace>
IF \<acute>M!\<acute>ind=Black
- THEN .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M
+ THEN \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
\<and> length \<acute>Ma=length \<acute>M \<and> \<acute>CountInv \<acute>ind
- \<and> ( \<acute>obc < Blacks \<acute>Ma \<or> \<acute>Safe) \<and> \<acute>ind<length \<acute>M \<and> \<acute>M!\<acute>ind=Black}.
+ \<and> ( \<acute>obc < Blacks \<acute>Ma \<or> \<acute>Safe) \<and> \<acute>ind<length \<acute>M \<and> \<acute>M!\<acute>ind=Black\<rbrace>
\<acute>bc:=insert \<acute>ind \<acute>bc
FI;;
- .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M
+ \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
\<and> length \<acute>Ma=length \<acute>M \<and> \<acute>CountInv (\<acute>ind+1)
- \<and> ( \<acute>obc < Blacks \<acute>Ma \<or> \<acute>Safe) \<and> \<acute>ind<length \<acute>M}.
+ \<and> ( \<acute>obc < Blacks \<acute>Ma \<or> \<acute>Safe) \<and> \<acute>ind<length \<acute>M\<rbrace>
\<acute>ind:=\<acute>ind+1
OD"
lemma Count:
"\<turnstile> Count
- .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M
+ \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc \<and> \<acute>bc\<subseteq>Blacks \<acute>M \<and> length \<acute>Ma=length \<acute>M
- \<and> (\<acute>obc < Blacks \<acute>Ma \<or> \<acute>Safe)}."
+ \<and> (\<acute>obc < Blacks \<acute>Ma \<or> \<acute>Safe)\<rbrace>"
apply(unfold Count_def)
apply annhoare
apply(simp_all add:CountInv_def Graph6 Graph7 Graph8 Graph12 Blacks_def collector_defs)
@@ -392,24 +392,24 @@
definition Append :: "gar_coll_state ann_com" where
"Append \<equiv>
- .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>Safe}.
+ \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>Safe\<rbrace>
\<acute>ind:=0;;
- .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>Safe \<and> \<acute>ind=0}.
+ \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>Safe \<and> \<acute>ind=0\<rbrace>
WHILE \<acute>ind<length \<acute>M
- INV .{\<acute>Proper \<and> \<acute>AppendInv \<acute>ind \<and> \<acute>ind\<le>length \<acute>M}.
- DO .{\<acute>Proper \<and> \<acute>AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M}.
+ INV \<lbrace>\<acute>Proper \<and> \<acute>AppendInv \<acute>ind \<and> \<acute>ind\<le>length \<acute>M\<rbrace>
+ DO \<lbrace>\<acute>Proper \<and> \<acute>AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M\<rbrace>
IF \<acute>M!\<acute>ind=Black THEN
- .{\<acute>Proper \<and> \<acute>AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M \<and> \<acute>M!\<acute>ind=Black}.
+ \<lbrace>\<acute>Proper \<and> \<acute>AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M \<and> \<acute>M!\<acute>ind=Black\<rbrace>
\<acute>M:=\<acute>M[\<acute>ind:=White]
- ELSE .{\<acute>Proper \<and> \<acute>AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M \<and> \<acute>ind\<notin>Reach \<acute>E}.
+ ELSE \<lbrace>\<acute>Proper \<and> \<acute>AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M \<and> \<acute>ind\<notin>Reach \<acute>E\<rbrace>
\<acute>E:=Append_to_free(\<acute>ind,\<acute>E)
FI;;
- .{\<acute>Proper \<and> \<acute>AppendInv (\<acute>ind+1) \<and> \<acute>ind<length \<acute>M}.
+ \<lbrace>\<acute>Proper \<and> \<acute>AppendInv (\<acute>ind+1) \<and> \<acute>ind<length \<acute>M\<rbrace>
\<acute>ind:=\<acute>ind+1
OD"
lemma Append:
- "\<turnstile> Append .{\<acute>Proper}."
+ "\<turnstile> Append \<lbrace>\<acute>Proper\<rbrace>"
apply(unfold Append_def AppendInv_def)
apply annhoare
apply(simp_all add:collector_defs Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12)
@@ -433,30 +433,30 @@
definition Collector :: " gar_coll_state ann_com" where
"Collector \<equiv>
-.{\<acute>Proper}.
- WHILE True INV .{\<acute>Proper}.
+\<lbrace>\<acute>Proper\<rbrace>
+ WHILE True INV \<lbrace>\<acute>Proper\<rbrace>
DO
Blacken_Roots;;
- .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M}.
+ \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M\<rbrace>
\<acute>obc:={};;
- .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={}}.
+ \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={}\<rbrace>
\<acute>bc:=Roots;;
- .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={} \<and> \<acute>bc=Roots}.
+ \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={} \<and> \<acute>bc=Roots\<rbrace>
\<acute>Ma:=M_init;;
- .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={} \<and> \<acute>bc=Roots \<and> \<acute>Ma=M_init}.
+ \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={} \<and> \<acute>bc=Roots \<and> \<acute>Ma=M_init\<rbrace>
WHILE \<acute>obc\<noteq>\<acute>bc
- INV .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M
+ INV \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc \<and> \<acute>bc\<subseteq>Blacks \<acute>M
- \<and> length \<acute>Ma=length \<acute>M \<and> (\<acute>obc < Blacks \<acute>Ma \<or> \<acute>Safe)}.
- DO .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M}.
+ \<and> length \<acute>Ma=length \<acute>M \<and> (\<acute>obc < Blacks \<acute>Ma \<or> \<acute>Safe)\<rbrace>
+ DO \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M\<rbrace>
\<acute>obc:=\<acute>bc;;
Propagate_Black;;
- .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
- \<and> (\<acute>obc < Blacks \<acute>M \<or> \<acute>Safe)}.
+ \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
+ \<and> (\<acute>obc < Blacks \<acute>M \<or> \<acute>Safe)\<rbrace>
\<acute>Ma:=\<acute>M;;
- .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma
+ \<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma
\<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M \<and> length \<acute>Ma=length \<acute>M
- \<and> ( \<acute>obc < Blacks \<acute>Ma \<or> \<acute>Safe)}.
+ \<and> ( \<acute>obc < Blacks \<acute>Ma \<or> \<acute>Safe)\<rbrace>
\<acute>bc:={};;
Count
OD;;
@@ -464,7 +464,7 @@
OD"
lemma Collector:
- "\<turnstile> Collector .{False}."
+ "\<turnstile> Collector \<lbrace>False\<rbrace>"
apply(unfold Collector_def)
apply annhoare
apply(simp_all add: Blacken_Roots Propagate_Black Count Append)
@@ -806,15 +806,15 @@
text {* In total there are 289 verification conditions. *}
lemma Gar_Coll:
- "\<parallel>- .{\<acute>Proper \<and> \<acute>Mut_init \<and> \<acute>z}.
+ "\<parallel>- \<lbrace>\<acute>Proper \<and> \<acute>Mut_init \<and> \<acute>z\<rbrace>
COBEGIN
Collector
- .{False}.
+ \<lbrace>False\<rbrace>
\<parallel>
Mutator
- .{False}.
+ \<lbrace>False\<rbrace>
COEND
- .{False}."
+ \<lbrace>False\<rbrace>"
apply oghoare
apply(force simp add: Mutator_def Collector_def modules)
apply(rule Collector)
--- a/src/HOL/Hoare_Parallel/Mul_Gar_Coll.thy Thu Aug 29 05:41:58 2013 +0200
+++ b/src/HOL/Hoare_Parallel/Mul_Gar_Coll.thy Thu Aug 29 05:42:37 2013 +0200
@@ -32,21 +32,21 @@
definition Mul_Redirect_Edge :: "nat \<Rightarrow> nat \<Rightarrow> mul_gar_coll_state ann_com" where
"Mul_Redirect_Edge j n \<equiv>
- .{\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)}.
+ \<lbrace>\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)\<rbrace>
\<langle>IF T(\<acute>Muts!j) \<in> Reach \<acute>E THEN
\<acute>E:= \<acute>E[R (\<acute>Muts!j):= (fst (\<acute>E!R(\<acute>Muts!j)), T (\<acute>Muts!j))] FI,,
\<acute>Muts:= \<acute>Muts[j:= (\<acute>Muts!j) \<lparr>Z:=False\<rparr>]\<rangle>"
definition Mul_Color_Target :: "nat \<Rightarrow> nat \<Rightarrow> mul_gar_coll_state ann_com" where
"Mul_Color_Target j n \<equiv>
- .{\<acute>Mul_mut_init n \<and> \<not> Z (\<acute>Muts!j)}.
+ \<lbrace>\<acute>Mul_mut_init n \<and> \<not> Z (\<acute>Muts!j)\<rbrace>
\<langle>\<acute>M:=\<acute>M[T (\<acute>Muts!j):=Black],, \<acute>Muts:=\<acute>Muts[j:= (\<acute>Muts!j) \<lparr>Z:=True\<rparr>]\<rangle>"
definition Mul_Mutator :: "nat \<Rightarrow> nat \<Rightarrow> mul_gar_coll_state ann_com" where
"Mul_Mutator j n \<equiv>
- .{\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)}.
+ \<lbrace>\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)\<rbrace>
WHILE True
- INV .{\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)}.
+ INV \<lbrace>\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)\<rbrace>
DO Mul_Redirect_Edge j n ;;
Mul_Color_Target j n
OD"
@@ -67,7 +67,7 @@
lemma Mul_Color_Target: "0\<le>j \<and> j<n \<Longrightarrow>
\<turnstile> Mul_Color_Target j n
- .{\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)}."
+ \<lbrace>\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)\<rbrace>"
apply (unfold mul_mutator_defs)
apply annhoare
apply(simp_all)
@@ -76,7 +76,7 @@
done
lemma Mul_Mutator: "0\<le>j \<and> j<n \<Longrightarrow>
- \<turnstile> Mul_Mutator j n .{False}."
+ \<turnstile> Mul_Mutator j n \<lbrace>False\<rbrace>"
apply(unfold Mul_Mutator_def)
apply annhoare
apply(simp_all add:Mul_Redirect_Edge Mul_Color_Target)
@@ -139,13 +139,13 @@
subsubsection {* Modular Parameterized Mutators *}
lemma Mul_Parameterized_Mutators: "0<n \<Longrightarrow>
- \<parallel>- .{\<acute>Mul_mut_init n \<and> (\<forall>i<n. Z (\<acute>Muts!i))}.
+ \<parallel>- \<lbrace>\<acute>Mul_mut_init n \<and> (\<forall>i<n. Z (\<acute>Muts!i))\<rbrace>
COBEGIN
SCHEME [0\<le> j< n]
Mul_Mutator j n
- .{False}.
+ \<lbrace>False\<rbrace>
COEND
- .{False}."
+ \<lbrace>False\<rbrace>"
apply oghoare
apply(force simp add:Mul_Mutator_def mul_mutator_defs nth_list_update)
apply(erule Mul_Mutator)
@@ -175,22 +175,22 @@
definition Mul_Blacken_Roots :: "nat \<Rightarrow> mul_gar_coll_state ann_com" where
"Mul_Blacken_Roots n \<equiv>
- .{\<acute>Mul_Proper n}.
+ \<lbrace>\<acute>Mul_Proper n\<rbrace>
\<acute>ind:=0;;
- .{\<acute>Mul_Proper n \<and> \<acute>ind=0}.
+ \<lbrace>\<acute>Mul_Proper n \<and> \<acute>ind=0\<rbrace>
WHILE \<acute>ind<length \<acute>M
- INV .{\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind\<le>length \<acute>M}.
- DO .{\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M}.
+ INV \<lbrace>\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind\<le>length \<acute>M\<rbrace>
+ DO \<lbrace>\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M\<rbrace>
IF \<acute>ind\<in>Roots THEN
- .{\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M \<and> \<acute>ind\<in>Roots}.
+ \<lbrace>\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M \<and> \<acute>ind\<in>Roots\<rbrace>
\<acute>M:=\<acute>M[\<acute>ind:=Black] FI;;
- .{\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind+1. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M}.
+ \<lbrace>\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind+1. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M\<rbrace>
\<acute>ind:=\<acute>ind+1
OD"
lemma Mul_Blacken_Roots:
"\<turnstile> Mul_Blacken_Roots n
- .{\<acute>Mul_Proper n \<and> Roots \<subseteq> Blacks \<acute>M}."
+ \<lbrace>\<acute>Mul_Proper n \<and> Roots \<subseteq> Blacks \<acute>M\<rbrace>"
apply (unfold Mul_Blacken_Roots_def)
apply annhoare
apply(simp_all add:mul_collector_defs Graph_defs)
@@ -213,40 +213,40 @@
definition Mul_Propagate_Black :: "nat \<Rightarrow> mul_gar_coll_state ann_com" where
"Mul_Propagate_Black n \<equiv>
- .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
- \<and> (\<acute>Safe \<or> \<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)}.
+ \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
+ \<and> (\<acute>Safe \<or> \<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)\<rbrace>
\<acute>ind:=0;;
- .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
+ \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> Blacks \<acute>M\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
- \<and> (\<acute>Safe \<or> \<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M) \<and> \<acute>ind=0}.
+ \<and> (\<acute>Safe \<or> \<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M) \<and> \<acute>ind=0\<rbrace>
WHILE \<acute>ind<length \<acute>E
- INV .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
+ INV \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
- \<and> \<acute>Mul_PBInv \<and> \<acute>ind\<le>length \<acute>E}.
- DO .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
+ \<and> \<acute>Mul_PBInv \<and> \<acute>ind\<le>length \<acute>E\<rbrace>
+ DO \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
- \<and> \<acute>Mul_PBInv \<and> \<acute>ind<length \<acute>E}.
+ \<and> \<acute>Mul_PBInv \<and> \<acute>ind<length \<acute>E\<rbrace>
IF \<acute>M!(fst (\<acute>E!\<acute>ind))=Black THEN
- .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
+ \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
- \<and> \<acute>Mul_PBInv \<and> (\<acute>M!fst(\<acute>E!\<acute>ind))=Black \<and> \<acute>ind<length \<acute>E}.
+ \<and> \<acute>Mul_PBInv \<and> (\<acute>M!fst(\<acute>E!\<acute>ind))=Black \<and> \<acute>ind<length \<acute>E\<rbrace>
\<acute>k:=snd(\<acute>E!\<acute>ind);;
- .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
+ \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue \<or> (\<forall>i<\<acute>ind. \<not>BtoW(\<acute>E!i,\<acute>M))
\<and> \<acute>l\<le>\<acute>Queue \<and> \<acute>Mul_Auxk ) \<and> \<acute>k<length \<acute>M \<and> \<acute>M!fst(\<acute>E!\<acute>ind)=Black
- \<and> \<acute>ind<length \<acute>E}.
+ \<and> \<acute>ind<length \<acute>E\<rbrace>
\<langle>\<acute>M:=\<acute>M[\<acute>k:=Black],,\<acute>ind:=\<acute>ind+1\<rangle>
- ELSE .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
+ ELSE \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
- \<and> \<acute>Mul_PBInv \<and> \<acute>ind<length \<acute>E}.
+ \<and> \<acute>Mul_PBInv \<and> \<acute>ind<length \<acute>E\<rbrace>
\<langle>IF \<acute>M!(fst (\<acute>E!\<acute>ind))\<noteq>Black THEN \<acute>ind:=\<acute>ind+1 FI\<rangle> FI
OD"
lemma Mul_Propagate_Black:
"\<turnstile> Mul_Propagate_Black n
- .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
- \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue \<and> (\<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))}."
+ \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
+ \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue \<and> (\<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))\<rbrace>"
apply(unfold Mul_Propagate_Black_def)
apply annhoare
apply(simp_all add:Mul_PBInv_def mul_collector_defs Mul_Auxk_def Graph6 Graph7 Graph8 Graph12 mul_collector_defs Queue_def)
@@ -295,51 +295,51 @@
definition Mul_Count :: "nat \<Rightarrow> mul_gar_coll_state ann_com" where
"Mul_Count n \<equiv>
- .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
+ \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
\<and> length \<acute>Ma=length \<acute>M
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M) )
- \<and> \<acute>q<n+1 \<and> \<acute>bc={}}.
+ \<and> \<acute>q<n+1 \<and> \<acute>bc={}\<rbrace>
\<acute>ind:=0;;
- .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
+ \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
\<and> length \<acute>Ma=length \<acute>M
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M) )
- \<and> \<acute>q<n+1 \<and> \<acute>bc={} \<and> \<acute>ind=0}.
+ \<and> \<acute>q<n+1 \<and> \<acute>bc={} \<and> \<acute>ind=0\<rbrace>
WHILE \<acute>ind<length \<acute>M
- INV .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
+ INV \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
\<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv \<acute>ind
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))
- \<and> \<acute>q<n+1 \<and> \<acute>ind\<le>length \<acute>M}.
- DO .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
+ \<and> \<acute>q<n+1 \<and> \<acute>ind\<le>length \<acute>M\<rbrace>
+ DO \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
\<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv \<acute>ind
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))
- \<and> \<acute>q<n+1 \<and> \<acute>ind<length \<acute>M}.
+ \<and> \<acute>q<n+1 \<and> \<acute>ind<length \<acute>M\<rbrace>
IF \<acute>M!\<acute>ind=Black
- THEN .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
+ THEN \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
\<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv \<acute>ind
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))
- \<and> \<acute>q<n+1 \<and> \<acute>ind<length \<acute>M \<and> \<acute>M!\<acute>ind=Black}.
+ \<and> \<acute>q<n+1 \<and> \<acute>ind<length \<acute>M \<and> \<acute>M!\<acute>ind=Black\<rbrace>
\<acute>bc:=insert \<acute>ind \<acute>bc
FI;;
- .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
+ \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
\<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv (\<acute>ind+1)
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))
- \<and> \<acute>q<n+1 \<and> \<acute>ind<length \<acute>M}.
+ \<and> \<acute>q<n+1 \<and> \<acute>ind<length \<acute>M\<rbrace>
\<acute>ind:=\<acute>ind+1
OD"
lemma Mul_Count:
"\<turnstile> Mul_Count n
- .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
+ \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
\<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))
- \<and> \<acute>q<n+1}."
+ \<and> \<acute>q<n+1\<rbrace>"
apply (unfold Mul_Count_def)
apply annhoare
apply(simp_all add:Mul_CountInv_def mul_collector_defs Mul_Auxk_def Graph6 Graph7 Graph8 Graph12 mul_collector_defs Queue_def)
@@ -393,26 +393,26 @@
definition Mul_Append :: "nat \<Rightarrow> mul_gar_coll_state ann_com" where
"Mul_Append n \<equiv>
- .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>Safe}.
+ \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>Safe\<rbrace>
\<acute>ind:=0;;
- .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>Safe \<and> \<acute>ind=0}.
+ \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>Safe \<and> \<acute>ind=0\<rbrace>
WHILE \<acute>ind<length \<acute>M
- INV .{\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind\<le>length \<acute>M}.
- DO .{\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M}.
+ INV \<lbrace>\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind\<le>length \<acute>M\<rbrace>
+ DO \<lbrace>\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M\<rbrace>
IF \<acute>M!\<acute>ind=Black THEN
- .{\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M \<and> \<acute>M!\<acute>ind=Black}.
+ \<lbrace>\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M \<and> \<acute>M!\<acute>ind=Black\<rbrace>
\<acute>M:=\<acute>M[\<acute>ind:=White]
ELSE
- .{\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M \<and> \<acute>ind\<notin>Reach \<acute>E}.
+ \<lbrace>\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M \<and> \<acute>ind\<notin>Reach \<acute>E\<rbrace>
\<acute>E:=Append_to_free(\<acute>ind,\<acute>E)
FI;;
- .{\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv (\<acute>ind+1) \<and> \<acute>ind<length \<acute>M}.
+ \<lbrace>\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv (\<acute>ind+1) \<and> \<acute>ind<length \<acute>M\<rbrace>
\<acute>ind:=\<acute>ind+1
OD"
lemma Mul_Append:
"\<turnstile> Mul_Append n
- .{\<acute>Mul_Proper n}."
+ \<lbrace>\<acute>Mul_Proper n\<rbrace>"
apply(unfold Mul_Append_def)
apply annhoare
apply(simp_all add: mul_collector_defs Mul_AppendInv_def
@@ -431,52 +431,52 @@
definition Mul_Collector :: "nat \<Rightarrow> mul_gar_coll_state ann_com" where
"Mul_Collector n \<equiv>
-.{\<acute>Mul_Proper n}.
-WHILE True INV .{\<acute>Mul_Proper n}.
+\<lbrace>\<acute>Mul_Proper n\<rbrace>
+WHILE True INV \<lbrace>\<acute>Mul_Proper n\<rbrace>
DO
Mul_Blacken_Roots n ;;
-.{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M}.
+\<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M\<rbrace>
\<acute>obc:={};;
-.{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={}}.
+\<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={}\<rbrace>
\<acute>bc:=Roots;;
-.{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={} \<and> \<acute>bc=Roots}.
+\<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={} \<and> \<acute>bc=Roots\<rbrace>
\<acute>l:=0;;
-.{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={} \<and> \<acute>bc=Roots \<and> \<acute>l=0}.
+\<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={} \<and> \<acute>bc=Roots \<and> \<acute>l=0\<rbrace>
WHILE \<acute>l<n+1
- INV .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M \<and>
- (\<acute>Safe \<or> (\<acute>l\<le>\<acute>Queue \<or> \<acute>bc\<subset>Blacks \<acute>M) \<and> \<acute>l<n+1)}.
- DO .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
- \<and> (\<acute>Safe \<or> \<acute>l\<le>\<acute>Queue \<or> \<acute>bc\<subset>Blacks \<acute>M)}.
+ INV \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M \<and>
+ (\<acute>Safe \<or> (\<acute>l\<le>\<acute>Queue \<or> \<acute>bc\<subset>Blacks \<acute>M) \<and> \<acute>l<n+1)\<rbrace>
+ DO \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
+ \<and> (\<acute>Safe \<or> \<acute>l\<le>\<acute>Queue \<or> \<acute>bc\<subset>Blacks \<acute>M)\<rbrace>
\<acute>obc:=\<acute>bc;;
Mul_Propagate_Black n;;
- .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
+ \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue
- \<and> (\<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))}.
+ \<and> (\<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))\<rbrace>
\<acute>bc:={};;
- .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
+ \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue
- \<and> (\<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) \<and> \<acute>bc={}}.
+ \<and> (\<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) \<and> \<acute>bc={}\<rbrace>
\<langle> \<acute>Ma:=\<acute>M,, \<acute>q:=\<acute>Queue \<rangle>;;
Mul_Count n;;
- .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
+ \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
\<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))
- \<and> \<acute>q<n+1}.
+ \<and> \<acute>q<n+1\<rbrace>
IF \<acute>obc=\<acute>bc THEN
- .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
+ \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
\<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))
- \<and> \<acute>q<n+1 \<and> \<acute>obc=\<acute>bc}.
+ \<and> \<acute>q<n+1 \<and> \<acute>obc=\<acute>bc\<rbrace>
\<acute>l:=\<acute>l+1
- ELSE .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
+ ELSE \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M
\<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))
- \<and> \<acute>q<n+1 \<and> \<acute>obc\<noteq>\<acute>bc}.
+ \<and> \<acute>q<n+1 \<and> \<acute>obc\<noteq>\<acute>bc\<rbrace>
\<acute>l:=0 FI
OD;;
Mul_Append n
@@ -488,7 +488,7 @@
lemma Mul_Collector:
"\<turnstile> Mul_Collector n
- .{False}."
+ \<lbrace>False\<rbrace>"
apply(unfold Mul_Collector_def)
apply annhoare
apply(simp_all only:pre.simps Mul_Blacken_Roots
@@ -1237,16 +1237,16 @@
text {* The total number of verification conditions is 328 *}
lemma Mul_Gar_Coll:
- "\<parallel>- .{\<acute>Mul_Proper n \<and> \<acute>Mul_mut_init n \<and> (\<forall>i<n. Z (\<acute>Muts!i))}.
+ "\<parallel>- \<lbrace>\<acute>Mul_Proper n \<and> \<acute>Mul_mut_init n \<and> (\<forall>i<n. Z (\<acute>Muts!i))\<rbrace>
COBEGIN
Mul_Collector n
- .{False}.
+ \<lbrace>False\<rbrace>
\<parallel>
SCHEME [0\<le> j< n]
Mul_Mutator j n
- .{False}.
+ \<lbrace>False\<rbrace>
COEND
- .{False}."
+ \<lbrace>False\<rbrace>"
apply oghoare
--{* Strengthening the precondition *}
apply(rule Int_greatest)
--- a/src/HOL/Hoare_Parallel/OG_Examples.thy Thu Aug 29 05:41:58 2013 +0200
+++ b/src/HOL/Hoare_Parallel/OG_Examples.thy Thu Aug 29 05:42:37 2013 +0200
@@ -16,30 +16,30 @@
hold :: nat
lemma Petersons_mutex_1:
- "\<parallel>- .{\<acute>pr1=0 \<and> \<not>\<acute>in1 \<and> \<acute>pr2=0 \<and> \<not>\<acute>in2 }.
- COBEGIN .{\<acute>pr1=0 \<and> \<not>\<acute>in1}.
- WHILE True INV .{\<acute>pr1=0 \<and> \<not>\<acute>in1}.
+ "\<parallel>- \<lbrace>\<acute>pr1=0 \<and> \<not>\<acute>in1 \<and> \<acute>pr2=0 \<and> \<not>\<acute>in2 \<rbrace>
+ COBEGIN \<lbrace>\<acute>pr1=0 \<and> \<not>\<acute>in1\<rbrace>
+ WHILE True INV \<lbrace>\<acute>pr1=0 \<and> \<not>\<acute>in1\<rbrace>
DO
- .{\<acute>pr1=0 \<and> \<not>\<acute>in1}. \<langle> \<acute>in1:=True,,\<acute>pr1:=1 \<rangle>;;
- .{\<acute>pr1=1 \<and> \<acute>in1}. \<langle> \<acute>hold:=1,,\<acute>pr1:=2 \<rangle>;;
- .{\<acute>pr1=2 \<and> \<acute>in1 \<and> (\<acute>hold=1 \<or> \<acute>hold=2 \<and> \<acute>pr2=2)}.
+ \<lbrace>\<acute>pr1=0 \<and> \<not>\<acute>in1\<rbrace> \<langle> \<acute>in1:=True,,\<acute>pr1:=1 \<rangle>;;
+ \<lbrace>\<acute>pr1=1 \<and> \<acute>in1\<rbrace> \<langle> \<acute>hold:=1,,\<acute>pr1:=2 \<rangle>;;
+ \<lbrace>\<acute>pr1=2 \<and> \<acute>in1 \<and> (\<acute>hold=1 \<or> \<acute>hold=2 \<and> \<acute>pr2=2)\<rbrace>
AWAIT (\<not>\<acute>in2 \<or> \<not>(\<acute>hold=1)) THEN \<acute>pr1:=3 END;;
- .{\<acute>pr1=3 \<and> \<acute>in1 \<and> (\<acute>hold=1 \<or> \<acute>hold=2 \<and> \<acute>pr2=2)}.
+ \<lbrace>\<acute>pr1=3 \<and> \<acute>in1 \<and> (\<acute>hold=1 \<or> \<acute>hold=2 \<and> \<acute>pr2=2)\<rbrace>
\<langle>\<acute>in1:=False,,\<acute>pr1:=0\<rangle>
- OD .{\<acute>pr1=0 \<and> \<not>\<acute>in1}.
+ OD \<lbrace>\<acute>pr1=0 \<and> \<not>\<acute>in1\<rbrace>
\<parallel>
- .{\<acute>pr2=0 \<and> \<not>\<acute>in2}.
- WHILE True INV .{\<acute>pr2=0 \<and> \<not>\<acute>in2}.
+ \<lbrace>\<acute>pr2=0 \<and> \<not>\<acute>in2\<rbrace>
+ WHILE True INV \<lbrace>\<acute>pr2=0 \<and> \<not>\<acute>in2\<rbrace>
DO
- .{\<acute>pr2=0 \<and> \<not>\<acute>in2}. \<langle> \<acute>in2:=True,,\<acute>pr2:=1 \<rangle>;;
- .{\<acute>pr2=1 \<and> \<acute>in2}. \<langle> \<acute>hold:=2,,\<acute>pr2:=2 \<rangle>;;
- .{\<acute>pr2=2 \<and> \<acute>in2 \<and> (\<acute>hold=2 \<or> (\<acute>hold=1 \<and> \<acute>pr1=2))}.
+ \<lbrace>\<acute>pr2=0 \<and> \<not>\<acute>in2\<rbrace> \<langle> \<acute>in2:=True,,\<acute>pr2:=1 \<rangle>;;
+ \<lbrace>\<acute>pr2=1 \<and> \<acute>in2\<rbrace> \<langle> \<acute>hold:=2,,\<acute>pr2:=2 \<rangle>;;
+ \<lbrace>\<acute>pr2=2 \<and> \<acute>in2 \<and> (\<acute>hold=2 \<or> (\<acute>hold=1 \<and> \<acute>pr1=2))\<rbrace>
AWAIT (\<not>\<acute>in1 \<or> \<not>(\<acute>hold=2)) THEN \<acute>pr2:=3 END;;
- .{\<acute>pr2=3 \<and> \<acute>in2 \<and> (\<acute>hold=2 \<or> (\<acute>hold=1 \<and> \<acute>pr1=2))}.
+ \<lbrace>\<acute>pr2=3 \<and> \<acute>in2 \<and> (\<acute>hold=2 \<or> (\<acute>hold=1 \<and> \<acute>pr1=2))\<rbrace>
\<langle>\<acute>in2:=False,,\<acute>pr2:=0\<rangle>
- OD .{\<acute>pr2=0 \<and> \<not>\<acute>in2}.
+ OD \<lbrace>\<acute>pr2=0 \<and> \<not>\<acute>in2\<rbrace>
COEND
- .{\<acute>pr1=0 \<and> \<not>\<acute>in1 \<and> \<acute>pr2=0 \<and> \<not>\<acute>in2}."
+ \<lbrace>\<acute>pr1=0 \<and> \<not>\<acute>in1 \<and> \<acute>pr2=0 \<and> \<not>\<acute>in2\<rbrace>"
apply oghoare
--{* 104 verification conditions. *}
apply auto
@@ -57,37 +57,37 @@
after2 :: bool
lemma Busy_wait_mutex:
- "\<parallel>- .{True}.
+ "\<parallel>- \<lbrace>True\<rbrace>
\<acute>flag1:=False,, \<acute>flag2:=False,,
- COBEGIN .{\<not>\<acute>flag1}.
+ COBEGIN \<lbrace>\<not>\<acute>flag1\<rbrace>
WHILE True
- INV .{\<not>\<acute>flag1}.
- DO .{\<not>\<acute>flag1}. \<langle> \<acute>flag1:=True,,\<acute>after1:=False \<rangle>;;
- .{\<acute>flag1 \<and> \<not>\<acute>after1}. \<langle> \<acute>turn:=1,,\<acute>after1:=True \<rangle>;;
- .{\<acute>flag1 \<and> \<acute>after1 \<and> (\<acute>turn=1 \<or> \<acute>turn=2)}.
+ INV \<lbrace>\<not>\<acute>flag1\<rbrace>
+ DO \<lbrace>\<not>\<acute>flag1\<rbrace> \<langle> \<acute>flag1:=True,,\<acute>after1:=False \<rangle>;;
+ \<lbrace>\<acute>flag1 \<and> \<not>\<acute>after1\<rbrace> \<langle> \<acute>turn:=1,,\<acute>after1:=True \<rangle>;;
+ \<lbrace>\<acute>flag1 \<and> \<acute>after1 \<and> (\<acute>turn=1 \<or> \<acute>turn=2)\<rbrace>
WHILE \<not>(\<acute>flag2 \<longrightarrow> \<acute>turn=2)
- INV .{\<acute>flag1 \<and> \<acute>after1 \<and> (\<acute>turn=1 \<or> \<acute>turn=2)}.
- DO .{\<acute>flag1 \<and> \<acute>after1 \<and> (\<acute>turn=1 \<or> \<acute>turn=2)}. SKIP OD;;
- .{\<acute>flag1 \<and> \<acute>after1 \<and> (\<acute>flag2 \<and> \<acute>after2 \<longrightarrow> \<acute>turn=2)}.
+ INV \<lbrace>\<acute>flag1 \<and> \<acute>after1 \<and> (\<acute>turn=1 \<or> \<acute>turn=2)\<rbrace>
+ DO \<lbrace>\<acute>flag1 \<and> \<acute>after1 \<and> (\<acute>turn=1 \<or> \<acute>turn=2)\<rbrace> SKIP OD;;
+ \<lbrace>\<acute>flag1 \<and> \<acute>after1 \<and> (\<acute>flag2 \<and> \<acute>after2 \<longrightarrow> \<acute>turn=2)\<rbrace>
\<acute>flag1:=False
OD
- .{False}.
+ \<lbrace>False\<rbrace>
\<parallel>
- .{\<not>\<acute>flag2}.
+ \<lbrace>\<not>\<acute>flag2\<rbrace>
WHILE True
- INV .{\<not>\<acute>flag2}.
- DO .{\<not>\<acute>flag2}. \<langle> \<acute>flag2:=True,,\<acute>after2:=False \<rangle>;;
- .{\<acute>flag2 \<and> \<not>\<acute>after2}. \<langle> \<acute>turn:=2,,\<acute>after2:=True \<rangle>;;
- .{\<acute>flag2 \<and> \<acute>after2 \<and> (\<acute>turn=1 \<or> \<acute>turn=2)}.
+ INV \<lbrace>\<not>\<acute>flag2\<rbrace>
+ DO \<lbrace>\<not>\<acute>flag2\<rbrace> \<langle> \<acute>flag2:=True,,\<acute>after2:=False \<rangle>;;
+ \<lbrace>\<acute>flag2 \<and> \<not>\<acute>after2\<rbrace> \<langle> \<acute>turn:=2,,\<acute>after2:=True \<rangle>;;
+ \<lbrace>\<acute>flag2 \<and> \<acute>after2 \<and> (\<acute>turn=1 \<or> \<acute>turn=2)\<rbrace>
WHILE \<not>(\<acute>flag1 \<longrightarrow> \<acute>turn=1)
- INV .{\<acute>flag2 \<and> \<acute>after2 \<and> (\<acute>turn=1 \<or> \<acute>turn=2)}.
- DO .{\<acute>flag2 \<and> \<acute>after2 \<and> (\<acute>turn=1 \<or> \<acute>turn=2)}. SKIP OD;;
- .{\<acute>flag2 \<and> \<acute>after2 \<and> (\<acute>flag1 \<and> \<acute>after1 \<longrightarrow> \<acute>turn=1)}.
+ INV \<lbrace>\<acute>flag2 \<and> \<acute>after2 \<and> (\<acute>turn=1 \<or> \<acute>turn=2)\<rbrace>
+ DO \<lbrace>\<acute>flag2 \<and> \<acute>after2 \<and> (\<acute>turn=1 \<or> \<acute>turn=2)\<rbrace> SKIP OD;;
+ \<lbrace>\<acute>flag2 \<and> \<acute>after2 \<and> (\<acute>flag1 \<and> \<acute>after1 \<longrightarrow> \<acute>turn=1)\<rbrace>
\<acute>flag2:=False
OD
- .{False}.
+ \<lbrace>False\<rbrace>
COEND
- .{False}."
+ \<lbrace>False\<rbrace>"
apply oghoare
--{* 122 vc *}
apply auto
@@ -100,21 +100,21 @@
who :: nat
lemma Semaphores_mutex:
- "\<parallel>- .{i\<noteq>j}.
+ "\<parallel>- \<lbrace>i\<noteq>j\<rbrace>
\<acute>out:=True ,,
- COBEGIN .{i\<noteq>j}.
- WHILE True INV .{i\<noteq>j}.
- DO .{i\<noteq>j}. AWAIT \<acute>out THEN \<acute>out:=False,, \<acute>who:=i END;;
- .{\<not>\<acute>out \<and> \<acute>who=i \<and> i\<noteq>j}. \<acute>out:=True OD
- .{False}.
+ COBEGIN \<lbrace>i\<noteq>j\<rbrace>
+ WHILE True INV \<lbrace>i\<noteq>j\<rbrace>
+ DO \<lbrace>i\<noteq>j\<rbrace> AWAIT \<acute>out THEN \<acute>out:=False,, \<acute>who:=i END;;
+ \<lbrace>\<not>\<acute>out \<and> \<acute>who=i \<and> i\<noteq>j\<rbrace> \<acute>out:=True OD
+ \<lbrace>False\<rbrace>
\<parallel>
- .{i\<noteq>j}.
- WHILE True INV .{i\<noteq>j}.
- DO .{i\<noteq>j}. AWAIT \<acute>out THEN \<acute>out:=False,,\<acute>who:=j END;;
- .{\<not>\<acute>out \<and> \<acute>who=j \<and> i\<noteq>j}. \<acute>out:=True OD
- .{False}.
+ \<lbrace>i\<noteq>j\<rbrace>
+ WHILE True INV \<lbrace>i\<noteq>j\<rbrace>
+ DO \<lbrace>i\<noteq>j\<rbrace> AWAIT \<acute>out THEN \<acute>out:=False,,\<acute>who:=j END;;
+ \<lbrace>\<not>\<acute>out \<and> \<acute>who=j \<and> i\<noteq>j\<rbrace> \<acute>out:=True OD
+ \<lbrace>False\<rbrace>
COEND
- .{False}."
+ \<lbrace>False\<rbrace>"
apply oghoare
--{* 38 vc *}
apply auto
@@ -123,17 +123,17 @@
subsubsection {* Peterson's Algorithm III: Parameterized version: *}
lemma Semaphores_parameterized_mutex:
- "0<n \<Longrightarrow> \<parallel>- .{True}.
+ "0<n \<Longrightarrow> \<parallel>- \<lbrace>True\<rbrace>
\<acute>out:=True ,,
COBEGIN
SCHEME [0\<le> i< n]
- .{True}.
- WHILE True INV .{True}.
- DO .{True}. AWAIT \<acute>out THEN \<acute>out:=False,, \<acute>who:=i END;;
- .{\<not>\<acute>out \<and> \<acute>who=i}. \<acute>out:=True OD
- .{False}.
+ \<lbrace>True\<rbrace>
+ WHILE True INV \<lbrace>True\<rbrace>
+ DO \<lbrace>True\<rbrace> AWAIT \<acute>out THEN \<acute>out:=False,, \<acute>who:=i END;;
+ \<lbrace>\<not>\<acute>out \<and> \<acute>who=i\<rbrace> \<acute>out:=True OD
+ \<lbrace>False\<rbrace>
COEND
- .{False}."
+ \<lbrace>False\<rbrace>"
apply oghoare
--{* 20 vc *}
apply auto
@@ -150,22 +150,22 @@
lemma Ticket_mutex:
"\<lbrakk> 0<n; I=\<guillemotleft>n=length \<acute>turn \<and> 0<\<acute>nextv \<and> (\<forall>k l. k<n \<and> l<n \<and> k\<noteq>l
\<longrightarrow> \<acute>turn!k < \<acute>num \<and> (\<acute>turn!k =0 \<or> \<acute>turn!k\<noteq>\<acute>turn!l))\<guillemotright> \<rbrakk>
- \<Longrightarrow> \<parallel>- .{n=length \<acute>turn}.
+ \<Longrightarrow> \<parallel>- \<lbrace>n=length \<acute>turn\<rbrace>
\<acute>index:= 0,,
- WHILE \<acute>index < n INV .{n=length \<acute>turn \<and> (\<forall>i<\<acute>index. \<acute>turn!i=0)}.
+ WHILE \<acute>index < n INV \<lbrace>n=length \<acute>turn \<and> (\<forall>i<\<acute>index. \<acute>turn!i=0)\<rbrace>
DO \<acute>turn:= \<acute>turn[\<acute>index:=0],, \<acute>index:=\<acute>index +1 OD,,
\<acute>num:=1 ,, \<acute>nextv:=1 ,,
COBEGIN
SCHEME [0\<le> i< n]
- .{\<acute>I}.
- WHILE True INV .{\<acute>I}.
- DO .{\<acute>I}. \<langle> \<acute>turn :=\<acute>turn[i:=\<acute>num],, \<acute>num:=\<acute>num+1 \<rangle>;;
- .{\<acute>I}. WAIT \<acute>turn!i=\<acute>nextv END;;
- .{\<acute>I \<and> \<acute>turn!i=\<acute>nextv}. \<acute>nextv:=\<acute>nextv+1
+ \<lbrace>\<acute>I\<rbrace>
+ WHILE True INV \<lbrace>\<acute>I\<rbrace>
+ DO \<lbrace>\<acute>I\<rbrace> \<langle> \<acute>turn :=\<acute>turn[i:=\<acute>num],, \<acute>num:=\<acute>num+1 \<rangle>;;
+ \<lbrace>\<acute>I\<rbrace> WAIT \<acute>turn!i=\<acute>nextv END;;
+ \<lbrace>\<acute>I \<and> \<acute>turn!i=\<acute>nextv\<rbrace> \<acute>nextv:=\<acute>nextv+1
OD
- .{False}.
+ \<lbrace>False\<rbrace>
COEND
- .{False}."
+ \<lbrace>False\<rbrace>"
apply oghoare
--{* 35 vc *}
apply simp_all
@@ -259,40 +259,40 @@
\<and> (\<not>\<acute>found \<and> a<\<acute> x \<longrightarrow> f(\<acute>x)\<noteq>0) \<guillemotright> ;
I2= \<guillemotleft>\<acute>y\<le>a+1 \<and> (\<acute>found \<longrightarrow> (a<\<acute>x \<and> f(\<acute>x)=0) \<or> (\<acute>y\<le>a \<and> f(\<acute>y)=0))
\<and> (\<not>\<acute>found \<and> \<acute>y\<le>a \<longrightarrow> f(\<acute>y)\<noteq>0) \<guillemotright> \<rbrakk> \<Longrightarrow>
- \<parallel>- .{\<exists> u. f(u)=0}.
+ \<parallel>- \<lbrace>\<exists> u. f(u)=0\<rbrace>
\<acute>turn:=1,, \<acute>found:= False,,
\<acute>x:=a,, \<acute>y:=a+1 ,,
- COBEGIN .{\<acute>I1}.
+ COBEGIN \<lbrace>\<acute>I1\<rbrace>
WHILE \<not>\<acute>found
- INV .{\<acute>I1}.
- DO .{a\<le>\<acute>x \<and> (\<acute>found \<longrightarrow> \<acute>y\<le>a \<and> f(\<acute>y)=0) \<and> (a<\<acute>x \<longrightarrow> f(\<acute>x)\<noteq>0)}.
+ INV \<lbrace>\<acute>I1\<rbrace>
+ DO \<lbrace>a\<le>\<acute>x \<and> (\<acute>found \<longrightarrow> \<acute>y\<le>a \<and> f(\<acute>y)=0) \<and> (a<\<acute>x \<longrightarrow> f(\<acute>x)\<noteq>0)\<rbrace>
WAIT \<acute>turn=1 END;;
- .{a\<le>\<acute>x \<and> (\<acute>found \<longrightarrow> \<acute>y\<le>a \<and> f(\<acute>y)=0) \<and> (a<\<acute>x \<longrightarrow> f(\<acute>x)\<noteq>0)}.
+ \<lbrace>a\<le>\<acute>x \<and> (\<acute>found \<longrightarrow> \<acute>y\<le>a \<and> f(\<acute>y)=0) \<and> (a<\<acute>x \<longrightarrow> f(\<acute>x)\<noteq>0)\<rbrace>
\<acute>turn:=2;;
- .{a\<le>\<acute>x \<and> (\<acute>found \<longrightarrow> \<acute>y\<le>a \<and> f(\<acute>y)=0) \<and> (a<\<acute>x \<longrightarrow> f(\<acute>x)\<noteq>0)}.
+ \<lbrace>a\<le>\<acute>x \<and> (\<acute>found \<longrightarrow> \<acute>y\<le>a \<and> f(\<acute>y)=0) \<and> (a<\<acute>x \<longrightarrow> f(\<acute>x)\<noteq>0)\<rbrace>
\<langle> \<acute>x:=\<acute>x+1,,
IF f(\<acute>x)=0 THEN \<acute>found:=True ELSE SKIP FI\<rangle>
OD;;
- .{\<acute>I1 \<and> \<acute>found}.
+ \<lbrace>\<acute>I1 \<and> \<acute>found\<rbrace>
\<acute>turn:=2
- .{\<acute>I1 \<and> \<acute>found}.
+ \<lbrace>\<acute>I1 \<and> \<acute>found\<rbrace>
\<parallel>
- .{\<acute>I2}.
+ \<lbrace>\<acute>I2\<rbrace>
WHILE \<not>\<acute>found
- INV .{\<acute>I2}.
- DO .{\<acute>y\<le>a+1 \<and> (\<acute>found \<longrightarrow> a<\<acute>x \<and> f(\<acute>x)=0) \<and> (\<acute>y\<le>a \<longrightarrow> f(\<acute>y)\<noteq>0)}.
+ INV \<lbrace>\<acute>I2\<rbrace>
+ DO \<lbrace>\<acute>y\<le>a+1 \<and> (\<acute>found \<longrightarrow> a<\<acute>x \<and> f(\<acute>x)=0) \<and> (\<acute>y\<le>a \<longrightarrow> f(\<acute>y)\<noteq>0)\<rbrace>
WAIT \<acute>turn=2 END;;
- .{\<acute>y\<le>a+1 \<and> (\<acute>found \<longrightarrow> a<\<acute>x \<and> f(\<acute>x)=0) \<and> (\<acute>y\<le>a \<longrightarrow> f(\<acute>y)\<noteq>0)}.
+ \<lbrace>\<acute>y\<le>a+1 \<and> (\<acute>found \<longrightarrow> a<\<acute>x \<and> f(\<acute>x)=0) \<and> (\<acute>y\<le>a \<longrightarrow> f(\<acute>y)\<noteq>0)\<rbrace>
\<acute>turn:=1;;
- .{\<acute>y\<le>a+1 \<and> (\<acute>found \<longrightarrow> a<\<acute>x \<and> f(\<acute>x)=0) \<and> (\<acute>y\<le>a \<longrightarrow> f(\<acute>y)\<noteq>0)}.
+ \<lbrace>\<acute>y\<le>a+1 \<and> (\<acute>found \<longrightarrow> a<\<acute>x \<and> f(\<acute>x)=0) \<and> (\<acute>y\<le>a \<longrightarrow> f(\<acute>y)\<noteq>0)\<rbrace>
\<langle> \<acute>y:=(\<acute>y - 1),,
IF f(\<acute>y)=0 THEN \<acute>found:=True ELSE SKIP FI\<rangle>
OD;;
- .{\<acute>I2 \<and> \<acute>found}.
+ \<lbrace>\<acute>I2 \<and> \<acute>found\<rbrace>
\<acute>turn:=1
- .{\<acute>I2 \<and> \<acute>found}.
+ \<lbrace>\<acute>I2 \<and> \<acute>found\<rbrace>
COEND
- .{f(\<acute>x)=0 \<or> f(\<acute>y)=0}."
+ \<lbrace>f(\<acute>x)=0 \<or> f(\<acute>y)=0\<rbrace>"
apply oghoare
--{* 98 verification conditions *}
apply auto
@@ -306,26 +306,26 @@
\<and> (\<not>\<acute>found \<and> a<\<acute>x \<longrightarrow> f(\<acute>x)\<noteq>0)\<guillemotright>;
I2= \<guillemotleft>\<acute>y\<le>a+1 \<and> (\<acute>found \<longrightarrow> (a<\<acute>x \<and> f(\<acute>x)=0) \<or> (\<acute>y\<le>a \<and> f(\<acute>y)=0))
\<and> (\<not>\<acute>found \<and> \<acute>y\<le>a \<longrightarrow> f(\<acute>y)\<noteq>0)\<guillemotright>\<rbrakk> \<Longrightarrow>
- \<parallel>- .{\<exists>u. f(u)=0}.
+ \<parallel>- \<lbrace>\<exists>u. f(u)=0\<rbrace>
\<acute>found:= False,,
\<acute>x:=a,, \<acute>y:=a+1,,
- COBEGIN .{\<acute>I1}.
+ COBEGIN \<lbrace>\<acute>I1\<rbrace>
WHILE \<not>\<acute>found
- INV .{\<acute>I1}.
- DO .{a\<le>\<acute>x \<and> (\<acute>found \<longrightarrow> \<acute>y\<le>a \<and> f(\<acute>y)=0) \<and> (a<\<acute>x \<longrightarrow> f(\<acute>x)\<noteq>0)}.
+ INV \<lbrace>\<acute>I1\<rbrace>
+ DO \<lbrace>a\<le>\<acute>x \<and> (\<acute>found \<longrightarrow> \<acute>y\<le>a \<and> f(\<acute>y)=0) \<and> (a<\<acute>x \<longrightarrow> f(\<acute>x)\<noteq>0)\<rbrace>
\<langle> \<acute>x:=\<acute>x+1,,IF f(\<acute>x)=0 THEN \<acute>found:=True ELSE SKIP FI\<rangle>
OD
- .{\<acute>I1 \<and> \<acute>found}.
+ \<lbrace>\<acute>I1 \<and> \<acute>found\<rbrace>
\<parallel>
- .{\<acute>I2}.
+ \<lbrace>\<acute>I2\<rbrace>
WHILE \<not>\<acute>found
- INV .{\<acute>I2}.
- DO .{\<acute>y\<le>a+1 \<and> (\<acute>found \<longrightarrow> a<\<acute>x \<and> f(\<acute>x)=0) \<and> (\<acute>y\<le>a \<longrightarrow> f(\<acute>y)\<noteq>0)}.
+ INV \<lbrace>\<acute>I2\<rbrace>
+ DO \<lbrace>\<acute>y\<le>a+1 \<and> (\<acute>found \<longrightarrow> a<\<acute>x \<and> f(\<acute>x)=0) \<and> (\<acute>y\<le>a \<longrightarrow> f(\<acute>y)\<noteq>0)\<rbrace>
\<langle> \<acute>y:=(\<acute>y - 1),,IF f(\<acute>y)=0 THEN \<acute>found:=True ELSE SKIP FI\<rangle>
OD
- .{\<acute>I2 \<and> \<acute>found}.
+ \<lbrace>\<acute>I2 \<and> \<acute>found\<rbrace>
COEND
- .{f(\<acute>x)=0 \<or> f(\<acute>y)=0}."
+ \<lbrace>f(\<acute>x)=0 \<or> f(\<acute>y)=0\<rbrace>"
apply oghoare
--{* 20 vc *}
apply auto
@@ -390,44 +390,44 @@
p1= \<guillemotleft>\<acute>I1 \<and> \<acute>li=\<acute>ins\<guillemotright> ;
I2 = \<guillemotleft>\<acute>I \<and> (\<forall>k<\<acute>lj. (a ! k)=(\<acute>b ! k)) \<and> \<acute>lj\<le>length a\<guillemotright> ;
p2 = \<guillemotleft>\<acute>I2 \<and> \<acute>lj=\<acute>outs\<guillemotright> \<rbrakk> \<Longrightarrow>
- \<parallel>- .{\<acute>INIT}.
+ \<parallel>- \<lbrace>\<acute>INIT\<rbrace>
\<acute>ins:=0,, \<acute>outs:=0,, \<acute>li:=0,, \<acute>lj:=0,,
- COBEGIN .{\<acute>p1 \<and> \<acute>INIT}.
+ COBEGIN \<lbrace>\<acute>p1 \<and> \<acute>INIT\<rbrace>
WHILE \<acute>li <length a
- INV .{\<acute>p1 \<and> \<acute>INIT}.
- DO .{\<acute>p1 \<and> \<acute>INIT \<and> \<acute>li<length a}.
+ INV \<lbrace>\<acute>p1 \<and> \<acute>INIT\<rbrace>
+ DO \<lbrace>\<acute>p1 \<and> \<acute>INIT \<and> \<acute>li<length a\<rbrace>
\<acute>vx:= (a ! \<acute>li);;
- .{\<acute>p1 \<and> \<acute>INIT \<and> \<acute>li<length a \<and> \<acute>vx=(a ! \<acute>li)}.
+ \<lbrace>\<acute>p1 \<and> \<acute>INIT \<and> \<acute>li<length a \<and> \<acute>vx=(a ! \<acute>li)\<rbrace>
WAIT \<acute>ins-\<acute>outs < length \<acute>buffer END;;
- .{\<acute>p1 \<and> \<acute>INIT \<and> \<acute>li<length a \<and> \<acute>vx=(a ! \<acute>li)
- \<and> \<acute>ins-\<acute>outs < length \<acute>buffer}.
+ \<lbrace>\<acute>p1 \<and> \<acute>INIT \<and> \<acute>li<length a \<and> \<acute>vx=(a ! \<acute>li)
+ \<and> \<acute>ins-\<acute>outs < length \<acute>buffer\<rbrace>
\<acute>buffer:=(list_update \<acute>buffer (\<acute>ins mod (length \<acute>buffer)) \<acute>vx);;
- .{\<acute>p1 \<and> \<acute>INIT \<and> \<acute>li<length a
+ \<lbrace>\<acute>p1 \<and> \<acute>INIT \<and> \<acute>li<length a
\<and> (a ! \<acute>li)=(\<acute>buffer ! (\<acute>ins mod (length \<acute>buffer)))
- \<and> \<acute>ins-\<acute>outs <length \<acute>buffer}.
+ \<and> \<acute>ins-\<acute>outs <length \<acute>buffer\<rbrace>
\<acute>ins:=\<acute>ins+1;;
- .{\<acute>I1 \<and> \<acute>INIT \<and> (\<acute>li+1)=\<acute>ins \<and> \<acute>li<length a}.
+ \<lbrace>\<acute>I1 \<and> \<acute>INIT \<and> (\<acute>li+1)=\<acute>ins \<and> \<acute>li<length a\<rbrace>
\<acute>li:=\<acute>li+1
OD
- .{\<acute>p1 \<and> \<acute>INIT \<and> \<acute>li=length a}.
+ \<lbrace>\<acute>p1 \<and> \<acute>INIT \<and> \<acute>li=length a\<rbrace>
\<parallel>
- .{\<acute>p2 \<and> \<acute>INIT}.
+ \<lbrace>\<acute>p2 \<and> \<acute>INIT\<rbrace>
WHILE \<acute>lj < length a
- INV .{\<acute>p2 \<and> \<acute>INIT}.
- DO .{\<acute>p2 \<and> \<acute>lj<length a \<and> \<acute>INIT}.
+ INV \<lbrace>\<acute>p2 \<and> \<acute>INIT\<rbrace>
+ DO \<lbrace>\<acute>p2 \<and> \<acute>lj<length a \<and> \<acute>INIT\<rbrace>
WAIT \<acute>outs<\<acute>ins END;;
- .{\<acute>p2 \<and> \<acute>lj<length a \<and> \<acute>outs<\<acute>ins \<and> \<acute>INIT}.
+ \<lbrace>\<acute>p2 \<and> \<acute>lj<length a \<and> \<acute>outs<\<acute>ins \<and> \<acute>INIT\<rbrace>
\<acute>vy:=(\<acute>buffer ! (\<acute>outs mod (length \<acute>buffer)));;
- .{\<acute>p2 \<and> \<acute>lj<length a \<and> \<acute>outs<\<acute>ins \<and> \<acute>vy=(a ! \<acute>lj) \<and> \<acute>INIT}.
+ \<lbrace>\<acute>p2 \<and> \<acute>lj<length a \<and> \<acute>outs<\<acute>ins \<and> \<acute>vy=(a ! \<acute>lj) \<and> \<acute>INIT\<rbrace>
\<acute>outs:=\<acute>outs+1;;
- .{\<acute>I2 \<and> (\<acute>lj+1)=\<acute>outs \<and> \<acute>lj<length a \<and> \<acute>vy=(a ! \<acute>lj) \<and> \<acute>INIT}.
+ \<lbrace>\<acute>I2 \<and> (\<acute>lj+1)=\<acute>outs \<and> \<acute>lj<length a \<and> \<acute>vy=(a ! \<acute>lj) \<and> \<acute>INIT\<rbrace>
\<acute>b:=(list_update \<acute>b \<acute>lj \<acute>vy);;
- .{\<acute>I2 \<and> (\<acute>lj+1)=\<acute>outs \<and> \<acute>lj<length a \<and> (a ! \<acute>lj)=(\<acute>b ! \<acute>lj) \<and> \<acute>INIT}.
+ \<lbrace>\<acute>I2 \<and> (\<acute>lj+1)=\<acute>outs \<and> \<acute>lj<length a \<and> (a ! \<acute>lj)=(\<acute>b ! \<acute>lj) \<and> \<acute>INIT\<rbrace>
\<acute>lj:=\<acute>lj+1
OD
- .{\<acute>p2 \<and> \<acute>lj=length a \<and> \<acute>INIT}.
+ \<lbrace>\<acute>p2 \<and> \<acute>lj=length a \<and> \<acute>INIT\<rbrace>
COEND
- .{ \<forall>k<length a. (a ! k)=(\<acute>b ! k)}."
+ \<lbrace> \<forall>k<length a. (a ! k)=(\<acute>b ! k)\<rbrace>"
apply oghoare
--{* 138 vc *}
apply(tactic {* ALLGOALS (clarify_tac @{context}) *})
@@ -455,9 +455,9 @@
a :: "nat \<Rightarrow> nat"
lemma Example1:
- "\<parallel>- .{True}.
- COBEGIN SCHEME [0\<le>i<n] .{True}. \<acute>a:=\<acute>a (i:=0) .{\<acute>a i=0}. COEND
- .{\<forall>i < n. \<acute>a i = 0}."
+ "\<parallel>- \<lbrace>True\<rbrace>
+ COBEGIN SCHEME [0\<le>i<n] \<lbrace>True\<rbrace> \<acute>a:=\<acute>a (i:=0) \<lbrace>\<acute>a i=0\<rbrace> COEND
+ \<lbrace>\<forall>i < n. \<acute>a i = 0\<rbrace>"
apply oghoare
apply simp_all
done
@@ -466,11 +466,11 @@
record Example1_list =
A :: "nat list"
lemma Example1_list:
- "\<parallel>- .{n < length \<acute>A}.
+ "\<parallel>- \<lbrace>n < length \<acute>A\<rbrace>
COBEGIN
- SCHEME [0\<le>i<n] .{n < length \<acute>A}. \<acute>A:=\<acute>A[i:=0] .{\<acute>A!i=0}.
+ SCHEME [0\<le>i<n] \<lbrace>n < length \<acute>A\<rbrace> \<acute>A:=\<acute>A[i:=0] \<lbrace>\<acute>A!i=0\<rbrace>
COEND
- .{\<forall>i < n. \<acute>A!i = 0}."
+ \<lbrace>\<forall>i < n. \<acute>A!i = 0\<rbrace>"
apply oghoare
apply force+
done
@@ -525,14 +525,14 @@
x :: nat
lemma Example_2: "0<n \<Longrightarrow>
- \<parallel>- .{\<acute>x=0 \<and> (\<Sum>i=0..<n. \<acute>c i)=0}.
+ \<parallel>- \<lbrace>\<acute>x=0 \<and> (\<Sum>i=0..<n. \<acute>c i)=0\<rbrace>
COBEGIN
SCHEME [0\<le>i<n]
- .{\<acute>x=(\<Sum>i=0..<n. \<acute>c i) \<and> \<acute>c i=0}.
+ \<lbrace>\<acute>x=(\<Sum>i=0..<n. \<acute>c i) \<and> \<acute>c i=0\<rbrace>
\<langle> \<acute>x:=\<acute>x+(Suc 0),, \<acute>c:=\<acute>c (i:=(Suc 0)) \<rangle>
- .{\<acute>x=(\<Sum>i=0..<n. \<acute>c i) \<and> \<acute>c i=(Suc 0)}.
+ \<lbrace>\<acute>x=(\<Sum>i=0..<n. \<acute>c i) \<and> \<acute>c i=(Suc 0)\<rbrace>
COEND
- .{\<acute>x=n}."
+ \<lbrace>\<acute>x=n\<rbrace>"
apply oghoare
apply (simp_all cong del: strong_setsum_cong)
apply (tactic {* ALLGOALS (clarify_tac @{context}) *})
--- a/src/HOL/Hoare_Parallel/OG_Syntax.thy Thu Aug 29 05:41:58 2013 +0200
+++ b/src/HOL/Hoare_Parallel/OG_Syntax.thy Thu Aug 29 05:42:37 2013 +0200
@@ -44,15 +44,15 @@
("(0WHILE _ //DO _ /OD)" [0, 0] 61)
translations
- "IF b THEN c1 ELSE c2 FI" \<rightharpoonup> "CONST Cond .{b}. c1 c2"
+ "IF b THEN c1 ELSE c2 FI" \<rightharpoonup> "CONST Cond \<lbrace>b\<rbrace> c1 c2"
"IF b THEN c FI" \<rightleftharpoons> "IF b THEN c ELSE SKIP FI"
- "WHILE b INV i DO c OD" \<rightharpoonup> "CONST While .{b}. i c"
+ "WHILE b INV i DO c OD" \<rightharpoonup> "CONST While \<lbrace>b\<rbrace> i c"
"WHILE b DO c OD" \<rightleftharpoons> "WHILE b INV CONST undefined DO c OD"
- "r IF b THEN c1 ELSE c2 FI" \<rightharpoonup> "CONST AnnCond1 r .{b}. c1 c2"
- "r IF b THEN c FI" \<rightharpoonup> "CONST AnnCond2 r .{b}. c"
- "r WHILE b INV i DO c OD" \<rightharpoonup> "CONST AnnWhile r .{b}. i c"
- "r AWAIT b THEN c END" \<rightharpoonup> "CONST AnnAwait r .{b}. c"
+ "r IF b THEN c1 ELSE c2 FI" \<rightharpoonup> "CONST AnnCond1 r \<lbrace>b\<rbrace> c1 c2"
+ "r IF b THEN c FI" \<rightharpoonup> "CONST AnnCond2 r \<lbrace>b\<rbrace> c"
+ "r WHILE b INV i DO c OD" \<rightharpoonup> "CONST AnnWhile r \<lbrace>b\<rbrace> i c"
+ "r AWAIT b THEN c END" \<rightharpoonup> "CONST AnnAwait r \<lbrace>b\<rbrace> c"
"r \<langle>c\<rangle>" \<rightleftharpoons> "r AWAIT CONST True THEN c END"
"r WAIT b END" \<rightleftharpoons> "r AWAIT b THEN SKIP END"
--- a/src/HOL/Hoare_Parallel/Quote_Antiquote.thy Thu Aug 29 05:41:58 2013 +0200
+++ b/src/HOL/Hoare_Parallel/Quote_Antiquote.thy Thu Aug 29 05:42:37 2013 +0200
@@ -6,13 +6,10 @@
syntax
"_quote" :: "'b \<Rightarrow> ('a \<Rightarrow> 'b)" ("(\<guillemotleft>_\<guillemotright>)" [0] 1000)
"_antiquote" :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b" ("\<acute>_" [1000] 1000)
- "_Assert" :: "'a \<Rightarrow> 'a set" ("(.{_}.)" [0] 1000)
-
-syntax (xsymbols)
- "_Assert" :: "'a \<Rightarrow> 'a set" ("(\<lbrace>_\<rbrace>)" [0] 1000)
+ "_Assert" :: "'a \<Rightarrow> 'a set" ("(\<lbrace>_\<rbrace>)" [0] 1000)
translations
- ".{b}." \<rightharpoonup> "CONST Collect \<guillemotleft>b\<guillemotright>"
+ "\<lbrace>b\<rbrace>" \<rightharpoonup> "CONST Collect \<guillemotleft>b\<guillemotright>"
parse_translation {*
let
--- a/src/HOL/Hoare_Parallel/RG_Syntax.thy Thu Aug 29 05:41:58 2013 +0200
+++ b/src/HOL/Hoare_Parallel/RG_Syntax.thy Thu Aug 29 05:42:37 2013 +0200
@@ -20,10 +20,10 @@
translations
"\<acute>x := a" \<rightharpoonup> "CONST Basic \<guillemotleft>\<acute>(_update_name x (\<lambda>_. a))\<guillemotright>"
- "IF b THEN c1 ELSE c2 FI" \<rightharpoonup> "CONST Cond .{b}. c1 c2"
+ "IF b THEN c1 ELSE c2 FI" \<rightharpoonup> "CONST Cond \<lbrace>b\<rbrace> c1 c2"
"IF b THEN c FI" \<rightleftharpoons> "IF b THEN c ELSE SKIP FI"
- "WHILE b DO c OD" \<rightharpoonup> "CONST While .{b}. c"
- "AWAIT b THEN c END" \<rightleftharpoons> "CONST Await .{b}. c"
+ "WHILE b DO c OD" \<rightharpoonup> "CONST While \<lbrace>b\<rbrace> c"
+ "AWAIT b THEN c END" \<rightleftharpoons> "CONST Await \<lbrace>b\<rbrace> c"
"\<langle>c\<rangle>" \<rightleftharpoons> "AWAIT CONST True THEN c END"
"WAIT b END" \<rightleftharpoons> "AWAIT b THEN SKIP END"
--- a/src/HOL/Library/Infinite_Set.thy Thu Aug 29 05:41:58 2013 +0200
+++ b/src/HOL/Library/Infinite_Set.thy Thu Aug 29 05:42:37 2013 +0200
@@ -16,20 +16,18 @@
lemmas may not work well with @{text "blast"}.
*}
-abbreviation
- infinite :: "'a set \<Rightarrow> bool" where
- "infinite S == \<not> finite S"
+abbreviation infinite :: "'a set \<Rightarrow> bool"
+ where "infinite S \<equiv> \<not> finite S"
text {*
Infinite sets are non-empty, and if we remove some elements from an
infinite set, the result is still infinite.
*}
-lemma infinite_imp_nonempty: "infinite S ==> S \<noteq> {}"
+lemma infinite_imp_nonempty: "infinite S \<Longrightarrow> S \<noteq> {}"
by auto
-lemma infinite_remove:
- "infinite S \<Longrightarrow> infinite (S - {a})"
+lemma infinite_remove: "infinite S \<Longrightarrow> infinite (S - {a})"
by simp
lemma Diff_infinite_finite:
@@ -72,7 +70,7 @@
lemma finite_nat_bounded:
assumes S: "finite (S::nat set)"
shows "\<exists>k. S \<subseteq> {..<k}" (is "\<exists>k. ?bounded S k")
-using S
+ using S
proof induct
have "?bounded {} 0" by simp
then show "\<exists>k. ?bounded {} k" ..
@@ -92,7 +90,7 @@
qed
lemma finite_nat_iff_bounded:
- "finite (S::nat set) = (\<exists>k. S \<subseteq> {..<k})" (is "?lhs = ?rhs")
+ "finite (S::nat set) \<longleftrightarrow> (\<exists>k. S \<subseteq> {..<k})" (is "?lhs \<longleftrightarrow> ?rhs")
proof
assume ?lhs
then show ?rhs by (rule finite_nat_bounded)
@@ -104,7 +102,7 @@
qed
lemma finite_nat_iff_bounded_le:
- "finite (S::nat set) = (\<exists>k. S \<subseteq> {..k})" (is "?lhs = ?rhs")
+ "finite (S::nat set) \<longleftrightarrow> (\<exists>k. S \<subseteq> {..k})" (is "?lhs \<longleftrightarrow> ?rhs")
proof
assume ?lhs
then obtain k where "S \<subseteq> {..<k}"
@@ -119,14 +117,14 @@
qed
lemma infinite_nat_iff_unbounded:
- "infinite (S::nat set) = (\<forall>m. \<exists>n. m<n \<and> n\<in>S)"
- (is "?lhs = ?rhs")
+ "infinite (S::nat set) \<longleftrightarrow> (\<forall>m. \<exists>n. m < n \<and> n \<in> S)"
+ (is "?lhs \<longleftrightarrow> ?rhs")
proof
assume ?lhs
show ?rhs
proof (rule ccontr)
assume "\<not> ?rhs"
- then obtain m where m: "\<forall>n. m<n \<longrightarrow> n\<notin>S" by blast
+ then obtain m where m: "\<forall>n. m < n \<longrightarrow> n \<notin> S" by blast
then have "S \<subseteq> {..m}"
by (auto simp add: sym [OF linorder_not_less])
with `?lhs` show False
@@ -139,22 +137,22 @@
assume "finite S"
then obtain m where "S \<subseteq> {..m}"
by (auto simp add: finite_nat_iff_bounded_le)
- then have "\<forall>n. m<n \<longrightarrow> n\<notin>S" by auto
+ then have "\<forall>n. m < n \<longrightarrow> n \<notin> S" by auto
with `?rhs` show False by blast
qed
qed
lemma infinite_nat_iff_unbounded_le:
- "infinite (S::nat set) = (\<forall>m. \<exists>n. m\<le>n \<and> n\<in>S)"
- (is "?lhs = ?rhs")
+ "infinite (S::nat set) \<longleftrightarrow> (\<forall>m. \<exists>n. m \<le> n \<and> n \<in> S)"
+ (is "?lhs \<longleftrightarrow> ?rhs")
proof
assume ?lhs
show ?rhs
proof
fix m
- from `?lhs` obtain n where "m<n \<and> n\<in>S"
+ from `?lhs` obtain n where "m < n \<and> n \<in> S"
by (auto simp add: infinite_nat_iff_unbounded)
- then have "m\<le>n \<and> n\<in>S" by simp
+ then have "m \<le> n \<and> n \<in> S" by simp
then show "\<exists>n. m \<le> n \<and> n \<in> S" ..
qed
next
@@ -162,9 +160,9 @@
show ?lhs
proof (auto simp add: infinite_nat_iff_unbounded)
fix m
- from `?rhs` obtain n where "Suc m \<le> n \<and> n\<in>S"
+ from `?rhs` obtain n where "Suc m \<le> n \<and> n \<in> S"
by blast
- then have "m<n \<and> n\<in>S" by simp
+ then have "m < n \<and> n \<in> S" by simp
then show "\<exists>n. m < n \<and> n \<in> S" ..
qed
qed
@@ -176,18 +174,18 @@
*}
lemma unbounded_k_infinite:
- assumes k: "\<forall>m. k<m \<longrightarrow> (\<exists>n. m<n \<and> n\<in>S)"
+ assumes k: "\<forall>m. k < m \<longrightarrow> (\<exists>n. m < n \<and> n \<in> S)"
shows "infinite (S::nat set)"
proof -
{
- fix m have "\<exists>n. m<n \<and> n\<in>S"
- proof (cases "k<m")
+ fix m have "\<exists>n. m < n \<and> n \<in> S"
+ proof (cases "k < m")
case True
with k show ?thesis by blast
next
case False
- from k obtain n where "Suc k < n \<and> n\<in>S" by auto
- with False have "m<n \<and> n\<in>S" by auto
+ from k obtain n where "Suc k < n \<and> n \<in> S" by auto
+ with False have "m < n \<and> n \<in> S" by auto
then show ?thesis ..
qed
}
@@ -217,13 +215,14 @@
then show False by simp
qed
-lemma int_infinite [simp]:
- shows "infinite (UNIV::int set)"
+lemma int_infinite [simp]: "infinite (UNIV::int set)"
proof -
- from inj_int have "infinite (range int)" by (rule range_inj_infinite)
+ from inj_int have "infinite (range int)"
+ by (rule range_inj_infinite)
moreover
have "range int \<subseteq> (UNIV::int set)" by simp
- ultimately show "infinite (UNIV::int set)" by (simp add: infinite_super)
+ ultimately show "infinite (UNIV::int set)"
+ by (simp add: infinite_super)
qed
text {*
@@ -235,7 +234,7 @@
*}
lemma linorder_injI:
- assumes hyp: "!!x y. x < (y::'a::linorder) ==> f x \<noteq> f y"
+ assumes hyp: "\<And>x y. x < (y::'a::linorder) \<Longrightarrow> f x \<noteq> f y"
shows "inj f"
proof (rule inj_onI)
fix x y
@@ -284,7 +283,8 @@
proof -
fix n
show "pick n \<in> Sseq n"
- proof (unfold pick_def, rule someI_ex)
+ unfolding pick_def
+ proof (rule someI_ex)
from Sseq_inf have "infinite (Sseq n)" .
then have "Sseq n \<noteq> {}" by auto
then show "\<exists>x. x \<in> Sseq n" by auto
@@ -324,7 +324,7 @@
qed
lemma infinite_iff_countable_subset:
- "infinite S = (\<exists>f. inj (f::nat \<Rightarrow> 'a) \<and> range f \<subseteq> S)"
+ "infinite S \<longleftrightarrow> (\<exists>f. inj (f::nat \<Rightarrow> 'a) \<and> range f \<subseteq> S)"
by (auto simp add: infinite_countable_subset range_inj_infinite infinite_super)
text {*
@@ -359,13 +359,11 @@
we introduce corresponding binders and their proof rules.
*}
-definition
- Inf_many :: "('a \<Rightarrow> bool) \<Rightarrow> bool" (binder "INFM " 10) where
- "Inf_many P = infinite {x. P x}"
+definition Inf_many :: "('a \<Rightarrow> bool) \<Rightarrow> bool" (binder "INFM " 10)
+ where "Inf_many P \<longleftrightarrow> infinite {x. P x}"
-definition
- Alm_all :: "('a \<Rightarrow> bool) \<Rightarrow> bool" (binder "MOST " 10) where
- "Alm_all P = (\<not> (INFM x. \<not> P x))"
+definition Alm_all :: "('a \<Rightarrow> bool) \<Rightarrow> bool" (binder "MOST " 10)
+ where "Alm_all P \<longleftrightarrow> \<not> (INFM x. \<not> P x)"
notation (xsymbols)
Inf_many (binder "\<exists>\<^sub>\<infinity>" 10) and
@@ -397,15 +395,21 @@
unfolding Alm_all_def by simp
lemma INFM_EX: "(\<exists>\<^sub>\<infinity>x. P x) \<Longrightarrow> (\<exists>x. P x)"
- by (erule contrapos_pp, simp)
+ apply (erule contrapos_pp)
+ apply simp
+ done
lemma ALL_MOST: "\<forall>x. P x \<Longrightarrow> \<forall>\<^sub>\<infinity>x. P x"
by simp
-lemma INFM_E: assumes "INFM x. P x" obtains x where "P x"
+lemma INFM_E:
+ assumes "INFM x. P x"
+ obtains x where "P x"
using INFM_EX [OF assms] by (rule exE)
-lemma MOST_I: assumes "\<And>x. P x" shows "MOST x. P x"
+lemma MOST_I:
+ assumes "\<And>x. P x"
+ shows "MOST x. P x"
using assms by simp
lemma INFM_mono:
@@ -476,15 +480,18 @@
text {* Properties of quantifiers with injective functions. *}
-lemma INFM_inj:
- "INFM x. P (f x) \<Longrightarrow> inj f \<Longrightarrow> INFM x. P x"
+lemma INFM_inj: "INFM x. P (f x) \<Longrightarrow> inj f \<Longrightarrow> INFM x. P x"
unfolding INFM_iff_infinite
- by (clarify, drule (1) finite_vimageI, simp)
+ apply clarify
+ apply (drule (1) finite_vimageI)
+ apply simp
+ done
-lemma MOST_inj:
- "MOST x. P x \<Longrightarrow> inj f \<Longrightarrow> MOST x. P (f x)"
+lemma MOST_inj: "MOST x. P x \<Longrightarrow> inj f \<Longrightarrow> MOST x. P (f x)"
unfolding MOST_iff_cofinite
- by (drule (1) finite_vimageI, simp)
+ apply (drule (1) finite_vimageI)
+ apply simp
+ done
text {* Properties of quantifiers with singletons. *}
@@ -515,16 +522,16 @@
text {* Properties of quantifiers over the naturals. *}
-lemma INFM_nat: "(\<exists>\<^sub>\<infinity>n. P (n::nat)) = (\<forall>m. \<exists>n. m<n \<and> P n)"
+lemma INFM_nat: "(\<exists>\<^sub>\<infinity>n. P (n::nat)) \<longleftrightarrow> (\<forall>m. \<exists>n. m < n \<and> P n)"
by (simp add: Inf_many_def infinite_nat_iff_unbounded)
-lemma INFM_nat_le: "(\<exists>\<^sub>\<infinity>n. P (n::nat)) = (\<forall>m. \<exists>n. m\<le>n \<and> P n)"
+lemma INFM_nat_le: "(\<exists>\<^sub>\<infinity>n. P (n::nat)) \<longleftrightarrow> (\<forall>m. \<exists>n. m \<le> n \<and> P n)"
by (simp add: Inf_many_def infinite_nat_iff_unbounded_le)
-lemma MOST_nat: "(\<forall>\<^sub>\<infinity>n. P (n::nat)) = (\<exists>m. \<forall>n. m<n \<longrightarrow> P n)"
+lemma MOST_nat: "(\<forall>\<^sub>\<infinity>n. P (n::nat)) \<longleftrightarrow> (\<exists>m. \<forall>n. m < n \<longrightarrow> P n)"
by (simp add: Alm_all_def INFM_nat)
-lemma MOST_nat_le: "(\<forall>\<^sub>\<infinity>n. P (n::nat)) = (\<exists>m. \<forall>n. m\<le>n \<longrightarrow> P n)"
+lemma MOST_nat_le: "(\<forall>\<^sub>\<infinity>n. P (n::nat)) \<longleftrightarrow> (\<exists>m. \<forall>n. m \<le> n \<longrightarrow> P n)"
by (simp add: Alm_all_def INFM_nat_le)
@@ -534,20 +541,20 @@
The set's element type must be wellordered (e.g. the natural numbers).
*}
-primrec (in wellorder) enumerate :: "'a set \<Rightarrow> nat \<Rightarrow> 'a" where
- enumerate_0: "enumerate S 0 = (LEAST n. n \<in> S)"
- | enumerate_Suc: "enumerate S (Suc n) = enumerate (S - {LEAST n. n \<in> S}) n"
+primrec (in wellorder) enumerate :: "'a set \<Rightarrow> nat \<Rightarrow> 'a"
+where
+ enumerate_0: "enumerate S 0 = (LEAST n. n \<in> S)"
+| enumerate_Suc: "enumerate S (Suc n) = enumerate (S - {LEAST n. n \<in> S}) n"
-lemma enumerate_Suc':
- "enumerate S (Suc n) = enumerate (S - {enumerate S 0}) n"
+lemma enumerate_Suc': "enumerate S (Suc n) = enumerate (S - {enumerate S 0}) n"
by simp
lemma enumerate_in_set: "infinite S \<Longrightarrow> enumerate S n : S"
-apply (induct n arbitrary: S)
- apply (fastforce intro: LeastI dest!: infinite_imp_nonempty)
-apply simp
-apply (metis DiffE infinite_remove)
-done
+ apply (induct n arbitrary: S)
+ apply (fastforce intro: LeastI dest!: infinite_imp_nonempty)
+ apply simp
+ apply (metis DiffE infinite_remove)
+ done
declare enumerate_0 [simp del] enumerate_Suc [simp del]
@@ -573,31 +580,38 @@
shows "n \<le> enumerate S n"
using S
proof (induct n)
+ case 0
+ then show ?case by simp
+next
case (Suc n)
then have "n \<le> enumerate S n" by simp
also note enumerate_mono[of n "Suc n", OF _ `infinite S`]
finally show ?case by simp
-qed simp
+qed
lemma enumerate_Suc'':
fixes S :: "'a::wellorder set"
- shows "infinite S \<Longrightarrow> enumerate S (Suc n) = (LEAST s. s \<in> S \<and> enumerate S n < s)"
+ assumes "infinite S"
+ shows "enumerate S (Suc n) = (LEAST s. s \<in> S \<and> enumerate S n < s)"
+ using assms
proof (induct n arbitrary: S)
case 0
- then have "\<forall>s\<in>S. enumerate S 0 \<le> s"
+ then have "\<forall>s \<in> S. enumerate S 0 \<le> s"
by (auto simp: enumerate.simps intro: Least_le)
then show ?case
unfolding enumerate_Suc' enumerate_0[of "S - {enumerate S 0}"]
- by (intro arg_cong[where f=Least] ext) auto
+ by (intro arg_cong[where f = Least] ext) auto
next
case (Suc n S)
show ?case
using enumerate_mono[OF zero_less_Suc `infinite S`, of n] `infinite S`
apply (subst (1 2) enumerate_Suc')
apply (subst Suc)
- apply (insert `infinite S`, simp)
- by (intro arg_cong[where f=Least] ext)
- (auto simp: enumerate_Suc'[symmetric])
+ using `infinite S`
+ apply simp
+ apply (intro arg_cong[where f = Least] ext)
+ apply (auto simp: enumerate_Suc'[symmetric])
+ done
qed
lemma enumerate_Ex:
@@ -609,9 +623,12 @@
proof cases
let ?y = "Max {s'\<in>S. s' < s}"
assume "\<exists>y\<in>S. y < s"
- then have y: "\<And>x. ?y < x \<longleftrightarrow> (\<forall>s'\<in>S. s' < s \<longrightarrow> s' < x)" by (subst Max_less_iff) auto
- then have y_in: "?y \<in> {s'\<in>S. s' < s}" by (intro Max_in) auto
- with less.hyps[of ?y] obtain n where "enumerate S n = ?y" by auto
+ then have y: "\<And>x. ?y < x \<longleftrightarrow> (\<forall>s'\<in>S. s' < s \<longrightarrow> s' < x)"
+ by (subst Max_less_iff) auto
+ then have y_in: "?y \<in> {s'\<in>S. s' < s}"
+ by (intro Max_in) auto
+ with less.hyps[of ?y] obtain n where "enumerate S n = ?y"
+ by auto
with S have "enumerate S (Suc n) = s"
by (auto simp: y less enumerate_Suc'' intro!: Least_equality)
then show ?case by auto
@@ -632,7 +649,7 @@
using enumerate_mono[OF _ `infinite S`] by (auto simp: neq_iff)
then have "inj (enumerate S)"
by (auto simp: inj_on_def)
- moreover have "\<forall>s\<in>S. \<exists>i. enumerate S i = s"
+ moreover have "\<forall>s \<in> S. \<exists>i. enumerate S i = s"
using enumerate_Ex[OF S] by auto
moreover note `infinite S`
ultimately show ?thesis
@@ -646,9 +663,8 @@
These simplify the reasoning about deterministic automata.
*}
-definition
- atmost_one :: "'a set \<Rightarrow> bool" where
- "atmost_one S = (\<forall>x y. x\<in>S \<and> y\<in>S \<longrightarrow> x=y)"
+definition atmost_one :: "'a set \<Rightarrow> bool"
+ where "atmost_one S \<longleftrightarrow> (\<forall>x y. x\<in>S \<and> y\<in>S \<longrightarrow> x = y)"
lemma atmost_one_empty: "S = {} \<Longrightarrow> atmost_one S"
by (simp add: atmost_one_def)
--- a/src/HOL/Library/Lattice_Algebras.thy Thu Aug 29 05:41:58 2013 +0200
+++ b/src/HOL/Library/Lattice_Algebras.thy Thu Aug 29 05:42:37 2013 +0200
@@ -9,20 +9,19 @@
class semilattice_inf_ab_group_add = ordered_ab_group_add + semilattice_inf
begin
-lemma add_inf_distrib_left:
- "a + inf b c = inf (a + b) (a + c)"
-apply (rule antisym)
-apply (simp_all add: le_infI)
-apply (rule add_le_imp_le_left [of "uminus a"])
-apply (simp only: add_assoc [symmetric], simp)
-apply rule
-apply (rule add_le_imp_le_left[of "a"], simp only: add_assoc[symmetric], simp)+
-done
+lemma add_inf_distrib_left: "a + inf b c = inf (a + b) (a + c)"
+ apply (rule antisym)
+ apply (simp_all add: le_infI)
+ apply (rule add_le_imp_le_left [of "uminus a"])
+ apply (simp only: add_assoc [symmetric], simp)
+ apply rule
+ apply (rule add_le_imp_le_left[of "a"], simp only: add_assoc[symmetric], simp)+
+ done
-lemma add_inf_distrib_right:
- "inf a b + c = inf (a + c) (b + c)"
+lemma add_inf_distrib_right: "inf a b + c = inf (a + c) (b + c)"
proof -
- have "c + inf a b = inf (c+a) (c+b)" by (simp add: add_inf_distrib_left)
+ have "c + inf a b = inf (c+a) (c+b)"
+ by (simp add: add_inf_distrib_left)
thus ?thesis by (simp add: add_commute)
qed
@@ -31,19 +30,17 @@
class semilattice_sup_ab_group_add = ordered_ab_group_add + semilattice_sup
begin
-lemma add_sup_distrib_left:
- "a + sup b c = sup (a + b) (a + c)"
-apply (rule antisym)
-apply (rule add_le_imp_le_left [of "uminus a"])
-apply (simp only: add_assoc[symmetric], simp)
-apply rule
-apply (rule add_le_imp_le_left [of "a"], simp only: add_assoc[symmetric], simp)+
-apply (rule le_supI)
-apply (simp_all)
-done
+lemma add_sup_distrib_left: "a + sup b c = sup (a + b) (a + c)"
+ apply (rule antisym)
+ apply (rule add_le_imp_le_left [of "uminus a"])
+ apply (simp only: add_assoc[symmetric], simp)
+ apply rule
+ apply (rule add_le_imp_le_left [of "a"], simp only: add_assoc[symmetric], simp)+
+ apply (rule le_supI)
+ apply (simp_all)
+ done
-lemma add_sup_distrib_right:
- "sup a b + c = sup (a+c) (b+c)"
+lemma add_sup_distrib_right: "sup a b + c = sup (a+c) (b+c)"
proof -
have "c + sup a b = sup (c+a) (c+b)" by (simp add: add_sup_distrib_left)
thus ?thesis by (simp add: add_commute)
@@ -57,69 +54,61 @@
subclass semilattice_inf_ab_group_add ..
subclass semilattice_sup_ab_group_add ..
-lemmas add_sup_inf_distribs = add_inf_distrib_right add_inf_distrib_left add_sup_distrib_right add_sup_distrib_left
+lemmas add_sup_inf_distribs =
+ add_inf_distrib_right add_inf_distrib_left add_sup_distrib_right add_sup_distrib_left
lemma inf_eq_neg_sup: "inf a b = - sup (-a) (-b)"
proof (rule inf_unique)
- fix a b :: 'a
+ fix a b c :: 'a
show "- sup (-a) (-b) \<le> a"
by (rule add_le_imp_le_right [of _ "sup (uminus a) (uminus b)"])
(simp, simp add: add_sup_distrib_left)
-next
- fix a b :: 'a
show "- sup (-a) (-b) \<le> b"
by (rule add_le_imp_le_right [of _ "sup (uminus a) (uminus b)"])
(simp, simp add: add_sup_distrib_left)
-next
- fix a b c :: 'a
assume "a \<le> b" "a \<le> c"
- then show "a \<le> - sup (-b) (-c)" by (subst neg_le_iff_le [symmetric])
- (simp add: le_supI)
+ then show "a \<le> - sup (-b) (-c)"
+ by (subst neg_le_iff_le [symmetric]) (simp add: le_supI)
qed
-
+
lemma sup_eq_neg_inf: "sup a b = - inf (-a) (-b)"
proof (rule sup_unique)
- fix a b :: 'a
+ fix a b c :: 'a
show "a \<le> - inf (-a) (-b)"
by (rule add_le_imp_le_right [of _ "inf (uminus a) (uminus b)"])
(simp, simp add: add_inf_distrib_left)
-next
- fix a b :: 'a
show "b \<le> - inf (-a) (-b)"
by (rule add_le_imp_le_right [of _ "inf (uminus a) (uminus b)"])
(simp, simp add: add_inf_distrib_left)
-next
- fix a b c :: 'a
assume "a \<le> c" "b \<le> c"
- then show "- inf (-a) (-b) \<le> c" by (subst neg_le_iff_le [symmetric])
- (simp add: le_infI)
+ then show "- inf (-a) (-b) \<le> c" by (subst neg_le_iff_le [symmetric]) (simp add: le_infI)
qed
lemma neg_inf_eq_sup: "- inf a b = sup (-a) (-b)"
-by (simp add: inf_eq_neg_sup)
+ by (simp add: inf_eq_neg_sup)
lemma neg_sup_eq_inf: "- sup a b = inf (-a) (-b)"
-by (simp add: sup_eq_neg_inf)
+ by (simp add: sup_eq_neg_inf)
lemma add_eq_inf_sup: "a + b = sup a b + inf a b"
proof -
- have "0 = - inf 0 (a-b) + inf (a-b) 0" by (simp add: inf_commute)
- hence "0 = sup 0 (b-a) + inf (a-b) 0" by (simp add: inf_eq_neg_sup)
+ have "0 = - inf 0 (a-b) + inf (a-b) 0"
+ by (simp add: inf_commute)
+ hence "0 = sup 0 (b-a) + inf (a-b) 0"
+ by (simp add: inf_eq_neg_sup)
hence "0 = (-a + sup a b) + (inf a b + (-b))"
- by (simp add: add_sup_distrib_left add_inf_distrib_right)
- (simp add: algebra_simps)
+ by (simp add: add_sup_distrib_left add_inf_distrib_right) (simp add: algebra_simps)
thus ?thesis by (simp add: algebra_simps)
qed
+
subsection {* Positive Part, Negative Part, Absolute Value *}
-definition
- nprt :: "'a \<Rightarrow> 'a" where
- "nprt x = inf x 0"
+definition nprt :: "'a \<Rightarrow> 'a"
+ where "nprt x = inf x 0"
-definition
- pprt :: "'a \<Rightarrow> 'a" where
- "pprt x = sup x 0"
+definition pprt :: "'a \<Rightarrow> 'a"
+ where "pprt x = sup x 0"
lemma pprt_neg: "pprt (- x) = - nprt x"
proof -
@@ -137,27 +126,29 @@
qed
lemma prts: "a = pprt a + nprt a"
-by (simp add: pprt_def nprt_def add_eq_inf_sup[symmetric])
+ by (simp add: pprt_def nprt_def add_eq_inf_sup[symmetric])
lemma zero_le_pprt[simp]: "0 \<le> pprt a"
-by (simp add: pprt_def)
+ by (simp add: pprt_def)
lemma nprt_le_zero[simp]: "nprt a \<le> 0"
-by (simp add: nprt_def)
+ by (simp add: nprt_def)
lemma le_eq_neg: "a \<le> - b \<longleftrightarrow> a + b \<le> 0" (is "?l = ?r")
-proof -
- have a: "?l \<longrightarrow> ?r"
- apply (auto)
+proof
+ assume ?l
+ then show ?r
+ apply -
apply (rule add_le_imp_le_right[of _ "uminus b" _])
apply (simp add: add_assoc)
done
- have b: "?r \<longrightarrow> ?l"
- apply (auto)
+next
+ assume ?r
+ then show ?l
+ apply -
apply (rule add_le_imp_le_right[of _ "b" _])
- apply (simp)
+ apply simp
done
- from a b show ?thesis by blast
qed
lemma pprt_0[simp]: "pprt 0 = 0" by (simp add: pprt_def)
@@ -181,7 +172,7 @@
fix a::'a
assume hyp: "sup a (-a) = 0"
hence "sup a (-a) + a = a" by (simp)
- hence "sup (a+a) 0 = a" by (simp add: add_sup_distrib_right)
+ hence "sup (a+a) 0 = a" by (simp add: add_sup_distrib_right)
hence "sup (a+a) 0 <= a" by (simp)
hence "0 <= a" by (blast intro: order_trans inf_sup_ord)
}
@@ -192,16 +183,22 @@
qed
lemma inf_0_imp_0: "inf a (-a) = 0 \<Longrightarrow> a = 0"
-apply (simp add: inf_eq_neg_sup)
-apply (simp add: sup_commute)
-apply (erule sup_0_imp_0)
-done
+ apply (simp add: inf_eq_neg_sup)
+ apply (simp add: sup_commute)
+ apply (erule sup_0_imp_0)
+ done
lemma inf_0_eq_0 [simp, no_atp]: "inf a (- a) = 0 \<longleftrightarrow> a = 0"
-by (rule, erule inf_0_imp_0) simp
+ apply rule
+ apply (erule inf_0_imp_0)
+ apply simp
+ done
lemma sup_0_eq_0 [simp, no_atp]: "sup a (- a) = 0 \<longleftrightarrow> a = 0"
-by (rule, erule sup_0_imp_0) simp
+ apply rule
+ apply (erule sup_0_imp_0)
+ apply simp
+ done
lemma zero_le_double_add_iff_zero_le_single_add [simp]:
"0 \<le> a + a \<longleftrightarrow> 0 \<le> a"
@@ -218,39 +215,48 @@
show "0 <= a + a" by (simp add: add_mono[OF a a, simplified])
qed
-lemma double_zero [simp]:
- "a + a = 0 \<longleftrightarrow> a = 0"
+lemma double_zero [simp]: "a + a = 0 \<longleftrightarrow> a = 0"
proof
assume assm: "a + a = 0"
then have "a + a + - a = - a" by simp
then have "a + (a + - a) = - a" by (simp only: add_assoc)
then have a: "- a = a" by simp
- show "a = 0" apply (rule antisym)
- apply (unfold neg_le_iff_le [symmetric, of a])
- unfolding a apply simp
- unfolding zero_le_double_add_iff_zero_le_single_add [symmetric, of a]
- unfolding assm unfolding le_less apply simp_all done
+ show "a = 0"
+ apply (rule antisym)
+ apply (unfold neg_le_iff_le [symmetric, of a])
+ unfolding a
+ apply simp
+ unfolding zero_le_double_add_iff_zero_le_single_add [symmetric, of a]
+ unfolding assm
+ unfolding le_less
+ apply simp_all
+ done
next
- assume "a = 0" then show "a + a = 0" by simp
+ assume "a = 0"
+ then show "a + a = 0" by simp
qed
-lemma zero_less_double_add_iff_zero_less_single_add [simp]:
- "0 < a + a \<longleftrightarrow> 0 < a"
+lemma zero_less_double_add_iff_zero_less_single_add [simp]: "0 < a + a \<longleftrightarrow> 0 < a"
proof (cases "a = 0")
- case True then show ?thesis by auto
+ case True
+ then show ?thesis by auto
next
- case False then show ?thesis (*FIXME tune proof*)
- unfolding less_le apply simp apply rule
- apply clarify
- apply rule
- apply assumption
- apply (rule notI)
- unfolding double_zero [symmetric, of a] apply simp
- done
+ case False
+ then show ?thesis
+ unfolding less_le
+ apply simp
+ apply rule
+ apply clarify
+ apply rule
+ apply assumption
+ apply (rule notI)
+ unfolding double_zero [symmetric, of a]
+ apply simp
+ done
qed
lemma double_add_le_zero_iff_single_add_le_zero [simp]:
- "a + a \<le> 0 \<longleftrightarrow> a \<le> 0"
+ "a + a \<le> 0 \<longleftrightarrow> a \<le> 0"
proof -
have "a + a \<le> 0 \<longleftrightarrow> 0 \<le> - (a + a)" by (subst le_minus_iff, simp)
moreover have "\<dots> \<longleftrightarrow> a \<le> 0" by simp
@@ -270,7 +276,7 @@
lemma le_minus_self_iff: "a \<le> - a \<longleftrightarrow> a \<le> 0"
proof -
from add_le_cancel_left [of "uminus a" "plus a a" zero]
- have "(a <= -a) = (a+a <= 0)"
+ have "(a <= -a) = (a+a <= 0)"
by (simp add: add_assoc[symmetric])
thus ?thesis by simp
qed
@@ -278,28 +284,28 @@
lemma minus_le_self_iff: "- a \<le> a \<longleftrightarrow> 0 \<le> a"
proof -
from add_le_cancel_left [of "uminus a" zero "plus a a"]
- have "(-a <= a) = (0 <= a+a)"
+ have "(-a <= a) = (0 <= a+a)"
by (simp add: add_assoc[symmetric])
thus ?thesis by simp
qed
lemma zero_le_iff_zero_nprt: "0 \<le> a \<longleftrightarrow> nprt a = 0"
-unfolding le_iff_inf by (simp add: nprt_def inf_commute)
+ unfolding le_iff_inf by (simp add: nprt_def inf_commute)
lemma le_zero_iff_zero_pprt: "a \<le> 0 \<longleftrightarrow> pprt a = 0"
-unfolding le_iff_sup by (simp add: pprt_def sup_commute)
+ unfolding le_iff_sup by (simp add: pprt_def sup_commute)
lemma le_zero_iff_pprt_id: "0 \<le> a \<longleftrightarrow> pprt a = a"
-unfolding le_iff_sup by (simp add: pprt_def sup_commute)
+ unfolding le_iff_sup by (simp add: pprt_def sup_commute)
lemma zero_le_iff_nprt_id: "a \<le> 0 \<longleftrightarrow> nprt a = a"
-unfolding le_iff_inf by (simp add: nprt_def inf_commute)
+ unfolding le_iff_inf by (simp add: nprt_def inf_commute)
lemma pprt_mono [simp, no_atp]: "a \<le> b \<Longrightarrow> pprt a \<le> pprt b"
-unfolding le_iff_sup by (simp add: pprt_def sup_aci sup_assoc [symmetric, of a])
+ unfolding le_iff_sup by (simp add: pprt_def sup_aci sup_assoc [symmetric, of a])
lemma nprt_mono [simp, no_atp]: "a \<le> b \<Longrightarrow> nprt a \<le> nprt b"
-unfolding le_iff_inf by (simp add: nprt_def inf_aci inf_assoc [symmetric, of a])
+ unfolding le_iff_inf by (simp add: nprt_def inf_aci inf_assoc [symmetric, of a])
end
@@ -320,8 +326,7 @@
then have "0 \<le> sup a (- a)" unfolding abs_lattice .
then have "sup (sup a (- a)) 0 = sup a (- a)" by (rule sup_absorb1)
then show ?thesis
- by (simp add: add_sup_inf_distribs sup_aci
- pprt_def nprt_def diff_minus abs_lattice)
+ by (simp add: add_sup_inf_distribs sup_aci pprt_def nprt_def diff_minus abs_lattice)
qed
subclass ordered_ab_group_add_abs
@@ -329,8 +334,10 @@
have abs_ge_zero [simp]: "\<And>a. 0 \<le> \<bar>a\<bar>"
proof -
fix a b
- have a: "a \<le> \<bar>a\<bar>" and b: "- a \<le> \<bar>a\<bar>" by (auto simp add: abs_lattice)
- show "0 \<le> \<bar>a\<bar>" by (rule add_mono [OF a b, simplified])
+ have a: "a \<le> \<bar>a\<bar>" and b: "- a \<le> \<bar>a\<bar>"
+ by (auto simp add: abs_lattice)
+ show "0 \<le> \<bar>a\<bar>"
+ by (rule add_mono [OF a b, simplified])
qed
have abs_leI: "\<And>a b. a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b"
by (simp add: abs_lattice le_supI)
@@ -340,18 +347,25 @@
by (auto simp add: abs_lattice)
show "\<bar>-a\<bar> = \<bar>a\<bar>"
by (simp add: abs_lattice sup_commute)
- show "a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b" by (fact abs_leI)
+ {
+ assume "a \<le> b"
+ then show "- a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b"
+ by (rule abs_leI)
+ }
show "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
proof -
have g:"abs a + abs b = sup (a+b) (sup (-a-b) (sup (-a+b) (a + (-b))))" (is "_=sup ?m ?n")
by (simp add: abs_lattice add_sup_inf_distribs sup_aci diff_minus)
- have a:"a+b <= sup ?m ?n" by (simp)
- have b:"-a-b <= ?n" by (simp)
- have c:"?n <= sup ?m ?n" by (simp)
- from b c have d: "-a-b <= sup ?m ?n" by(rule order_trans)
+ have a: "a + b <= sup ?m ?n" by simp
+ have b: "- a - b <= ?n" by simp
+ have c: "?n <= sup ?m ?n" by simp
+ from b c have d: "-a-b <= sup ?m ?n" by (rule order_trans)
have e:"-a-b = -(a+b)" by (simp add: diff_minus)
- from a d e have "abs(a+b) <= sup ?m ?n"
- by (drule_tac abs_leI, auto)
+ from a d e have "abs(a+b) <= sup ?m ?n"
+ apply -
+ apply (drule abs_leI)
+ apply auto
+ done
with g[symmetric] show ?thesis by simp
qed
qed
@@ -370,10 +384,10 @@
lemma abs_if_lattice:
fixes a :: "'a\<Colon>{lattice_ab_group_add_abs, linorder}"
shows "\<bar>a\<bar> = (if a < 0 then - a else a)"
-by auto
+ by auto
lemma estimate_by_abs:
- "a + b <= (c::'a::lattice_ab_group_add_abs) \<Longrightarrow> a <= c + abs b"
+ "a + b <= (c::'a::lattice_ab_group_add_abs) \<Longrightarrow> a <= c + abs b"
proof -
assume "a+b <= c"
then have "a <= c+(-b)" by (simp add: algebra_simps)
@@ -390,7 +404,7 @@
end
-lemma abs_le_mult: "abs (a * b) \<le> (abs a) * (abs (b::'a::lattice_ring))"
+lemma abs_le_mult: "abs (a * b) \<le> (abs a) * (abs (b::'a::lattice_ring))"
proof -
let ?x = "pprt a * pprt b - pprt a * nprt b - nprt a * pprt b + nprt a * nprt b"
let ?y = "pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b"
@@ -398,11 +412,11 @@
by (simp only: abs_prts[of a] abs_prts[of b] algebra_simps)
{
fix u v :: 'a
- have bh: "\<lbrakk>u = a; v = b\<rbrakk> \<Longrightarrow>
- u * v = pprt a * pprt b + pprt a * nprt b +
+ have bh: "\<lbrakk>u = a; v = b\<rbrakk> \<Longrightarrow>
+ u * v = pprt a * pprt b + pprt a * nprt b +
nprt a * pprt b + nprt a * nprt b"
apply (subst prts[of u], subst prts[of v])
- apply (simp add: algebra_simps)
+ apply (simp add: algebra_simps)
done
}
note b = this[OF refl[of a] refl[of b]]
@@ -432,7 +446,7 @@
show "abs (a*b) = abs a * abs b"
proof -
have s: "(0 <= a*b) | (a*b <= 0)"
- apply (auto)
+ apply (auto)
apply (rule_tac split_mult_pos_le)
apply (rule_tac contrapos_np[of "a*b <= 0"])
apply (simp)
@@ -448,8 +462,8 @@
then show ?thesis
apply (simp_all add: mulprts abs_prts)
apply (insert a)
- apply (auto simp add:
- algebra_simps
+ apply (auto simp add:
+ algebra_simps
iffD1[OF zero_le_iff_zero_nprt] iffD1[OF le_zero_iff_zero_pprt]
iffD1[OF le_zero_iff_pprt_id] iffD1[OF zero_le_iff_nprt_id])
apply(drule (1) mult_nonneg_nonpos[of a b], simp)
@@ -470,15 +484,14 @@
qed
lemma mult_le_prts:
- assumes
- "a1 <= (a::'a::lattice_ring)"
- "a <= a2"
- "b1 <= b"
- "b <= b2"
- shows
- "a * b <= pprt a2 * pprt b2 + pprt a1 * nprt b2 + nprt a2 * pprt b1 + nprt a1 * nprt b1"
-proof -
- have "a * b = (pprt a + nprt a) * (pprt b + nprt b)"
+ assumes "a1 <= (a::'a::lattice_ring)"
+ and "a <= a2"
+ and "b1 <= b"
+ and "b <= b2"
+ shows "a * b <=
+ pprt a2 * pprt b2 + pprt a1 * nprt b2 + nprt a2 * pprt b1 + nprt a1 * nprt b1"
+proof -
+ have "a * b = (pprt a + nprt a) * (pprt b + nprt b)"
apply (subst prts[symmetric])+
apply simp
done
@@ -496,7 +509,7 @@
by simp
qed
moreover have "nprt a * pprt b <= nprt a2 * pprt b1"
- proof -
+ proof -
have "nprt a * pprt b <= nprt a2 * pprt b"
by (simp add: mult_right_mono assms)
moreover have "nprt a2 * pprt b <= nprt a2 * pprt b1"
@@ -514,29 +527,33 @@
by simp
qed
ultimately show ?thesis
- by - (rule add_mono | simp)+
+ apply -
+ apply (rule add_mono | simp)+
+ done
qed
lemma mult_ge_prts:
- assumes
- "a1 <= (a::'a::lattice_ring)"
- "a <= a2"
- "b1 <= b"
- "b <= b2"
- shows
- "a * b >= nprt a1 * pprt b2 + nprt a2 * nprt b2 + pprt a1 * pprt b1 + pprt a2 * nprt b1"
-proof -
- from assms have a1:"- a2 <= -a" by auto
- from assms have a2: "-a <= -a1" by auto
- from mult_le_prts[of "-a2" "-a" "-a1" "b1" b "b2", OF a1 a2 assms(3) assms(4), simplified nprt_neg pprt_neg]
- have le: "- (a * b) <= - nprt a1 * pprt b2 + - nprt a2 * nprt b2 + - pprt a1 * pprt b1 + - pprt a2 * nprt b1" by simp
+ assumes "a1 <= (a::'a::lattice_ring)"
+ and "a <= a2"
+ and "b1 <= b"
+ and "b <= b2"
+ shows "a * b >=
+ nprt a1 * pprt b2 + nprt a2 * nprt b2 + pprt a1 * pprt b1 + pprt a2 * nprt b1"
+proof -
+ from assms have a1:"- a2 <= -a"
+ by auto
+ from assms have a2: "-a <= -a1"
+ by auto
+ from mult_le_prts[of "-a2" "-a" "-a1" "b1" b "b2", OF a1 a2 assms(3) assms(4), simplified nprt_neg pprt_neg]
+ have le: "- (a * b) <= - nprt a1 * pprt b2 + - nprt a2 * nprt b2 + - pprt a1 * pprt b1 + - pprt a2 * nprt b1"
+ by simp
then have "-(- nprt a1 * pprt b2 + - nprt a2 * nprt b2 + - pprt a1 * pprt b1 + - pprt a2 * nprt b1) <= a * b"
by (simp only: minus_le_iff)
then show ?thesis by simp
qed
instance int :: lattice_ring
-proof
+proof
fix k :: int
show "abs k = sup k (- k)"
by (auto simp add: sup_int_def)
--- a/src/HOL/Library/Permutation.thy Thu Aug 29 05:41:58 2013 +0200
+++ b/src/HOL/Library/Permutation.thy Thu Aug 29 05:42:37 2013 +0200
@@ -8,13 +8,12 @@
imports Multiset
begin
-inductive
- perm :: "'a list => 'a list => bool" ("_ <~~> _" [50, 50] 50)
- where
- Nil [intro!]: "[] <~~> []"
- | swap [intro!]: "y # x # l <~~> x # y # l"
- | Cons [intro!]: "xs <~~> ys ==> z # xs <~~> z # ys"
- | trans [intro]: "xs <~~> ys ==> ys <~~> zs ==> xs <~~> zs"
+inductive perm :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" ("_ <~~> _" [50, 50] 50) (* FIXME proper infix, without ambiguity!? *)
+where
+ Nil [intro!]: "[] <~~> []"
+| swap [intro!]: "y # x # l <~~> x # y # l"
+| Cons [intro!]: "xs <~~> ys \<Longrightarrow> z # xs <~~> z # ys"
+| trans [intro]: "xs <~~> ys \<Longrightarrow> ys <~~> zs \<Longrightarrow> xs <~~> zs"
lemma perm_refl [iff]: "l <~~> l"
by (induct l) auto
@@ -22,7 +21,7 @@
subsection {* Some examples of rule induction on permutations *}
-lemma xperm_empty_imp: "[] <~~> ys ==> ys = []"
+lemma xperm_empty_imp: "[] <~~> ys \<Longrightarrow> ys = []"
by (induct xs == "[]::'a list" ys pred: perm) simp_all
@@ -30,13 +29,13 @@
\medskip This more general theorem is easier to understand!
*}
-lemma perm_length: "xs <~~> ys ==> length xs = length ys"
+lemma perm_length: "xs <~~> ys \<Longrightarrow> length xs = length ys"
by (induct pred: perm) simp_all
-lemma perm_empty_imp: "[] <~~> xs ==> xs = []"
+lemma perm_empty_imp: "[] <~~> xs \<Longrightarrow> xs = []"
by (drule perm_length) auto
-lemma perm_sym: "xs <~~> ys ==> ys <~~> xs"
+lemma perm_sym: "xs <~~> ys \<Longrightarrow> ys <~~> xs"
by (induct pred: perm) auto
@@ -64,10 +63,10 @@
apply (blast intro!: perm_append_single intro: perm_sym)
done
-lemma perm_append1: "xs <~~> ys ==> l @ xs <~~> l @ ys"
+lemma perm_append1: "xs <~~> ys \<Longrightarrow> l @ xs <~~> l @ ys"
by (induct l) auto
-lemma perm_append2: "xs <~~> ys ==> xs @ l <~~> ys @ l"
+lemma perm_append2: "xs <~~> ys \<Longrightarrow> xs @ l <~~> ys @ l"
by (blast intro!: perm_append_swap perm_append1)
@@ -81,7 +80,7 @@
apply (erule perm_sym [THEN perm_empty_imp])
done
-lemma perm_sing_imp: "ys <~~> xs ==> xs = [y] ==> ys = [y]"
+lemma perm_sing_imp: "ys <~~> xs \<Longrightarrow> xs = [y] \<Longrightarrow> ys = [y]"
by (induct pred: perm) auto
lemma perm_sing_eq [iff]: "(ys <~~> [y]) = (ys = [y])"
@@ -93,29 +92,26 @@
subsection {* Removing elements *}
-lemma perm_remove: "x \<in> set ys ==> ys <~~> x # remove1 x ys"
+lemma perm_remove: "x \<in> set ys \<Longrightarrow> ys <~~> x # remove1 x ys"
by (induct ys) auto
text {* \medskip Congruence rule *}
-lemma perm_remove_perm: "xs <~~> ys ==> remove1 z xs <~~> remove1 z ys"
+lemma perm_remove_perm: "xs <~~> ys \<Longrightarrow> remove1 z xs <~~> remove1 z ys"
by (induct pred: perm) auto
lemma remove_hd [simp]: "remove1 z (z # xs) = xs"
by auto
-lemma cons_perm_imp_perm: "z # xs <~~> z # ys ==> xs <~~> ys"
+lemma cons_perm_imp_perm: "z # xs <~~> z # ys \<Longrightarrow> xs <~~> ys"
by (drule_tac z = z in perm_remove_perm) auto
lemma cons_perm_eq [iff]: "(z#xs <~~> z#ys) = (xs <~~> ys)"
by (blast intro: cons_perm_imp_perm)
-lemma append_perm_imp_perm: "zs @ xs <~~> zs @ ys ==> xs <~~> ys"
- apply (induct zs arbitrary: xs ys rule: rev_induct)
- apply (simp_all (no_asm_use))
- apply blast
- done
+lemma append_perm_imp_perm: "zs @ xs <~~> zs @ ys \<Longrightarrow> xs <~~> ys"
+ by (induct zs arbitrary: xs ys rule: rev_induct) auto
lemma perm_append1_eq [iff]: "(zs @ xs <~~> zs @ ys) = (xs <~~> ys)"
by (blast intro: append_perm_imp_perm perm_append1)
@@ -135,38 +131,38 @@
apply (induct_tac xs, auto)
apply (erule_tac x = "remove1 a x" in allE, drule sym, simp)
apply (subgoal_tac "a \<in> set x")
- apply (drule_tac z=a in perm.Cons)
+ apply (drule_tac z = a in perm.Cons)
apply (erule perm.trans, rule perm_sym, erule perm_remove)
apply (drule_tac f=set_of in arg_cong, simp)
done
-lemma multiset_of_le_perm_append:
- "multiset_of xs \<le> multiset_of ys \<longleftrightarrow> (\<exists>zs. xs @ zs <~~> ys)"
+lemma multiset_of_le_perm_append: "multiset_of xs \<le> multiset_of ys \<longleftrightarrow> (\<exists>zs. xs @ zs <~~> ys)"
apply (auto simp: multiset_of_eq_perm[THEN sym] mset_le_exists_conv)
apply (insert surj_multiset_of, drule surjD)
apply (blast intro: sym)+
done
-lemma perm_set_eq: "xs <~~> ys ==> set xs = set ys"
+lemma perm_set_eq: "xs <~~> ys \<Longrightarrow> set xs = set ys"
by (metis multiset_of_eq_perm multiset_of_eq_setD)
-lemma perm_distinct_iff: "xs <~~> ys ==> distinct xs = distinct ys"
+lemma perm_distinct_iff: "xs <~~> ys \<Longrightarrow> distinct xs = distinct ys"
apply (induct pred: perm)
apply simp_all
apply fastforce
apply (metis perm_set_eq)
done
-lemma eq_set_perm_remdups: "set xs = set ys ==> remdups xs <~~> remdups ys"
+lemma eq_set_perm_remdups: "set xs = set ys \<Longrightarrow> remdups xs <~~> remdups ys"
apply (induct xs arbitrary: ys rule: length_induct)
- apply (case_tac "remdups xs", simp, simp)
- apply (subgoal_tac "a : set (remdups ys)")
+ apply (case_tac "remdups xs")
+ apply simp_all
+ apply (subgoal_tac "a \<in> set (remdups ys)")
prefer 2 apply (metis set.simps(2) insert_iff set_remdups)
apply (drule split_list) apply(elim exE conjE)
apply (drule_tac x=list in spec) apply(erule impE) prefer 2
apply (drule_tac x="ysa@zs" in spec) apply(erule impE) prefer 2
apply simp
- apply (subgoal_tac "a#list <~~> a#ysa@zs")
+ apply (subgoal_tac "a # list <~~> a # ysa @ zs")
apply (metis Cons_eq_appendI perm_append_Cons trans)
apply (metis Cons Cons_eq_appendI distinct.simps(2)
distinct_remdups distinct_remdups_id perm_append_swap perm_distinct_iff)
@@ -180,21 +176,23 @@
apply (rule length_remdups_leq)
done
-lemma perm_remdups_iff_eq_set: "remdups x <~~> remdups y = (set x = set y)"
+lemma perm_remdups_iff_eq_set: "remdups x <~~> remdups y \<longleftrightarrow> (set x = set y)"
by (metis List.set_remdups perm_set_eq eq_set_perm_remdups)
lemma permutation_Ex_bij:
assumes "xs <~~> ys"
shows "\<exists>f. bij_betw f {..<length xs} {..<length ys} \<and> (\<forall>i<length xs. xs ! i = ys ! (f i))"
using assms proof induct
- case Nil then show ?case unfolding bij_betw_def by simp
+ case Nil
+ then show ?case unfolding bij_betw_def by simp
next
case (swap y x l)
show ?case
proof (intro exI[of _ "Fun.swap 0 1 id"] conjI allI impI)
show "bij_betw (Fun.swap 0 1 id) {..<length (y # x # l)} {..<length (x # y # l)}"
by (auto simp: bij_betw_def)
- fix i assume "i < length(y#x#l)"
+ fix i
+ assume "i < length(y#x#l)"
show "(y # x # l) ! i = (x # y # l) ! (Fun.swap 0 1 id) i"
by (cases i) (auto simp: Fun.swap_def gr0_conv_Suc)
qed
@@ -202,19 +200,21 @@
case (Cons xs ys z)
then obtain f where bij: "bij_betw f {..<length xs} {..<length ys}" and
perm: "\<forall>i<length xs. xs ! i = ys ! (f i)" by blast
- let "?f i" = "case i of Suc n \<Rightarrow> Suc (f n) | 0 \<Rightarrow> 0"
+ let ?f = "\<lambda>i. case i of Suc n \<Rightarrow> Suc (f n) | 0 \<Rightarrow> 0"
show ?case
proof (intro exI[of _ ?f] allI conjI impI)
have *: "{..<length (z#xs)} = {0} \<union> Suc ` {..<length xs}"
"{..<length (z#ys)} = {0} \<union> Suc ` {..<length ys}"
by (simp_all add: lessThan_Suc_eq_insert_0)
- show "bij_betw ?f {..<length (z#xs)} {..<length (z#ys)}" unfolding *
+ show "bij_betw ?f {..<length (z#xs)} {..<length (z#ys)}"
+ unfolding *
proof (rule bij_betw_combine)
show "bij_betw ?f (Suc ` {..<length xs}) (Suc ` {..<length ys})"
using bij unfolding bij_betw_def
by (auto intro!: inj_onI imageI dest: inj_onD simp: image_compose[symmetric] comp_def)
qed (auto simp: bij_betw_def)
- fix i assume "i < length (z#xs)"
+ fix i
+ assume "i < length (z#xs)"
then show "(z # xs) ! i = (z # ys) ! (?f i)"
using perm by (cases i) auto
qed
@@ -224,13 +224,13 @@
bij: "bij_betw f {..<length xs} {..<length ys}" "bij_betw g {..<length ys} {..<length zs}" and
perm: "\<forall>i<length xs. xs ! i = ys ! (f i)" "\<forall>i<length ys. ys ! i = zs ! (g i)" by blast
show ?case
- proof (intro exI[of _ "g\<circ>f"] conjI allI impI)
+ proof (intro exI[of _ "g \<circ> f"] conjI allI impI)
show "bij_betw (g \<circ> f) {..<length xs} {..<length zs}"
using bij by (rule bij_betw_trans)
fix i assume "i < length xs"
with bij have "f i < length ys" unfolding bij_betw_def by force
with `i < length xs` show "xs ! i = zs ! (g \<circ> f) i"
- using trans(1,3)[THEN perm_length] perm by force
+ using trans(1,3)[THEN perm_length] perm by auto
qed
qed
--- a/src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy Thu Aug 29 05:41:58 2013 +0200
+++ b/src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy Thu Aug 29 05:42:37 2013 +0200
@@ -29,7 +29,8 @@
apply (cases "b=0")
defer
apply (rule divide_nonneg_pos)
- using assms apply auto
+ using assms
+ apply auto
done
lemma brouwer_compactness_lemma:
@@ -95,12 +96,15 @@
shows "setsum g C = setsum g A + setsum g B"
using setsum_Un_disjoint[OF assms(1-3)] and assms(4) by auto
-lemma kuhn_counting_lemma: assumes "finite faces" "finite simplices"
- "\<forall>f\<in>faces. bnd f \<longrightarrow> (card {s \<in> simplices. face f s} = 1)"
- "\<forall>f\<in>faces. \<not> bnd f \<longrightarrow> (card {s \<in> simplices. face f s} = 2)"
- "\<forall>s\<in>simplices. compo s \<longrightarrow> (card {f \<in> faces. face f s \<and> compo' f} = 1)"
- "\<forall>s\<in>simplices. \<not> compo s \<longrightarrow> (card {f \<in> faces. face f s \<and> compo' f} = 0) \<or>
- (card {f \<in> faces. face f s \<and> compo' f} = 2)"
+lemma kuhn_counting_lemma:
+ assumes
+ "finite faces"
+ "finite simplices"
+ "\<forall>f\<in>faces. bnd f \<longrightarrow> (card {s \<in> simplices. face f s} = 1)"
+ "\<forall>f\<in>faces. \<not> bnd f \<longrightarrow> (card {s \<in> simplices. face f s} = 2)"
+ "\<forall>s\<in>simplices. compo s \<longrightarrow> (card {f \<in> faces. face f s \<and> compo' f} = 1)"
+ "\<forall>s\<in>simplices. \<not> compo s \<longrightarrow>
+ (card {f \<in> faces. face f s \<and> compo' f} = 0) \<or> (card {f \<in> faces. face f s \<and> compo' f} = 2)"
"odd(card {f \<in> faces. compo' f \<and> bnd f})"
shows "odd(card {s \<in> simplices. compo s})"
proof -
@@ -117,28 +121,39 @@
using assms(1)
apply (auto simp add: card_Un_Int, auto simp add:conj_commute)
done
- have lem2:"setsum (\<lambda>j. card {f \<in> {f \<in> faces. compo' f \<and> bnd f}. face f j}) simplices =
- 1 * card {f \<in> faces. compo' f \<and> bnd f}"
- "setsum (\<lambda>j. card {f \<in> {f \<in> faces. compo' f \<and> \<not> bnd f}. face f j}) simplices =
- 2 * card {f \<in> faces. compo' f \<and> \<not> bnd f}"
+ have lem2:
+ "setsum (\<lambda>j. card {f \<in> {f \<in> faces. compo' f \<and> bnd f}. face f j}) simplices =
+ 1 * card {f \<in> faces. compo' f \<and> bnd f}"
+ "setsum (\<lambda>j. card {f \<in> {f \<in> faces. compo' f \<and> \<not> bnd f}. face f j}) simplices =
+ 2 * card {f \<in> faces. compo' f \<and> \<not> bnd f}"
apply(rule_tac[!] setsum_multicount)
using assms
apply auto
done
- have lem3:"setsum (\<lambda>s. card {f \<in> faces. face f s \<and> compo' f}) simplices =
- setsum (\<lambda>s. card {f \<in> faces. face f s \<and> compo' f}) {s \<in> simplices. compo s}+
- setsum (\<lambda>s. card {f \<in> faces. face f s \<and> compo' f}) {s \<in> simplices. \<not> compo s}"
- apply(rule setsum_Un_disjoint') using assms(2) by auto
- have lem4:"setsum (\<lambda>s. card {f \<in> faces. face f s \<and> compo' f}) {s \<in> simplices. compo s}
- = setsum (\<lambda>s. 1) {s \<in> simplices. compo s}"
- apply(rule setsum_cong2) using assms(5) by auto
+ have lem3:
+ "setsum (\<lambda>s. card {f \<in> faces. face f s \<and> compo' f}) simplices =
+ setsum (\<lambda>s. card {f \<in> faces. face f s \<and> compo' f}) {s \<in> simplices. compo s}+
+ setsum (\<lambda>s. card {f \<in> faces. face f s \<and> compo' f}) {s \<in> simplices. \<not> compo s}"
+ apply (rule setsum_Un_disjoint')
+ using assms(2)
+ apply auto
+ done
+ have lem4: "setsum (\<lambda>s. card {f \<in> faces. face f s \<and> compo' f}) {s \<in> simplices. compo s} =
+ setsum (\<lambda>s. 1) {s \<in> simplices. compo s}"
+ apply (rule setsum_cong2)
+ using assms(5)
+ apply auto
+ done
have lem5: "setsum (\<lambda>s. card {f \<in> faces. face f s \<and> compo' f}) {s \<in> simplices. \<not> compo s} =
setsum (\<lambda>s. card {f \<in> faces. face f s \<and> compo' f})
{s \<in> simplices. (\<not> compo s) \<and> (card {f \<in> faces. face f s \<and> compo' f} = 0)} +
setsum (\<lambda>s. card {f \<in> faces. face f s \<and> compo' f})
{s \<in> simplices. (\<not> compo s) \<and> (card {f \<in> faces. face f s \<and> compo' f} = 2)}"
- apply(rule setsum_Un_disjoint') using assms(2,6) by auto
- have *:"int (\<Sum>s\<in>{s \<in> simplices. compo s}. card {f \<in> faces. face f s \<and> compo' f}) =
+ apply (rule setsum_Un_disjoint')
+ using assms(2,6)
+ apply auto
+ done
+ have *: "int (\<Sum>s\<in>{s \<in> simplices. compo s}. card {f \<in> faces. face f s \<and> compo' f}) =
int (card {f \<in> faces. compo' f \<and> bnd f} + 2 * card {f \<in> faces. compo' f \<and> \<not> bnd f}) -
int (card {s \<in> simplices. \<not> compo s \<and> card {f \<in> faces. face f s \<and> compo' f} = 2} * 2)"
using lem1[unfolded lem3 lem2 lem5] by auto
@@ -175,7 +190,8 @@
apply (rule as(2)[rule_format]) using as(1)
apply auto
done
- show "card s = Suc 0" unfolding * using card_insert by auto
+ show "card s = Suc 0"
+ unfolding * using card_insert by auto
qed auto
lemma card_2_exists: "card s = 2 \<longleftrightarrow> (\<exists>x\<in>s. \<exists>y\<in>s. x \<noteq> y \<and> (\<forall>z\<in>s. (z = x) \<or> (z = y)))"
@@ -227,7 +243,8 @@
apply (rule set_eqI)
unfolding singleton_iff
apply (rule, rule inj[unfolded inj_on_def, rule_format])
- unfolding a using a(2) and assms and inj[unfolded inj_on_def] apply auto
+ unfolding a using a(2) and assms and inj[unfolded inj_on_def]
+ apply auto
done
show ?thesis
apply (rule image_lemma_0)
@@ -245,7 +262,8 @@
then show ?thesis
apply -
apply (rule disjI1, rule image_lemma_0)
- using assms(1) apply auto
+ using assms(1)
+ apply auto
done
next
let ?M = "{a\<in>s. f ` (s - {a}) = t - {b}}"
@@ -317,7 +335,9 @@
using assms(3) by (auto intro: card_ge_0_finite)
show "finite {f. \<exists>s\<in>simplices. face f s}"
unfolding assms(2)[rule_format] and *
- apply (rule finite_UN_I[OF assms(1)]) using ** apply auto
+ apply (rule finite_UN_I[OF assms(1)])
+ using **
+ apply auto
done
have *: "\<And>P f s. s\<in>simplices \<Longrightarrow> (f \<in> {f. \<exists>s\<in>simplices. \<exists>a\<in>s. f = s - {a}}) \<and>
(\<exists>a\<in>s. (f = s - {a})) \<and> P f \<longleftrightarrow> (\<exists>a\<in>s. (f = s - {a}) \<and> P f)" by auto
@@ -334,7 +354,8 @@
show "rl ` s = {0..n+1} \<Longrightarrow> card ?S = 1" "rl ` s \<noteq> {0..n+1} \<Longrightarrow> card ?S = 0 \<or> card ?S = 2"
unfolding S
apply(rule_tac[!] image_lemma_1 image_lemma_2)
- using ** assms(4) and s apply auto
+ using ** assms(4) and s
+ apply auto
done
qed
@@ -427,9 +448,9 @@
lemma pointwise_antisym:
fixes x :: "nat \<Rightarrow> nat"
- shows "(\<forall>j. x j \<le> y j) \<and> (\<forall>j. y j \<le> x j) \<longleftrightarrow> (x = y)"
+ shows "(\<forall>j. x j \<le> y j) \<and> (\<forall>j. y j \<le> x j) \<longleftrightarrow> x = y"
apply (rule, rule ext, erule conjE)
- apply (erule_tac x=xa in allE)+
+ apply (erule_tac x = xa in allE)+
apply auto
done
@@ -489,11 +510,12 @@
apply (rule pointwise_minimal_pointwise_maximal(1)[OF assms(1-2)])
apply (rule, rule)
apply (drule_tac assms(3)[rule_format], assumption)
- using kle_imp_pointwise apply auto
+ using kle_imp_pointwise
+ apply auto
done
then guess a .. note a = this
show ?thesis
- apply (rule_tac x=a in bexI)
+ apply (rule_tac x = a in bexI)
proof
fix x
assume "x \<in> s"
@@ -502,13 +524,14 @@
apply -
proof (erule disjE)
assume "kle n x a"
- hence "x = a"
+ then have "x = a"
apply -
unfolding pointwise_antisym[symmetric]
apply (drule kle_imp_pointwise)
- using a(2)[rule_format,OF `x\<in>s`] apply auto
+ using a(2)[rule_format,OF `x\<in>s`]
+ apply auto
done
- thus ?thesis using kle_refl by auto
+ then show ?thesis using kle_refl by auto
qed
qed (insert a, auto)
qed
@@ -563,16 +586,18 @@
"m1 \<le> card {k\<in>{1..n}. x k < y k}"
"m2 \<le> card {k\<in>{1..n}. y k < z k}"
shows "kle n x z \<and> m1 + m2 \<le> card {k\<in>{1..n}. x k < z k}"
- apply (rule, rule kle_trans[OF assms(1-3)])
+ apply (rule, rule kle_trans[OF assms(1-3)])
proof -
have "\<And>j. x j < y j \<Longrightarrow> x j < z j"
apply (rule less_le_trans)
- using kle_imp_pointwise[OF assms(2)] apply auto
+ using kle_imp_pointwise[OF assms(2)]
+ apply auto
done
moreover
have "\<And>j. y j < z j \<Longrightarrow> x j < z j"
apply (rule le_less_trans)
- using kle_imp_pointwise[OF assms(1)] apply auto
+ using kle_imp_pointwise[OF assms(1)]
+ apply auto
done
ultimately
have *: "{k\<in>{1..n}. x k < y k} \<union> {k\<in>{1..n}. y k < z k} = {k\<in>{1..n}. x k < z k}"
@@ -653,12 +678,14 @@
have "1 \<le> card {k \<in> {1..n}. a k < x k}" "m \<le> card {k \<in> {1..n}. x k < b k}"
apply (rule kle_strict_set)
apply (rule a(2)[rule_format])
- using a and xb apply auto
+ using a and xb
+ apply auto
done
thus ?thesis
apply (rule_tac x=a in bexI, rule_tac x=b in bexI)
using kle_range_combine[OF a(2)[rule_format] xb(3) Suc(5)[rule_format], of 1 "m"]
- using a(1) xb(1-2) apply auto
+ using a(1) xb(1-2)
+ apply auto
done
next
case True
@@ -691,7 +718,8 @@
show ?thesis
unfolding kle_def
apply (rule_tac x="kk1 \<union> kk2" in exI)
- apply (rule) defer
+ apply rule
+ defer
proof
fix i
show "c i = a i + (if i \<in> kk1 \<union> kk2 then 1 else 0)"
@@ -742,7 +770,7 @@
lemma kle_adjacent:
assumes "\<forall>j. b j = (if j = k then a(j) + 1 else a j)" "kle n a x" "kle n x b"
- shows "(x = a) \<or> (x = b)"
+ shows "x = a \<or> x = b"
proof (cases "x k = a k")
case True
show ?thesis
@@ -757,17 +785,22 @@
using True
apply auto
done
- thus "x j = a j" using kle_imp_pointwise[OF assms(2),THEN spec[where x=j]] by auto
+ then show "x j = a j"
+ using kle_imp_pointwise[OF assms(2),THEN spec[where x=j]] by auto
qed
next
case False
show ?thesis apply(rule disjI2,rule ext)
proof -
fix j
- have "x j \<ge> b j" using kle_imp_pointwise[OF assms(2),THEN spec[where x=j]]
- unfolding assms(1)[rule_format] apply-apply(cases "j=k")
+ have "x j \<ge> b j"
+ using kle_imp_pointwise[OF assms(2),THEN spec[where x=j]]
+ unfolding assms(1)[rule_format]
+ apply -
+ apply(cases "j = k")
using False by auto
- thus "x j = b j" using kle_imp_pointwise[OF assms(3),THEN spec[where x=j]]
+ then show "x j = b j"
+ using kle_imp_pointwise[OF assms(3),THEN spec[where x=j]]
by auto
qed
qed
@@ -818,16 +851,18 @@
using `s\<noteq>{}` assm using kle_minimal[of s n] by auto
obtain b where b: "b \<in> s" "\<forall>x\<in>s. kle n x b"
using `s\<noteq>{}` assm using kle_maximal[of s n] by auto
- obtain c d where c_d: "c\<in>s" "d\<in>s" "kle n c d" "n \<le> card {k \<in> {1..n}. c k < d k}"
+ obtain c d where c_d: "c \<in> s" "d \<in> s" "kle n c d" "n \<le> card {k \<in> {1..n}. c k < d k}"
using kle_range_induct[of s n n] using assm by auto
have "kle n c b \<and> n \<le> card {k \<in> {1..n}. c k < b k}"
apply (rule kle_range_combine_r[where y=d])
- using c_d a b apply auto
+ using c_d a b
+ apply auto
done
hence "kle n a b \<and> n \<le> card {k\<in>{1..n}. a(k) < b(k)}"
apply -
apply (rule kle_range_combine_l[where y=c])
- using a `c\<in>s` `b\<in>s` apply auto
+ using a `c \<in> s` `b \<in> s`
+ apply auto
done
moreover
have "card {1..n} \<ge> card {k\<in>{1..n}. a(k) < b(k)}"
@@ -897,16 +932,18 @@
case False
then obtain b where b: "b\<in>s" "\<not> kle n b a" "\<forall>x\<in>{x \<in> s. \<not> kle n x a}. kle n b x"
using kle_minimal[of "{x\<in>s. \<not> kle n x a}" n] and assm by auto
- hence **: "1 \<le> card {k\<in>{1..n}. a k < b k}"
+ then have **: "1 \<le> card {k\<in>{1..n}. a k < b k}"
apply -
apply (rule kle_strict_set)
- using assm(6) and `a\<in>s` apply (auto simp add:kle_refl)
+ using assm(6) and `a\<in>s`
+ apply (auto simp add:kle_refl)
done
let ?kle1 = "{x \<in> s. \<not> kle n x a}"
have "card ?kle1 > 0"
apply (rule ccontr)
- using assm(2) and False apply auto
+ using assm(2) and False
+ apply auto
done
hence sizekle1: "card ?kle1 = Suc (card ?kle1 - 1)"
using assm(2) by auto
@@ -917,7 +954,8 @@
let ?kle2 = "{x \<in> s. kle n x a}"
have "card ?kle2 > 0"
apply (rule ccontr)
- using assm(6)[rule_format,of a a] and `a\<in>s` and assm(2) apply auto
+ using assm(6)[rule_format,of a a] and `a\<in>s` and assm(2)
+ apply auto
done
hence sizekle2: "card ?kle2 = Suc (card ?kle2 - 1)"
using assm(2) by auto
@@ -940,11 +978,13 @@
by auto
have "kle n e a \<and> card {x \<in> s. kle n x a} - 1 \<le> card {k \<in> {1..n}. e k < a k}"
apply (rule kle_range_combine_r[where y=f])
- using e_f using `a\<in>s` assm(6) apply auto
+ using e_f using `a\<in>s` assm(6)
+ apply auto
done
moreover have "kle n b d \<and> card {x \<in> s. \<not> kle n x a} - 1 \<le> card {k \<in> {1..n}. b k < d k}"
apply (rule kle_range_combine_l[where y=c])
- using c_d using assm(6) and b apply auto
+ using c_d using assm(6) and b
+ apply auto
done
hence "kle n a d \<and> 2 + (card {x \<in> s. \<not> kle n x a} - 1) \<le> card {k \<in> {1..n}. a k < d k}"
apply -
@@ -975,24 +1015,27 @@
have kkk: "k \<in> kk"
apply (rule ccontr)
using k(1)
- unfolding kk apply auto
+ unfolding kk
+ apply auto
done
show "b j = (if j = k then a j + 1 else a j)"
proof (cases "j \<in> kk")
case True
- hence "j = k"
- apply - apply (rule k(2)[rule_format])
- using kk_raw kkk apply auto
- done
- thus ?thesis unfolding kk using kkk by auto
+ then have "j = k"
+ apply -
+ apply (rule k(2)[rule_format])
+ using kk_raw kkk
+ apply auto
+ done
+ then show ?thesis unfolding kk using kkk by auto
next
case False
- hence "j \<noteq> k"
+ then have "j \<noteq> k"
using k(2)[rule_format, of j k] and kk_raw kkk by auto
- thus ?thesis unfolding kk using kkk and False
+ then show ?thesis unfolding kk using kkk and False
by auto
qed
- qed(insert k(1) `b\<in>s`, auto)
+ qed (insert k(1) `b\<in>s`, auto)
qed
lemma ksimplex_predecessor:
@@ -1009,13 +1052,15 @@
hence **: "1 \<le> card {k\<in>{1..n}. a k > b k}"
apply -
apply (rule kle_strict_set)
- using assm(6) and `a\<in>s` apply (auto simp add: kle_refl)
+ using assm(6) and `a\<in>s`
+ apply (auto simp add: kle_refl)
done
let ?kle1 = "{x \<in> s. \<not> kle n a x}"
have "card ?kle1 > 0"
apply (rule ccontr)
- using assm(2) and False apply auto
+ using assm(2) and False
+ apply auto
done
hence sizekle1: "card ?kle1 = Suc (card ?kle1 - 1)"
using assm(2) by auto
@@ -1026,7 +1071,8 @@
let ?kle2 = "{x \<in> s. kle n a x}"
have "card ?kle2 > 0"
apply (rule ccontr)
- using assm(6)[rule_format,of a a] and `a\<in>s` and assm(2) apply auto
+ using assm(6)[rule_format,of a a] and `a\<in>s` and assm(2)
+ apply auto
done
hence sizekle2:"card ?kle2 = Suc (card ?kle2 - 1)"
using assm(2) by auto
@@ -1049,11 +1095,13 @@
by auto
have "kle n a e \<and> card {x \<in> s. kle n a x} - 1 \<le> card {k \<in> {1..n}. e k > a k}"
apply (rule kle_range_combine_l[where y=f])
- using e_f and `a\<in>s` assm(6) apply auto
+ using e_f and `a\<in>s` assm(6)
+ apply auto
done
moreover have "kle n d b \<and> card {x \<in> s. \<not> kle n a x} - 1 \<le> card {k \<in> {1..n}. b k > d k}"
apply (rule kle_range_combine_r[where y=c])
- using c_d and assm(6) and b apply auto
+ using c_d and assm(6) and b
+ apply auto
done
hence "kle n d a \<and> (card {x \<in> s. \<not> kle n a x} - 1) + 2 \<le> card {k \<in> {1..n}. a k > d k}"
apply -
@@ -1063,7 +1111,8 @@
ultimately have "kle n d e \<and> (card ?kle1 - 1 + 2) + (card ?kle2 - 1) \<le> card {k\<in>{1..n}. e k > d k}"
apply -
apply (rule kle_range_combine[where y=a])
- using assm(6)[rule_format,OF `e\<in>s` `d\<in>s`] apply blast+
+ using assm(6)[rule_format,OF `e\<in>s` `d\<in>s`]
+ apply blast+
done
moreover have "card {k \<in> {1..n}. e k > d k} \<le> card {1..n}"
by (rule card_mono) auto
@@ -1092,7 +1141,8 @@
hence "j = k"
apply -
apply (rule k(2)[rule_format])
- using kk_raw kkk apply auto
+ using kk_raw kkk
+ apply auto
done
thus ?thesis unfolding kk using kkk by auto
next
@@ -1115,14 +1165,14 @@
using assms
apply -
proof (induct m arbitrary: s)
- have *:"{f. \<forall>x. f x = d} = {\<lambda>x. d}"
+ case 0
+ have [simp]: "{f. \<forall>x. f x = d} = {\<lambda>x. d}"
apply (rule set_eqI,rule)
unfolding mem_Collect_eq
apply (rule, rule ext)
apply auto
done
- case 0
- thus ?case by(auto simp add: *)
+ from 0 show ?case by auto
next
case (Suc m)
guess a using card_eq_SucD[OF Suc(4)] ..
@@ -1246,9 +1296,8 @@
then guess k unfolding kle_def .. note k = this
hence *: "n + 1 \<notin> k" using xyp by auto
have "\<not> (\<exists>x\<in>k. x\<notin>{1..n})"
- apply (rule ccontr)
- unfolding not_not
- apply(erule bexE)
+ apply (rule notI)
+ apply (erule bexE)
proof -
fix x
assume as: "x \<in> k" "x \<notin> {1..n}"
@@ -1268,23 +1317,25 @@
hence "kle (n + 1) y x"
using ksimplexD(6)[OF sa(1),rule_format, of x y] and as by auto
then guess k unfolding kle_def .. note k = this
- hence *: "n + 1 \<notin> k" using xyp by auto
- hence "\<not> (\<exists>x\<in>k. x\<notin>{1..n})"
+ then have *: "n + 1 \<notin> k" using xyp by auto
+ then have "\<not> (\<exists>x\<in>k. x\<notin>{1..n})"
apply -
- apply (rule ccontr)
- unfolding not_not
+ apply (rule notI)
apply (erule bexE)
proof -
fix x
assume as: "x \<in> k" "x \<notin> {1..n}"
have "x \<noteq> n + 1" using as and * by auto
- thus False using as and k[THEN conjunct1,unfolded subset_eq] by auto
+ then show False using as and k[THEN conjunct1,unfolded subset_eq] by auto
qed
- thus ?thesis
+ then show ?thesis
apply -
apply (rule disjI2)
unfolding kle_def
- using k apply (rule_tac x = k in exI) by auto
+ using k
+ apply (rule_tac x = k in exI)
+ apply auto
+ done
qed
next
fix x j
@@ -1298,13 +1349,14 @@
qed (insert sa ksimplexD[OF sa(1)], auto)
next
assume ?rs note rs=ksimplexD[OF this]
- guess a b apply (rule ksimplex_extrema[OF `?rs`]) . note ab = this
+ guess a b by (rule ksimplex_extrema[OF `?rs`]) note ab = this
def c \<equiv> "\<lambda>i. if i = (n + 1) then p - 1 else a i"
have "c \<notin> f"
- apply (rule ccontr) unfolding not_not
+ apply (rule notI)
apply (drule assms(2)[rule_format])
unfolding c_def
- using assms(1) apply auto
+ using assms(1)
+ apply auto
done
thus ?ls
apply (rule_tac x = "insert c f" in exI, rule_tac x = c in exI)
@@ -1326,12 +1378,16 @@
show ?thesis
unfolding True c_def
apply (cases "j=n+1")
- using ab(1) and rs(4) apply auto
+ using ab(1) and rs(4)
+ apply auto
done
qed (insert x rs(4), auto simp add:c_def)
show "j \<notin> {1..n + 1} \<longrightarrow> x j = p"
apply (cases "x = c")
- using x ab(1) rs(5) unfolding c_def by auto
+ using x ab(1) rs(5)
+ unfolding c_def
+ apply auto
+ done
{
fix z
assume z: "z \<in> insert c f"
@@ -1359,9 +1415,9 @@
assume y: "y \<in> insert c f"
show "kle (n + 1) x y \<or> kle (n + 1) y x"
proof (cases "x = c \<or> y = c")
- case False hence **:"x\<in>f" "y\<in>f" using x y by auto
+ case False hence **: "x \<in> f" "y \<in> f" using x y by auto
show ?thesis using rs(6)[rule_format,OF **]
- by(auto dest: kle_Suc)
+ by (auto dest: kle_Suc)
qed (insert * x y, auto)
qed (insert rs, auto)
qed
@@ -1377,7 +1433,9 @@
apply (rule ccontr)
using *[OF assms(3), of a0 a1]
unfolding assms(6)[THEN spec[where x=j]]
- using assms(1-2,4-5) by auto
+ using assms(1-2,4-5)
+ apply auto
+ done
qed
lemma ksimplex_fix_plane_0:
@@ -1399,11 +1457,11 @@
proof (rule ccontr)
note s = ksimplexD[OF assms(1),rule_format]
assume as: "a \<noteq> a0"
- hence *: "a0 \<in> s - {a}"
+ then have *: "a0 \<in> s - {a}"
using assms(5) by auto
- hence "a1 = a"
+ then have "a1 = a"
using ksimplex_fix_plane[OF assms(2-)] by auto
- thus False
+ then show False
using as and assms(3,5) and assms(7)[rule_format,of j]
unfolding assms(4)[rule_format,OF *]
using s(4)[OF assms(6), of j]
@@ -1422,7 +1480,8 @@
guess a0 a1 by (rule ksimplex_extrema_strong[OF assms(1,3)]) note exta = this[rule_format]
have a:"a = a1"
apply (rule ksimplex_fix_plane_0[OF assms(2,4-5)])
- using exta(1-2,5) apply auto
+ using exta(1-2,5)
+ apply auto
done
moreover
guess b0 b1 by (rule ksimplex_extrema_strong[OF goal1(1) assms(3)])
@@ -1430,7 +1489,9 @@
have a': "a' = b1"
apply (rule ksimplex_fix_plane_0[OF goal1(2) assms(4), of b0])
unfolding goal1(3)
- using assms extb goal1 apply auto done
+ using assms extb goal1
+ apply auto
+ done
moreover
have "b0 = a0"
unfolding kle_antisym[symmetric, of b0 a0 n]
@@ -1446,7 +1507,8 @@
show "s' = s"
apply -
apply (rule *[of _ a1 b1])
- using exta(1-2) extb(1-2) goal1 apply auto
+ using exta(1-2) extb(1-2) goal1
+ apply auto
done
qed
show ?thesis
@@ -1457,7 +1519,8 @@
defer
apply (erule conjE bexE)+
apply (rule_tac a'=b in **)
- using assms(1,2) apply auto
+ using assms(1,2)
+ apply auto
done
qed
@@ -2774,46 +2837,148 @@
lemma kuhn_induction:
assumes "0 < p" "\<forall>x. \<forall>j\<in>{1..n+1}. (\<forall>j. x j \<le> p) \<and> (x j = 0) \<longrightarrow> (lab x j = 0)"
- "\<forall>x. \<forall>j\<in>{1..n+1}. (\<forall>j. x j \<le> p) \<and> (x j = p) \<longrightarrow> (lab x j = 1)"
- "odd (card {f. ksimplex p n f \<and> ((reduced lab n) ` f = {0..n})})"
- shows "odd (card {s. ksimplex p (n+1) s \<and>((reduced lab (n+1)) ` s = {0..n+1})})" proof-
- have *:"\<And>s t. odd (card s) \<Longrightarrow> s = t \<Longrightarrow> odd (card t)" "\<And>s f. (\<And>x. f x \<le> n +1 ) \<Longrightarrow> f ` s \<subseteq> {0..n+1}" by auto
- show ?thesis apply(rule kuhn_simplex_lemma[unfolded mem_Collect_eq]) apply(rule,rule,rule *,rule reduced_labelling)
- apply(rule *(1)[OF assms(4)]) apply(rule set_eqI) unfolding mem_Collect_eq apply(rule,erule conjE) defer apply(rule) proof-(*(rule,rule)*)
- fix f assume as:"ksimplex p n f" "reduced lab n ` f = {0..n}"
- have *:"\<forall>x\<in>f. \<forall>j\<in>{1..n + 1}. x j = 0 \<longrightarrow> lab x j = 0" "\<forall>x\<in>f. \<forall>j\<in>{1..n + 1}. x j = p \<longrightarrow> lab x j = 1"
+ "\<forall>x. \<forall>j\<in>{1..n+1}. (\<forall>j. x j \<le> p) \<and> (x j = p) \<longrightarrow> (lab x j = 1)"
+ "odd (card {f. ksimplex p n f \<and> ((reduced lab n) ` f = {0..n})})"
+ shows "odd (card {s. ksimplex p (n+1) s \<and>((reduced lab (n+1)) ` s = {0..n+1})})"
+proof -
+ have *: "\<And>s t. odd (card s) \<Longrightarrow> s = t \<Longrightarrow> odd (card t)"
+ "\<And>s f. (\<And>x. f x \<le> n +1 ) \<Longrightarrow> f ` s \<subseteq> {0..n+1}" by auto
+ show ?thesis
+ apply (rule kuhn_simplex_lemma[unfolded mem_Collect_eq])
+ apply (rule, rule, rule *, rule reduced_labelling)
+ apply (rule *(1)[OF assms(4)])
+ apply (rule set_eqI)
+ unfolding mem_Collect_eq
+ apply (rule, erule conjE)
+ defer
+ apply rule
+ proof -
+ fix f
+ assume as: "ksimplex p n f" "reduced lab n ` f = {0..n}"
+ have *: "\<forall>x\<in>f. \<forall>j\<in>{1..n + 1}. x j = 0 \<longrightarrow> lab x j = 0"
+ "\<forall>x\<in>f. \<forall>j\<in>{1..n + 1}. x j = p \<longrightarrow> lab x j = 1"
using assms(2-3) using as(1)[unfolded ksimplex_def] by auto
- have allp:"\<forall>x\<in>f. x (n + 1) = p" using assms(2) using as(1)[unfolded ksimplex_def] by auto
- { fix x assume "x\<in>f" hence "reduced lab (n + 1) x < n + 1" apply-apply(rule reduced_labelling_nonzero)
- defer using assms(3) using as(1)[unfolded ksimplex_def] by auto
- hence "reduced lab (n + 1) x = reduced lab n x" apply-apply(rule reduced_labelling_Suc) using reduced_labelling(1) by auto }
- hence "reduced lab (n + 1) ` f = {0..n}" unfolding as(2)[symmetric] apply- apply(rule set_eqI) unfolding image_iff by auto
- moreover guess s using as(1)[unfolded simplex_top_face[OF assms(1) allp,symmetric]] .. then guess a ..
+ have allp: "\<forall>x\<in>f. x (n + 1) = p"
+ using assms(2) using as(1)[unfolded ksimplex_def] by auto
+ {
+ fix x
+ assume "x \<in> f"
+ hence "reduced lab (n + 1) x < n + 1"
+ apply -
+ apply (rule reduced_labelling_nonzero)
+ defer using assms(3) using as(1)[unfolded ksimplex_def]
+ apply auto
+ done
+ hence "reduced lab (n + 1) x = reduced lab n x"
+ apply -
+ apply (rule reduced_labelling_Suc)
+ using reduced_labelling(1)
+ apply auto
+ done
+ }
+ hence "reduced lab (n + 1) ` f = {0..n}"
+ unfolding as(2)[symmetric]
+ apply -
+ apply (rule set_eqI)
+ unfolding image_iff
+ apply auto
+ done
+ moreover guess s using as(1)[unfolded simplex_top_face[OF assms(1) allp,symmetric]] ..
+ then guess a ..
ultimately show "\<exists>s a. ksimplex p (n + 1) s \<and>
a \<in> s \<and> f = s - {a} \<and> reduced lab (n + 1) ` f = {0..n} \<and> ((\<exists>j\<in>{1..n + 1}. \<forall>x\<in>f. x j = 0) \<or> (\<exists>j\<in>{1..n + 1}. \<forall>x\<in>f. x j = p))" (is ?ex)
- apply(rule_tac x=s in exI,rule_tac x=a in exI) unfolding complete_face_top[OF *] using allp as(1) by auto
- next fix f assume as:"\<exists>s a. ksimplex p (n + 1) s \<and>
+ apply (rule_tac x = s in exI)
+ apply (rule_tac x = a in exI)
+ unfolding complete_face_top[OF *]
+ using allp as(1)
+ apply auto
+ done
+ next
+ fix f
+ assume as: "\<exists>s a. ksimplex p (n + 1) s \<and>
a \<in> s \<and> f = s - {a} \<and> reduced lab (n + 1) ` f = {0..n} \<and> ((\<exists>j\<in>{1..n + 1}. \<forall>x\<in>f. x j = 0) \<or> (\<exists>j\<in>{1..n + 1}. \<forall>x\<in>f. x j = p))" (is ?ex)
- then guess s .. then guess a apply-apply(erule exE,(erule conjE)+) . note sa=this
- { fix x assume "x\<in>f" hence "reduced lab (n + 1) x \<in> reduced lab (n + 1) ` f" by auto
- hence "reduced lab (n + 1) x < n + 1" using sa(4) by auto
- hence "reduced lab (n + 1) x = reduced lab n x" apply-apply(rule reduced_labelling_Suc)
- using reduced_labelling(1) by auto }
- thus part1:"reduced lab n ` f = {0..n}" unfolding sa(4)[symmetric] apply-apply(rule set_eqI) unfolding image_iff by auto
- have *:"\<forall>x\<in>f. x (n + 1) = p" proof(cases "\<exists>j\<in>{1..n + 1}. \<forall>x\<in>f. x j = 0")
- case True then guess j .. hence "\<And>x. x\<in>f \<Longrightarrow> reduced lab (n + 1) x \<noteq> j - 1" apply-apply(rule reduced_labelling_zero) apply assumption
- apply(rule assms(2)[rule_format]) using sa(1)[unfolded ksimplex_def] unfolding sa by auto moreover
+ then guess s ..
+ then guess a
+ apply -
+ apply (erule exE,(erule conjE)+)
+ done
+ note sa = this
+ {
+ fix x
+ assume "x \<in> f"
+ hence "reduced lab (n + 1) x \<in> reduced lab (n + 1) ` f"
+ by auto
+ hence "reduced lab (n + 1) x < n + 1"
+ using sa(4) by auto
+ hence "reduced lab (n + 1) x = reduced lab n x"
+ apply -
+ apply (rule reduced_labelling_Suc)
+ using reduced_labelling(1)
+ apply auto
+ done
+ }
+ thus part1: "reduced lab n ` f = {0..n}"
+ unfolding sa(4)[symmetric]
+ apply -
+ apply (rule set_eqI)
+ unfolding image_iff
+ apply auto
+ done
+ have *: "\<forall>x\<in>f. x (n + 1) = p"
+ proof (cases "\<exists>j\<in>{1..n + 1}. \<forall>x\<in>f. x j = 0")
+ case True
+ then guess j ..
+ hence "\<And>x. x \<in> f \<Longrightarrow> reduced lab (n + 1) x \<noteq> j - 1"
+ apply -
+ apply (rule reduced_labelling_zero)
+ apply assumption
+ apply (rule assms(2)[rule_format])
+ using sa(1)[unfolded ksimplex_def]
+ unfolding sa
+ apply auto
+ done
+ moreover
have "j - 1 \<in> {0..n}" using `j\<in>{1..n+1}` by auto
- ultimately have False unfolding sa(4)[symmetric] unfolding image_iff by fastforce thus ?thesis by auto next
- case False hence "\<exists>j\<in>{1..n + 1}. \<forall>x\<in>f. x j = p" using sa(5) by fastforce then guess j .. note j=this
- thus ?thesis proof(cases "j = n+1")
- case False hence *:"j\<in>{1..n}" using j by auto
- hence "\<And>x. x\<in>f \<Longrightarrow> reduced lab n x < j" apply(rule reduced_labelling_nonzero) proof- fix x assume "x\<in>f"
- hence "lab x j = 1" apply-apply(rule assms(3)[rule_format,OF j(1)])
- using sa(1)[unfolded ksimplex_def] using j unfolding sa by auto thus "lab x j \<noteq> 0" by auto qed
- moreover have "j\<in>{0..n}" using * by auto
- ultimately have False unfolding part1[symmetric] using * unfolding image_iff by auto thus ?thesis by auto qed auto qed
- thus "ksimplex p n f" using as unfolding simplex_top_face[OF assms(1) *,symmetric] by auto qed qed
+ ultimately have False
+ unfolding sa(4)[symmetric]
+ unfolding image_iff
+ by fastforce
+ thus ?thesis by auto
+ next
+ case False
+ hence "\<exists>j\<in>{1..n + 1}. \<forall>x\<in>f. x j = p"
+ using sa(5) by fastforce then guess j .. note j=this
+ thus ?thesis
+ proof (cases "j = n + 1")
+ case False hence *: "j \<in> {1..n}"
+ using j by auto
+ hence "\<And>x. x \<in> f \<Longrightarrow> reduced lab n x < j"
+ apply (rule reduced_labelling_nonzero)
+ proof -
+ fix x
+ assume "x \<in> f"
+ hence "lab x j = 1"
+ apply -
+ apply (rule assms(3)[rule_format,OF j(1)])
+ using sa(1)[unfolded ksimplex_def]
+ using j
+ unfolding sa
+ apply auto
+ done
+ thus "lab x j \<noteq> 0" by auto
+ qed
+ moreover have "j \<in> {0..n}" using * by auto
+ ultimately have False
+ unfolding part1[symmetric]
+ using * unfolding image_iff
+ by auto
+ thus ?thesis by auto
+ qed auto
+ qed
+ thus "ksimplex p n f"
+ using as unfolding simplex_top_face[OF assms(1) *,symmetric] by auto
+ qed
+qed
lemma kuhn_induction_Suc:
assumes "0 < p" "\<forall>x. \<forall>j\<in>{1..Suc n}. (\<forall>j. x j \<le> p) \<and> (x j = 0) \<longrightarrow> (lab x j = 0)"
@@ -2822,51 +2987,135 @@
shows "odd (card {s. ksimplex p (Suc n) s \<and>((reduced lab (Suc n)) ` s = {0..Suc n})})"
using assms unfolding Suc_eq_plus1 by(rule kuhn_induction)
+
subsection {* And so we get the final combinatorial result. *}
-lemma ksimplex_0: "ksimplex p 0 s \<longleftrightarrow> s = {(\<lambda>x. p)}" (is "?l = ?r") proof
- assume l:?l guess a using ksimplexD(3)[OF l, unfolded add_0] unfolding card_1_exists .. note a=this
- have "a = (\<lambda>x. p)" using ksimplexD(5)[OF l, rule_format, OF a(1)] by(rule,auto) thus ?r using a by auto next
- assume r:?r show ?l unfolding r ksimplex_eq by auto qed
+lemma ksimplex_0: "ksimplex p 0 s \<longleftrightarrow> s = {(\<lambda>x. p)}" (is "?l = ?r")
+proof
+ assume l: ?l
+ guess a using ksimplexD(3)[OF l, unfolded add_0] unfolding card_1_exists .. note a = this
+ have "a = (\<lambda>x. p)"
+ using ksimplexD(5)[OF l, rule_format, OF a(1)] by rule auto
+ thus ?r using a by auto
+next
+ assume r: ?r
+ show ?l unfolding r ksimplex_eq by auto
+qed
-lemma reduce_labelling_zero[simp]: "reduced lab 0 x = 0" apply(rule reduced_labelling_unique) by auto
+lemma reduce_labelling_zero[simp]: "reduced lab 0 x = 0"
+ by (rule reduced_labelling_unique) auto
lemma kuhn_combinatorial:
assumes "0 < p" "\<forall>x j. (\<forall>j. x(j) \<le> p) \<and> 1 \<le> j \<and> j \<le> n \<and> (x j = 0) \<longrightarrow> (lab x j = 0)"
- "\<forall>x j. (\<forall>j. x(j) \<le> p) \<and> 1 \<le> j \<and> j \<le> n \<and> (x j = p) \<longrightarrow> (lab x j = 1)"
- shows " odd (card {s. ksimplex p n s \<and> ((reduced lab n) ` s = {0..n})})" using assms proof(induct n)
+ "\<forall>x j. (\<forall>j. x(j) \<le> p) \<and> 1 \<le> j \<and> j \<le> n \<and> (x j = p) \<longrightarrow> (lab x j = 1)"
+ shows " odd (card {s. ksimplex p n s \<and> ((reduced lab n) ` s = {0..n})})"
+ using assms
+proof (induct n)
let ?M = "\<lambda>n. {s. ksimplex p n s \<and> ((reduced lab n) ` s = {0..n})}"
- { case 0 have *:"?M 0 = {{(\<lambda>x. p)}}" unfolding ksimplex_0 by auto show ?case unfolding * by auto }
- case (Suc n) have "odd (card (?M n))" apply(rule Suc(1)[OF Suc(2)]) using Suc(3-) by auto
- thus ?case apply-apply(rule kuhn_induction_Suc) using Suc(2-) by auto qed
+ {
+ case 0
+ have *: "?M 0 = {{(\<lambda>x. p)}}"
+ unfolding ksimplex_0 by auto
+ show ?case unfolding * by auto
+ next
+ case (Suc n)
+ have "odd (card (?M n))"
+ apply (rule Suc(1)[OF Suc(2)])
+ using Suc(3-)
+ apply auto
+ done
+ thus ?case
+ apply -
+ apply (rule kuhn_induction_Suc)
+ using Suc(2-)
+ apply auto
+ done
+ }
+qed
-lemma kuhn_lemma: assumes "0 < (p::nat)" "0 < (n::nat)"
- "\<forall>x. (\<forall>i\<in>{1..n}. x i \<le> p) \<longrightarrow> (\<forall>i\<in>{1..n}. (label x i = (0::nat)) \<or> (label x i = 1))"
- "\<forall>x. (\<forall>i\<in>{1..n}. x i \<le> p) \<longrightarrow> (\<forall>i\<in>{1..n}. (x i = 0) \<longrightarrow> (label x i = 0))"
- "\<forall>x. (\<forall>i\<in>{1..n}. x i \<le> p) \<longrightarrow> (\<forall>i\<in>{1..n}. (x i = p) \<longrightarrow> (label x i = 1))"
+lemma kuhn_lemma:
+ assumes "0 < (p::nat)" "0 < (n::nat)"
+ "\<forall>x. (\<forall>i\<in>{1..n}. x i \<le> p) \<longrightarrow> (\<forall>i\<in>{1..n}. (label x i = (0::nat)) \<or> (label x i = 1))"
+ "\<forall>x. (\<forall>i\<in>{1..n}. x i \<le> p) \<longrightarrow> (\<forall>i\<in>{1..n}. (x i = 0) \<longrightarrow> (label x i = 0))"
+ "\<forall>x. (\<forall>i\<in>{1..n}. x i \<le> p) \<longrightarrow> (\<forall>i\<in>{1..n}. (x i = p) \<longrightarrow> (label x i = 1))"
obtains q where "\<forall>i\<in>{1..n}. q i < p"
- "\<forall>i\<in>{1..n}. \<exists>r s. (\<forall>j\<in>{1..n}. q(j) \<le> r(j) \<and> r(j) \<le> q(j) + 1) \<and>
- (\<forall>j\<in>{1..n}. q(j) \<le> s(j) \<and> s(j) \<le> q(j) + 1) \<and>
- ~(label r i = label s i)" proof-
- let ?A = "{s. ksimplex p n s \<and> reduced label n ` s = {0..n}}" have "n\<noteq>0" using assms by auto
- have conjD:"\<And>P Q. P \<and> Q \<Longrightarrow> P" "\<And>P Q. P \<and> Q \<Longrightarrow> Q" by auto
- have "odd (card ?A)" apply(rule kuhn_combinatorial[of p n label]) using assms by auto
- hence "card ?A \<noteq> 0" apply-apply(rule ccontr) by auto hence "?A \<noteq> {}" unfolding card_eq_0_iff by auto
- then obtain s where "s\<in>?A" by auto note s=conjD[OF this[unfolded mem_Collect_eq]]
- guess a b apply(rule ksimplex_extrema_strong[OF s(1) `n\<noteq>0`]) . note ab=this
- show ?thesis apply(rule that[of a]) proof(rule_tac[!] ballI) fix i assume "i\<in>{1..n}"
- hence "a i + 1 \<le> p" apply-apply(rule order_trans[of _ "b i"]) apply(subst ab(5)[THEN spec[where x=i]])
- using s(1)[unfolded ksimplex_def] defer apply- apply(erule conjE)+ apply(drule_tac bspec[OF _ ab(2)])+ by auto
+ "\<forall>i\<in>{1..n}. \<exists>r s. (\<forall>j\<in>{1..n}. q(j) \<le> r(j) \<and> r(j) \<le> q(j) + 1) \<and>
+ (\<forall>j\<in>{1..n}. q(j) \<le> s(j) \<and> s(j) \<le> q(j) + 1) \<and>
+ ~(label r i = label s i)"
+proof -
+ let ?A = "{s. ksimplex p n s \<and> reduced label n ` s = {0..n}}"
+ have "n \<noteq> 0" using assms by auto
+ have conjD:"\<And>P Q. P \<and> Q \<Longrightarrow> P" "\<And>P Q. P \<and> Q \<Longrightarrow> Q"
+ by auto
+ have "odd (card ?A)"
+ apply (rule kuhn_combinatorial[of p n label])
+ using assms
+ apply auto
+ done
+ hence "card ?A \<noteq> 0"
+ apply -
+ apply (rule ccontr)
+ apply auto
+ done
+ hence "?A \<noteq> {}" unfolding card_eq_0_iff by auto
+ then obtain s where "s \<in> ?A"
+ by auto note s=conjD[OF this[unfolded mem_Collect_eq]]
+ guess a b by (rule ksimplex_extrema_strong[OF s(1) `n\<noteq>0`]) note ab = this
+ show ?thesis
+ apply (rule that[of a])
+ apply (rule_tac[!] ballI)
+ proof -
+ fix i
+ assume "i\<in>{1..n}"
+ hence "a i + 1 \<le> p"
+ apply -
+ apply (rule order_trans[of _ "b i"])
+ apply (subst ab(5)[THEN spec[where x=i]])
+ using s(1)[unfolded ksimplex_def]
+ defer
+ apply -
+ apply (erule conjE)+
+ apply (drule_tac bspec[OF _ ab(2)])+
+ apply auto
+ done
thus "a i < p" by auto
- case goal2 hence "i \<in> reduced label n ` s" using s by auto then guess u unfolding image_iff .. note u=this
- from goal2 have "i - 1 \<in> reduced label n ` s" using s by auto then guess v unfolding image_iff .. note v=this
- show ?case apply(rule_tac x=u in exI, rule_tac x=v in exI) apply(rule conjI) defer apply(rule conjI) defer 2 proof(rule_tac[1-2] ballI)
- show "label u i \<noteq> label v i" using reduced_labelling[of label n u] reduced_labelling[of label n v]
- unfolding u(2)[symmetric] v(2)[symmetric] using goal2 by auto
- fix j assume j:"j\<in>{1..n}" show "a j \<le> u j \<and> u j \<le> a j + 1" "a j \<le> v j \<and> v j \<le> a j + 1"
- using conjD[OF ab(4)[rule_format, OF u(1)]] and conjD[OF ab(4)[rule_format, OF v(1)]] apply-
- apply(drule_tac[!] kle_imp_pointwise)+ apply(erule_tac[!] x=j in allE)+ unfolding ab(5)[rule_format] using j
- by auto qed qed qed
+ next
+ case goal2
+ hence "i \<in> reduced label n ` s" using s by auto
+ then guess u unfolding image_iff .. note u = this
+ from goal2 have "i - 1 \<in> reduced label n ` s"
+ using s by auto
+ then guess v unfolding image_iff .. note v = this
+ show ?case
+ apply (rule_tac x = u in exI)
+ apply (rule_tac x = v in exI)
+ apply (rule conjI)
+ defer
+ apply (rule conjI)
+ defer 2
+ apply (rule_tac[1-2] ballI)
+ proof -
+ show "label u i \<noteq> label v i"
+ using reduced_labelling [of label n u] reduced_labelling [of label n v]
+ unfolding u(2)[symmetric] v(2)[symmetric]
+ using goal2
+ apply auto
+ done
+ fix j
+ assume j: "j \<in> {1..n}"
+ show "a j \<le> u j \<and> u j \<le> a j + 1" "a j \<le> v j \<and> v j \<le> a j + 1"
+ using conjD[OF ab(4)[rule_format, OF u(1)]]
+ and conjD[OF ab(4)[rule_format, OF v(1)]]
+ apply -
+ apply (drule_tac[!] kle_imp_pointwise)+
+ apply (erule_tac[!] x=j in allE)+
+ unfolding ab(5)[rule_format]
+ using j
+ apply auto
+ done
+ qed
+ qed
+qed
subsection {* The main result for the unit cube. *}
@@ -2946,11 +3195,13 @@
using i label(1)[of i y] by auto
show "x \<bullet> i \<le> f x \<bullet> i"
apply (rule label(4)[rule_format])
- using xy lx i(2) apply auto
+ using xy lx i(2)
+ apply auto
done
show "f y \<bullet> i \<le> y \<bullet> i"
apply (rule label(5)[rule_format])
- using xy ly i(2) apply auto
+ using xy ly i(2)
+ apply auto
done
next
assume "label x i \<noteq> 0"
@@ -2958,11 +3209,13 @@
using i label(1)[of i x] label(1)[of i y] by auto
show "f x \<bullet> i \<le> x \<bullet> i"
apply (rule label(5)[rule_format])
- using xy l i(2) apply auto
+ using xy l i(2)
+ apply auto
done
show "y \<bullet> i \<le> f y \<bullet> i"
apply (rule label(4)[rule_format])
- using xy l i(2) apply auto
+ using xy l i(2)
+ apply auto
done
qed
also have "\<dots> \<le> norm (f y - f x) + norm (y - x)"
@@ -2986,7 +3239,8 @@
note e=this[rule_format,unfolded dist_norm]
show ?thesis
apply (rule_tac x="min (e/2) (d/real n/8)" in exI)
- proof safe
+ apply safe
+ proof -
show "0 < min (e / 2) (d / real n / 8)"
using d' e by auto
fix x y z i
@@ -3011,21 +3265,25 @@
unfolding norm_minus_commute by auto
also have "\<dots> < e / 2 + e / 2"
apply (rule add_strict_mono)
- using as(4,5) apply auto
+ using as(4,5)
+ apply auto
done
finally show "norm (f y - f x) < d / real n / 8"
apply -
apply (rule e(2))
- using as apply auto
+ using as
+ apply auto
done
have "norm (y - z) + norm (x - z) < d / real n / 8 + d / real n / 8"
apply (rule add_strict_mono)
- using as apply auto
+ using as
+ apply auto
done
thus "norm (y - x) < 2 * (d / real n / 8)" using tria by auto
show "norm (f x - f z) < d / real n / 8"
apply (rule e(2))
- using as e(1) apply auto
+ using as e(1)
+ apply auto
done
qed (insert as, auto)
qed
@@ -3036,9 +3294,10 @@
apply (rule add_pos_pos)
defer
apply (rule divide_pos_pos)
- using e(1) n apply auto
+ using e(1) n
+ apply auto
done
- hence "p > 0" using p by auto
+ then have "p > 0" using p by auto
obtain b :: "nat \<Rightarrow> 'a" where b: "bij_betw b {1..n} Basis"
by atomize_elim (auto simp: n_def intro!: finite_same_card_bij)
@@ -3121,7 +3380,8 @@
have "\<And>i. i \<in> Basis \<Longrightarrow> r (b' i) \<le> p"
apply (rule order_trans)
apply (rule rs(1)[OF b'_im,THEN conjunct2])
- using q(1)[rule_format,OF b'_im] apply (auto simp add: Suc_le_eq)
+ using q(1)[rule_format,OF b'_im]
+ apply (auto simp add: Suc_le_eq)
done
hence "r' \<in> {0..\<Sum>Basis}"
unfolding r'_def mem_interval using b'_Basis
@@ -3130,7 +3390,8 @@
have "\<And>i. i\<in>Basis \<Longrightarrow> s (b' i) \<le> p"
apply (rule order_trans)
apply (rule rs(2)[OF b'_im, THEN conjunct2])
- using q(1)[rule_format,OF b'_im] apply (auto simp add: Suc_le_eq)
+ using q(1)[rule_format,OF b'_im]
+ apply (auto simp add: Suc_le_eq)
done
hence "s' \<in> {0..\<Sum>Basis}"
unfolding s'_def mem_interval using b'_Basis
@@ -3141,7 +3402,8 @@
have *: "\<And>x. 1 + real x = real (Suc x)" by auto
{ have "(\<Sum>i\<in>Basis. \<bar>real (r (b' i)) - real (q (b' i))\<bar>) \<le> (\<Sum>(i::'a)\<in>Basis. 1)"
apply (rule setsum_mono)
- using rs(1)[OF b'_im] apply (auto simp add:* field_simps)
+ using rs(1)[OF b'_im]
+ apply (auto simp add:* field_simps)
done
also have "\<dots> < e * real p" using p `e>0` `p>0`
by (auto simp add: field_simps n_def real_of_nat_def)
@@ -3150,7 +3412,8 @@
moreover
{ have "(\<Sum>i\<in>Basis. \<bar>real (s (b' i)) - real (q (b' i))\<bar>) \<le> (\<Sum>(i::'a)\<in>Basis. 1)"
apply (rule setsum_mono)
- using rs(2)[OF b'_im] apply (auto simp add:* field_simps)
+ using rs(2)[OF b'_im]
+ apply (auto simp add:* field_simps)
done
also have "\<dots> < e * real p" using p `e > 0` `p > 0`
by (auto simp add: field_simps n_def real_of_nat_def)
@@ -3216,7 +3479,7 @@
and t :: "('b::euclidean_space) set"
assumes "s homeomorphic t"
shows "(\<forall>f. continuous_on s f \<and> f ` s \<subseteq> s \<longrightarrow> (\<exists>x\<in>s. f x = x)) \<longleftrightarrow>
- (\<forall>g. continuous_on t g \<and> g ` t \<subseteq> t \<longrightarrow> (\<exists>y\<in>t. g y = y))"
+ (\<forall>g. continuous_on t g \<and> g ` t \<subseteq> t \<longrightarrow> (\<exists>y\<in>t. g y = y))"
proof -
guess r using assms[unfolded homeomorphic_def homeomorphism_def] ..
then guess i ..
@@ -3244,8 +3507,9 @@
apply -
apply (rule invertible_fixpoint_property[OF continuous_on_id _ _ _ _ assms(2), of t h g])
prefer 7
- apply (rule_tac y=y in that)
- using assms apply auto
+ apply (rule_tac y = y in that)
+ using assms
+ apply auto
done
qed
@@ -3253,7 +3517,7 @@
subsection {*So the Brouwer theorem for any set with nonempty interior. *}
lemma brouwer_weak:
- fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'a::ordered_euclidean_space"
+ fixes f :: "'a::ordered_euclidean_space \<Rightarrow> 'a::ordered_euclidean_space"
assumes "compact s" "convex s" "interior s \<noteq> {}" "continuous_on s f" "f ` s \<subseteq> s"
obtains x where "x \<in> s" "f x = x"
proof -
@@ -3271,7 +3535,8 @@
defer
apply (erule bexE)
apply (rule_tac x=y in that)
- using assms apply auto
+ using assms
+ apply auto
done
qed
@@ -3290,7 +3555,8 @@
rather involved @{text "HOMEOMORPHIC_CONVEX_COMPACT"} theorem, just using
a scaling and translation to put the set inside the unit cube. *}
-lemma brouwer: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'a"
+lemma brouwer:
+ fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'a"
assumes "compact s" "convex s" "s \<noteq> {}" "continuous_on s f" "f ` s \<subseteq> s"
obtains x where "x \<in> s" "f x = x"
proof -
@@ -3353,7 +3619,8 @@
apply (simp add: * norm_minus_commute)
done
note x = this
- hence "scaleR 2 a = scaleR 1 x + scaleR 1 x" by (auto simp add:algebra_simps)
+ hence "scaleR 2 a = scaleR 1 x + scaleR 1 x"
+ by (auto simp add: algebra_simps)
hence "a = x" unfolding scaleR_left_distrib[symmetric] by auto
thus False using x assms by auto
qed
@@ -3361,14 +3628,15 @@
subsection {*Bijections between intervals. *}
-definition interval_bij :: "'a \<times> 'a \<Rightarrow> 'a \<times> 'a \<Rightarrow> 'a \<Rightarrow> 'a::ordered_euclidean_space" where
- "interval_bij \<equiv> \<lambda>(a, b) (u, v) x. (\<Sum>i\<in>Basis. (u\<bullet>i + (x\<bullet>i - a\<bullet>i) / (b\<bullet>i - a\<bullet>i) * (v\<bullet>i - u\<bullet>i)) *\<^sub>R i)"
+definition interval_bij :: "'a \<times> 'a \<Rightarrow> 'a \<times> 'a \<Rightarrow> 'a \<Rightarrow> 'a::ordered_euclidean_space"
+ where "interval_bij =
+ (\<lambda>(a, b) (u, v) x. (\<Sum>i\<in>Basis. (u\<bullet>i + (x\<bullet>i - a\<bullet>i) / (b\<bullet>i - a\<bullet>i) * (v\<bullet>i - u\<bullet>i)) *\<^sub>R i))"
lemma interval_bij_affine:
"interval_bij (a,b) (u,v) = (\<lambda>x. (\<Sum>i\<in>Basis. ((v\<bullet>i - u\<bullet>i) / (b\<bullet>i - a\<bullet>i) * (x\<bullet>i)) *\<^sub>R i) +
(\<Sum>i\<in>Basis. (u\<bullet>i - (v\<bullet>i - u\<bullet>i) / (b\<bullet>i - a\<bullet>i) * (a\<bullet>i)) *\<^sub>R i))"
by (auto simp: setsum_addf[symmetric] scaleR_add_left[symmetric] interval_bij_def fun_eq_iff
- field_simps inner_simps add_divide_distrib[symmetric] intro!: setsum_cong)
+ field_simps inner_simps add_divide_distrib[symmetric] intro!: setsum_cong)
lemma continuous_interval_bij:
"continuous (at x) (interval_bij (a,b::'a::ordered_euclidean_space) (u,v::'a))"
@@ -3384,7 +3652,8 @@
assumes "x \<in> {a..b}" "{u..v} \<noteq> {}"
shows "interval_bij (a,b) (u,v) x \<in> {u..v}"
apply (simp only: interval_bij_def split_conv mem_interval inner_setsum_left_Basis cong: ball_cong)
-proof safe
+ apply safe
+proof -
fix i :: 'a
assume i: "i \<in> Basis"
have "{a..b} \<noteq> {}" using assms by auto
@@ -3399,7 +3668,8 @@
have "((x \<bullet> i - a \<bullet> i) / (b \<bullet> i - a \<bullet> i)) * (v \<bullet> i - u \<bullet> i) \<le> 1 * (v \<bullet> i - u \<bullet> i)"
apply (rule mult_right_mono)
unfolding divide_le_eq_1
- using * x apply auto
+ using * x
+ apply auto
done
thus "u \<bullet> i + (x \<bullet> i - a \<bullet> i) / (b \<bullet> i - a \<bullet> i) * (v \<bullet> i - u \<bullet> i) \<le> v \<bullet> i"
using * by auto
--- a/src/HOL/Multivariate_Analysis/Determinants.thy Thu Aug 29 05:41:58 2013 +0200
+++ b/src/HOL/Multivariate_Analysis/Determinants.thy Thu Aug 29 05:42:37 2013 +0200
@@ -11,14 +11,18 @@
begin
subsection{* First some facts about products*}
-lemma setprod_insert_eq: "finite A \<Longrightarrow> setprod f (insert a A) = (if a \<in> A then setprod f A else f a * setprod f A)"
-apply clarsimp
-by(subgoal_tac "insert a A = A", auto)
+
+lemma setprod_insert_eq:
+ "finite A \<Longrightarrow> setprod f (insert a A) = (if a \<in> A then setprod f A else f a * setprod f A)"
+ apply clarsimp
+ apply (subgoal_tac "insert a A = A")
+ apply auto
+ done
lemma setprod_add_split:
assumes mn: "(m::nat) <= n + 1"
shows "setprod f {m.. n+p} = setprod f {m .. n} * setprod f {n+1..n+p}"
-proof-
+proof -
let ?A = "{m .. n+p}"
let ?B = "{m .. n}"
let ?C = "{n+1..n+p}"
@@ -30,47 +34,56 @@
lemma setprod_offset: "setprod f {(m::nat) + p .. n + p} = setprod (\<lambda>i. f (i + p)) {m..n}"
-apply (rule setprod_reindex_cong[where f="op + p"])
-apply (auto simp add: image_iff Bex_def inj_on_def)
-apply arith
-apply (rule ext)
-apply (simp add: add_commute)
-done
+ apply (rule setprod_reindex_cong[where f="op + p"])
+ apply (auto simp add: image_iff Bex_def inj_on_def)
+ apply presburger
+ apply (rule ext)
+ apply (simp add: add_commute)
+ done
-lemma setprod_singleton: "setprod f {x} = f x" by simp
-
-lemma setprod_singleton_nat_seg: "setprod f {n..n} = f (n::'a::order)" by simp
+lemma setprod_singleton: "setprod f {x} = f x"
+ by simp
-lemma setprod_numseg: "setprod f {m..0} = (if m=0 then f 0 else 1)"
- "setprod f {m .. Suc n} = (if m \<le> Suc n then f (Suc n) * setprod f {m..n}
- else setprod f {m..n})"
+lemma setprod_singleton_nat_seg: "setprod f {n..n} = f (n::'a::order)"
+ by simp
+
+lemma setprod_numseg:
+ "setprod f {m..0} = (if m = 0 then f 0 else 1)"
+ "setprod f {m .. Suc n} =
+ (if m \<le> Suc n then f (Suc n) * setprod f {m..n} else setprod f {m..n})"
by (auto simp add: atLeastAtMostSuc_conv)
-lemma setprod_le: assumes fS: "finite S" and fg: "\<forall>x\<in>S. f x \<ge> 0 \<and> f x \<le> (g x :: 'a::linordered_idom)"
+lemma setprod_le:
+ assumes fS: "finite S"
+ and fg: "\<forall>x\<in>S. f x \<ge> 0 \<and> f x \<le> (g x :: 'a::linordered_idom)"
shows "setprod f S \<le> setprod g S"
-using fS fg
-apply(induct S)
-apply simp
-apply auto
-apply (rule mult_mono)
-apply (auto intro: setprod_nonneg)
-done
+ using fS fg
+ apply (induct S)
+ apply simp
+ apply auto
+ apply (rule mult_mono)
+ apply (auto intro: setprod_nonneg)
+ done
(* FIXME: In Finite_Set there is a useless further assumption *)
-lemma setprod_inversef: "finite A ==> setprod (inverse \<circ> f) A = (inverse (setprod f A) :: 'a:: field_inverse_zero)"
+lemma setprod_inversef:
+ "finite A \<Longrightarrow> setprod (inverse \<circ> f) A = (inverse (setprod f A) :: 'a:: field_inverse_zero)"
apply (erule finite_induct)
apply (simp)
apply simp
done
-lemma setprod_le_1: assumes fS: "finite S" and f: "\<forall>x\<in>S. f x \<ge> 0 \<and> f x \<le> (1::'a::linordered_idom)"
+lemma setprod_le_1:
+ assumes fS: "finite S"
+ and f: "\<forall>x\<in>S. f x \<ge> 0 \<and> f x \<le> (1::'a::linordered_idom)"
shows "setprod f S \<le> 1"
-using setprod_le[OF fS f] unfolding setprod_1 .
+ using setprod_le[OF fS f] unfolding setprod_1 .
-subsection{* Trace *}
+
+subsection {* Trace *}
-definition trace :: "'a::semiring_1^'n^'n \<Rightarrow> 'a" where
- "trace A = setsum (\<lambda>i. ((A$i)$i)) (UNIV::'n set)"
+definition trace :: "'a::semiring_1^'n^'n \<Rightarrow> 'a"
+ where "trace A = setsum (\<lambda>i. ((A$i)$i)) (UNIV::'n set)"
lemma trace_0: "trace(mat 0) = 0"
by (simp add: trace_def mat_def)
@@ -87,14 +100,17 @@
lemma trace_mul_sym:"trace ((A::'a::comm_semiring_1^'n^'m) ** B) = trace (B**A)"
apply (simp add: trace_def matrix_matrix_mult_def)
apply (subst setsum_commute)
- by (simp add: mult_commute)
+ apply (simp add: mult_commute)
+ done
(* ------------------------------------------------------------------------- *)
(* Definition of determinant. *)
(* ------------------------------------------------------------------------- *)
definition det:: "'a::comm_ring_1^'n^'n \<Rightarrow> 'a" where
- "det A = setsum (\<lambda>p. of_int (sign p) * setprod (\<lambda>i. A$i$p i) (UNIV :: 'n set)) {p. p permutes (UNIV :: 'n set)}"
+ "det A =
+ setsum (\<lambda>p. of_int (sign p) * setprod (\<lambda>i. A$i$p i) (UNIV :: 'n set))
+ {p. p permutes (UNIV :: 'n set)}"
(* ------------------------------------------------------------------------- *)
(* A few general lemmas we need below. *)
@@ -105,7 +121,8 @@
shows "setprod f S = setprod (f o p) S"
using assms by (fact setprod.permute)
-lemma setproduct_permute_nat_interval: "p permutes {m::nat .. n} ==> setprod f {m..n} = setprod (f o p) {m..n}"
+lemma setproduct_permute_nat_interval:
+ "p permutes {m::nat .. n} ==> setprod f {m..n} = setprod (f o p) {m..n}"
by (blast intro!: setprod_permute)
(* ------------------------------------------------------------------------- *)
@@ -113,52 +130,71 @@
(* ------------------------------------------------------------------------- *)
lemma det_transpose: "det (transpose A) = det (A::'a::comm_ring_1 ^'n^'n)"
-proof-
+proof -
let ?di = "\<lambda>A i j. A$i$j"
let ?U = "(UNIV :: 'n set)"
have fU: "finite ?U" by simp
- {fix p assume p: "p \<in> {p. p permutes ?U}"
+ {
+ fix p
+ assume p: "p \<in> {p. p permutes ?U}"
from p have pU: "p permutes ?U" by blast
have sth: "sign (inv p) = sign p"
by (metis sign_inverse fU p mem_Collect_eq permutation_permutes)
from permutes_inj[OF pU]
have pi: "inj_on p ?U" by (blast intro: subset_inj_on)
from permutes_image[OF pU]
- have "setprod (\<lambda>i. ?di (transpose A) i (inv p i)) ?U = setprod (\<lambda>i. ?di (transpose A) i (inv p i)) (p ` ?U)" by simp
+ have "setprod (\<lambda>i. ?di (transpose A) i (inv p i)) ?U =
+ setprod (\<lambda>i. ?di (transpose A) i (inv p i)) (p ` ?U)" by simp
also have "\<dots> = setprod ((\<lambda>i. ?di (transpose A) i (inv p i)) o p) ?U"
unfolding setprod_reindex[OF pi] ..
also have "\<dots> = setprod (\<lambda>i. ?di A i (p i)) ?U"
- proof-
- {fix i assume i: "i \<in> ?U"
+ proof -
+ {
+ fix i
+ assume i: "i \<in> ?U"
from i permutes_inv_o[OF pU] permutes_in_image[OF pU]
have "((\<lambda>i. ?di (transpose A) i (inv p i)) o p) i = ?di A i (p i)"
- unfolding transpose_def by (simp add: fun_eq_iff)}
- then show "setprod ((\<lambda>i. ?di (transpose A) i (inv p i)) o p) ?U = setprod (\<lambda>i. ?di A i (p i)) ?U" by (auto intro: setprod_cong)
+ unfolding transpose_def by (simp add: fun_eq_iff)
+ }
+ then show "setprod ((\<lambda>i. ?di (transpose A) i (inv p i)) o p) ?U =
+ setprod (\<lambda>i. ?di A i (p i)) ?U" by (auto intro: setprod_cong)
qed
- finally have "of_int (sign (inv p)) * (setprod (\<lambda>i. ?di (transpose A) i (inv p i)) ?U) = of_int (sign p) * (setprod (\<lambda>i. ?di A i (p i)) ?U)" using sth
- by simp}
- then show ?thesis unfolding det_def apply (subst setsum_permutations_inverse)
- apply (rule setsum_cong2) by blast
+ finally have "of_int (sign (inv p)) * (setprod (\<lambda>i. ?di (transpose A) i (inv p i)) ?U) =
+ of_int (sign p) * (setprod (\<lambda>i. ?di A i (p i)) ?U)" using sth by simp
+ }
+ then show ?thesis
+ unfolding det_def
+ apply (subst setsum_permutations_inverse)
+ apply (rule setsum_cong2)
+ apply blast
+ done
qed
lemma det_lowerdiagonal:
fixes A :: "'a::comm_ring_1^('n::{finite,wellorder})^('n::{finite,wellorder})"
assumes ld: "\<And>i j. i < j \<Longrightarrow> A$i$j = 0"
shows "det A = setprod (\<lambda>i. A$i$i) (UNIV:: 'n set)"
-proof-
+proof -
let ?U = "UNIV:: 'n set"
let ?PU = "{p. p permutes ?U}"
let ?pp = "\<lambda>p. of_int (sign p) * setprod (\<lambda>i. A$i$p i) (UNIV :: 'n set)"
have fU: "finite ?U" by simp
from finite_permutations[OF fU] have fPU: "finite ?PU" .
have id0: "{id} \<subseteq> ?PU" by (auto simp add: permutes_id)
- {fix p assume p: "p \<in> ?PU -{id}"
- from p have pU: "p permutes ?U" and pid: "p \<noteq> id" by blast+
- from permutes_natset_le[OF pU] pid obtain i where
- i: "p i > i" by (metis not_le)
- from ld[OF i] have ex:"\<exists>i \<in> ?U. A$i$p i = 0" by blast
- from setprod_zero[OF fU ex] have "?pp p = 0" by simp}
- then have p0: "\<forall>p \<in> ?PU -{id}. ?pp p = 0" by blast
+ {
+ fix p
+ assume p: "p \<in> ?PU -{id}"
+ from p have pU: "p permutes ?U" and pid: "p \<noteq> id"
+ by blast+
+ from permutes_natset_le[OF pU] pid obtain i where i: "p i > i"
+ by (metis not_le)
+ from ld[OF i] have ex:"\<exists>i \<in> ?U. A$i$p i = 0"
+ by blast
+ from setprod_zero[OF fU ex] have "?pp p = 0"
+ by simp
+ }
+ then have p0: "\<forall>p \<in> ?PU -{id}. ?pp p = 0"
+ by blast
from setsum_mono_zero_cong_left[OF fPU id0 p0] show ?thesis
unfolding det_def by (simp add: sign_id)
qed
@@ -167,21 +203,26 @@
fixes A :: "'a::comm_ring_1^'n::{finite,wellorder}^'n::{finite,wellorder}"
assumes ld: "\<And>i j. i > j \<Longrightarrow> A$i$j = 0"
shows "det A = setprod (\<lambda>i. A$i$i) (UNIV:: 'n set)"
-proof-
+proof -
let ?U = "UNIV:: 'n set"
let ?PU = "{p. p permutes ?U}"
let ?pp = "(\<lambda>p. of_int (sign p) * setprod (\<lambda>i. A$i$p i) (UNIV :: 'n set))"
have fU: "finite ?U" by simp
from finite_permutations[OF fU] have fPU: "finite ?PU" .
have id0: "{id} \<subseteq> ?PU" by (auto simp add: permutes_id)
- {fix p assume p: "p \<in> ?PU -{id}"
- from p have pU: "p permutes ?U" and pid: "p \<noteq> id" by blast+
- from permutes_natset_ge[OF pU] pid obtain i where
- i: "p i < i" by (metis not_le)
+ {
+ fix p
+ assume p: "p \<in> ?PU -{id}"
+ from p have pU: "p permutes ?U" and pid: "p \<noteq> id"
+ by blast+
+ from permutes_natset_ge[OF pU] pid obtain i where i: "p i < i"
+ by (metis not_le)
from ld[OF i] have ex:"\<exists>i \<in> ?U. A$i$p i = 0" by blast
- from setprod_zero[OF fU ex] have "?pp p = 0" by simp}
- then have p0: "\<forall>p \<in> ?PU -{id}. ?pp p = 0" by blast
- from setsum_mono_zero_cong_left[OF fPU id0 p0] show ?thesis
+ from setprod_zero[OF fU ex] have "?pp p = 0" by simp
+ }
+ then have p0: "\<forall>p \<in> ?PU -{id}. ?pp p = 0"
+ by blast
+ from setsum_mono_zero_cong_left[OF fPU id0 p0] show ?thesis
unfolding det_def by (simp add: sign_id)
qed
@@ -189,14 +230,16 @@
fixes A :: "'a::comm_ring_1^'n^'n"
assumes ld: "\<And>i j. i \<noteq> j \<Longrightarrow> A$i$j = 0"
shows "det A = setprod (\<lambda>i. A$i$i) (UNIV::'n set)"
-proof-
+proof -
let ?U = "UNIV:: 'n set"
let ?PU = "{p. p permutes ?U}"
let ?pp = "\<lambda>p. of_int (sign p) * setprod (\<lambda>i. A$i$p i) (UNIV :: 'n set)"
have fU: "finite ?U" by simp
from finite_permutations[OF fU] have fPU: "finite ?PU" .
have id0: "{id} \<subseteq> ?PU" by (auto simp add: permutes_id)
- {fix p assume p: "p \<in> ?PU - {id}"
+ {
+ fix p
+ assume p: "p \<in> ?PU - {id}"
then have "p \<noteq> id" by simp
then obtain i where i: "p i \<noteq> i" unfolding fun_eq_iff by auto
from ld [OF i [symmetric]] have ex:"\<exists>i \<in> ?U. A$i$p i = 0" by blast
@@ -207,16 +250,22 @@
qed
lemma det_I: "det (mat 1 :: 'a::comm_ring_1^'n^'n) = 1"
-proof-
+proof -
let ?A = "mat 1 :: 'a::comm_ring_1^'n^'n"
let ?U = "UNIV :: 'n set"
let ?f = "\<lambda>i j. ?A$i$j"
- {fix i assume i: "i \<in> ?U"
- have "?f i i = 1" using i by (vector mat_def)}
- hence th: "setprod (\<lambda>i. ?f i i) ?U = setprod (\<lambda>x. 1) ?U"
+ {
+ fix i
+ assume i: "i \<in> ?U"
+ have "?f i i = 1" using i by (vector mat_def)
+ }
+ then have th: "setprod (\<lambda>i. ?f i i) ?U = setprod (\<lambda>x. 1) ?U"
by (auto intro: setprod_cong)
- {fix i j assume i: "i \<in> ?U" and j: "j \<in> ?U" and ij: "i \<noteq> j"
- have "?f i j = 0" using i j ij by (vector mat_def) }
+ {
+ fix i j
+ assume i: "i \<in> ?U" and j: "j \<in> ?U" and ij: "i \<noteq> j"
+ have "?f i j = 0" using i j ij by (vector mat_def)
+ }
then have "det ?A = setprod (\<lambda>i. ?f i i) ?U" using det_diagonal
by blast
also have "\<dots> = 1" unfolding th setprod_1 ..
@@ -232,23 +281,27 @@
shows "det(\<chi> i. A$p i :: 'a^'n^'n) = of_int (sign p) * det A"
apply (simp add: det_def setsum_right_distrib mult_assoc[symmetric])
apply (subst sum_permutations_compose_right[OF p])
-proof(rule setsum_cong2)
+proof (rule setsum_cong2)
let ?U = "UNIV :: 'n set"
let ?PU = "{p. p permutes ?U}"
- fix q assume qPU: "q \<in> ?PU"
+ fix q
+ assume qPU: "q \<in> ?PU"
have fU: "finite ?U" by simp
- from qPU have q: "q permutes ?U" by blast
+ from qPU have q: "q permutes ?U"
+ by blast
from p q have pp: "permutation p" and qp: "permutation q"
by (metis fU permutation_permutes)+
from permutes_inv[OF p] have ip: "inv p permutes ?U" .
- have "setprod (\<lambda>i. A$p i$ (q o p) i) ?U = setprod ((\<lambda>i. A$p i$(q o p) i) o inv p) ?U"
- by (simp only: setprod_permute[OF ip, symmetric])
- also have "\<dots> = setprod (\<lambda>i. A $ (p o inv p) i $ (q o (p o inv p)) i) ?U"
- by (simp only: o_def)
- also have "\<dots> = setprod (\<lambda>i. A$i$q i) ?U" by (simp only: o_def permutes_inverses[OF p])
- finally have thp: "setprod (\<lambda>i. A$p i$ (q o p) i) ?U = setprod (\<lambda>i. A$i$q i) ?U"
- by blast
- show "of_int (sign (q o p)) * setprod (\<lambda>i. A$ p i$ (q o p) i) ?U = of_int (sign p) * of_int (sign q) * setprod (\<lambda>i. A$i$q i) ?U"
+ have "setprod (\<lambda>i. A$p i$ (q o p) i) ?U = setprod ((\<lambda>i. A$p i$(q o p) i) o inv p) ?U"
+ by (simp only: setprod_permute[OF ip, symmetric])
+ also have "\<dots> = setprod (\<lambda>i. A $ (p o inv p) i $ (q o (p o inv p)) i) ?U"
+ by (simp only: o_def)
+ also have "\<dots> = setprod (\<lambda>i. A$i$q i) ?U"
+ by (simp only: o_def permutes_inverses[OF p])
+ finally have thp: "setprod (\<lambda>i. A$p i$ (q o p) i) ?U = setprod (\<lambda>i. A$i$q i) ?U"
+ by blast
+ show "of_int (sign (q o p)) * setprod (\<lambda>i. A$ p i$ (q o p) i) ?U =
+ of_int (sign p) * of_int (sign q) * setprod (\<lambda>i. A$i$q i) ?U"
by (simp only: thp sign_compose[OF qp pp] mult_commute of_int_mult)
qed
@@ -256,7 +309,7 @@
fixes A :: "'a::comm_ring_1^'n^'n"
assumes p: "p permutes (UNIV :: 'n set)"
shows "det(\<chi> i j. A$i$ p j :: 'a^'n^'n) = of_int (sign p) * det A"
-proof-
+proof -
let ?Ap = "\<chi> i j. A$i$ p j :: 'a^'n^'n"
let ?At = "transpose A"
have "of_int (sign p) * det A = det (transpose (\<chi> i. transpose A $ p i))"
@@ -270,16 +323,16 @@
lemma det_identical_rows:
fixes A :: "'a::linordered_idom^'n^'n"
assumes ij: "i \<noteq> j"
- and r: "row i A = row j A"
+ and r: "row i A = row j A"
shows "det A = 0"
proof-
- have tha: "\<And>(a::'a) b. a = b ==> b = - a ==> a = 0"
+ have tha: "\<And>(a::'a) b. a = b \<Longrightarrow> b = - a \<Longrightarrow> a = 0"
by simp
have th1: "of_int (-1) = - 1" by simp
let ?p = "Fun.swap i j id"
let ?A = "\<chi> i. A $ ?p i"
from r have "A = ?A" by (simp add: vec_eq_iff row_def swap_def)
- hence "det A = det ?A" by simp
+ then have "det A = det ?A" by simp
moreover have "det A = - det ?A"
by (simp add: det_permute_rows[OF permutes_swap_id] sign_swap_id ij th1)
ultimately show "det A = 0" by (metis tha)
@@ -288,21 +341,22 @@
lemma det_identical_columns:
fixes A :: "'a::linordered_idom^'n^'n"
assumes ij: "i \<noteq> j"
- and r: "column i A = column j A"
+ and r: "column i A = column j A"
shows "det A = 0"
-apply (subst det_transpose[symmetric])
-apply (rule det_identical_rows[OF ij])
-by (metis row_transpose r)
+ apply (subst det_transpose[symmetric])
+ apply (rule det_identical_rows[OF ij])
+ apply (metis row_transpose r)
+ done
lemma det_zero_row:
fixes A :: "'a::{idom, ring_char_0}^'n^'n"
assumes r: "row i A = 0"
shows "det A = 0"
-using r
-apply (simp add: row_def det_def vec_eq_iff)
-apply (rule setsum_0')
-apply (auto simp: sign_nz)
-done
+ using r
+ apply (simp add: row_def det_def vec_eq_iff)
+ apply (rule setsum_0')
+ apply (auto simp: sign_nz)
+ done
lemma det_zero_column:
fixes A :: "'a::{idom,ring_char_0}^'n^'n"
@@ -310,27 +364,32 @@
shows "det A = 0"
apply (subst det_transpose[symmetric])
apply (rule det_zero_row [of i])
- by (metis row_transpose r)
+ apply (metis row_transpose r)
+ done
lemma det_row_add:
fixes a b c :: "'n::finite \<Rightarrow> _ ^ 'n"
shows "det((\<chi> i. if i = k then a i + b i else c i)::'a::comm_ring_1^'n^'n) =
- det((\<chi> i. if i = k then a i else c i)::'a::comm_ring_1^'n^'n) +
- det((\<chi> i. if i = k then b i else c i)::'a::comm_ring_1^'n^'n)"
-unfolding det_def vec_lambda_beta setsum_addf[symmetric]
+ det((\<chi> i. if i = k then a i else c i)::'a::comm_ring_1^'n^'n) +
+ det((\<chi> i. if i = k then b i else c i)::'a::comm_ring_1^'n^'n)"
+ unfolding det_def vec_lambda_beta setsum_addf[symmetric]
proof (rule setsum_cong2)
let ?U = "UNIV :: 'n set"
let ?pU = "{p. p permutes ?U}"
let ?f = "(\<lambda>i. if i = k then a i + b i else c i)::'n \<Rightarrow> 'a::comm_ring_1^'n"
let ?g = "(\<lambda> i. if i = k then a i else c i)::'n \<Rightarrow> 'a::comm_ring_1^'n"
let ?h = "(\<lambda> i. if i = k then b i else c i)::'n \<Rightarrow> 'a::comm_ring_1^'n"
- fix p assume p: "p \<in> ?pU"
+ fix p
+ assume p: "p \<in> ?pU"
let ?Uk = "?U - {k}"
from p have pU: "p permutes ?U" by blast
have kU: "?U = insert k ?Uk" by blast
- {fix j assume j: "j \<in> ?Uk"
+ {
+ fix j
+ assume j: "j \<in> ?Uk"
from j have "?f j $ p j = ?g j $ p j" and "?f j $ p j= ?h j $ p j"
- by simp_all}
+ by simp_all
+ }
then have th1: "setprod (\<lambda>i. ?f i $ p i) ?Uk = setprod (\<lambda>i. ?g i $ p i) ?Uk"
and th2: "setprod (\<lambda>i. ?f i $ p i) ?Uk = setprod (\<lambda>i. ?h i $ p i) ?Uk"
apply -
@@ -342,36 +401,45 @@
also have "\<dots> = ?f k $ p k * setprod (\<lambda>i. ?f i $ p i) ?Uk"
apply (rule setprod_insert)
apply simp
- by blast
- also have "\<dots> = (a k $ p k * setprod (\<lambda>i. ?f i $ p i) ?Uk) + (b k$ p k * setprod (\<lambda>i. ?f i $ p i) ?Uk)" by (simp add: field_simps)
- also have "\<dots> = (a k $ p k * setprod (\<lambda>i. ?g i $ p i) ?Uk) + (b k$ p k * setprod (\<lambda>i. ?h i $ p i) ?Uk)" by (metis th1 th2)
+ apply blast
+ done
+ also have "\<dots> = (a k $ p k * setprod (\<lambda>i. ?f i $ p i) ?Uk) + (b k$ p k * setprod (\<lambda>i. ?f i $ p i) ?Uk)"
+ by (simp add: field_simps)
+ also have "\<dots> = (a k $ p k * setprod (\<lambda>i. ?g i $ p i) ?Uk) + (b k$ p k * setprod (\<lambda>i. ?h i $ p i) ?Uk)"
+ by (metis th1 th2)
also have "\<dots> = setprod (\<lambda>i. ?g i $ p i) (insert k ?Uk) + setprod (\<lambda>i. ?h i $ p i) (insert k ?Uk)"
unfolding setprod_insert[OF th3] by simp
- finally have "setprod (\<lambda>i. ?f i $ p i) ?U = setprod (\<lambda>i. ?g i $ p i) ?U + setprod (\<lambda>i. ?h i $ p i) ?U" unfolding kU[symmetric] .
- then show "of_int (sign p) * setprod (\<lambda>i. ?f i $ p i) ?U = of_int (sign p) * setprod (\<lambda>i. ?g i $ p i) ?U + of_int (sign p) * setprod (\<lambda>i. ?h i $ p i) ?U"
+ finally have "setprod (\<lambda>i. ?f i $ p i) ?U =
+ setprod (\<lambda>i. ?g i $ p i) ?U + setprod (\<lambda>i. ?h i $ p i) ?U" unfolding kU[symmetric] .
+ then show "of_int (sign p) * setprod (\<lambda>i. ?f i $ p i) ?U =
+ of_int (sign p) * setprod (\<lambda>i. ?g i $ p i) ?U + of_int (sign p) * setprod (\<lambda>i. ?h i $ p i) ?U"
by (simp add: field_simps)
qed
lemma det_row_mul:
fixes a b :: "'n::finite \<Rightarrow> _ ^ 'n"
shows "det((\<chi> i. if i = k then c *s a i else b i)::'a::comm_ring_1^'n^'n) =
- c* det((\<chi> i. if i = k then a i else b i)::'a::comm_ring_1^'n^'n)"
-
-unfolding det_def vec_lambda_beta setsum_right_distrib
+ c * det((\<chi> i. if i = k then a i else b i)::'a::comm_ring_1^'n^'n)"
+ unfolding det_def vec_lambda_beta setsum_right_distrib
proof (rule setsum_cong2)
let ?U = "UNIV :: 'n set"
let ?pU = "{p. p permutes ?U}"
let ?f = "(\<lambda>i. if i = k then c*s a i else b i)::'n \<Rightarrow> 'a::comm_ring_1^'n"
let ?g = "(\<lambda> i. if i = k then a i else b i)::'n \<Rightarrow> 'a::comm_ring_1^'n"
- fix p assume p: "p \<in> ?pU"
+ fix p
+ assume p: "p \<in> ?pU"
let ?Uk = "?U - {k}"
from p have pU: "p permutes ?U" by blast
have kU: "?U = insert k ?Uk" by blast
- {fix j assume j: "j \<in> ?Uk"
- from j have "?f j $ p j = ?g j $ p j" by simp}
+ {
+ fix j
+ assume j: "j \<in> ?Uk"
+ from j have "?f j $ p j = ?g j $ p j" by simp
+ }
then have th1: "setprod (\<lambda>i. ?f i $ p i) ?Uk = setprod (\<lambda>i. ?g i $ p i) ?Uk"
apply -
- apply (rule setprod_cong, simp_all)
+ apply (rule setprod_cong)
+ apply simp_all
done
have th3: "finite ?Uk" "k \<notin> ?Uk" by auto
have "setprod (\<lambda>i. ?f i $ p i) ?U = setprod (\<lambda>i. ?f i $ p i) (insert k ?Uk)"
@@ -379,29 +447,34 @@
also have "\<dots> = ?f k $ p k * setprod (\<lambda>i. ?f i $ p i) ?Uk"
apply (rule setprod_insert)
apply simp
- by blast
- also have "\<dots> = (c*s a k) $ p k * setprod (\<lambda>i. ?f i $ p i) ?Uk" by (simp add: field_simps)
+ apply blast
+ done
+ also have "\<dots> = (c*s a k) $ p k * setprod (\<lambda>i. ?f i $ p i) ?Uk"
+ by (simp add: field_simps)
also have "\<dots> = c* (a k $ p k * setprod (\<lambda>i. ?g i $ p i) ?Uk)"
unfolding th1 by (simp add: mult_ac)
also have "\<dots> = c* (setprod (\<lambda>i. ?g i $ p i) (insert k ?Uk))"
- unfolding setprod_insert[OF th3] by simp
- finally have "setprod (\<lambda>i. ?f i $ p i) ?U = c* (setprod (\<lambda>i. ?g i $ p i) ?U)" unfolding kU[symmetric] .
- then show "of_int (sign p) * setprod (\<lambda>i. ?f i $ p i) ?U = c * (of_int (sign p) * setprod (\<lambda>i. ?g i $ p i) ?U)"
+ unfolding setprod_insert[OF th3] by simp
+ finally have "setprod (\<lambda>i. ?f i $ p i) ?U = c* (setprod (\<lambda>i. ?g i $ p i) ?U)"
+ unfolding kU[symmetric] .
+ then show "of_int (sign p) * setprod (\<lambda>i. ?f i $ p i) ?U =
+ c * (of_int (sign p) * setprod (\<lambda>i. ?g i $ p i) ?U)"
by (simp add: field_simps)
qed
lemma det_row_0:
fixes b :: "'n::finite \<Rightarrow> _ ^ 'n"
shows "det((\<chi> i. if i = k then 0 else b i)::'a::comm_ring_1^'n^'n) = 0"
-using det_row_mul[of k 0 "\<lambda>i. 1" b]
-apply (simp)
- unfolding vector_smult_lzero .
+ using det_row_mul[of k 0 "\<lambda>i. 1" b]
+ apply simp
+ apply (simp only: vector_smult_lzero)
+ done
lemma det_row_operation:
fixes A :: "'a::linordered_idom^'n^'n"
assumes ij: "i \<noteq> j"
shows "det (\<chi> k. if k = i then row i A + c *s row j A else row k A) = det A"
-proof-
+proof -
let ?Z = "(\<chi> k. if k = i then row j A else row k A) :: 'a ^'n^'n"
have th: "row i ?Z = row j ?Z" by (vector row_def)
have th2: "((\<chi> k. if k = i then row i A else row k A) :: 'a^'n^'n) = A"
@@ -415,30 +488,38 @@
fixes A :: "real^'n^'n"
assumes x: "x \<in> span {row j A |j. j \<noteq> i}"
shows "det (\<chi> k. if k = i then row i A + x else row k A) = det A"
-proof-
+proof -
let ?U = "UNIV :: 'n set"
let ?S = "{row j A |j. j \<noteq> i}"
let ?d = "\<lambda>x. det (\<chi> k. if k = i then x else row k A)"
let ?P = "\<lambda>x. ?d (row i A + x) = det A"
- {fix k
-
- have "(if k = i then row i A + 0 else row k A) = row k A" by simp}
+ {
+ fix k
+ have "(if k = i then row i A + 0 else row k A) = row k A" by simp
+ }
then have P0: "?P 0"
apply -
apply (rule cong[of det, OF refl])
- by (vector row_def)
+ apply (vector row_def)
+ done
moreover
- {fix c z y assume zS: "z \<in> ?S" and Py: "?P y"
+ {
+ fix c z y
+ assume zS: "z \<in> ?S" and Py: "?P y"
from zS obtain j where j: "z = row j A" "i \<noteq> j" by blast
let ?w = "row i A + y"
have th0: "row i A + (c*s z + y) = ?w + c*s z" by vector
have thz: "?d z = 0"
apply (rule det_identical_rows[OF j(2)])
- using j by (vector row_def)
- have "?d (row i A + (c*s z + y)) = ?d (?w + c*s z)" unfolding th0 ..
- then have "?P (c*s z + y)" unfolding thz Py det_row_mul[of i] det_row_add[of i]
- by simp }
-
+ using j
+ apply (vector row_def)
+ done
+ have "?d (row i A + (c*s z + y)) = ?d (?w + c*s z)"
+ unfolding th0 ..
+ then have "?P (c*s z + y)"
+ unfolding thz Py det_row_mul[of i] det_row_add[of i]
+ by simp
+ }
ultimately show ?thesis
apply -
apply (rule span_induct_alt[of ?P ?S, OF P0, folded scalar_mult_eq_scaleR])
@@ -456,53 +537,68 @@
fixes A:: "real^'n^'n"
assumes d: "dependent (rows A)"
shows "det A = 0"
-proof-
+proof -
let ?U = "UNIV :: 'n set"
from d obtain i where i: "row i A \<in> span (rows A - {row i A})"
unfolding dependent_def rows_def by blast
- {fix j k assume jk: "j \<noteq> k"
- and c: "row j A = row k A"
- from det_identical_rows[OF jk c] have ?thesis .}
+ {
+ fix j k
+ assume jk: "j \<noteq> k" and c: "row j A = row k A"
+ from det_identical_rows[OF jk c] have ?thesis .
+ }
moreover
- {assume H: "\<And> i j. i \<noteq> j \<Longrightarrow> row i A \<noteq> row j A"
+ {
+ assume H: "\<And> i j. i \<noteq> j \<Longrightarrow> row i A \<noteq> row j A"
have th0: "- row i A \<in> span {row j A|j. j \<noteq> i}"
apply (rule span_neg)
apply (rule set_rev_mp)
apply (rule i)
apply (rule span_mono)
- using H i by (auto simp add: rows_def)
+ using H i
+ apply (auto simp add: rows_def)
+ done
from det_row_span[OF th0]
have "det A = det (\<chi> k. if k = i then 0 *s 1 else row k A)"
unfolding right_minus vector_smult_lzero ..
with det_row_mul[of i "0::real" "\<lambda>i. 1"]
- have "det A = 0" by simp}
+ have "det A = 0" by simp
+ }
ultimately show ?thesis by blast
qed
-lemma det_dependent_columns: assumes d: "dependent(columns (A::real^'n^'n))" shows "det A = 0"
-by (metis d det_dependent_rows rows_transpose det_transpose)
+lemma det_dependent_columns:
+ assumes d: "dependent (columns (A::real^'n^'n))"
+ shows "det A = 0"
+ by (metis d det_dependent_rows rows_transpose det_transpose)
(* ------------------------------------------------------------------------- *)
(* Multilinearity and the multiplication formula. *)
(* ------------------------------------------------------------------------- *)
lemma Cart_lambda_cong: "(\<And>x. f x = g x) \<Longrightarrow> (vec_lambda f::'a^'n) = (vec_lambda g :: 'a^'n)"
- apply (rule iffD1[OF vec_lambda_unique]) by vector
+ by (rule iffD1[OF vec_lambda_unique]) vector
lemma det_linear_row_setsum:
assumes fS: "finite S"
- shows "det ((\<chi> i. if i = k then setsum (a i) S else c i)::'a::comm_ring_1^'n^'n) = setsum (\<lambda>j. det ((\<chi> i. if i = k then a i j else c i)::'a^'n^'n)) S"
-proof(induct rule: finite_induct[OF fS])
- case 1 thus ?case apply simp unfolding setsum_empty det_row_0[of k] ..
+ shows "det ((\<chi> i. if i = k then setsum (a i) S else c i)::'a::comm_ring_1^'n^'n) =
+ setsum (\<lambda>j. det ((\<chi> i. if i = k then a i j else c i)::'a^'n^'n)) S"
+proof (induct rule: finite_induct[OF fS])
+ case 1
+ then show ?case
+ apply simp
+ unfolding setsum_empty det_row_0[of k]
+ apply rule
+ done
next
case (2 x F)
- then show ?case by (simp add: det_row_add cong del: if_weak_cong)
+ then show ?case
+ by (simp add: det_row_add cong del: if_weak_cong)
qed
lemma finite_bounded_functions:
assumes fS: "finite S"
shows "finite {f. (\<forall>i \<in> {1.. (k::nat)}. f i \<in> S) \<and> (\<forall>i. i \<notin> {1 .. k} \<longrightarrow> f i = i)}"
-proof(induct k)
+proof (induct k)
case 0
have th: "{f. \<forall>i. f i = i} = {id}" by auto
show ?case by (auto simp add: th)
@@ -526,13 +622,14 @@
lemma det_linear_rows_setsum_lemma:
assumes fS: "finite S" and fT: "finite T"
shows "det((\<chi> i. if i \<in> T then setsum (a i) S else c i):: 'a::comm_ring_1^'n^'n) =
- setsum (\<lambda>f. det((\<chi> i. if i \<in> T then a i (f i) else c i)::'a^'n^'n))
- {f. (\<forall>i \<in> T. f i \<in> S) \<and> (\<forall>i. i \<notin> T \<longrightarrow> f i = i)}"
-using fT
-proof(induct T arbitrary: a c set: finite)
+ setsum (\<lambda>f. det((\<chi> i. if i \<in> T then a i (f i) else c i)::'a^'n^'n))
+ {f. (\<forall>i \<in> T. f i \<in> S) \<and> (\<forall>i. i \<notin> T \<longrightarrow> f i = i)}"
+ using fT
+proof (induct T arbitrary: a c set: finite)
case empty
- have th0: "\<And>x y. (\<chi> i. if i \<in> {} then x i else y i) = (\<chi> i. y i)" by vector
- from "empty.prems" show ?case unfolding th0 by simp
+ have th0: "\<And>x y. (\<chi> i. if i \<in> {} then x i else y i) = (\<chi> i. y i)"
+ by vector
+ from empty.prems show ?case unfolding th0 by simp
next
case (insert z T a c)
let ?F = "\<lambda>T. {f. (\<forall>i \<in> T. f i \<in> S) \<and> (\<forall>i. i \<notin> T \<longrightarrow> f i = i)}"
@@ -540,42 +637,48 @@
let ?k = "\<lambda>h. (h(z),(\<lambda>i. if i = z then i else h i))"
let ?s = "\<lambda> k a c f. det((\<chi> i. if i \<in> T then a i (f i) else c i)::'a^'n^'n)"
let ?c = "\<lambda>i. if i = z then a i j else c i"
- have thif: "\<And>a b c d. (if a \<or> b then c else d) = (if a then c else if b then c else d)" by simp
+ have thif: "\<And>a b c d. (if a \<or> b then c else d) = (if a then c else if b then c else d)"
+ by simp
have thif2: "\<And>a b c d e. (if a then b else if c then d else e) =
- (if c then (if a then b else d) else (if a then b else e))" by simp
- from `z \<notin> T` have nz: "\<And>i. i \<in> T \<Longrightarrow> i = z \<longleftrightarrow> False" by auto
+ (if c then (if a then b else d) else (if a then b else e))"
+ by simp
+ from `z \<notin> T` have nz: "\<And>i. i \<in> T \<Longrightarrow> i = z \<longleftrightarrow> False"
+ by auto
have "det (\<chi> i. if i \<in> insert z T then setsum (a i) S else c i) =
- det (\<chi> i. if i = z then setsum (a i) S
- else if i \<in> T then setsum (a i) S else c i)"
+ det (\<chi> i. if i = z then setsum (a i) S else if i \<in> T then setsum (a i) S else c i)"
unfolding insert_iff thif ..
- also have "\<dots> = (\<Sum>j\<in>S. det (\<chi> i. if i \<in> T then setsum (a i) S
- else if i = z then a i j else c i))"
+ also have "\<dots> = (\<Sum>j\<in>S. det (\<chi> i. if i \<in> T then setsum (a i) S else if i = z then a i j else c i))"
unfolding det_linear_row_setsum[OF fS]
apply (subst thif2)
- using nz by (simp cong del: if_weak_cong cong add: if_cong)
+ using nz
+ apply (simp cong del: if_weak_cong cong add: if_cong)
+ done
finally have tha:
"det (\<chi> i. if i \<in> insert z T then setsum (a i) S else c i) =
(\<Sum>(j, f)\<in>S \<times> ?F T. det (\<chi> i. if i \<in> T then a i (f i)
else if i = z then a i j
else c i))"
- unfolding insert.hyps unfolding setsum_cartesian_product by blast
+ unfolding insert.hyps unfolding setsum_cartesian_product by blast
show ?case unfolding tha
- apply(rule setsum_eq_general_reverses[where h= "?h" and k= "?k"],
+ apply (rule setsum_eq_general_reverses[where h= "?h" and k= "?k"],
blast intro: finite_cartesian_product fS finite,
blast intro: finite_cartesian_product fS finite)
using `z \<notin> T`
apply auto
apply (rule cong[OF refl[of det]])
- by vector
+ apply vector
+ done
qed
lemma det_linear_rows_setsum:
assumes fS: "finite (S::'n::finite set)"
- shows "det (\<chi> i. setsum (a i) S) = setsum (\<lambda>f. det (\<chi> i. a i (f i) :: 'a::comm_ring_1 ^ 'n^'n)) {f. \<forall>i. f i \<in> S}"
-proof-
- have th0: "\<And>x y. ((\<chi> i. if i \<in> (UNIV:: 'n set) then x i else y i) :: 'a^'n^'n) = (\<chi> i. x i)" by vector
-
- from det_linear_rows_setsum_lemma[OF fS, of "UNIV :: 'n set" a, unfolded th0, OF finite] show ?thesis by simp
+ shows "det (\<chi> i. setsum (a i) S) =
+ setsum (\<lambda>f. det (\<chi> i. a i (f i) :: 'a::comm_ring_1 ^ 'n^'n)) {f. \<forall>i. f i \<in> S}"
+proof -
+ have th0: "\<And>x y. ((\<chi> i. if i \<in> (UNIV:: 'n set) then x i else y i) :: 'a^'n^'n) = (\<chi> i. x i)"
+ by vector
+ from det_linear_rows_setsum_lemma[OF fS, of "UNIV :: 'n set" a, unfolded th0, OF finite]
+ show ?thesis by simp
qed
lemma matrix_mul_setsum_alt:
@@ -585,75 +688,93 @@
lemma det_rows_mul:
"det((\<chi> i. c i *s a i)::'a::comm_ring_1^'n^'n) =
- setprod (\<lambda>i. c i) (UNIV:: 'n set) * det((\<chi> i. a i)::'a^'n^'n)"
+ setprod (\<lambda>i. c i) (UNIV:: 'n set) * det((\<chi> i. a i)::'a^'n^'n)"
proof (simp add: det_def setsum_right_distrib cong add: setprod_cong, rule setsum_cong2)
let ?U = "UNIV :: 'n set"
let ?PU = "{p. p permutes ?U}"
- fix p assume pU: "p \<in> ?PU"
+ fix p
+ assume pU: "p \<in> ?PU"
let ?s = "of_int (sign p)"
- from pU have p: "p permutes ?U" by blast
+ from pU have p: "p permutes ?U"
+ by blast
have "setprod (\<lambda>i. c i * a i $ p i) ?U = setprod c ?U * setprod (\<lambda>i. a i $ p i) ?U"
unfolding setprod_timesf ..
then show "?s * (\<Prod>xa\<in>?U. c xa * a xa $ p xa) =
- setprod c ?U * (?s* (\<Prod>xa\<in>?U. a xa $ p xa))" by (simp add: field_simps)
+ setprod c ?U * (?s* (\<Prod>xa\<in>?U. a xa $ p xa))" by (simp add: field_simps)
qed
lemma det_mul:
fixes A B :: "'a::linordered_idom^'n^'n"
shows "det (A ** B) = det A * det B"
-proof-
+proof -
let ?U = "UNIV :: 'n set"
let ?F = "{f. (\<forall>i\<in> ?U. f i \<in> ?U) \<and> (\<forall>i. i \<notin> ?U \<longrightarrow> f i = i)}"
let ?PU = "{p. p permutes ?U}"
have fU: "finite ?U" by simp
have fF: "finite ?F" by (rule finite)
- {fix p assume p: "p permutes ?U"
-
+ {
+ fix p
+ assume p: "p permutes ?U"
have "p \<in> ?F" unfolding mem_Collect_eq permutes_in_image[OF p]
- using p[unfolded permutes_def] by simp}
+ using p[unfolded permutes_def] by simp
+ }
then have PUF: "?PU \<subseteq> ?F" by blast
- {fix f assume fPU: "f \<in> ?F - ?PU"
+ {
+ fix f
+ assume fPU: "f \<in> ?F - ?PU"
have fUU: "f ` ?U \<subseteq> ?U" using fPU by auto
- from fPU have f: "\<forall>i \<in> ?U. f i \<in> ?U"
- "\<forall>i. i \<notin> ?U \<longrightarrow> f i = i" "\<not>(\<forall>y. \<exists>!x. f x = y)" unfolding permutes_def
- by auto
+ from fPU have f: "\<forall>i \<in> ?U. f i \<in> ?U" "\<forall>i. i \<notin> ?U \<longrightarrow> f i = i" "\<not>(\<forall>y. \<exists>!x. f x = y)"
+ unfolding permutes_def by auto
let ?A = "(\<chi> i. A$i$f i *s B$f i) :: 'a^'n^'n"
let ?B = "(\<chi> i. B$f i) :: 'a^'n^'n"
- {assume fni: "\<not> inj_on f ?U"
+ {
+ assume fni: "\<not> inj_on f ?U"
then obtain i j where ij: "f i = f j" "i \<noteq> j"
unfolding inj_on_def by blast
from ij
have rth: "row i ?B = row j ?B" by (vector row_def)
from det_identical_rows[OF ij(2) rth]
have "det (\<chi> i. A$i$f i *s B$f i) = 0"
- unfolding det_rows_mul by simp}
+ unfolding det_rows_mul by simp
+ }
moreover
- {assume fi: "inj_on f ?U"
+ {
+ assume fi: "inj_on f ?U"
from f fi have fith: "\<And>i j. f i = f j \<Longrightarrow> i = j"
unfolding inj_on_def by metis
note fs = fi[unfolded surjective_iff_injective_gen[OF fU fU refl fUU, symmetric]]
- {fix y
+ {
+ fix y
from fs f have "\<exists>x. f x = y" by blast
then obtain x where x: "f x = y" by blast
- {fix z assume z: "f z = y" from fith x z have "z = x" by metis}
- with x have "\<exists>!x. f x = y" by blast}
- with f(3) have "det (\<chi> i. A$i$f i *s B$f i) = 0" by blast}
- ultimately have "det (\<chi> i. A$i$f i *s B$f i) = 0" by blast}
- hence zth: "\<forall> f\<in> ?F - ?PU. det (\<chi> i. A$i$f i *s B$f i) = 0" by simp
- {fix p assume pU: "p \<in> ?PU"
+ {
+ fix z
+ assume z: "f z = y"
+ from fith x z have "z = x" by metis
+ }
+ with x have "\<exists>!x. f x = y" by blast
+ }
+ with f(3) have "det (\<chi> i. A$i$f i *s B$f i) = 0" by blast
+ }
+ ultimately have "det (\<chi> i. A$i$f i *s B$f i) = 0" by blast
+ }
+ hence zth: "\<forall> f\<in> ?F - ?PU. det (\<chi> i. A$i$f i *s B$f i) = 0"
+ by simp
+ {
+ fix p
+ assume pU: "p \<in> ?PU"
from pU have p: "p permutes ?U" by blast
let ?s = "\<lambda>p. of_int (sign p)"
- let ?f = "\<lambda>q. ?s p * (\<Prod>i\<in> ?U. A $ i $ p i) *
- (?s q * (\<Prod>i\<in> ?U. B $ i $ q i))"
+ let ?f = "\<lambda>q. ?s p * (\<Prod>i\<in> ?U. A $ i $ p i) * (?s q * (\<Prod>i\<in> ?U. B $ i $ q i))"
have "(setsum (\<lambda>q. ?s q *
- (\<Prod>i\<in> ?U. (\<chi> i. A $ i $ p i *s B $ p i :: 'a^'n^'n) $ i $ q i)) ?PU) =
- (setsum (\<lambda>q. ?s p * (\<Prod>i\<in> ?U. A $ i $ p i) *
- (?s q * (\<Prod>i\<in> ?U. B $ i $ q i))) ?PU)"
+ (\<Prod>i\<in> ?U. (\<chi> i. A $ i $ p i *s B $ p i :: 'a^'n^'n) $ i $ q i)) ?PU) =
+ (setsum (\<lambda>q. ?s p * (\<Prod>i\<in> ?U. A $ i $ p i) * (?s q * (\<Prod>i\<in> ?U. B $ i $ q i))) ?PU)"
unfolding sum_permutations_compose_right[OF permutes_inv[OF p], of ?f]
proof(rule setsum_cong2)
- fix q assume qU: "q \<in> ?PU"
+ fix q
+ assume qU: "q \<in> ?PU"
hence q: "q permutes ?U" by blast
from p q have pp: "permutation p" and pq: "permutation q"
unfolding permutation_permutes by auto
@@ -666,11 +787,15 @@
by (simp add: th00 mult_ac sign_idempotent sign_compose)
have th001: "setprod (\<lambda>i. B$i$ q (inv p i)) ?U = setprod ((\<lambda>i. B$i$ q (inv p i)) o p) ?U"
by (rule setprod_permute[OF p])
- have thp: "setprod (\<lambda>i. (\<chi> i. A$i$p i *s B$p i :: 'a^'n^'n) $i $ q i) ?U = setprod (\<lambda>i. A$i$p i) ?U * setprod (\<lambda>i. B$i$ q (inv p i)) ?U"
+ have thp: "setprod (\<lambda>i. (\<chi> i. A$i$p i *s B$p i :: 'a^'n^'n) $i $ q i) ?U =
+ setprod (\<lambda>i. A$i$p i) ?U * setprod (\<lambda>i. B$i$ q (inv p i)) ?U"
unfolding th001 setprod_timesf[symmetric] o_def permutes_inverses[OF p]
apply (rule setprod_cong[OF refl])
- using permutes_in_image[OF q] by vector
- show "?s q * setprod (\<lambda>i. (((\<chi> i. A$i$p i *s B$p i) :: 'a^'n^'n)$i$q i)) ?U = ?s p * (setprod (\<lambda>i. A$i$p i) ?U) * (?s (q o inv p) * setprod (\<lambda>i. B$i$(q o inv p) i) ?U)"
+ using permutes_in_image[OF q]
+ apply vector
+ done
+ show "?s q * setprod (\<lambda>i. (((\<chi> i. A$i$p i *s B$p i) :: 'a^'n^'n)$i$q i)) ?U =
+ ?s p * (setprod (\<lambda>i. A$i$p i) ?U) * (?s (q o inv p) * setprod (\<lambda>i. B$i$(q o inv p) i) ?U)"
using ths thp pp pq permutation_inverse[OF pp] sign_inverse[OF pp]
by (simp add: sign_nz th00 field_simps sign_idempotent sign_compose)
qed
@@ -703,22 +828,24 @@
lemma invertible_det_nz:
fixes A::"real ^'n^'n"
shows "invertible A \<longleftrightarrow> det A \<noteq> 0"
-proof-
- {assume "invertible A"
+proof -
+ {
+ assume "invertible A"
then obtain B :: "real ^'n^'n" where B: "A ** B = mat 1"
unfolding invertible_righ_inverse by blast
hence "det (A ** B) = det (mat 1 :: real ^'n^'n)" by simp
- hence "det A \<noteq> 0"
- apply (simp add: det_mul det_I) by algebra }
+ hence "det A \<noteq> 0" by (simp add: det_mul det_I) algebra
+ }
moreover
- {assume H: "\<not> invertible A"
+ {
+ assume H: "\<not> invertible A"
let ?U = "UNIV :: 'n set"
have fU: "finite ?U" by simp
from H obtain c i where c: "setsum (\<lambda>i. c i *s row i A) ?U = 0"
and iU: "i \<in> ?U" and ci: "c i \<noteq> 0"
unfolding invertible_righ_inverse
unfolding matrix_right_invertible_independent_rows by blast
- have stupid: "\<And>(a::real^'n) b. a + b = 0 \<Longrightarrow> -a = b"
+ have *: "\<And>(a::real^'n) b. a + b = 0 \<Longrightarrow> -a = b"
apply (drule_tac f="op + (- a)" in cong[OF refl])
apply (simp only: ab_left_minus add_assoc[symmetric])
apply simp
@@ -729,7 +856,7 @@
apply -
apply (rule vector_mul_lcancel_imp[OF ci])
apply (auto simp add: field_simps)
- unfolding stupid ..
+ unfolding * ..
have thr: "- row i A \<in> span {row j A| j. j \<noteq> i}"
unfolding thr0
apply (rule span_setsum)
@@ -743,7 +870,8 @@
have thrb: "row i ?B = 0" using iU by (vector row_def)
have "det A = 0"
unfolding det_row_span[OF thr, symmetric] right_minus
- unfolding det_zero_row[OF thrb] ..}
+ unfolding det_zero_row[OF thrb] ..
+ }
ultimately show ?thesis by blast
qed
@@ -756,7 +884,7 @@
shows "det ((\<chi> i. if i = k then setsum (\<lambda>i. x$i *s row i A) (UNIV::'n set)
else row i A)::real^'n^'n) = x$k * det A"
(is "?lhs = ?rhs")
-proof-
+proof -
let ?U = "UNIV :: 'n set"
let ?Uk = "?U - {k}"
have U: "?U = insert k ?Uk" by blast
@@ -766,7 +894,8 @@
by (vector field_simps)
have th001: "\<And>f k . (\<lambda>x. if x = k then f k else f x) = f" by auto
have "(\<chi> i. row i A) = A" by (vector row_def)
- then have thd1: "det (\<chi> i. row i A) = det A" by simp
+ then have thd1: "det (\<chi> i. row i A) = det A"
+ by simp
have thd0: "det (\<chi> i. if i = k then row k A + (\<Sum>i \<in> ?Uk. x $ i *s row i A) else row i A) = det A"
apply (rule det_row_span)
apply (rule span_setsum[OF fUk])
@@ -784,37 +913,44 @@
unfolding thd0
unfolding det_row_mul
unfolding th001[of k "\<lambda>i. row i A"]
- unfolding thd1 by (simp add: field_simps)
+ unfolding thd1
+ apply (simp add: field_simps)
+ done
qed
lemma cramer_lemma:
fixes A :: "real^'n^'n"
shows "det((\<chi> i j. if j = k then (A *v x)$i else A$i$j):: real^'n^'n) = x$k * det A"
-proof-
+proof -
let ?U = "UNIV :: 'n set"
- have stupid: "\<And>c. setsum (\<lambda>i. c i *s row i (transpose A)) ?U = setsum (\<lambda>i. c i *s column i A) ?U"
+ have *: "\<And>c. setsum (\<lambda>i. c i *s row i (transpose A)) ?U = setsum (\<lambda>i. c i *s column i A) ?U"
by (auto simp add: row_transpose intro: setsum_cong2)
show ?thesis unfolding matrix_mult_vsum
- unfolding cramer_lemma_transpose[of k x "transpose A", unfolded det_transpose, symmetric]
- unfolding stupid[of "\<lambda>i. x$i"]
- apply (subst det_transpose[symmetric])
- apply (rule cong[OF refl[of det]]) by (vector transpose_def column_def row_def)
+ unfolding cramer_lemma_transpose[of k x "transpose A", unfolded det_transpose, symmetric]
+ unfolding *[of "\<lambda>i. x$i"]
+ apply (subst det_transpose[symmetric])
+ apply (rule cong[OF refl[of det]])
+ apply (vector transpose_def column_def row_def)
+ done
qed
lemma cramer:
fixes A ::"real^'n^'n"
assumes d0: "det A \<noteq> 0"
shows "A *v x = b \<longleftrightarrow> x = (\<chi> k. det(\<chi> i j. if j=k then b$i else A$i$j) / det A)"
-proof-
+proof -
from d0 obtain B where B: "A ** B = mat 1" "B ** A = mat 1"
unfolding invertible_det_nz[symmetric] invertible_def by blast
have "(A ** B) *v b = b" by (simp add: B matrix_vector_mul_lid)
- hence "A *v (B *v b) = b" by (simp add: matrix_vector_mul_assoc)
+ then have "A *v (B *v b) = b" by (simp add: matrix_vector_mul_assoc)
then have xe: "\<exists>x. A*v x = b" by blast
- {fix x assume x: "A *v x = b"
- have "x = (\<chi> k. det(\<chi> i j. if j=k then b$i else A$i$j) / det A)"
- unfolding x[symmetric]
- using d0 by (simp add: vec_eq_iff cramer_lemma field_simps)}
+ {
+ fix x
+ assume x: "A *v x = b"
+ have "x = (\<chi> k. det(\<chi> i j. if j=k then b$i else A$i$j) / det A)"
+ unfolding x[symmetric]
+ using d0 by (simp add: vec_eq_iff cramer_lemma field_simps)
+ }
with xe show ?thesis by auto
qed
@@ -824,16 +960,19 @@
definition "orthogonal_transformation f \<longleftrightarrow> linear f \<and> (\<forall>v w. f v \<bullet> f w = v \<bullet> w)"
-lemma orthogonal_transformation: "orthogonal_transformation f \<longleftrightarrow> linear f \<and> (\<forall>(v::real ^_). norm (f v) = norm v)"
+lemma orthogonal_transformation:
+ "orthogonal_transformation f \<longleftrightarrow> linear f \<and> (\<forall>(v::real ^_). norm (f v) = norm v)"
unfolding orthogonal_transformation_def
apply auto
apply (erule_tac x=v in allE)+
apply (simp add: norm_eq_sqrt_inner)
- by (simp add: dot_norm linear_add[symmetric])
+ apply (simp add: dot_norm linear_add[symmetric])
+ done
-definition "orthogonal_matrix (Q::'a::semiring_1^'n^'n) \<longleftrightarrow> transpose Q ** Q = mat 1 \<and> Q ** transpose Q = mat 1"
+definition "orthogonal_matrix (Q::'a::semiring_1^'n^'n) \<longleftrightarrow>
+ transpose Q ** Q = mat 1 \<and> Q ** transpose Q = mat 1"
-lemma orthogonal_matrix: "orthogonal_matrix (Q:: real ^'n^'n) \<longleftrightarrow> transpose Q ** Q = mat 1"
+lemma orthogonal_matrix: "orthogonal_matrix (Q:: real ^'n^'n) \<longleftrightarrow> transpose Q ** Q = mat 1"
by (metis matrix_left_right_inverse orthogonal_matrix_def)
lemma orthogonal_matrix_id: "orthogonal_matrix (mat 1 :: _^'n^'n)"
@@ -842,28 +981,31 @@
lemma orthogonal_matrix_mul:
fixes A :: "real ^'n^'n"
assumes oA : "orthogonal_matrix A"
- and oB: "orthogonal_matrix B"
+ and oB: "orthogonal_matrix B"
shows "orthogonal_matrix(A ** B)"
using oA oB
unfolding orthogonal_matrix matrix_transpose_mul
apply (subst matrix_mul_assoc)
apply (subst matrix_mul_assoc[symmetric])
- by (simp add: matrix_mul_rid)
+ apply (simp add: matrix_mul_rid)
+ done
lemma orthogonal_transformation_matrix:
fixes f:: "real^'n \<Rightarrow> real^'n"
shows "orthogonal_transformation f \<longleftrightarrow> linear f \<and> orthogonal_matrix(matrix f)"
(is "?lhs \<longleftrightarrow> ?rhs")
-proof-
+proof -
let ?mf = "matrix f"
let ?ot = "orthogonal_transformation f"
let ?U = "UNIV :: 'n set"
have fU: "finite ?U" by simp
let ?m1 = "mat 1 :: real ^'n^'n"
- {assume ot: ?ot
+ {
+ assume ot: ?ot
from ot have lf: "linear f" and fd: "\<forall>v w. f v \<bullet> f w = v \<bullet> w"
unfolding orthogonal_transformation_def orthogonal_matrix by blast+
- {fix i j
+ {
+ fix i j
let ?A = "transpose ?mf ** ?mf"
have th0: "\<And>b (x::'a::comm_ring_1). (if b then 1 else 0)*x = (if b then x else 0)"
"\<And>b (x::'a::comm_ring_1). x*(if b then 1 else 0) = (if b then x else 0)"
@@ -871,16 +1013,22 @@
from fd[rule_format, of "axis i 1" "axis j 1", unfolded matrix_works[OF lf, symmetric] dot_matrix_vector_mul]
have "?A$i$j = ?m1 $ i $ j"
by (simp add: inner_vec_def matrix_matrix_mult_def columnvector_def rowvector_def
- th0 setsum_delta[OF fU] mat_def axis_def) }
- hence "orthogonal_matrix ?mf" unfolding orthogonal_matrix by vector
- with lf have ?rhs by blast}
+ th0 setsum_delta[OF fU] mat_def axis_def)
+ }
+ then have "orthogonal_matrix ?mf" unfolding orthogonal_matrix
+ by vector
+ with lf have ?rhs by blast
+ }
moreover
- {assume lf: "linear f" and om: "orthogonal_matrix ?mf"
+ {
+ assume lf: "linear f" and om: "orthogonal_matrix ?mf"
from lf om have ?lhs
unfolding orthogonal_matrix_def norm_eq orthogonal_transformation
unfolding matrix_works[OF lf, symmetric]
apply (subst dot_matrix_vector_mul)
- by (simp add: dot_matrix_product matrix_mul_lid)}
+ apply (simp add: dot_matrix_product matrix_mul_lid)
+ done
+ }
ultimately show ?thesis by blast
qed
@@ -888,21 +1036,26 @@
fixes Q:: "'a::linordered_idom^'n^'n"
assumes oQ: "orthogonal_matrix Q"
shows "det Q = 1 \<or> det Q = - 1"
-proof-
-
+proof -
have th: "\<And>x::'a. x = 1 \<or> x = - 1 \<longleftrightarrow> x*x = 1" (is "\<And>x::'a. ?ths x")
- proof-
+ proof -
fix x:: 'a
- have th0: "x*x - 1 = (x - 1)*(x + 1)" by (simp add: field_simps)
+ have th0: "x*x - 1 = (x - 1)*(x + 1)"
+ by (simp add: field_simps)
have th1: "\<And>(x::'a) y. x = - y \<longleftrightarrow> x + y = 0"
- apply (subst eq_iff_diff_eq_0) by simp
- have "x*x = 1 \<longleftrightarrow> x*x - 1 = 0" by simp
+ apply (subst eq_iff_diff_eq_0)
+ apply simp
+ done
+ have "x * x = 1 \<longleftrightarrow> x*x - 1 = 0" by simp
also have "\<dots> \<longleftrightarrow> x = 1 \<or> x = - 1" unfolding th0 th1 by simp
finally show "?ths x" ..
qed
- from oQ have "Q ** transpose Q = mat 1" by (metis orthogonal_matrix_def)
- hence "det (Q ** transpose Q) = det (mat 1:: 'a^'n^'n)" by simp
- hence "det Q * det Q = 1" by (simp add: det_mul det_I det_transpose)
+ from oQ have "Q ** transpose Q = mat 1"
+ by (metis orthogonal_matrix_def)
+ then have "det (Q ** transpose Q) = det (mat 1:: 'a^'n^'n)"
+ by simp
+ then have "det Q * det Q = 1"
+ by (simp add: det_mul det_I det_transpose)
then show ?thesis unfolding th .
qed
@@ -911,25 +1064,29 @@
(* ------------------------------------------------------------------------- *)
lemma scaling_linear:
fixes f :: "real ^'n \<Rightarrow> real ^'n"
- assumes f0: "f 0 = 0" and fd: "\<forall>x y. dist (f x) (f y) = c * dist x y"
+ assumes f0: "f 0 = 0"
+ and fd: "\<forall>x y. dist (f x) (f y) = c * dist x y"
shows "linear f"
-proof-
- {fix v w
- {fix x note fd[rule_format, of x 0, unfolded dist_norm f0 diff_0_right] }
+proof -
+ {
+ fix v w
+ {
+ fix x
+ note fd[rule_format, of x 0, unfolded dist_norm f0 diff_0_right]
+ }
note th0 = this
have "f v \<bullet> f w = c\<^sup>2 * (v \<bullet> w)"
unfolding dot_norm_neg dist_norm[symmetric]
unfolding th0 fd[rule_format] by (simp add: power2_eq_square field_simps)}
note fc = this
show ?thesis
- unfolding linear_def vector_eq[where 'a="real^'n"] scalar_mult_eq_scaleR
+ unfolding linear_def vector_eq[where 'a="real^'n"] scalar_mult_eq_scaleR
by (simp add: inner_add fc field_simps)
qed
lemma isometry_linear:
- "f (0:: real^'n) = (0:: real^'n) \<Longrightarrow> \<forall>x y. dist(f x) (f y) = dist x y
- \<Longrightarrow> linear f"
-by (rule scaling_linear[where c=1]) simp_all
+ "f (0:: real^'n) = (0:: real^'n) \<Longrightarrow> \<forall>x y. dist(f x) (f y) = dist x y \<Longrightarrow> linear f"
+ by (rule scaling_linear[where c=1]) simp_all
(* ------------------------------------------------------------------------- *)
(* Hence another formulation of orthogonal transformation. *)
@@ -948,7 +1105,8 @@
apply clarify
apply (erule_tac x=v in allE)
apply (erule_tac x=0 in allE)
- by (simp add: dist_norm)
+ apply (simp add: dist_norm)
+ done
(* ------------------------------------------------------------------------- *)
(* Can extend an isometry from unit sphere. *)
@@ -957,15 +1115,19 @@
lemma isometry_sphere_extend:
fixes f:: "real ^'n \<Rightarrow> real ^'n"
assumes f1: "\<forall>x. norm x = 1 \<longrightarrow> norm (f x) = 1"
- and fd1: "\<forall> x y. norm x = 1 \<longrightarrow> norm y = 1 \<longrightarrow> dist (f x) (f y) = dist x y"
+ and fd1: "\<forall> x y. norm x = 1 \<longrightarrow> norm y = 1 \<longrightarrow> dist (f x) (f y) = dist x y"
shows "\<exists>g. orthogonal_transformation g \<and> (\<forall>x. norm x = 1 \<longrightarrow> g x = f x)"
-proof-
- {fix x y x' y' x0 y0 x0' y0' :: "real ^'n"
- assume H: "x = norm x *\<^sub>R x0" "y = norm y *\<^sub>R y0"
- "x' = norm x *\<^sub>R x0'" "y' = norm y *\<^sub>R y0'"
- "norm x0 = 1" "norm x0' = 1" "norm y0 = 1" "norm y0' = 1"
- "norm(x0' - y0') = norm(x0 - y0)"
- hence *:"x0 \<bullet> y0 = x0' \<bullet> y0' + y0' \<bullet> x0' - y0 \<bullet> x0 " by(simp add: norm_eq norm_eq_1 inner_add inner_diff)
+proof -
+ {
+ fix x y x' y' x0 y0 x0' y0' :: "real ^'n"
+ assume H:
+ "x = norm x *\<^sub>R x0"
+ "y = norm y *\<^sub>R y0"
+ "x' = norm x *\<^sub>R x0'" "y' = norm y *\<^sub>R y0'"
+ "norm x0 = 1" "norm x0' = 1" "norm y0 = 1" "norm y0' = 1"
+ "norm(x0' - y0') = norm(x0 - y0)"
+ hence *: "x0 \<bullet> y0 = x0' \<bullet> y0' + y0' \<bullet> x0' - y0 \<bullet> x0 "
+ by (simp add: norm_eq norm_eq_1 inner_add inner_diff)
have "norm(x' - y') = norm(x - y)"
apply (subst H(1))
apply (subst H(2))
@@ -974,48 +1136,71 @@
using H(5-9)
apply (simp add: norm_eq norm_eq_1)
apply (simp add: inner_diff scalar_mult_eq_scaleR) unfolding *
- by (simp add: field_simps) }
+ apply (simp add: field_simps)
+ done
+ }
note th0 = this
let ?g = "\<lambda>x. if x = 0 then 0 else norm x *\<^sub>R f (inverse (norm x) *\<^sub>R x)"
- {fix x:: "real ^'n" assume nx: "norm x = 1"
- have "?g x = f x" using nx by auto}
- hence thfg: "\<forall>x. norm x = 1 \<longrightarrow> ?g x = f x" by blast
+ {
+ fix x:: "real ^'n"
+ assume nx: "norm x = 1"
+ have "?g x = f x" using nx by auto
+ }
+ then have thfg: "\<forall>x. norm x = 1 \<longrightarrow> ?g x = f x"
+ by blast
have g0: "?g 0 = 0" by simp
- {fix x y :: "real ^'n"
- {assume "x = 0" "y = 0"
- then have "dist (?g x) (?g y) = dist x y" by simp }
+ {
+ fix x y :: "real ^'n"
+ {
+ assume "x = 0" "y = 0"
+ then have "dist (?g x) (?g y) = dist x y" by simp
+ }
moreover
- {assume "x = 0" "y \<noteq> 0"
+ {
+ assume "x = 0" "y \<noteq> 0"
then have "dist (?g x) (?g y) = dist x y"
apply (simp add: dist_norm)
apply (rule f1[rule_format])
- by(simp add: field_simps)}
+ apply (simp add: field_simps)
+ done
+ }
moreover
- {assume "x \<noteq> 0" "y = 0"
+ {
+ assume "x \<noteq> 0" "y = 0"
then have "dist (?g x) (?g y) = dist x y"
apply (simp add: dist_norm)
apply (rule f1[rule_format])
- by(simp add: field_simps)}
+ apply (simp add: field_simps)
+ done
+ }
moreover
- {assume z: "x \<noteq> 0" "y \<noteq> 0"
- have th00: "x = norm x *\<^sub>R (inverse (norm x) *\<^sub>R x)" "y = norm y *\<^sub>R (inverse (norm y) *\<^sub>R y)" "norm x *\<^sub>R f ((inverse (norm x) *\<^sub>R x)) = norm x *\<^sub>R f (inverse (norm x) *\<^sub>R x)"
+ {
+ assume z: "x \<noteq> 0" "y \<noteq> 0"
+ have th00:
+ "x = norm x *\<^sub>R (inverse (norm x) *\<^sub>R x)"
+ "y = norm y *\<^sub>R (inverse (norm y) *\<^sub>R y)"
+ "norm x *\<^sub>R f ((inverse (norm x) *\<^sub>R x)) = norm x *\<^sub>R f (inverse (norm x) *\<^sub>R x)"
"norm y *\<^sub>R f (inverse (norm y) *\<^sub>R y) = norm y *\<^sub>R f (inverse (norm y) *\<^sub>R y)"
"norm (inverse (norm x) *\<^sub>R x) = 1"
"norm (f (inverse (norm x) *\<^sub>R x)) = 1"
"norm (inverse (norm y) *\<^sub>R y) = 1"
"norm (f (inverse (norm y) *\<^sub>R y)) = 1"
"norm (f (inverse (norm x) *\<^sub>R x) - f (inverse (norm y) *\<^sub>R y)) =
- norm (inverse (norm x) *\<^sub>R x - inverse (norm y) *\<^sub>R y)"
+ norm (inverse (norm x) *\<^sub>R x - inverse (norm y) *\<^sub>R y)"
using z
by (auto simp add: field_simps intro: f1[rule_format] fd1[rule_format, unfolded dist_norm])
from z th0[OF th00] have "dist (?g x) (?g y) = dist x y"
- by (simp add: dist_norm)}
- ultimately have "dist (?g x) (?g y) = dist x y" by blast}
+ by (simp add: dist_norm)
+ }
+ ultimately have "dist (?g x) (?g y) = dist x y" by blast
+ }
note thd = this
show ?thesis
apply (rule exI[where x= ?g])
unfolding orthogonal_transformation_isometry
- using g0 thfg thd by metis
+ using g0 thfg thd
+ apply metis
+ done
qed
(* ------------------------------------------------------------------------- *)
@@ -1029,14 +1214,17 @@
fixes Q :: "'a::linordered_idom^'n^'n"
shows " orthogonal_matrix Q \<longleftrightarrow> rotation_matrix Q \<or> rotoinversion_matrix Q"
by (metis rotoinversion_matrix_def rotation_matrix_def det_orthogonal_matrix)
+
(* ------------------------------------------------------------------------- *)
(* Explicit formulas for low dimensions. *)
(* ------------------------------------------------------------------------- *)
-lemma setprod_1: "setprod f {(1::nat)..1} = f 1" by simp
+lemma setprod_1: "setprod f {(1::nat)..1} = f 1"
+ by simp
lemma setprod_2: "setprod f {(1::nat)..2} = f 1 * f 2"
by (simp add: eval_nat_numeral setprod_numseg mult_commute)
+
lemma setprod_3: "setprod f {(1::nat)..3} = f 1 * f 2 * f 3"
by (simp add: eval_nat_numeral setprod_numseg mult_commute)
@@ -1044,33 +1232,33 @@
by (simp add: det_def sign_id)
lemma det_2: "det (A::'a::comm_ring_1^2^2) = A$1$1 * A$2$2 - A$1$2 * A$2$1"
-proof-
+proof -
have f12: "finite {2::2}" "1 \<notin> {2::2}" by auto
show ?thesis
- unfolding det_def UNIV_2
- unfolding setsum_over_permutations_insert[OF f12]
- unfolding permutes_sing
- by (simp add: sign_swap_id sign_id swap_id_eq)
+ unfolding det_def UNIV_2
+ unfolding setsum_over_permutations_insert[OF f12]
+ unfolding permutes_sing
+ by (simp add: sign_swap_id sign_id swap_id_eq)
qed
-lemma det_3: "det (A::'a::comm_ring_1^3^3) =
- A$1$1 * A$2$2 * A$3$3 +
- A$1$2 * A$2$3 * A$3$1 +
- A$1$3 * A$2$1 * A$3$2 -
- A$1$1 * A$2$3 * A$3$2 -
- A$1$2 * A$2$1 * A$3$3 -
- A$1$3 * A$2$2 * A$3$1"
-proof-
+lemma det_3:
+ "det (A::'a::comm_ring_1^3^3) =
+ A$1$1 * A$2$2 * A$3$3 +
+ A$1$2 * A$2$3 * A$3$1 +
+ A$1$3 * A$2$1 * A$3$2 -
+ A$1$1 * A$2$3 * A$3$2 -
+ A$1$2 * A$2$1 * A$3$3 -
+ A$1$3 * A$2$2 * A$3$1"
+proof -
have f123: "finite {2::3, 3}" "1 \<notin> {2::3, 3}" by auto
have f23: "finite {3::3}" "2 \<notin> {3::3}" by auto
show ?thesis
- unfolding det_def UNIV_3
- unfolding setsum_over_permutations_insert[OF f123]
- unfolding setsum_over_permutations_insert[OF f23]
-
- unfolding permutes_sing
- by (simp add: sign_swap_id permutation_swap_id sign_compose sign_id swap_id_eq)
+ unfolding det_def UNIV_3
+ unfolding setsum_over_permutations_insert[OF f123]
+ unfolding setsum_over_permutations_insert[OF f23]
+ unfolding permutes_sing
+ by (simp add: sign_swap_id permutation_swap_id sign_compose sign_id swap_id_eq)
qed
end
--- a/src/HOL/Multivariate_Analysis/Operator_Norm.thy Thu Aug 29 05:41:58 2013 +0200
+++ b/src/HOL/Multivariate_Analysis/Operator_Norm.thy Thu Aug 29 05:42:37 2013 +0200
@@ -11,72 +11,83 @@
definition "onorm f = Sup {norm (f x)| x. norm x = 1}"
lemma norm_bound_generalize:
- fixes f:: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+ fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
assumes lf: "linear f"
- shows "(\<forall>x. norm x = 1 \<longrightarrow> norm (f x) \<le> b) \<longleftrightarrow> (\<forall>x. norm (f x) \<le> b * norm x)" (is "?lhs \<longleftrightarrow> ?rhs")
-proof-
- {assume H: ?rhs
- {fix x :: "'a" assume x: "norm x = 1"
- from H[rule_format, of x] x have "norm (f x) \<le> b" by simp}
- then have ?lhs by blast }
+ shows "(\<forall>x. norm x = 1 \<longrightarrow> norm (f x) \<le> b) \<longleftrightarrow> (\<forall>x. norm (f x) \<le> b * norm x)"
+ (is "?lhs \<longleftrightarrow> ?rhs")
+proof
+ assume H: ?rhs
+ {
+ fix x :: "'a"
+ assume x: "norm x = 1"
+ from H[rule_format, of x] x have "norm (f x) \<le> b" by simp
+ }
+ then show ?lhs by blast
+next
+ assume H: ?lhs
+ have bp: "b \<ge> 0"
+ apply -
+ apply (rule order_trans [OF norm_ge_zero])
+ apply (rule H[rule_format, of "SOME x::'a. x \<in> Basis"])
+ apply (auto intro: SOME_Basis norm_Basis)
+ done
+ {
+ fix x :: "'a"
+ {
+ assume "x = 0"
+ then have "norm (f x) \<le> b * norm x"
+ by (simp add: linear_0[OF lf] bp)
+ }
+ moreover
+ {
+ assume x0: "x \<noteq> 0"
+ then have n0: "norm x \<noteq> 0" by (metis norm_eq_zero)
+ let ?c = "1/ norm x"
+ have "norm (?c *\<^sub>R x) = 1" using x0 by (simp add: n0)
+ with H have "norm (f (?c *\<^sub>R x)) \<le> b" by blast
+ then have "?c * norm (f x) \<le> b"
+ by (simp add: linear_cmul[OF lf])
+ then have "norm (f x) \<le> b * norm x"
+ using n0 norm_ge_zero[of x] by (auto simp add: field_simps)
+ }
+ ultimately have "norm (f x) \<le> b * norm x" by blast
+ }
+ then show ?rhs by blast
+qed
- moreover
- {assume H: ?lhs
- have bp: "b \<ge> 0"
- apply -
- apply(rule order_trans [OF norm_ge_zero])
- apply(rule H[rule_format, of "SOME x::'a. x \<in> Basis"])
- by (auto intro: SOME_Basis norm_Basis)
- {fix x :: "'a"
- {assume "x = 0"
- then have "norm (f x) \<le> b * norm x" by (simp add: linear_0[OF lf] bp)}
- moreover
- {assume x0: "x \<noteq> 0"
- hence n0: "norm x \<noteq> 0" by (metis norm_eq_zero)
- let ?c = "1/ norm x"
- have "norm (?c *\<^sub>R x) = 1" using x0 by (simp add: n0)
- with H have "norm (f (?c *\<^sub>R x)) \<le> b" by blast
- hence "?c * norm (f x) \<le> b"
- by (simp add: linear_cmul[OF lf])
- hence "norm (f x) \<le> b * norm x"
- using n0 norm_ge_zero[of x] by (auto simp add: field_simps)}
- ultimately have "norm (f x) \<le> b * norm x" by blast}
- then have ?rhs by blast}
- ultimately show ?thesis by blast
-qed
-
lemma onorm:
fixes f:: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
assumes lf: "linear f"
- shows "norm (f x) <= onorm f * norm x"
- and "\<forall>x. norm (f x) <= b * norm x \<Longrightarrow> onorm f <= b"
-proof-
- {
- let ?S = "{norm (f x) |x. norm x = 1}"
- have "norm (f (SOME i. i \<in> Basis)) \<in> ?S"
- by (auto intro!: exI[of _ "SOME i. i \<in> Basis"] norm_Basis SOME_Basis)
- hence Se: "?S \<noteq> {}" by auto
- from linear_bounded[OF lf] have b: "\<exists> b. ?S *<= b"
- unfolding norm_bound_generalize[OF lf, symmetric] by (auto simp add: setle_def)
- { from isLub_cSup[OF Se b, unfolded onorm_def[symmetric]]
- show "norm (f x) <= onorm f * norm x"
- apply -
- apply (rule spec[where x = x])
- unfolding norm_bound_generalize[OF lf, symmetric]
- by (auto simp add: isLub_def isUb_def leastP_def setge_def setle_def)}
- {
- show "\<forall>x. norm (f x) <= b * norm x \<Longrightarrow> onorm f <= b"
- using isLub_cSup[OF Se b, unfolded onorm_def[symmetric]]
- unfolding norm_bound_generalize[OF lf, symmetric]
- by (auto simp add: isLub_def isUb_def leastP_def setge_def setle_def)}
- }
+ shows "norm (f x) \<le> onorm f * norm x"
+ and "\<forall>x. norm (f x) \<le> b * norm x \<Longrightarrow> onorm f \<le> b"
+proof -
+ let ?S = "{norm (f x) |x. norm x = 1}"
+ have "norm (f (SOME i. i \<in> Basis)) \<in> ?S"
+ by (auto intro!: exI[of _ "SOME i. i \<in> Basis"] norm_Basis SOME_Basis)
+ then have Se: "?S \<noteq> {}" by auto
+ from linear_bounded[OF lf] have b: "\<exists> b. ?S *<= b"
+ unfolding norm_bound_generalize[OF lf, symmetric] by (auto simp add: setle_def)
+ from isLub_cSup[OF Se b, unfolded onorm_def[symmetric]]
+ show "norm (f x) <= onorm f * norm x"
+ apply -
+ apply (rule spec[where x = x])
+ unfolding norm_bound_generalize[OF lf, symmetric]
+ apply (auto simp add: isLub_def isUb_def leastP_def setge_def setle_def)
+ done
+ show "\<forall>x. norm (f x) <= b * norm x \<Longrightarrow> onorm f <= b"
+ using isLub_cSup[OF Se b, unfolded onorm_def[symmetric]]
+ unfolding norm_bound_generalize[OF lf, symmetric]
+ by (auto simp add: isLub_def isUb_def leastP_def setge_def setle_def)
qed
-lemma onorm_pos_le: assumes lf: "linear (f::'n::euclidean_space \<Rightarrow> 'm::euclidean_space)" shows "0 <= onorm f"
- using order_trans[OF norm_ge_zero onorm(1)[OF lf, of "SOME i. i \<in> Basis"]]
+lemma onorm_pos_le:
+ assumes lf: "linear (f::'n::euclidean_space \<Rightarrow> 'm::euclidean_space)"
+ shows "0 \<le> onorm f"
+ using order_trans[OF norm_ge_zero onorm(1)[OF lf, of "SOME i. i \<in> Basis"]]
by (simp add: SOME_Basis)
-lemma onorm_eq_0: assumes lf: "linear (f::'a::euclidean_space \<Rightarrow> 'b::euclidean_space)"
+lemma onorm_eq_0:
+ assumes lf: "linear (f::'a::euclidean_space \<Rightarrow> 'b::euclidean_space)"
shows "onorm f = 0 \<longleftrightarrow> (\<forall>x. f x = 0)"
using onorm[OF lf]
apply (auto simp add: onorm_pos_le)
@@ -87,47 +98,53 @@
done
lemma onorm_const: "onorm(\<lambda>x::'a::euclidean_space. (y::'b::euclidean_space)) = norm y"
-proof-
+proof -
let ?f = "\<lambda>x::'a. (y::'b)"
have th: "{norm (?f x)| x. norm x = 1} = {norm y}"
by (auto simp: SOME_Basis intro!: exI[of _ "SOME i. i \<in> Basis"])
show ?thesis
unfolding onorm_def th
- apply (rule cSup_unique) by (simp_all add: setle_def)
+ apply (rule cSup_unique)
+ apply (simp_all add: setle_def)
+ done
qed
-lemma onorm_pos_lt: assumes lf: "linear (f::'a::euclidean_space \<Rightarrow> 'b::euclidean_space)"
+lemma onorm_pos_lt:
+ assumes lf: "linear (f::'a::euclidean_space \<Rightarrow> 'b::euclidean_space)"
shows "0 < onorm f \<longleftrightarrow> ~(\<forall>x. f x = 0)"
unfolding onorm_eq_0[OF lf, symmetric]
using onorm_pos_le[OF lf] by arith
lemma onorm_compose:
assumes lf: "linear (f::'n::euclidean_space \<Rightarrow> 'm::euclidean_space)"
- and lg: "linear (g::'k::euclidean_space \<Rightarrow> 'n::euclidean_space)"
- shows "onorm (f o g) <= onorm f * onorm g"
- apply (rule onorm(2)[OF linear_compose[OF lg lf], rule_format])
- unfolding o_def
- apply (subst mult_assoc)
- apply (rule order_trans)
- apply (rule onorm(1)[OF lf])
- apply (rule mult_left_mono)
- apply (rule onorm(1)[OF lg])
- apply (rule onorm_pos_le[OF lf])
- done
+ and lg: "linear (g::'k::euclidean_space \<Rightarrow> 'n::euclidean_space)"
+ shows "onorm (f o g) \<le> onorm f * onorm g"
+ apply (rule onorm(2)[OF linear_compose[OF lg lf], rule_format])
+ unfolding o_def
+ apply (subst mult_assoc)
+ apply (rule order_trans)
+ apply (rule onorm(1)[OF lf])
+ apply (rule mult_left_mono)
+ apply (rule onorm(1)[OF lg])
+ apply (rule onorm_pos_le[OF lf])
+ done
-lemma onorm_neg_lemma: assumes lf: "linear (f::'a::euclidean_space \<Rightarrow> 'b::euclidean_space)"
+lemma onorm_neg_lemma:
+ assumes lf: "linear (f::'a::euclidean_space \<Rightarrow> 'b::euclidean_space)"
shows "onorm (\<lambda>x. - f x) \<le> onorm f"
using onorm[OF linear_compose_neg[OF lf]] onorm[OF lf]
unfolding norm_minus_cancel by metis
-lemma onorm_neg: assumes lf: "linear (f::'a::euclidean_space \<Rightarrow> 'b::euclidean_space)"
+lemma onorm_neg:
+ assumes lf: "linear (f::'a::euclidean_space \<Rightarrow> 'b::euclidean_space)"
shows "onorm (\<lambda>x. - f x) = onorm f"
using onorm_neg_lemma[OF lf] onorm_neg_lemma[OF linear_compose_neg[OF lf]]
by simp
lemma onorm_triangle:
- assumes lf: "linear (f::'n::euclidean_space \<Rightarrow> 'm::euclidean_space)" and lg: "linear g"
- shows "onorm (\<lambda>x. f x + g x) <= onorm f + onorm g"
+ assumes lf: "linear (f::'n::euclidean_space \<Rightarrow> 'm::euclidean_space)"
+ and lg: "linear g"
+ shows "onorm (\<lambda>x. f x + g x) \<le> onorm f + onorm g"
apply(rule onorm(2)[OF linear_compose_add[OF lf lg], rule_format])
apply (rule order_trans)
apply (rule norm_triangle_ineq)
@@ -137,17 +154,20 @@
apply (rule onorm(1)[OF lg])
done
-lemma onorm_triangle_le: "linear (f::'n::euclidean_space \<Rightarrow> 'm::euclidean_space) \<Longrightarrow> linear g \<Longrightarrow> onorm(f) + onorm(g) <= e
- \<Longrightarrow> onorm(\<lambda>x. f x + g x) <= e"
+lemma onorm_triangle_le:
+ "linear (f::'n::euclidean_space \<Rightarrow> 'm::euclidean_space) \<Longrightarrow>
+ linear g \<Longrightarrow> onorm f + onorm g \<le> e \<Longrightarrow> onorm (\<lambda>x. f x + g x) \<le> e"
apply (rule order_trans)
apply (rule onorm_triangle)
apply assumption+
done
-lemma onorm_triangle_lt: "linear (f::'n::euclidean_space \<Rightarrow> 'm::euclidean_space) \<Longrightarrow> linear g \<Longrightarrow> onorm(f) + onorm(g) < e
- ==> onorm(\<lambda>x. f x + g x) < e"
+lemma onorm_triangle_lt:
+ "linear (f::'n::euclidean_space \<Rightarrow> 'm::euclidean_space) \<Longrightarrow> linear g \<Longrightarrow>
+ onorm f + onorm g < e \<Longrightarrow> onorm(\<lambda>x. f x + g x) < e"
apply (rule order_le_less_trans)
apply (rule onorm_triangle)
- by assumption+
+ apply assumption+
+ done
end
--- a/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Thu Aug 29 05:41:58 2013 +0200
+++ b/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Thu Aug 29 05:42:37 2013 +0200
@@ -49,6 +49,7 @@
continuous_on (s \<union> t) (\<lambda>x. if P x then f x else g x)"
by (rule continuous_on_If) auto
+
subsection {* Topological Basis *}
context topological_space
@@ -117,41 +118,51 @@
by (simp add: topological_basis_def)
lemma topological_basis_imp_subbasis:
- assumes B: "topological_basis B" shows "open = generate_topology B"
+ assumes B: "topological_basis B"
+ shows "open = generate_topology B"
proof (intro ext iffI)
- fix S :: "'a set" assume "open S"
+ fix S :: "'a set"
+ assume "open S"
with B obtain B' where "B' \<subseteq> B" "S = \<Union>B'"
unfolding topological_basis_def by blast
then show "generate_topology B S"
by (auto intro: generate_topology.intros dest: topological_basis_open)
next
- fix S :: "'a set" assume "generate_topology B S" then show "open S"
+ fix S :: "'a set"
+ assume "generate_topology B S"
+ then show "open S"
by induct (auto dest: topological_basis_open[OF B])
qed
lemma basis_dense:
- fixes B::"'a set set" and f::"'a set \<Rightarrow> 'a"
+ fixes B::"'a set set"
+ and f::"'a set \<Rightarrow> 'a"
assumes "topological_basis B"
- assumes choosefrom_basis: "\<And>B'. B' \<noteq> {} \<Longrightarrow> f B' \<in> B'"
+ and choosefrom_basis: "\<And>B'. B' \<noteq> {} \<Longrightarrow> f B' \<in> B'"
shows "(\<forall>X. open X \<longrightarrow> X \<noteq> {} \<longrightarrow> (\<exists>B' \<in> B. f B' \<in> X))"
proof (intro allI impI)
- fix X::"'a set" assume "open X" "X \<noteq> {}"
+ fix X::"'a set"
+ assume "open X" "X \<noteq> {}"
from topological_basisE[OF `topological_basis B` `open X` choosefrom_basis[OF `X \<noteq> {}`]]
guess B' . note B' = this
- thus "\<exists>B'\<in>B. f B' \<in> X" by (auto intro!: choosefrom_basis)
+ then show "\<exists>B'\<in>B. f B' \<in> X"
+ by (auto intro!: choosefrom_basis)
qed
end
lemma topological_basis_prod:
- assumes A: "topological_basis A" and B: "topological_basis B"
+ assumes A: "topological_basis A"
+ and B: "topological_basis B"
shows "topological_basis ((\<lambda>(a, b). a \<times> b) ` (A \<times> B))"
unfolding topological_basis_def
proof (safe, simp_all del: ex_simps add: subset_image_iff ex_simps(1)[symmetric])
- fix S :: "('a \<times> 'b) set" assume "open S"
+ fix S :: "('a \<times> 'b) set"
+ assume "open S"
then show "\<exists>X\<subseteq>A \<times> B. (\<Union>(a,b)\<in>X. a \<times> b) = S"
proof (safe intro!: exI[of _ "{x\<in>A \<times> B. fst x \<times> snd x \<subseteq> S}"])
- fix x y assume "(x, y) \<in> S"
+ fix x y
+ assume "(x, y) \<in> S"
from open_prod_elim[OF `open S` this]
obtain a b where a: "open a""x \<in> a" and b: "open b" "y \<in> b" and "a \<times> b \<subseteq> S"
by (metis mem_Sigma_iff)
@@ -162,6 +173,7 @@
qed auto
qed (metis A B topological_basis_open open_Times)
+
subsection {* Countable Basis *}
locale countable_basis =
@@ -173,12 +185,14 @@
lemma open_countable_basis_ex:
assumes "open X"
shows "\<exists>B' \<subseteq> B. X = Union B'"
- using assms countable_basis is_basis unfolding topological_basis_def by blast
+ using assms countable_basis is_basis
+ unfolding topological_basis_def by blast
lemma open_countable_basisE:
assumes "open X"
obtains B' where "B' \<subseteq> B" "X = Union B'"
- using assms open_countable_basis_ex by (atomize_elim) simp
+ using assms open_countable_basis_ex
+ by (atomize_elim) simp
lemma countable_dense_exists:
shows "\<exists>D::'a set. countable D \<and> (\<forall>X. open X \<longrightarrow> X \<noteq> {} \<longrightarrow> (\<exists>d \<in> D. d \<in> X))"
@@ -213,34 +227,47 @@
proof atomize_elim
from first_countable_basisE[of x] guess A' . note A' = this
def A \<equiv> "(\<lambda>N. \<Inter>((\<lambda>n. from_nat_into A' n) ` N)) ` (Collect finite::nat set set)"
- thus "\<exists>A. countable A \<and> (\<forall>a. a \<in> A \<longrightarrow> x \<in> a) \<and> (\<forall>a. a \<in> A \<longrightarrow> open a) \<and>
+ then show "\<exists>A. countable A \<and> (\<forall>a. a \<in> A \<longrightarrow> x \<in> a) \<and> (\<forall>a. a \<in> A \<longrightarrow> open a) \<and>
(\<forall>S. open S \<longrightarrow> x \<in> S \<longrightarrow> (\<exists>a\<in>A. a \<subseteq> S)) \<and> (\<forall>a b. a \<in> A \<longrightarrow> b \<in> A \<longrightarrow> a \<inter> b \<in> A)"
proof (safe intro!: exI[where x=A])
- show "countable A" unfolding A_def by (intro countable_image countable_Collect_finite)
- fix a assume "a \<in> A"
- thus "x \<in> a" "open a" using A'(4)[OF open_UNIV] by (auto simp: A_def intro: A' from_nat_into)
+ show "countable A"
+ unfolding A_def by (intro countable_image countable_Collect_finite)
+ fix a
+ assume "a \<in> A"
+ then show "x \<in> a" "open a"
+ using A'(4)[OF open_UNIV] by (auto simp: A_def intro: A' from_nat_into)
next
let ?int = "\<lambda>N. \<Inter>(from_nat_into A' ` N)"
- fix a b assume "a \<in> A" "b \<in> A"
- then obtain N M where "a = ?int N" "b = ?int M" "finite (N \<union> M)" by (auto simp: A_def)
- thus "a \<inter> b \<in> A" by (auto simp: A_def intro!: image_eqI[where x="N \<union> M"])
+ fix a b
+ assume "a \<in> A" "b \<in> A"
+ then obtain N M where "a = ?int N" "b = ?int M" "finite (N \<union> M)"
+ by (auto simp: A_def)
+ then show "a \<inter> b \<in> A"
+ by (auto simp: A_def intro!: image_eqI[where x="N \<union> M"])
next
- fix S assume "open S" "x \<in> S" then obtain a where a: "a\<in>A'" "a \<subseteq> S" using A' by blast
- thus "\<exists>a\<in>A. a \<subseteq> S" using a A'
+ fix S
+ assume "open S" "x \<in> S"
+ then obtain a where a: "a\<in>A'" "a \<subseteq> S" using A' by blast
+ then show "\<exists>a\<in>A. a \<subseteq> S" using a A'
by (intro bexI[where x=a]) (auto simp: A_def intro: image_eqI[where x="{to_nat_on A' a}"])
qed
qed
lemma (in topological_space) first_countableI:
- assumes "countable A" and 1: "\<And>a. a \<in> A \<Longrightarrow> x \<in> a" "\<And>a. a \<in> A \<Longrightarrow> open a"
- and 2: "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> \<exists>a\<in>A. a \<subseteq> S"
+ assumes "countable A"
+ and 1: "\<And>a. a \<in> A \<Longrightarrow> x \<in> a" "\<And>a. a \<in> A \<Longrightarrow> open a"
+ and 2: "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> \<exists>a\<in>A. a \<subseteq> S"
shows "\<exists>A::nat \<Rightarrow> 'a set. (\<forall>i. x \<in> A i \<and> open (A i)) \<and> (\<forall>S. open S \<and> x \<in> S \<longrightarrow> (\<exists>i. A i \<subseteq> S))"
proof (safe intro!: exI[of _ "from_nat_into A"])
+ fix i
have "A \<noteq> {}" using 2[of UNIV] by auto
- { fix i show "x \<in> from_nat_into A i" "open (from_nat_into A i)"
- using range_from_nat_into_subset[OF `A \<noteq> {}`] 1 by auto }
- { fix S assume "open S" "x\<in>S" from 2[OF this] show "\<exists>i. from_nat_into A i \<subseteq> S"
- using subset_range_from_nat_into[OF `countable A`] by auto }
+ show "x \<in> from_nat_into A i" "open (from_nat_into A i)"
+ using range_from_nat_into_subset[OF `A \<noteq> {}`] 1 by auto
+next
+ fix S
+ assume "open S" "x\<in>S" from 2[OF this]
+ show "\<exists>i. from_nat_into A i \<subseteq> S"
+ using subset_range_from_nat_into[OF `countable A`] by auto
qed
instance prod :: (first_countable_topology, first_countable_topology) first_countable_topology
@@ -250,11 +277,13 @@
from first_countable_basisE[of "snd x"] guess B :: "'b set set" . note B = this
show "\<exists>A::nat \<Rightarrow> ('a \<times> 'b) set. (\<forall>i. x \<in> A i \<and> open (A i)) \<and> (\<forall>S. open S \<and> x \<in> S \<longrightarrow> (\<exists>i. A i \<subseteq> S))"
proof (rule first_countableI[of "(\<lambda>(a, b). a \<times> b) ` (A \<times> B)"], safe)
- fix a b assume x: "a \<in> A" "b \<in> B"
+ fix a b
+ assume x: "a \<in> A" "b \<in> B"
with A(2, 3)[of a] B(2, 3)[of b] show "x \<in> a \<times> b" "open (a \<times> b)"
unfolding mem_Times_iff by (auto intro: open_Times)
next
- fix S assume "open S" "x \<in> S"
+ fix S
+ assume "open S" "x \<in> S"
from open_prod_elim[OF this] guess a' b' .
moreover with A(4)[of a'] B(4)[of b']
obtain a b where "a \<in> A" "a \<subseteq> a'" "b \<in> B" "b \<subseteq> b'" by auto
@@ -269,18 +298,22 @@
lemma ex_countable_basis: "\<exists>B::'a set set. countable B \<and> topological_basis B"
proof -
- from ex_countable_subbasis obtain B where B: "countable B" "open = generate_topology B" by blast
+ from ex_countable_subbasis obtain B where B: "countable B" "open = generate_topology B"
+ by blast
let ?B = "Inter ` {b. finite b \<and> b \<subseteq> B }"
show ?thesis
proof (intro exI conjI)
show "countable ?B"
by (intro countable_image countable_Collect_finite_subset B)
- { fix S assume "open S"
+ {
+ fix S
+ assume "open S"
then have "\<exists>B'\<subseteq>{b. finite b \<and> b \<subseteq> B}. (\<Union>b\<in>B'. \<Inter>b) = S"
unfolding B
proof induct
- case UNIV show ?case by (intro exI[of _ "{{}}"]) simp
+ case UNIV
+ show ?case by (intro exI[of _ "{{}}"]) simp
next
case (Int a b)
then obtain x y where x: "a = UNION x Inter" "\<And>i. i \<in> x \<Longrightarrow> finite i \<and> i \<subseteq> B"
@@ -296,7 +329,8 @@
then show "\<exists>B'\<subseteq>{b. finite b \<and> b \<subseteq> B}. UNION B' Inter = \<Union>K"
by (intro exI[of _ "UNION K k"]) auto
next
- case (Basis S) then show ?case
+ case (Basis S)
+ then show ?case
by (intro exI[of _ "{{S}}"]) auto
qed
then have "(\<exists>B'\<subseteq>Inter ` {b. finite b \<and> b \<subseteq> B}. \<Union>B' = S)"
@@ -339,6 +373,7 @@
(fastforce simp: topological_space_class.topological_basis_def)+
qed
+
subsection {* Polish spaces *}
text {* Textbooks define Polish spaces as completely metrizable.
@@ -348,7 +383,9 @@
subsection {* General notion of a topology as a value *}
-definition "istopology L \<longleftrightarrow> L {} \<and> (\<forall>S T. L S \<longrightarrow> L T \<longrightarrow> L (S \<inter> T)) \<and> (\<forall>K. Ball K L \<longrightarrow> L (\<Union> K))"
+definition "istopology L \<longleftrightarrow>
+ L {} \<and> (\<forall>S T. L S \<longrightarrow> L T \<longrightarrow> L (S \<inter> T)) \<and> (\<forall>K. Ball K L \<longrightarrow> L (\<Union> K))"
+
typedef 'a topology = "{L::('a set) \<Rightarrow> bool. istopology L}"
morphisms "openin" "topology"
unfolding istopology_def by blast
@@ -363,16 +400,14 @@
using topology_inverse[of U] istopology_open_in[of "topology U"] by auto
lemma topology_eq: "T1 = T2 \<longleftrightarrow> (\<forall>S. openin T1 S \<longleftrightarrow> openin T2 S)"
-proof-
- { assume "T1=T2"
- hence "\<forall>S. openin T1 S \<longleftrightarrow> openin T2 S" by simp }
- moreover
- { assume H: "\<forall>S. openin T1 S \<longleftrightarrow> openin T2 S"
- hence "openin T1 = openin T2" by (simp add: fun_eq_iff)
- hence "topology (openin T1) = topology (openin T2)" by simp
- hence "T1 = T2" unfolding openin_inverse .
- }
- ultimately show ?thesis by blast
+proof
+ assume "T1 = T2"
+ then show "\<forall>S. openin T1 S \<longleftrightarrow> openin T2 S" by simp
+next
+ assume H: "\<forall>S. openin T1 S \<longleftrightarrow> openin T2 S"
+ then have "openin T1 = openin T2" by (simp add: fun_eq_iff)
+ then have "topology (openin T1) = topology (openin T2)" by simp
+ then show "T1 = T2" unfolding openin_inverse .
qed
text{* Infer the "universe" from union of all sets in the topology. *}
@@ -391,7 +426,9 @@
lemma openin_subset[intro]: "openin U S \<Longrightarrow> S \<subseteq> topspace U"
unfolding topspace_def by blast
-lemma openin_empty[simp]: "openin U {}" by (simp add: openin_clauses)
+
+lemma openin_empty[simp]: "openin U {}"
+ by (simp add: openin_clauses)
lemma openin_Int[intro]: "openin U S \<Longrightarrow> openin U T \<Longrightarrow> openin U (S \<inter> T)"
using openin_clauses by simp
@@ -402,7 +439,8 @@
lemma openin_Un[intro]: "openin U S \<Longrightarrow> openin U T \<Longrightarrow> openin U (S \<union> T)"
using openin_Union[of "{S,T}" U] by auto
-lemma openin_topspace[intro, simp]: "openin U (topspace U)" by (simp add: openin_Union topspace_def)
+lemma openin_topspace[intro, simp]: "openin U (topspace U)"
+ by (simp add: openin_Union topspace_def)
lemma openin_subopen: "openin U S \<longleftrightarrow> (\<forall>x \<in> S. \<exists>T. openin U T \<and> x \<in> T \<and> T \<subseteq> S)"
(is "?lhs \<longleftrightarrow> ?rhs")
@@ -422,42 +460,63 @@
definition "closedin U S \<longleftrightarrow> S \<subseteq> topspace U \<and> openin U (topspace U - S)"
-lemma closedin_subset: "closedin U S \<Longrightarrow> S \<subseteq> topspace U" by (metis closedin_def)
-lemma closedin_empty[simp]: "closedin U {}" by (simp add: closedin_def)
-lemma closedin_topspace[intro,simp]:
- "closedin U (topspace U)" by (simp add: closedin_def)
+lemma closedin_subset: "closedin U S \<Longrightarrow> S \<subseteq> topspace U"
+ by (metis closedin_def)
+
+lemma closedin_empty[simp]: "closedin U {}"
+ by (simp add: closedin_def)
+
+lemma closedin_topspace[intro, simp]: "closedin U (topspace U)"
+ by (simp add: closedin_def)
+
lemma closedin_Un[intro]: "closedin U S \<Longrightarrow> closedin U T \<Longrightarrow> closedin U (S \<union> T)"
by (auto simp add: Diff_Un closedin_def)
-lemma Diff_Inter[intro]: "A - \<Inter>S = \<Union> {A - s|s. s\<in>S}" by auto
-lemma closedin_Inter[intro]: assumes Ke: "K \<noteq> {}" and Kc: "\<forall>S \<in>K. closedin U S"
- shows "closedin U (\<Inter> K)" using Ke Kc unfolding closedin_def Diff_Inter by auto
+lemma Diff_Inter[intro]: "A - \<Inter>S = \<Union> {A - s|s. s\<in>S}"
+ by auto
+
+lemma closedin_Inter[intro]:
+ assumes Ke: "K \<noteq> {}"
+ and Kc: "\<forall>S \<in>K. closedin U S"
+ shows "closedin U (\<Inter> K)"
+ using Ke Kc unfolding closedin_def Diff_Inter by auto
lemma closedin_Int[intro]: "closedin U S \<Longrightarrow> closedin U T \<Longrightarrow> closedin U (S \<inter> T)"
using closedin_Inter[of "{S,T}" U] by auto
-lemma Diff_Diff_Int: "A - (A - B) = A \<inter> B" by blast
+lemma Diff_Diff_Int: "A - (A - B) = A \<inter> B"
+ by blast
+
lemma openin_closedin_eq: "openin U S \<longleftrightarrow> S \<subseteq> topspace U \<and> closedin U (topspace U - S)"
apply (auto simp add: closedin_def Diff_Diff_Int inf_absorb2)
apply (metis openin_subset subset_eq)
done
-lemma openin_closedin: "S \<subseteq> topspace U \<Longrightarrow> (openin U S \<longleftrightarrow> closedin U (topspace U - S))"
+lemma openin_closedin: "S \<subseteq> topspace U \<Longrightarrow> (openin U S \<longleftrightarrow> closedin U (topspace U - S))"
by (simp add: openin_closedin_eq)
-lemma openin_diff[intro]: assumes oS: "openin U S" and cT: "closedin U T" shows "openin U (S - T)"
-proof-
+lemma openin_diff[intro]:
+ assumes oS: "openin U S"
+ and cT: "closedin U T"
+ shows "openin U (S - T)"
+proof -
have "S - T = S \<inter> (topspace U - T)" using openin_subset[of U S] oS cT
by (auto simp add: topspace_def openin_subset)
then show ?thesis using oS cT by (auto simp add: closedin_def)
qed
-lemma closedin_diff[intro]: assumes oS: "closedin U S" and cT: "openin U T" shows "closedin U (S - T)"
-proof-
- have "S - T = S \<inter> (topspace U - T)" using closedin_subset[of U S] oS cT
- by (auto simp add: topspace_def )
- then show ?thesis using oS cT by (auto simp add: openin_closedin_eq)
-qed
+lemma closedin_diff[intro]:
+ assumes oS: "closedin U S"
+ and cT: "openin U T"
+ shows "closedin U (S - T)"
+proof -
+ have "S - T = S \<inter> (topspace U - T)"
+ using closedin_subset[of U S] oS cT
+ by (auto simp add: topspace_def)
+ then show ?thesis
+ using oS cT by (auto simp add: openin_closedin_eq)
+qed
+
subsubsection {* Subspace topology *}
@@ -465,48 +524,59 @@
lemma istopology_subtopology: "istopology (\<lambda>T. \<exists>S. T = S \<inter> V \<and> openin U S)"
(is "istopology ?L")
-proof-
+proof -
have "?L {}" by blast
- {fix A B assume A: "?L A" and B: "?L B"
- from A B obtain Sa and Sb where Sa: "openin U Sa" "A = Sa \<inter> V" and Sb: "openin U Sb" "B = Sb \<inter> V" by blast
- have "A\<inter>B = (Sa \<inter> Sb) \<inter> V" "openin U (Sa \<inter> Sb)" using Sa Sb by blast+
- then have "?L (A \<inter> B)" by blast}
+ {
+ fix A B
+ assume A: "?L A" and B: "?L B"
+ from A B obtain Sa and Sb where Sa: "openin U Sa" "A = Sa \<inter> V" and Sb: "openin U Sb" "B = Sb \<inter> V"
+ by blast
+ have "A \<inter> B = (Sa \<inter> Sb) \<inter> V" "openin U (Sa \<inter> Sb)"
+ using Sa Sb by blast+
+ then have "?L (A \<inter> B)" by blast
+ }
moreover
- {fix K assume K: "K \<subseteq> Collect ?L"
+ {
+ fix K assume K: "K \<subseteq> Collect ?L"
have th0: "Collect ?L = (\<lambda>S. S \<inter> V) ` Collect (openin U)"
apply (rule set_eqI)
apply (simp add: Ball_def image_iff)
- by metis
+ apply metis
+ done
from K[unfolded th0 subset_image_iff]
- obtain Sk where Sk: "Sk \<subseteq> Collect (openin U)" "K = (\<lambda>S. S \<inter> V) ` Sk" by blast
- have "\<Union>K = (\<Union>Sk) \<inter> V" using Sk by auto
- moreover have "openin U (\<Union> Sk)" using Sk by (auto simp add: subset_eq)
- ultimately have "?L (\<Union>K)" by blast}
+ obtain Sk where Sk: "Sk \<subseteq> Collect (openin U)" "K = (\<lambda>S. S \<inter> V) ` Sk"
+ by blast
+ have "\<Union>K = (\<Union>Sk) \<inter> V"
+ using Sk by auto
+ moreover have "openin U (\<Union> Sk)"
+ using Sk by (auto simp add: subset_eq)
+ ultimately have "?L (\<Union>K)" by blast
+ }
ultimately show ?thesis
unfolding subset_eq mem_Collect_eq istopology_def by blast
qed
-lemma openin_subtopology:
- "openin (subtopology U V) S \<longleftrightarrow> (\<exists> T. (openin U T) \<and> (S = T \<inter> V))"
+lemma openin_subtopology: "openin (subtopology U V) S \<longleftrightarrow> (\<exists>T. openin U T \<and> S = T \<inter> V)"
unfolding subtopology_def topology_inverse'[OF istopology_subtopology]
by auto
-lemma topspace_subtopology: "topspace(subtopology U V) = topspace U \<inter> V"
+lemma topspace_subtopology: "topspace (subtopology U V) = topspace U \<inter> V"
by (auto simp add: topspace_def openin_subtopology)
-lemma closedin_subtopology:
- "closedin (subtopology U V) S \<longleftrightarrow> (\<exists>T. closedin U T \<and> S = T \<inter> V)"
+lemma closedin_subtopology: "closedin (subtopology U V) S \<longleftrightarrow> (\<exists>T. closedin U T \<and> S = T \<inter> V)"
unfolding closedin_def topspace_subtopology
apply (simp add: openin_subtopology)
apply (rule iffI)
apply clarify
apply (rule_tac x="topspace U - T" in exI)
- by auto
+ apply auto
+ done
lemma openin_subtopology_refl: "openin (subtopology U V) V \<longleftrightarrow> V \<subseteq> topspace U"
unfolding openin_subtopology
apply (rule iffI, clarify)
- apply (frule openin_subset[of U]) apply blast
+ apply (frule openin_subset[of U])
+ apply blast
apply (rule exI[where x="topspace U"])
apply auto
done
@@ -514,17 +584,28 @@
lemma subtopology_superset:
assumes UV: "topspace U \<subseteq> V"
shows "subtopology U V = U"
-proof-
- {fix S
- {fix T assume T: "openin U T" "S = T \<inter> V"
- from T openin_subset[OF T(1)] UV have eq: "S = T" by blast
- have "openin U S" unfolding eq using T by blast}
+proof -
+ {
+ fix S
+ {
+ fix T
+ assume T: "openin U T" "S = T \<inter> V"
+ from T openin_subset[OF T(1)] UV have eq: "S = T"
+ by blast
+ have "openin U S"
+ unfolding eq using T by blast
+ }
moreover
- {assume S: "openin U S"
- hence "\<exists>T. openin U T \<and> S = T \<inter> V"
- using openin_subset[OF S] UV by auto}
- ultimately have "(\<exists>T. openin U T \<and> S = T \<inter> V) \<longleftrightarrow> openin U S" by blast}
- then show ?thesis unfolding topology_eq openin_subtopology by blast
+ {
+ assume S: "openin U S"
+ then have "\<exists>T. openin U T \<and> S = T \<inter> V"
+ using openin_subset[OF S] UV by auto
+ }
+ ultimately have "(\<exists>T. openin U T \<and> S = T \<inter> V) \<longleftrightarrow> openin U S"
+ by blast
+ }
+ then show ?thesis
+ unfolding topology_eq openin_subtopology by blast
qed
lemma subtopology_topspace[simp]: "subtopology U (topspace U) = U"
@@ -533,11 +614,11 @@
lemma subtopology_UNIV[simp]: "subtopology U UNIV = U"
by (simp add: subtopology_superset)
+
subsubsection {* The standard Euclidean topology *}
-definition
- euclidean :: "'a::topological_space topology" where
- "euclidean = topology open"
+definition euclidean :: "'a::topological_space topology"
+ where "euclidean = topology open"
lemma open_openin: "open S \<longleftrightarrow> openin euclidean S"
unfolding euclidean_def
@@ -549,7 +630,8 @@
lemma topspace_euclidean: "topspace euclidean = UNIV"
apply (simp add: topspace_def)
apply (rule set_eqI)
- by (auto simp add: open_openin[symmetric])
+ apply (auto simp add: open_openin[symmetric])
+ done
lemma topspace_euclidean_subtopology[simp]: "topspace (subtopology euclidean S) = S"
by (simp add: topspace_euclidean topspace_subtopology)
@@ -569,10 +651,10 @@
by (auto simp add: openin_open)
lemma open_openin_trans[trans]:
- "open S \<Longrightarrow> open T \<Longrightarrow> T \<subseteq> S \<Longrightarrow> openin (subtopology euclidean S) T"
+ "open S \<Longrightarrow> open T \<Longrightarrow> T \<subseteq> S \<Longrightarrow> openin (subtopology euclidean S) T"
by (metis Int_absorb1 openin_open_Int)
-lemma open_subset: "S \<subseteq> T \<Longrightarrow> open S \<Longrightarrow> openin (subtopology euclidean T) S"
+lemma open_subset: "S \<subseteq> T \<Longrightarrow> open S \<Longrightarrow> openin (subtopology euclidean T) S"
by (auto simp add: openin_open)
lemma closedin_closed: "closedin (subtopology euclidean U) S \<longleftrightarrow> (\<exists>T. closed T \<and> S = U \<inter> T)"
@@ -593,10 +675,12 @@
lemma openin_euclidean_subtopology_iff:
fixes S U :: "'a::metric_space set"
- shows "openin (subtopology euclidean U) S
- \<longleftrightarrow> S \<subseteq> U \<and> (\<forall>x\<in>S. \<exists>e>0. \<forall>x'\<in>U. dist x' x < e \<longrightarrow> x'\<in> S)" (is "?lhs \<longleftrightarrow> ?rhs")
+ shows "openin (subtopology euclidean U) S \<longleftrightarrow>
+ S \<subseteq> U \<and> (\<forall>x\<in>S. \<exists>e>0. \<forall>x'\<in>U. dist x' x < e \<longrightarrow> x'\<in> S)"
+ (is "?lhs \<longleftrightarrow> ?rhs")
proof
- assume ?lhs thus ?rhs unfolding openin_open open_dist by blast
+ assume ?lhs
+ then show ?rhs unfolding openin_open open_dist by blast
next
def T \<equiv> "{x. \<exists>a\<in>S. \<exists>d>0. (\<forall>y\<in>U. dist y a < d \<longrightarrow> y \<in> S) \<and> dist x a < d}"
have 1: "\<forall>x\<in>T. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> T"
@@ -620,17 +704,17 @@
text {* These "transitivity" results are handy too *}
-lemma openin_trans[trans]: "openin (subtopology euclidean T) S \<Longrightarrow> openin (subtopology euclidean U) T
- \<Longrightarrow> openin (subtopology euclidean U) S"
+lemma openin_trans[trans]:
+ "openin (subtopology euclidean T) S \<Longrightarrow> openin (subtopology euclidean U) T \<Longrightarrow>
+ openin (subtopology euclidean U) S"
unfolding open_openin openin_open by blast
lemma openin_open_trans: "openin (subtopology euclidean T) S \<Longrightarrow> open T \<Longrightarrow> open S"
by (auto simp add: openin_open intro: openin_trans)
lemma closedin_trans[trans]:
- "closedin (subtopology euclidean T) S \<Longrightarrow>
- closedin (subtopology euclidean U) T
- ==> closedin (subtopology euclidean U) S"
+ "closedin (subtopology euclidean T) S \<Longrightarrow> closedin (subtopology euclidean U) T \<Longrightarrow>
+ closedin (subtopology euclidean U) S"
by (auto simp add: closedin_closed closed_closedin closed_Inter Int_assoc)
lemma closedin_closed_trans: "closedin (subtopology euclidean T) S \<Longrightarrow> closed T \<Longrightarrow> closed S"
@@ -639,13 +723,11 @@
subsection {* Open and closed balls *}
-definition
- ball :: "'a::metric_space \<Rightarrow> real \<Rightarrow> 'a set" where
- "ball x e = {y. dist x y < e}"
-
-definition
- cball :: "'a::metric_space \<Rightarrow> real \<Rightarrow> 'a set" where
- "cball x e = {y. dist x y \<le> e}"
+definition ball :: "'a::metric_space \<Rightarrow> real \<Rightarrow> 'a set"
+ where "ball x e = {y. dist x y < e}"
+
+definition cball :: "'a::metric_space \<Rightarrow> real \<Rightarrow> 'a set"
+ where "cball x e = {y. dist x y \<le> e}"
lemma mem_ball [simp]: "y \<in> ball x e \<longleftrightarrow> dist x y < e"
by (simp add: ball_def)
@@ -669,20 +751,33 @@
lemma centre_in_cball: "x \<in> cball x e \<longleftrightarrow> 0 \<le> e"
by simp
-lemma ball_subset_cball[simp,intro]: "ball x e \<subseteq> cball x e" by (simp add: subset_eq)
-lemma subset_ball[intro]: "d <= e ==> ball x d \<subseteq> ball x e" by (simp add: subset_eq)
-lemma subset_cball[intro]: "d <= e ==> cball x d \<subseteq> cball x e" by (simp add: subset_eq)
+lemma ball_subset_cball[simp,intro]: "ball x e \<subseteq> cball x e"
+ by (simp add: subset_eq)
+
+lemma subset_ball[intro]: "d <= e ==> ball x d \<subseteq> ball x e"
+ by (simp add: subset_eq)
+
+lemma subset_cball[intro]: "d <= e ==> cball x d \<subseteq> cball x e"
+ by (simp add: subset_eq)
+
lemma ball_max_Un: "ball a (max r s) = ball a r \<union> ball a s"
by (simp add: set_eq_iff) arith
lemma ball_min_Int: "ball a (min r s) = ball a r \<inter> ball a s"
by (simp add: set_eq_iff)
-lemma diff_less_iff: "(a::real) - b > 0 \<longleftrightarrow> a > b"
+lemma diff_less_iff:
+ "(a::real) - b > 0 \<longleftrightarrow> a > b"
"(a::real) - b < 0 \<longleftrightarrow> a < b"
- "a - b < c \<longleftrightarrow> a < c +b" "a - b > c \<longleftrightarrow> a > c +b" by arith+
-lemma diff_le_iff: "(a::real) - b \<ge> 0 \<longleftrightarrow> a \<ge> b" "(a::real) - b \<le> 0 \<longleftrightarrow> a \<le> b"
- "a - b \<le> c \<longleftrightarrow> a \<le> c +b" "a - b \<ge> c \<longleftrightarrow> a \<ge> c +b" by arith+
+ "a - b < c \<longleftrightarrow> a < c + b" "a - b > c \<longleftrightarrow> a > c + b"
+ by arith+
+
+lemma diff_le_iff:
+ "(a::real) - b \<ge> 0 \<longleftrightarrow> a \<ge> b"
+ "(a::real) - b \<le> 0 \<longleftrightarrow> a \<le> b"
+ "a - b \<le> c \<longleftrightarrow> a \<le> c + b"
+ "a - b \<ge> c \<longleftrightarrow> a \<ge> c + b"
+ by arith+
lemma open_ball[intro, simp]: "open (ball x e)"
unfolding open_dist ball_def mem_Collect_eq Ball_def
@@ -730,30 +825,41 @@
shows "\<exists>a b. (\<forall>i\<in>Basis. a \<bullet> i \<in> \<rat> \<and> b \<bullet> i \<in> \<rat> ) \<and> x \<in> box a b \<and> box a b \<subseteq> ball x e"
proof -
def e' \<equiv> "e / (2 * sqrt (real (DIM ('a))))"
- then have e: "0 < e'" using assms by (auto intro!: divide_pos_pos simp: DIM_positive)
+ then have e: "0 < e'"
+ using assms by (auto intro!: divide_pos_pos simp: DIM_positive)
have "\<forall>i. \<exists>y. y \<in> \<rat> \<and> y < x \<bullet> i \<and> x \<bullet> i - y < e'" (is "\<forall>i. ?th i")
proof
- fix i from Rats_dense_in_real[of "x \<bullet> i - e'" "x \<bullet> i"] e show "?th i" by auto
+ fix i
+ from Rats_dense_in_real[of "x \<bullet> i - e'" "x \<bullet> i"] e
+ show "?th i" by auto
qed
from choice[OF this] guess a .. note a = this
have "\<forall>i. \<exists>y. y \<in> \<rat> \<and> x \<bullet> i < y \<and> y - x \<bullet> i < e'" (is "\<forall>i. ?th i")
proof
- fix i from Rats_dense_in_real[of "x \<bullet> i" "x \<bullet> i + e'"] e show "?th i" by auto
+ fix i
+ from Rats_dense_in_real[of "x \<bullet> i" "x \<bullet> i + e'"] e
+ show "?th i" by auto
qed
from choice[OF this] guess b .. note b = this
let ?a = "\<Sum>i\<in>Basis. a i *\<^sub>R i" and ?b = "\<Sum>i\<in>Basis. b i *\<^sub>R i"
show ?thesis
proof (rule exI[of _ ?a], rule exI[of _ ?b], safe)
- fix y :: 'a assume *: "y \<in> box ?a ?b"
+ fix y :: 'a
+ assume *: "y \<in> box ?a ?b"
have "dist x y = sqrt (\<Sum>i\<in>Basis. (dist (x \<bullet> i) (y \<bullet> i))\<^sup>2)"
unfolding setL2_def[symmetric] by (rule euclidean_dist_l2)
also have "\<dots> < sqrt (\<Sum>(i::'a)\<in>Basis. e^2 / real (DIM('a)))"
proof (rule real_sqrt_less_mono, rule setsum_strict_mono)
- fix i :: "'a" assume i: "i \<in> Basis"
- have "a i < y\<bullet>i \<and> y\<bullet>i < b i" using * i by (auto simp: box_def)
- moreover have "a i < x\<bullet>i" "x\<bullet>i - a i < e'" using a by auto
- moreover have "x\<bullet>i < b i" "b i - x\<bullet>i < e'" using b by auto
- ultimately have "\<bar>x\<bullet>i - y\<bullet>i\<bar> < 2 * e'" by auto
+ fix i :: "'a"
+ assume i: "i \<in> Basis"
+ have "a i < y\<bullet>i \<and> y\<bullet>i < b i"
+ using * i by (auto simp: box_def)
+ moreover have "a i < x\<bullet>i" "x\<bullet>i - a i < e'"
+ using a by auto
+ moreover have "x\<bullet>i < b i" "b i - x\<bullet>i < e'"
+ using b by auto
+ ultimately have "\<bar>x\<bullet>i - y\<bullet>i\<bar> < 2 * e'"
+ by auto
then have "dist (x \<bullet> i) (y \<bullet> i) < e/sqrt (real (DIM('a)))"
unfolding e'_def by (auto simp: dist_real_def)
then have "(dist (x \<bullet> i) (y \<bullet> i))\<^sup>2 < (e/sqrt (real (DIM('a))))\<^sup>2"
@@ -761,8 +867,10 @@
then show "(dist (x \<bullet> i) (y \<bullet> i))\<^sup>2 < e\<^sup>2 / real DIM('a)"
by (simp add: power_divide)
qed auto
- also have "\<dots> = e" using `0 < e` by (simp add: real_eq_of_nat)
- finally show "y \<in> ball x e" by (auto simp: ball_def)
+ also have "\<dots> = e"
+ using `0 < e` by (simp add: real_eq_of_nat)
+ finally show "y \<in> ball x e"
+ by (auto simp: ball_def)
qed (insert a b, auto simp: box_def)
qed
@@ -792,51 +900,67 @@
subsection{* Connectedness *}
lemma connected_local:
- "connected S \<longleftrightarrow> ~(\<exists>e1 e2.
- openin (subtopology euclidean S) e1 \<and>
- openin (subtopology euclidean S) e2 \<and>
- S \<subseteq> e1 \<union> e2 \<and>
- e1 \<inter> e2 = {} \<and>
- ~(e1 = {}) \<and>
- ~(e2 = {}))"
-unfolding connected_def openin_open by (safe, blast+)
+ "connected S \<longleftrightarrow>
+ \<not> (\<exists>e1 e2.
+ openin (subtopology euclidean S) e1 \<and>
+ openin (subtopology euclidean S) e2 \<and>
+ S \<subseteq> e1 \<union> e2 \<and>
+ e1 \<inter> e2 = {} \<and>
+ e1 \<noteq> {} \<and>
+ e2 \<noteq> {})"
+ unfolding connected_def openin_open by (safe, blast+)
lemma exists_diff:
fixes P :: "'a set \<Rightarrow> bool"
shows "(\<exists>S. P(- S)) \<longleftrightarrow> (\<exists>S. P S)" (is "?lhs \<longleftrightarrow> ?rhs")
-proof-
- {assume "?lhs" hence ?rhs by blast }
+proof -
+ {
+ assume "?lhs"
+ then have ?rhs by blast
+ }
moreover
- {fix S assume H: "P S"
+ {
+ fix S
+ assume H: "P S"
have "S = - (- S)" by auto
- with H have "P (- (- S))" by metis }
+ with H have "P (- (- S))" by metis
+ }
ultimately show ?thesis by metis
qed
lemma connected_clopen: "connected S \<longleftrightarrow>
- (\<forall>T. openin (subtopology euclidean S) T \<and>
- closedin (subtopology euclidean S) T \<longrightarrow> T = {} \<or> T = S)" (is "?lhs \<longleftrightarrow> ?rhs")
-proof-
- have " \<not> connected S \<longleftrightarrow> (\<exists>e1 e2. open e1 \<and> open (- e2) \<and> S \<subseteq> e1 \<union> (- e2) \<and> e1 \<inter> (- e2) \<inter> S = {} \<and> e1 \<inter> S \<noteq> {} \<and> (- e2) \<inter> S \<noteq> {})"
+ (\<forall>T. openin (subtopology euclidean S) T \<and>
+ closedin (subtopology euclidean S) T \<longrightarrow> T = {} \<or> T = S)" (is "?lhs \<longleftrightarrow> ?rhs")
+proof -
+ have "\<not> connected S \<longleftrightarrow>
+ (\<exists>e1 e2. open e1 \<and> open (- e2) \<and> S \<subseteq> e1 \<union> (- e2) \<and> e1 \<inter> (- e2) \<inter> S = {} \<and> e1 \<inter> S \<noteq> {} \<and> (- e2) \<inter> S \<noteq> {})"
unfolding connected_def openin_open closedin_closed
apply (subst exists_diff)
apply blast
done
- hence th0: "connected S \<longleftrightarrow> \<not> (\<exists>e2 e1. closed e2 \<and> open e1 \<and> S \<subseteq> e1 \<union> (- e2) \<and> e1 \<inter> (- e2) \<inter> S = {} \<and> e1 \<inter> S \<noteq> {} \<and> (- e2) \<inter> S \<noteq> {})"
+ hence th0: "connected S \<longleftrightarrow>
+ \<not> (\<exists>e2 e1. closed e2 \<and> open e1 \<and> S \<subseteq> e1 \<union> (- e2) \<and> e1 \<inter> (- e2) \<inter> S = {} \<and> e1 \<inter> S \<noteq> {} \<and> (- e2) \<inter> S \<noteq> {})"
(is " _ \<longleftrightarrow> \<not> (\<exists>e2 e1. ?P e2 e1)")
apply (simp add: closed_def)
apply metis
done
-
have th1: "?rhs \<longleftrightarrow> \<not> (\<exists>t' t. closed t'\<and>t = S\<inter>t' \<and> t\<noteq>{} \<and> t\<noteq>S \<and> (\<exists>t'. open t' \<and> t = S \<inter> t'))"
(is "_ \<longleftrightarrow> \<not> (\<exists>t' t. ?Q t' t)")
unfolding connected_def openin_open closedin_closed by auto
- {fix e2
- {fix e1 have "?P e2 e1 \<longleftrightarrow> (\<exists>t. closed e2 \<and> t = S\<inter>e2 \<and> open e1 \<and> t = S\<inter>e1 \<and> t\<noteq>{} \<and> t\<noteq>S)"
- by auto}
- then have "(\<exists>e1. ?P e2 e1) \<longleftrightarrow> (\<exists>t. ?Q e2 t)" by metis}
- then have "\<forall>e2. (\<exists>e1. ?P e2 e1) \<longleftrightarrow> (\<exists>t. ?Q e2 t)" by blast
- then show ?thesis unfolding th0 th1 by simp
+ {
+ fix e2
+ {
+ fix e1
+ have "?P e2 e1 \<longleftrightarrow> (\<exists>t. closed e2 \<and> t = S\<inter>e2 \<and> open e1 \<and> t = S\<inter>e1 \<and> t\<noteq>{} \<and> t\<noteq>S)"
+ by auto
+ }
+ then have "(\<exists>e1. ?P e2 e1) \<longleftrightarrow> (\<exists>t. ?Q e2 t)"
+ by metis
+ }
+ then have "\<forall>e2. (\<exists>e1. ?P e2 e1) \<longleftrightarrow> (\<exists>t. ?Q e2 t)"
+ by blast
+ then show ?thesis
+ unfolding th0 th1 by simp
qed
lemma connected_empty[simp, intro]: "connected {}" (* FIXME duplicate? *)
@@ -845,9 +969,8 @@
subsection{* Limit points *}
-definition (in topological_space)
- islimpt:: "'a \<Rightarrow> 'a set \<Rightarrow> bool" (infixr "islimpt" 60) where
- "x islimpt S \<longleftrightarrow> (\<forall>T. x\<in>T \<longrightarrow> open T \<longrightarrow> (\<exists>y\<in>S. y\<in>T \<and> y\<noteq>x))"
+definition (in topological_space) islimpt:: "'a \<Rightarrow> 'a set \<Rightarrow> bool" (infixr "islimpt" 60)
+ where "x islimpt S \<longleftrightarrow> (\<forall>T. x\<in>T \<longrightarrow> open T \<longrightarrow> (\<exists>y\<in>S. y\<in>T \<and> y\<noteq>x))"
lemma islimptI:
assumes "\<And>T. x \<in> T \<Longrightarrow> open T \<Longrightarrow> \<exists>y\<in>S. y \<in> T \<and> y \<noteq> x"
@@ -862,7 +985,7 @@
lemma islimpt_iff_eventually: "x islimpt S \<longleftrightarrow> \<not> eventually (\<lambda>y. y \<notin> S) (at x)"
unfolding islimpt_def eventually_at_topological by auto
-lemma islimpt_subset: "\<lbrakk>x islimpt S; S \<subseteq> T\<rbrakk> \<Longrightarrow> x islimpt T"
+lemma islimpt_subset: "x islimpt S \<Longrightarrow> S \<subseteq> T \<Longrightarrow> x islimpt T"
unfolding islimpt_def by fast
lemma islimpt_approachable:
@@ -892,8 +1015,8 @@
lemma perfect_choose_dist:
fixes x :: "'a::{perfect_space, metric_space}"
shows "0 < r \<Longrightarrow> \<exists>a. a \<noteq> x \<and> dist a x < r"
-using islimpt_UNIV [of x]
-by (simp add: islimpt_approachable)
+ using islimpt_UNIV [of x]
+ by (simp add: islimpt_approachable)
lemma closed_limpt: "closed S \<longleftrightarrow> (\<forall>x. x islimpt S \<longrightarrow> x \<in> S)"
unfolding closed_def
@@ -907,20 +1030,29 @@
lemma finite_set_avoid:
fixes a :: "'a::metric_space"
- assumes fS: "finite S" shows "\<exists>d>0. \<forall>x\<in>S. x \<noteq> a \<longrightarrow> d <= dist a x"
-proof(induct rule: finite_induct[OF fS])
- case 1 thus ?case by (auto intro: zero_less_one)
+ assumes fS: "finite S"
+ shows "\<exists>d>0. \<forall>x\<in>S. x \<noteq> a \<longrightarrow> d <= dist a x"
+proof (induct rule: finite_induct[OF fS])
+ case 1
+ then show ?case by (auto intro: zero_less_one)
next
case (2 x F)
- from 2 obtain d where d: "d >0" "\<forall>x\<in>F. x\<noteq>a \<longrightarrow> d \<le> dist a x" by blast
- {assume "x = a" hence ?case using d by auto }
- moreover
- {assume xa: "x\<noteq>a"
+ from 2 obtain d where d: "d >0" "\<forall>x\<in>F. x\<noteq>a \<longrightarrow> d \<le> dist a x"
+ by blast
+ show ?case
+ proof (cases "x = a")
+ case True
+ then show ?thesis using d by auto
+ next
+ case False
let ?d = "min d (dist a x)"
- have dp: "?d > 0" using xa d(1) using dist_nz by auto
- from d have d': "\<forall>x\<in>F. x\<noteq>a \<longrightarrow> ?d \<le> dist a x" by auto
- with dp xa have ?case by(auto intro!: exI[where x="?d"]) }
- ultimately show ?case by blast
+ have dp: "?d > 0"
+ using False d(1) using dist_nz by auto
+ from d have d': "\<forall>x\<in>F. x\<noteq>a \<longrightarrow> ?d \<le> dist a x"
+ by auto
+ with dp False show ?thesis
+ by (auto intro!: exI[where x="?d"])
+ qed
qed
lemma islimpt_Un: "x islimpt (S \<union> T) \<longleftrightarrow> x islimpt S \<or> x islimpt T"
@@ -928,20 +1060,27 @@
lemma discrete_imp_closed:
fixes S :: "'a::metric_space set"
- assumes e: "0 < e" and d: "\<forall>x \<in> S. \<forall>y \<in> S. dist y x < e \<longrightarrow> y = x"
+ assumes e: "0 < e"
+ and d: "\<forall>x \<in> S. \<forall>y \<in> S. dist y x < e \<longrightarrow> y = x"
shows "closed S"
-proof-
- {fix x assume C: "\<forall>e>0. \<exists>x'\<in>S. x' \<noteq> x \<and> dist x' x < e"
+proof -
+ {
+ fix x
+ assume C: "\<forall>e>0. \<exists>x'\<in>S. x' \<noteq> x \<and> dist x' x < e"
from e have e2: "e/2 > 0" by arith
- from C[rule_format, OF e2] obtain y where y: "y \<in> S" "y\<noteq>x" "dist y x < e/2" by blast
+ from C[rule_format, OF e2] obtain y where y: "y \<in> S" "y\<noteq>x" "dist y x < e/2"
+ by blast
let ?m = "min (e/2) (dist x y) "
- from e2 y(2) have mp: "?m > 0" by (simp add: dist_nz[THEN sym])
- from C[rule_format, OF mp] obtain z where z: "z \<in> S" "z\<noteq>x" "dist z x < ?m" by blast
+ from e2 y(2) have mp: "?m > 0"
+ by (simp add: dist_nz[THEN sym])
+ from C[rule_format, OF mp] obtain z where z: "z \<in> S" "z\<noteq>x" "dist z x < ?m"
+ by blast
have th: "dist z y < e" using z y
by (intro dist_triangle_lt [where z=x], simp)
from d[rule_format, OF y(1) z(1) th] y z
have False by (auto simp add: dist_commute)}
- then show ?thesis by (metis islimpt_approachable closed_limpt [where 'a='a])
+ then show ?thesis
+ by (metis islimpt_approachable closed_limpt [where 'a='a])
qed
@@ -1005,7 +1144,8 @@
lemma interior_limit_point [intro]:
fixes x :: "'a::perfect_space"
- assumes x: "x \<in> interior S" shows "x islimpt S"
+ assumes x: "x \<in> interior S"
+ shows "x islimpt S"
using x islimpt_UNIV [of x]
unfolding interior_def islimpt_def
apply (clarsimp, rename_tac T T')
@@ -1014,15 +1154,16 @@
done
lemma interior_closed_Un_empty_interior:
- assumes cS: "closed S" and iT: "interior T = {}"
+ assumes cS: "closed S"
+ and iT: "interior T = {}"
shows "interior (S \<union> T) = interior S"
proof
show "interior S \<subseteq> interior (S \<union> T)"
- by (rule interior_mono, rule Un_upper1)
-next
+ by (rule interior_mono) (rule Un_upper1)
show "interior (S \<union> T) \<subseteq> interior S"
proof
- fix x assume "x \<in> interior (S \<union> T)"
+ fix x
+ assume "x \<in> interior (S \<union> T)"
then obtain R where "open R" "x \<in> R" "R \<subseteq> S \<union> T" ..
show "x \<in> interior S"
proof (rule ccontr)
@@ -1043,14 +1184,17 @@
by (intro Sigma_mono interior_subset)
show "open (interior A \<times> interior B)"
by (intro open_Times open_interior)
- fix T assume "T \<subseteq> A \<times> B" and "open T" thus "T \<subseteq> interior A \<times> interior B"
+ fix T
+ assume "T \<subseteq> A \<times> B" and "open T"
+ then show "T \<subseteq> interior A \<times> interior B"
proof (safe)
- fix x y assume "(x, y) \<in> T"
+ fix x y
+ assume "(x, y) \<in> T"
then obtain C D where "open C" "open D" "C \<times> D \<subseteq> T" "x \<in> C" "y \<in> D"
using `open T` unfolding open_prod_def by fast
- hence "open C" "open D" "C \<subseteq> A" "D \<subseteq> B" "x \<in> C" "y \<in> D"
+ then have "open C" "open D" "C \<subseteq> A" "D \<subseteq> B" "x \<in> C" "y \<in> D"
using `T \<subseteq> A \<times> B` by auto
- thus "x \<in> interior A" and "y \<in> interior B"
+ then show "x \<in> interior A" and "y \<in> interior B"
by (auto intro: interiorI)
qed
qed
@@ -1091,8 +1235,9 @@
unfolding closure_hull by (rule hull_minimal)
lemma closure_unique:
- assumes "S \<subseteq> T" and "closed T"
- assumes "\<And>T'. S \<subseteq> T' \<Longrightarrow> closed T' \<Longrightarrow> T \<subseteq> T'"
+ assumes "S \<subseteq> T"
+ and "closed T"
+ and "\<And>T'. S \<subseteq> T' \<Longrightarrow> closed T' \<Longrightarrow> T \<subseteq> T'"
shows "closure S = T"
using assms unfolding closure_hull by (rule hull_unique)
@@ -1125,7 +1270,8 @@
proof
fix x
assume as: "open S" "x \<in> S \<inter> closure T"
- { assume *:"x islimpt T"
+ {
+ assume *:"x islimpt T"
have "x islimpt (S \<inter> T)"
proof (rule islimptI)
fix A
@@ -1134,9 +1280,9 @@
by (simp_all add: open_Int)
with * obtain y where "y \<in> T" "y \<in> A \<inter> S" "y \<noteq> x"
by (rule islimptE)
- hence "y \<in> S \<inter> T" "y \<in> A \<and> y \<noteq> x"
+ then have "y \<in> S \<inter> T" "y \<in> A \<and> y \<noteq> x"
by simp_all
- thus "\<exists>y\<in>(S \<inter> T). y \<in> A \<and> y \<noteq> x" ..
+ then show "\<exists>y\<in>(S \<inter> T). y \<in> A \<and> y \<noteq> x" ..
qed
}
then show "x \<in> closure (S \<inter> T)" using as
@@ -1167,7 +1313,6 @@
done
qed
-
lemma islimpt_in_closure: "(x islimpt S) = (x:closure(S-{x}))"
unfolding closure_def using islimpt_punctured by blast
@@ -1176,7 +1321,7 @@
definition "frontier S = closure S - interior S"
-lemma frontier_closed: "closed(frontier S)"
+lemma frontier_closed: "closed (frontier S)"
by (simp add: frontier_def closed_Diff)
lemma frontier_closures: "frontier S = (closure S) \<inter> (closure(- S))"
@@ -1196,11 +1341,14 @@
lemma frontier_subset_eq: "frontier S \<subseteq> S \<longleftrightarrow> closed S"
proof-
- { assume "frontier S \<subseteq> S"
- hence "closure S \<subseteq> S" using interior_subset unfolding frontier_def by auto
- hence "closed S" using closure_subset_eq by auto
+ {
+ assume "frontier S \<subseteq> S"
+ then have "closure S \<subseteq> S"
+ using interior_subset unfolding frontier_def by auto
+ then have "closed S"
+ using closure_subset_eq by auto
}
- thus ?thesis using frontier_subset_closed[of S] ..
+ then show ?thesis using frontier_subset_closed[of S] ..
qed
lemma frontier_complement: "frontier(- S) = frontier S"
@@ -1221,7 +1369,7 @@
lemma trivial_limit_within: "trivial_limit (at a within S) \<longleftrightarrow> \<not> a islimpt S"
proof
assume "trivial_limit (at a within S)"
- thus "\<not> a islimpt S"
+ then show "\<not> a islimpt S"
unfolding trivial_limit_def
unfolding eventually_at_topological
unfolding islimpt_def
@@ -1231,7 +1379,7 @@
done
next
assume "\<not> a islimpt S"
- thus "trivial_limit (at a within S)"
+ then show "trivial_limit (at a within S)"
unfolding trivial_limit_def
unfolding eventually_at_topological
unfolding islimpt_def
@@ -1266,9 +1414,9 @@
lemma eventually_at2:
"eventually P (at a) \<longleftrightarrow> (\<exists>d>0. \<forall>x. 0 < dist x a \<and> dist x a < d \<longrightarrow> P x)"
-unfolding eventually_at dist_nz by auto
-
-lemma eventually_happens: "eventually P net ==> trivial_limit net \<or> (\<exists>x. P x)"
+ unfolding eventually_at dist_nz by auto
+
+lemma eventually_happens: "eventually P net \<Longrightarrow> trivial_limit net \<or> (\<exists>x. P x)"
unfolding trivial_limit_def
by (auto elim: eventually_rev_mp)
@@ -1282,7 +1430,7 @@
lemma eventually_rev_mono:
"eventually P net \<Longrightarrow> (\<forall>x. P x \<longrightarrow> Q x) \<Longrightarrow> eventually Q net"
-using eventually_mono [of P Q] by fast
+ using eventually_mono [of P Q] by fast
lemma not_eventually: "(\<forall>x. \<not> P x ) \<Longrightarrow> ~(trivial_limit net) ==> ~(eventually (\<lambda>x. P x) net)"
by (simp add: eventually_False)
@@ -1291,7 +1439,7 @@
subsection {* Limits *}
lemma Lim:
- "(f ---> l) net \<longleftrightarrow>
+ "(f ---> l) net \<longleftrightarrow>
trivial_limit net \<or>
(\<forall>e>0. eventually (\<lambda>x. dist (f x) l < e) net)"
unfolding tendsto_iff trivial_limit_eq by auto
@@ -1322,7 +1470,8 @@
lemma Lim_within_empty: "(f ---> l) (at x within {})"
unfolding tendsto_def eventually_at_filter by simp
-lemma Lim_Un: assumes "(f ---> l) (at x within S)" "(f ---> l) (at x within T)"
+lemma Lim_Un:
+ assumes "(f ---> l) (at x within S)" "(f ---> l) (at x within T)"
shows "(f ---> l) (at x within (S \<union> T))"
using assms unfolding tendsto_def eventually_at_filter
apply clarify
@@ -1332,36 +1481,36 @@
done
lemma Lim_Un_univ:
- "(f ---> l) (at x within S) \<Longrightarrow> (f ---> l) (at x within T) \<Longrightarrow> S \<union> T = UNIV
- ==> (f ---> l) (at x)"
+ "(f ---> l) (at x within S) \<Longrightarrow> (f ---> l) (at x within T) \<Longrightarrow>
+ S \<union> T = UNIV \<Longrightarrow> (f ---> l) (at x)"
by (metis Lim_Un)
text{* Interrelations between restricted and unrestricted limits. *}
-
lemma Lim_at_within: (* FIXME: rename *)
"(f ---> l) (at x) \<Longrightarrow> (f ---> l) (at x within S)"
by (metis order_refl filterlim_mono subset_UNIV at_le)
lemma eventually_within_interior:
assumes "x \<in> interior S"
- shows "eventually P (at x within S) \<longleftrightarrow> eventually P (at x)" (is "?lhs = ?rhs")
-proof -
+ shows "eventually P (at x within S) \<longleftrightarrow> eventually P (at x)"
+ (is "?lhs = ?rhs")
+proof
from assms obtain T where T: "open T" "x \<in> T" "T \<subseteq> S" ..
- { assume "?lhs"
+ {
+ assume "?lhs"
then obtain A where "open A" "x \<in> A" "\<forall>y\<in>A. y \<noteq> x \<longrightarrow> y \<in> S \<longrightarrow> P y"
unfolding eventually_at_topological
by auto
with T have "open (A \<inter> T)" "x \<in> A \<inter> T" "\<forall>y\<in>(A \<inter> T). y \<noteq> x \<longrightarrow> P y"
by auto
- then have "?rhs"
+ then show "?rhs"
unfolding eventually_at_topological by auto
- }
- moreover
- { assume "?rhs" hence "?lhs"
+ next
+ assume "?rhs"
+ then show "?lhs"
by (auto elim: eventually_elim1 simp: eventually_at_filter)
}
- ultimately show "?thesis" ..
qed
lemma at_within_interior:
@@ -1379,24 +1528,31 @@
fixes f :: "'a :: {linorder_topology, conditionally_complete_linorder, no_top} \<Rightarrow>
'b::{linorder_topology, conditionally_complete_linorder}"
assumes mono: "\<And>a b. a \<in> I \<Longrightarrow> b \<in> I \<Longrightarrow> x < a \<Longrightarrow> a \<le> b \<Longrightarrow> f a \<le> f b"
- assumes bnd: "\<And>a. a \<in> I \<Longrightarrow> x < a \<Longrightarrow> K \<le> f a"
+ and bnd: "\<And>a. a \<in> I \<Longrightarrow> x < a \<Longrightarrow> K \<le> f a"
shows "(f ---> Inf (f ` ({x<..} \<inter> I))) (at x within ({x<..} \<inter> I))"
proof cases
- assume "{x<..} \<inter> I = {}" then show ?thesis by (simp add: Lim_within_empty)
+ assume "{x<..} \<inter> I = {}"
+ then show ?thesis by (simp add: Lim_within_empty)
next
assume e: "{x<..} \<inter> I \<noteq> {}"
show ?thesis
proof (rule order_tendstoI)
fix a assume a: "a < Inf (f ` ({x<..} \<inter> I))"
- { fix y assume "y \<in> {x<..} \<inter> I"
+ {
+ fix y
+ assume "y \<in> {x<..} \<inter> I"
with e bnd have "Inf (f ` ({x<..} \<inter> I)) \<le> f y"
by (auto intro: cInf_lower)
- with a have "a < f y" by (blast intro: less_le_trans) }
+ with a have "a < f y"
+ by (blast intro: less_le_trans)
+ }
then show "eventually (\<lambda>x. a < f x) (at x within ({x<..} \<inter> I))"
by (auto simp: eventually_at_filter intro: exI[of _ 1] zero_less_one)
next
- fix a assume "Inf (f ` ({x<..} \<inter> I)) < a"
- from cInf_lessD[OF _ this] e obtain y where y: "x < y" "y \<in> I" "f y < a" by auto
+ fix a
+ assume "Inf (f ` ({x<..} \<inter> I)) < a"
+ from cInf_lessD[OF _ this] e obtain y where y: "x < y" "y \<in> I" "f y < a"
+ by auto
then have "eventually (\<lambda>x. x \<in> I \<longrightarrow> f x < a) (at_right x)"
unfolding eventually_at_right by (metis less_imp_le le_less_trans mono)
then show "eventually (\<lambda>x. f x < a) (at x within ({x<..} \<inter> I))"
@@ -1414,27 +1570,33 @@
assume ?lhs
from countable_basis_at_decseq[of x] guess A . note A = this
def f \<equiv> "\<lambda>n. SOME y. y \<in> S \<and> y \<in> A n \<and> x \<noteq> y"
- { fix n
+ {
+ fix n
from `?lhs` have "\<exists>y. y \<in> S \<and> y \<in> A n \<and> x \<noteq> y"
unfolding islimpt_def using A(1,2)[of n] by auto
then have "f n \<in> S \<and> f n \<in> A n \<and> x \<noteq> f n"
unfolding f_def by (rule someI_ex)
- then have "f n \<in> S" "f n \<in> A n" "x \<noteq> f n" by auto }
+ then have "f n \<in> S" "f n \<in> A n" "x \<noteq> f n" by auto
+ }
then have "\<forall>n. f n \<in> S - {x}" by auto
moreover have "(\<lambda>n. f n) ----> x"
proof (rule topological_tendstoI)
- fix S assume "open S" "x \<in> S"
+ fix S
+ assume "open S" "x \<in> S"
from A(3)[OF this] `\<And>n. f n \<in> A n`
- show "eventually (\<lambda>x. f x \<in> S) sequentially" by (auto elim!: eventually_elim1)
+ show "eventually (\<lambda>x. f x \<in> S) sequentially"
+ by (auto elim!: eventually_elim1)
qed
ultimately show ?rhs by fast
next
assume ?rhs
- then obtain f :: "nat \<Rightarrow> 'a" where f: "\<And>n. f n \<in> S - {x}" and lim: "f ----> x" by auto
+ then obtain f :: "nat \<Rightarrow> 'a" where f: "\<And>n. f n \<in> S - {x}" and lim: "f ----> x"
+ by auto
show ?lhs
unfolding islimpt_def
proof safe
- fix T assume "open T" "x \<in> T"
+ fix T
+ assume "open T" "x \<in> T"
from lim[THEN topological_tendstoD, OF this] f
show "\<exists>y\<in>S. y \<in> T \<and> y \<noteq> x"
unfolding eventually_sequentially by auto
@@ -1442,8 +1604,10 @@
qed
lemma Lim_inv: (* TODO: delete *)
- fixes f :: "'a \<Rightarrow> real" and A :: "'a filter"
- assumes "(f ---> l) A" and "l \<noteq> 0"
+ fixes f :: "'a \<Rightarrow> real"
+ and A :: "'a filter"
+ assumes "(f ---> l) A"
+ and "l \<noteq> 0"
shows "((inverse o f) ---> inverse l) A"
unfolding o_def using assms by (rule tendsto_inverse)
@@ -1459,13 +1623,14 @@
proof (rule metric_tendsto_imp_tendsto)
show "(g ---> 0) net" by fact
show "eventually (\<lambda>x. dist (f x) 0 \<le> dist (g x) 0) net"
- using assms(1) by (rule eventually_elim1, simp add: dist_norm)
+ using assms(1) by (rule eventually_elim1) (simp add: dist_norm)
qed
lemma Lim_transform_bound:
fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
- fixes g :: "'a \<Rightarrow> 'c::real_normed_vector"
- assumes "eventually (\<lambda>n. norm(f n) <= norm(g n)) net" "(g ---> 0) net"
+ and g :: "'a \<Rightarrow> 'c::real_normed_vector"
+ assumes "eventually (\<lambda>n. norm(f n) <= norm(g n)) net"
+ and "(g ---> 0) net"
shows "(f ---> 0) net"
using assms(1) tendsto_norm_zero [OF assms(2)]
by (rule Lim_null_comparison)
@@ -1473,7 +1638,9 @@
text{* Deducing things about the limit from the elements. *}
lemma Lim_in_closed_set:
- assumes "closed S" "eventually (\<lambda>x. f(x) \<in> S) net" "\<not>(trivial_limit net)" "(f ---> l) net"
+ assumes "closed S"
+ and "eventually (\<lambda>x. f(x) \<in> S) net"
+ and "\<not>(trivial_limit net)" "(f ---> l) net"
shows "l \<in> S"
proof (rule ccontr)
assume "l \<notin> S"
@@ -1490,32 +1657,42 @@
text{* Need to prove closed(cball(x,e)) before deducing this as a corollary. *}
lemma Lim_dist_ubound:
- assumes "\<not>(trivial_limit net)" "(f ---> l) net" "eventually (\<lambda>x. dist a (f x) <= e) net"
+ assumes "\<not>(trivial_limit net)"
+ and "(f ---> l) net"
+ and "eventually (\<lambda>x. dist a (f x) <= e) net"
shows "dist a l <= e"
proof -
have "dist a l \<in> {..e}"
proof (rule Lim_in_closed_set)
- show "closed {..e}" by simp
- show "eventually (\<lambda>x. dist a (f x) \<in> {..e}) net" by (simp add: assms)
- show "\<not> trivial_limit net" by fact
- show "((\<lambda>x. dist a (f x)) ---> dist a l) net" by (intro tendsto_intros assms)
+ show "closed {..e}"
+ by simp
+ show "eventually (\<lambda>x. dist a (f x) \<in> {..e}) net"
+ by (simp add: assms)
+ show "\<not> trivial_limit net"
+ by fact
+ show "((\<lambda>x. dist a (f x)) ---> dist a l) net"
+ by (intro tendsto_intros assms)
qed
- thus ?thesis by simp
+ then show ?thesis by simp
qed
lemma Lim_norm_ubound:
fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
- assumes "\<not>(trivial_limit net)" "(f ---> l) net" "eventually (\<lambda>x. norm(f x) <= e) net"
- shows "norm(l) <= e"
+ assumes "\<not>(trivial_limit net)" "(f ---> l) net" "eventually (\<lambda>x. norm(f x) \<le> e) net"
+ shows "norm(l) \<le> e"
proof -
have "norm l \<in> {..e}"
proof (rule Lim_in_closed_set)
- show "closed {..e}" by simp
- show "eventually (\<lambda>x. norm (f x) \<in> {..e}) net" by (simp add: assms)
- show "\<not> trivial_limit net" by fact
- show "((\<lambda>x. norm (f x)) ---> norm l) net" by (intro tendsto_intros assms)
+ show "closed {..e}"
+ by simp
+ show "eventually (\<lambda>x. norm (f x) \<in> {..e}) net"
+ by (simp add: assms)
+ show "\<not> trivial_limit net"
+ by fact
+ show "((\<lambda>x. norm (f x)) ---> norm l) net"
+ by (intro tendsto_intros assms)
qed
- thus ?thesis by simp
+ then show ?thesis by simp
qed
lemma Lim_norm_lbound:
@@ -1525,12 +1702,16 @@
proof -
have "norm l \<in> {e..}"
proof (rule Lim_in_closed_set)
- show "closed {e..}" by simp
- show "eventually (\<lambda>x. norm (f x) \<in> {e..}) net" by (simp add: assms)
- show "\<not> trivial_limit net" by fact
- show "((\<lambda>x. norm (f x)) ---> norm l) net" by (intro tendsto_intros assms)
+ show "closed {e..}"
+ by simp
+ show "eventually (\<lambda>x. norm (f x) \<in> {e..}) net"
+ by (simp add: assms)
+ show "\<not> trivial_limit net"
+ by fact
+ show "((\<lambda>x. norm (f x)) ---> norm l) net"
+ by (intro tendsto_intros assms)
qed
- thus ?thesis by simp
+ then show ?thesis by simp
qed
text{* Limit under bilinear function *}
--- a/src/Pure/Thy/completion.scala Thu Aug 29 05:41:58 2013 +0200
+++ b/src/Pure/Thy/completion.scala Thu Aug 29 05:42:37 2013 +0200
@@ -27,12 +27,13 @@
def reverse_symbol: Parser[String] = """>[A-Za-z0-9_']+\^?<\\""".r
def reverse_symb: Parser[String] = """[A-Za-z0-9_']{2,}\^?<\\""".r
- def word: Parser[String] = "[a-zA-Z0-9_']{2,}".r
+ def escape: Parser[String] = """[a-zA-Z0-9_']+\\""".r
+ def word: Parser[String] = """[a-zA-Z0-9_']{3,}""".r
def read(in: CharSequence): Option[String] =
{
val reverse_in = new Library.Reverse(in)
- parse((reverse_symbol | reverse_symb | word) ^^ (_.reverse), reverse_in) match {
+ parse((reverse_symbol | reverse_symb | escape | word) ^^ (_.reverse), reverse_in) match {
case Success(result, _) => Some(result)
case _ => None
}
@@ -61,7 +62,7 @@
{
val words =
(for ((x, _) <- Symbol.names) yield (x, x)).toList :::
- (for ((x, y) <- Symbol.names) yield (y, x)).toList :::
+ (for ((x, y) <- Symbol.names) yield ("\\" + y, x)).toList :::
(for ((x, y) <- Symbol.abbrevs if Completion.is_word(y)) yield (y, x)).toList
val abbrs =
--- a/src/Tools/jEdit/etc/options Thu Aug 29 05:41:58 2013 +0200
+++ b/src/Tools/jEdit/etc/options Thu Aug 29 05:42:37 2013 +0200
@@ -9,18 +9,18 @@
public option jedit_font_scale : real = 1.0
-- "scale factor of add-on panels wrt. main text area"
+public option jedit_popup_font_scale : real = 0.85
+ -- "scale factor of popups wrt. main text area"
+
+public option jedit_popup_bounds : real = 0.5
+ -- "relative bounds of popup window wrt. logical screen size"
+
public option jedit_tooltip_delay : real = 0.75
-- "open/close delay for document tooltips"
-public option jedit_tooltip_font_scale : real = 0.85
- -- "scale factor of tooltips wrt. main text area"
-
public option jedit_tooltip_margin : int = 60
-- "margin for tooltip pretty-printing"
-public option jedit_tooltip_bounds : real = 0.5
- -- "relative bounds of tooltip window wrt. logical screen size"
-
public option jedit_text_overview_limit : int = 100000
-- "maximum amount of text to visualize in overview column"
--- a/src/Tools/jEdit/lib/Tools/jedit Thu Aug 29 05:41:58 2013 +0200
+++ b/src/Tools/jEdit/lib/Tools/jedit Thu Aug 29 05:42:37 2013 +0200
@@ -33,6 +33,7 @@
"src/osx_adapter.scala"
"src/output_dockable.scala"
"src/plugin.scala"
+ "src/popup.scala"
"src/pretty_text_area.scala"
"src/pretty_tooltip.scala"
"src/process_indicator.scala"
--- a/src/Tools/jEdit/src/completion_popup.scala Thu Aug 29 05:41:58 2013 +0200
+++ b/src/Tools/jEdit/src/completion_popup.scala Thu Aug 29 05:42:37 2013 +0200
@@ -1,7 +1,7 @@
/* Title: Tools/jEdit/src/completion_popup.scala
Author: Makarius
-Completion popup based on javax.swing.PopupFactory.
+Completion popup.
*/
package isabelle.jedit
@@ -9,56 +9,162 @@
import isabelle._
-import java.awt.{Point, BorderLayout, Dimension}
-import java.awt.event.{KeyEvent, KeyAdapter, MouseEvent, MouseAdapter, FocusAdapter, FocusEvent}
-import javax.swing.{JPanel, JComponent, PopupFactory}
+import java.awt.{Font, Point, BorderLayout, Dimension}
+import java.awt.event.{KeyEvent, MouseEvent, MouseAdapter, FocusAdapter, FocusEvent}
+import javax.swing.{JPanel, JComponent, JLayeredPane, SwingUtilities}
import scala.swing.{ListView, ScrollPane}
import scala.swing.event.MouseClicked
import org.gjt.sp.jedit.View
+import org.gjt.sp.jedit.textarea.JEditTextArea
object Completion_Popup
{
- sealed case class Item(name: String, text: String)
- { override def toString: String = text }
+ /* items */
+
+ private sealed case class Item(original: String, replacement: String, description: String)
+ { override def toString: String = description }
+
+
+ /* maintain single instance */
- def apply(
- opt_view: Option[View],
- parent: JComponent,
- screen_point: Point,
- items: List[Item],
- complete: Item => Unit): Completion_Popup =
+ def dismissed(layered: JLayeredPane): Boolean =
+ {
+ Swing_Thread.require()
+
+ layered.getClientProperty(Completion_Popup) match {
+ case old_completion: Completion_Popup =>
+ old_completion.hide_popup()
+ true
+ case _ =>
+ false
+ }
+ }
+
+ private def register(layered: JLayeredPane, completion: Completion_Popup)
{
Swing_Thread.require()
- require(!items.isEmpty)
+ dismissed(layered)
+ layered.putClientProperty(Completion_Popup, completion)
+ }
+
+
+ /* jEdit text area operations */
+
+ object Text_Area
+ {
+ private def insert(text_area: JEditTextArea, item: Item)
+ {
+ Swing_Thread.require()
+
+ val buffer = text_area.getBuffer
+ val len = item.original.length
+ if (buffer.isEditable && len > 0) {
+ JEdit_Lib.buffer_edit(buffer) {
+ val caret = text_area.getCaretPosition
+ JEdit_Lib.try_get_text(buffer, Text.Range(caret - len, caret)) match {
+ case Some(text) if text == item.original =>
+ buffer.remove(caret - len, len)
+ buffer.insert(caret - len, item.replacement)
+ case _ =>
+ }
+ }
+ }
+ }
+
+ def input(text_area: JEditTextArea, get_syntax: => Option[Outer_Syntax], evt: KeyEvent)
+ {
+ Swing_Thread.require()
+
+ val view = text_area.getView
+ val layered = view.getLayeredPane
+ val buffer = text_area.getBuffer
+ val painter = text_area.getPainter
+
+ if (buffer.isEditable && !evt.isConsumed) {
+ dismissed(layered)
- val completion = new Completion_Popup(opt_view, parent, screen_point, items, complete)
- completion.show_popup()
- completion
+ get_syntax match {
+ case Some(syntax) =>
+ val caret = text_area.getCaretPosition
+ val result =
+ {
+ val line = buffer.getLineOfOffset(caret)
+ val start = buffer.getLineStartOffset(line)
+ val text = buffer.getSegment(start, caret - start)
+
+ syntax.completion.complete(text) match {
+ case Some((word, cs)) =>
+ val ds =
+ (if (Isabelle_Encoding.is_active(buffer))
+ cs.map(Symbol.decode(_)).sorted
+ else cs).filter(_ != word)
+ if (ds.isEmpty) None
+ else Some((word, ds.map(s => Item(word, s, s))))
+ case None => None
+ }
+ }
+ result match {
+ case Some((original, items)) =>
+ val popup_font =
+ painter.getFont.deriveFont(
+ (painter.getFont.getSize2D * PIDE.options.real("jedit_popup_font_scale")).toFloat
+ max 10.0f)
+
+ val loc1 = text_area.offsetToXY(caret - original.length)
+ if (loc1 != null) {
+ val loc2 =
+ SwingUtilities.convertPoint(painter,
+ loc1.x, loc1.y + painter.getFontMetrics.getHeight, layered)
+ val completion =
+ new Completion_Popup(layered, loc2, popup_font, items) {
+ override def complete(item: Item) { insert(text_area, item) }
+ override def propagate(e: KeyEvent) {
+ JEdit_Lib.propagate_key(view, e)
+ input(text_area, get_syntax, e)
+ }
+ override def refocus() { text_area.requestFocus }
+ }
+ register(layered, completion)
+ completion.show_popup()
+ }
+ case None =>
+ }
+ case None =>
+ }
+ }
+ }
}
}
class Completion_Popup private(
- opt_view: Option[View],
- parent: JComponent,
- screen_point: Point,
- items: List[Completion_Popup.Item],
- complete: Completion_Popup.Item => Unit) extends JPanel(new BorderLayout)
+ layered: JLayeredPane,
+ location: Point,
+ popup_font: Font,
+ items: List[Completion_Popup.Item]) extends JPanel(new BorderLayout)
{
completion =>
Swing_Thread.require()
+ require(!items.isEmpty)
+
+
+ /* actions */
+
+ def complete(item: Completion_Popup.Item) { }
+ def propagate(evt: KeyEvent) { }
+ def refocus() { }
/* list view */
private val list_view = new ListView(items)
{
- font = parent.getFont
+ font = popup_font
}
list_view.selection.intervalMode = ListView.IntervalMode.Single
list_view.peer.setFocusTraversalKeysEnabled(false)
@@ -92,49 +198,33 @@
/* event handling */
- private val key_handler = new KeyAdapter {
- override def keyPressed(e: KeyEvent)
- {
- if (!e.isConsumed) {
- e.getKeyCode match {
- case KeyEvent.VK_TAB =>
- if (complete_selected()) e.consume
- hide_popup()
- case KeyEvent.VK_ESCAPE =>
- hide_popup()
- e.consume
- case KeyEvent.VK_UP => move_items(-1); e.consume
- case KeyEvent.VK_DOWN => move_items(1); e.consume
- case KeyEvent.VK_PAGE_UP => move_pages(-1); e.consume
- case KeyEvent.VK_PAGE_DOWN => move_pages(1); e.consume
- case _ =>
- if (e.isActionKey || e.isAltDown || e.isMetaDown || e.isControlDown)
- hide_popup()
- }
- }
- if (!e.isConsumed) pass_to_view(e)
- }
+ private val key_listener =
+ JEdit_Lib.key_listener(
+ key_pressed = (e: KeyEvent) =>
+ {
+ if (!e.isConsumed) {
+ e.getKeyCode match {
+ case KeyEvent.VK_TAB =>
+ if (complete_selected()) e.consume
+ hide_popup()
+ case KeyEvent.VK_ESCAPE =>
+ hide_popup()
+ e.consume
+ case KeyEvent.VK_UP => move_items(-1); e.consume
+ case KeyEvent.VK_DOWN => move_items(1); e.consume
+ case KeyEvent.VK_PAGE_UP => move_pages(-1); e.consume
+ case KeyEvent.VK_PAGE_DOWN => move_pages(1); e.consume
+ case _ =>
+ if (e.isActionKey || e.isAltDown || e.isMetaDown || e.isControlDown)
+ hide_popup()
+ }
+ }
+ propagate(e)
+ },
+ key_typed = propagate _
+ )
- override def keyTyped(e: KeyEvent)
- {
- if (!e.isConsumed) pass_to_view(e)
- }
- }
-
- private def pass_to_view(e: KeyEvent)
- {
- opt_view match {
- case Some(view) if view.getKeyEventInterceptor == key_handler =>
- try {
- view.setKeyEventInterceptor(null)
- view.getInputHandler().processKeyEvent(e, View.ACTION_BAR, false)
- }
- finally { view.setKeyEventInterceptor(key_handler) }
- case _ =>
- }
- }
-
- list_view.peer.addKeyListener(key_handler)
+ list_view.peer.addKeyListener(key_listener)
list_view.peer.addMouseListener(new MouseAdapter {
override def mouseClicked(e: MouseEvent) {
@@ -159,37 +249,29 @@
private val popup =
{
- val screen_bounds = JEdit_Lib.screen_bounds(screen_point)
-
- val geometry = JEdit_Lib.window_geometry(completion, completion)
-
- val w = geometry.width min (screen_bounds.width / 2)
- val h = geometry.height min (screen_bounds.height / 2)
-
- completion.setSize(new Dimension(w, h))
- completion.setPreferredSize(new Dimension(w, h))
-
- val x = screen_point.x min (screen_bounds.x + screen_bounds.width - w)
- val y = screen_point.y min (screen_bounds.y + screen_bounds.height - h)
- PopupFactory.getSharedInstance.getPopup(parent, completion, x, y)
+ val screen = JEdit_Lib.screen_location(layered, location)
+ val size =
+ {
+ val geometry = JEdit_Lib.window_geometry(completion, completion)
+ val bounds = Rendering.popup_bounds
+ val w = geometry.width min (screen.bounds.width * bounds).toInt min layered.getWidth
+ val h = geometry.height min (screen.bounds.height * bounds).toInt min layered.getHeight
+ new Dimension(w, h)
+ }
+ new Popup(layered, completion, screen.relative(layered, size), size)
}
- def show_popup()
+ private def show_popup()
{
- opt_view.foreach(view => view.setKeyEventInterceptor(key_handler))
popup.show
list_view.requestFocus
}
- def hide_popup()
+ private def hide_popup()
{
- opt_view match {
- case Some(view) if view.getKeyEventInterceptor == key_handler =>
- view.setKeyEventInterceptor(null)
- case _ =>
- }
+ val had_focus = list_view.peer.isFocusOwner
popup.hide
- parent.requestFocus
+ if (had_focus) refocus()
}
}
--- a/src/Tools/jEdit/src/document_view.scala Thu Aug 29 05:41:58 2013 +0200
+++ b/src/Tools/jEdit/src/document_view.scala Thu Aug 29 05:42:37 2013 +0200
@@ -17,7 +17,7 @@
import java.lang.System
import java.text.BreakIterator
import java.awt.{Color, Graphics2D, Point}
-import java.awt.event.{KeyEvent, KeyAdapter}
+import java.awt.event.KeyEvent
import javax.swing.event.{CaretListener, CaretEvent}
import org.gjt.sp.jedit.{jEdit, Debug}
@@ -149,13 +149,15 @@
/* key listener */
- private val key_listener = new KeyAdapter {
- override def keyTyped(evt: KeyEvent)
- {
- if (evt.getKeyChar == 27 && Pretty_Tooltip.dismissed_all())
- evt.consume
- }
- }
+ private val key_listener =
+ JEdit_Lib.key_listener(
+ key_pressed = (evt: KeyEvent) =>
+ {
+ if (evt.getKeyCode == KeyEvent.VK_ESCAPE && PIDE.dismissed_popups(text_area.getView))
+ evt.consume
+ },
+ key_typed = Completion_Popup.Text_Area.input(text_area, PIDE.get_recent_syntax, _)
+ )
/* caret handling */
--- a/src/Tools/jEdit/src/graphview_dockable.scala Thu Aug 29 05:41:58 2013 +0200
+++ b/src/Tools/jEdit/src/graphview_dockable.scala Thu Aug 29 05:42:37 2013 +0200
@@ -9,7 +9,7 @@
import isabelle._
-import javax.swing.{SwingUtilities, JComponent}
+import javax.swing.JComponent
import java.awt.Point
import java.awt.event.{WindowFocusListener, WindowEvent}
@@ -66,10 +66,8 @@
Pretty_Tooltip.invoke(() =>
{
val rendering = Rendering(snapshot, PIDE.options.value)
- val screen_point = new Point(x, y)
- SwingUtilities.convertPointToScreen(screen_point, parent)
val info = Text.Info(Text.Range(~1), body)
- Pretty_Tooltip(view, parent, rendering, screen_point, Command.Results.empty, info)
+ Pretty_Tooltip(view, parent, new Point(x, y), rendering, Command.Results.empty, info)
})
null
}
--- a/src/Tools/jEdit/src/isabelle_sidekick.scala Thu Aug 29 05:41:58 2013 +0200
+++ b/src/Tools/jEdit/src/isabelle_sidekick.scala Thu Aug 29 05:42:37 2013 +0200
@@ -188,6 +188,9 @@
class Isabelle_Sidekick_Default extends Isabelle_Sidekick_Structure(
"isabelle", PIDE.get_recent_syntax, PIDE.thy_load.buffer_node_name)
+{
+ override def supportsCompletion = false
+}
class Isabelle_Sidekick_Options extends Isabelle_Sidekick_Structure(
--- a/src/Tools/jEdit/src/jedit_lib.scala Thu Aug 29 05:41:58 2013 +0200
+++ b/src/Tools/jEdit/src/jedit_lib.scala Thu Aug 29 05:42:37 2013 +0200
@@ -9,28 +9,56 @@
import isabelle._
-import java.awt.{Component, Container, Window, GraphicsEnvironment, Point, Rectangle}
-import javax.swing.{Icon, ImageIcon, JWindow}
+import java.awt.{Component, Container, Window, GraphicsEnvironment, Point, Rectangle, Dimension}
+import java.awt.event.{KeyEvent, KeyListener}
+import javax.swing.{Icon, ImageIcon, JWindow, SwingUtilities}
import scala.annotation.tailrec
import org.gjt.sp.jedit.{jEdit, Buffer, View, GUIUtilities}
+import org.gjt.sp.jedit.gui.KeyEventWorkaround
import org.gjt.sp.jedit.buffer.JEditBuffer
import org.gjt.sp.jedit.textarea.{JEditTextArea, TextArea, TextAreaPainter}
object JEdit_Lib
{
- /* bounds within multi-screen environment */
+ /* location within multi-screen environment */
+
+ final case class Screen_Location(point: Point, bounds: Rectangle)
+ {
+ def relative(parent: Component, size: Dimension): Point =
+ {
+ val w = size.width
+ val h = size.height
- def screen_bounds(screen_point: Point): Rectangle =
+ val x0 = parent.getLocationOnScreen.x
+ val y0 = parent.getLocationOnScreen.y
+ val x1 = x0 + parent.getWidth - w
+ val y1 = y0 + parent.getHeight - h
+ val x2 = point.x min (bounds.x + bounds.width - w)
+ val y2 = point.y min (bounds.y + bounds.height - h)
+
+ val location = new Point((x2 min x1) max x0, (y2 min y1) max y0)
+ SwingUtilities.convertPointFromScreen(location, parent)
+ location
+ }
+ }
+
+ def screen_location(component: Component, point: Point): Screen_Location =
{
+ val screen_point = new Point(point.x, point.y)
+ SwingUtilities.convertPointToScreen(screen_point, component)
+
val ge = GraphicsEnvironment.getLocalGraphicsEnvironment
- (for {
- device <- ge.getScreenDevices.iterator
- config <- device.getConfigurations.iterator
- bounds = config.getBounds
- } yield bounds).find(_.contains(screen_point)) getOrElse ge.getMaximumWindowBounds
+ val screen_bounds =
+ (for {
+ device <- ge.getScreenDevices.iterator
+ config <- device.getConfigurations.iterator
+ bounds = config.getBounds
+ } yield bounds).find(_.contains(screen_point)) getOrElse ge.getMaximumWindowBounds
+
+ Screen_Location(screen_point, screen_bounds)
}
@@ -106,21 +134,6 @@
def buffer_name(buffer: Buffer): String = buffer.getSymlinkPath
- /* focus of main window */
-
- def request_focus_view: Unit =
- {
- jEdit.getActiveView() match {
- case null =>
- case view =>
- view.getTextArea match {
- case null =>
- case text_area => text_area.requestFocus
- }
- }
- }
-
-
/* main jEdit components */
def jedit_buffers(): Iterator[Buffer] = jEdit.getBuffers().iterator
@@ -300,5 +313,42 @@
case icon: ImageIcon => icon
case _ => error("Bad image icon: " + name)
}
+
+
+ /* key event handling */
+
+ def request_focus_view
+ {
+ val view = jEdit.getActiveView()
+ if (view != null) {
+ val text_area = view.getTextArea
+ if (text_area != null) text_area.requestFocus
+ }
+ }
+
+ def propagate_key(view: View, evt: KeyEvent)
+ {
+ if (view != null && !evt.isConsumed)
+ view.getInputHandler().processKeyEvent(evt, View.ACTION_BAR, false)
+ }
+
+ def key_listener(
+ key_typed: KeyEvent => Unit = _ => (),
+ key_pressed: KeyEvent => Unit = _ => (),
+ key_released: KeyEvent => Unit = _ => ()): KeyListener =
+ {
+ def process_key_event(evt0: KeyEvent, handle: KeyEvent => Unit)
+ {
+ val evt = KeyEventWorkaround.processKeyEvent(evt0)
+ if (evt != null) handle(evt)
+ }
+
+ new KeyListener
+ {
+ def keyTyped(evt: KeyEvent) { process_key_event(evt, key_typed) }
+ def keyPressed(evt: KeyEvent) { process_key_event(evt, key_pressed) }
+ def keyReleased(evt: KeyEvent) { process_key_event(evt, key_released) }
+ }
+ }
}
--- a/src/Tools/jEdit/src/plugin.scala Thu Aug 29 05:41:58 2013 +0200
+++ b/src/Tools/jEdit/src/plugin.scala Thu Aug 29 05:42:37 2013 +0200
@@ -53,6 +53,16 @@
lazy val editor = new JEdit_Editor
+ /* popups */
+
+ def dismissed_popups(view: View): Boolean =
+ {
+ val b1 = Completion_Popup.dismissed(view.getLayeredPane)
+ val b2 = Pretty_Tooltip.dismissed_all()
+ b1 || b2
+ }
+
+
/* document model and view */
def document_model(buffer: Buffer): Option[Document_Model] = Document_Model(buffer)
@@ -265,7 +275,7 @@
PIDE.init_view(buffer, text_area)
}
else {
- Pretty_Tooltip.dismissed_all()
+ PIDE.dismissed_popups(text_area.getView)
PIDE.exit_view(buffer, text_area)
}
}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Tools/jEdit/src/popup.scala Thu Aug 29 05:42:37 2013 +0200
@@ -0,0 +1,40 @@
+/* Title: Tools/jEdit/src/popup.scala
+ Author: Makarius
+
+Popup within layered pane.
+*/
+
+package isabelle.jedit
+
+
+import isabelle._
+
+import java.awt.{Point, Dimension}
+import javax.swing.{JLayeredPane, JComponent}
+
+
+class Popup(
+ layered: JLayeredPane,
+ component: JComponent,
+ location: Point,
+ size: Dimension)
+{
+ def show
+ {
+ component.setLocation(location)
+ component.setSize(size)
+ component.setPreferredSize(size)
+ component.setOpaque(true)
+ layered.add(component, JLayeredPane.POPUP_LAYER)
+ layered.moveToFront(component)
+ layered.repaint(component.getBounds())
+ }
+
+ def hide
+ {
+ val bounds = component.getBounds()
+ layered.remove(component)
+ layered.repaint(bounds)
+ }
+}
+
--- a/src/Tools/jEdit/src/pretty_text_area.scala Thu Aug 29 05:41:58 2013 +0200
+++ b/src/Tools/jEdit/src/pretty_text_area.scala Thu Aug 29 05:42:37 2013 +0200
@@ -11,7 +11,7 @@
import isabelle._
import java.awt.{Color, Font, FontMetrics, Toolkit, Window}
-import java.awt.event.{KeyEvent, KeyAdapter}
+import java.awt.event.KeyEvent
import org.gjt.sp.jedit.{jEdit, View, Registers}
import org.gjt.sp.jedit.textarea.{AntiAlias, JEditEmbeddedTextArea}
@@ -162,33 +162,33 @@
/* key handling */
- addKeyListener(new KeyAdapter {
- override def keyPressed(evt: KeyEvent)
- {
- evt.getKeyCode match {
- case KeyEvent.VK_C
- if (evt.getModifiers & Toolkit.getDefaultToolkit.getMenuShortcutKeyMask) != 0 =>
- Registers.copy(text_area, '$')
- evt.consume
- case KeyEvent.VK_A
- if (evt.getModifiers & Toolkit.getDefaultToolkit.getMenuShortcutKeyMask) != 0 =>
- text_area.selectAll
- evt.consume
- case _ =>
+ addKeyListener(JEdit_Lib.key_listener(
+ key_pressed = (evt: KeyEvent) =>
+ {
+ evt.getKeyCode match {
+ case KeyEvent.VK_C
+ if (evt.getModifiers & Toolkit.getDefaultToolkit.getMenuShortcutKeyMask) != 0 =>
+ Registers.copy(text_area, '$')
+ evt.consume
+
+ case KeyEvent.VK_A
+ if (evt.getModifiers & Toolkit.getDefaultToolkit.getMenuShortcutKeyMask) != 0 =>
+ text_area.selectAll
+ evt.consume
+
+ case KeyEvent.VK_ESCAPE =>
+ if (PIDE.dismissed_popups(view)) evt.consume
+
+ case _ =>
+ }
+ if (propagate_keys) JEdit_Lib.propagate_key(view, evt)
+ },
+ key_typed = (evt: KeyEvent) =>
+ {
+ if (propagate_keys) JEdit_Lib.propagate_key(view, evt)
}
- if (propagate_keys && !evt.isConsumed)
- view.getInputHandler.processKeyEvent(evt, View.ACTION_BAR, false)
- }
-
- override def keyTyped(evt: KeyEvent)
- {
- if (evt.getKeyChar == 27 && Pretty_Tooltip.dismissed_all())
- evt.consume
-
- if (propagate_keys && !evt.isConsumed)
- view.getInputHandler.processKeyEvent(evt, View.ACTION_BAR, false)
- }
- })
+ )
+ )
/* init */
--- a/src/Tools/jEdit/src/pretty_tooltip.scala Thu Aug 29 05:41:58 2013 +0200
+++ b/src/Tools/jEdit/src/pretty_tooltip.scala Thu Aug 29 05:42:37 2013 +0200
@@ -1,7 +1,7 @@
/* Title: Tools/jEdit/src/pretty_tooltip.scala
Author: Makarius
-Enhanced tooltip window based on Pretty_Text_Area.
+Tooltip based on Pretty_Text_Area.
*/
package isabelle.jedit
@@ -11,7 +11,7 @@
import java.awt.{Color, Point, BorderLayout, Dimension}
import java.awt.event.{FocusAdapter, FocusEvent}
-import javax.swing.{JPanel, JComponent, PopupFactory}
+import javax.swing.{JPanel, JComponent, SwingUtilities}
import javax.swing.border.LineBorder
import scala.swing.{FlowPanel, Label}
@@ -39,8 +39,8 @@
def apply(
view: View,
parent: JComponent,
+ location: Point,
rendering: Rendering,
- screen_point: Point,
results: Command.Results,
info: Text.Info[XML.Body]): Pretty_Tooltip =
{
@@ -56,7 +56,8 @@
}
old.foreach(_.hide_popup)
- val tip = new Pretty_Tooltip(view, rendering, screen_point, results, info)
+ val loc = SwingUtilities.convertPoint(parent, location, view.getLayeredPane)
+ val tip = new Pretty_Tooltip(view, loc, rendering, results, info)
stack = tip :: rest
tip.show_popup
tip
@@ -138,8 +139,8 @@
class Pretty_Tooltip private(
view: View,
+ location: Point,
rendering: Rendering,
- screen_point: Point,
private val results: Command.Results,
private val info: Text.Info[XML.Body]) extends JPanel(new BorderLayout)
{
@@ -195,7 +196,7 @@
})
pretty_text_area.resize(Rendering.font_family(),
- Rendering.font_size("jedit_tooltip_font_scale").round)
+ Rendering.font_size("jedit_popup_font_scale").round)
/* main content */
@@ -217,15 +218,9 @@
private val popup =
{
- val screen_bounds = JEdit_Lib.screen_bounds(screen_point)
-
- val root = view.getRootPane
- val x0 = root.getLocationOnScreen.x
- val y0 = root.getLocationOnScreen.y
- val w0 = root.getWidth
- val h0 = root.getHeight
-
- val (w, h) =
+ val layered = view.getLayeredPane
+ val screen = JEdit_Lib.screen_location(layered, location)
+ val size =
{
val painter = pretty_text_area.getPainter
val metric = JEdit_Lib.pretty_metric(painter)
@@ -237,10 +232,11 @@
(n: Int, s: String) => n + s.iterator.filter(_ == '\n').length)
val geometry = JEdit_Lib.window_geometry(tip, tip.pretty_text_area.getPainter)
- val bounds = rendering.tooltip_bounds
+ val bounds = Rendering.popup_bounds
+ val h0 = layered.getHeight
val h1 = painter.getFontMetrics.getHeight * (lines + 1) + geometry.deco_height
- val h2 = h0 min (screen_bounds.height * bounds).toInt
+ val h2 = h0 min (screen.bounds.height * bounds).toInt
val h = h1 min h2
val margin1 =
@@ -248,25 +244,14 @@
(0.0 /: split_lines(XML.content(formatted)))({ case (m, line) => m max metric(line) })
else margin
+ val w0 = layered.getWidth
val w1 = (metric.unit * (margin1 + metric.average)).round.toInt + geometry.deco_width
- val w2 = w0 min (screen_bounds.width * bounds).toInt
+ val w2 = w0 min (screen.bounds.width * bounds).toInt
val w = w1 min w2
- (w, h)
+ new Dimension(w, h)
}
-
- val (x, y) =
- {
- val x1 = x0 + w0 - w
- val y1 = y0 + h0 - h
- val x2 = screen_point.x min (screen_bounds.x + screen_bounds.width - w)
- val y2 = screen_point.y min (screen_bounds.y + screen_bounds.height - h)
- ((x2 min x1) max x0, (y2 min y1) max y0)
- }
-
- tip.setSize(new Dimension(w, h))
- tip.setPreferredSize(new Dimension(w, h))
- PopupFactory.getSharedInstance.getPopup(root, tip, x, y)
+ new Popup(layered, tip, screen.relative(layered, size), size)
}
private def show_popup
--- a/src/Tools/jEdit/src/rendering.scala Thu Aug 29 05:41:58 2013 +0200
+++ b/src/Tools/jEdit/src/rendering.scala Thu Aug 29 05:42:37 2013 +0200
@@ -49,6 +49,11 @@
(jEdit.getIntegerProperty("view.fontsize", 16) * PIDE.options.real(scale)).toFloat
+ /* popup window bounds */
+
+ def popup_bounds: Double = (PIDE.options.real("jedit_popup_bounds") max 0.2) min 0.8
+
+
/* token markup -- text styles */
private val command_style: Map[String, Byte] =
@@ -372,7 +377,6 @@
}
val tooltip_margin: Int = options.int("jedit_tooltip_margin")
- val tooltip_bounds: Double = (options.real("jedit_tooltip_bounds") max 0.2) min 0.8
lazy val tooltip_close_icon = JEdit_Lib.load_icon(options.string("tooltip_close_icon"))
lazy val tooltip_detach_icon = JEdit_Lib.load_icon(options.string("tooltip_detach_icon"))
--- a/src/Tools/jEdit/src/rich_text_area.scala Thu Aug 29 05:41:58 2013 +0200
+++ b/src/Tools/jEdit/src/rich_text_area.scala Thu Aug 29 05:42:37 2013 +0200
@@ -208,10 +208,9 @@
case None =>
case Some(tip) =>
val painter = text_area.getPainter
- val screen_point = evt.getLocationOnScreen
- screen_point.translate(0, painter.getFontMetrics.getHeight / 2)
+ val loc = new Point(x, y + painter.getFontMetrics.getHeight / 2)
val results = rendering.command_results(range)
- Pretty_Tooltip(view, painter, rendering, screen_point, results, tip)
+ Pretty_Tooltip(view, painter, loc, rendering, results, tip)
}
}
}
--- a/src/Tools/jEdit/src/token_markup.scala Thu Aug 29 05:41:58 2013 +0200
+++ b/src/Tools/jEdit/src/token_markup.scala Thu Aug 29 05:42:37 2013 +0200
@@ -285,7 +285,11 @@
def refresh_buffer(buffer: JEditBuffer)
{
buffer.setTokenMarker(jEdit.getMode("text").getTokenMarker)
- markers.get(buffer.getMode.getName).map(buffer.setTokenMarker(_))
+ // FIXME potential NPE ahead!?!
+ val mode = buffer.getMode
+ val name = mode.getName
+ val marker = markers.get(name)
+ marker.map(buffer.setTokenMarker(_))
}
}