--- a/src/HOL/ROOT Wed Mar 21 19:39:24 2018 +0100
+++ b/src/HOL/ROOT Wed Mar 21 20:17:25 2018 +0100
@@ -527,6 +527,7 @@
Ballot
BinEx
Birthday_Paradox
+ Bit_Lists
Bubblesort
CTL
Cartouche_Examples
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/Bit_Lists.thy Wed Mar 21 20:17:25 2018 +0100
@@ -0,0 +1,169 @@
+(* Author: Florian Haftmann, TUM
+*)
+
+section \<open>Proof of concept for algebraically founded lists of bits\<close>
+
+theory Bit_Lists
+ imports Main
+begin
+
+context comm_semiring_1
+begin
+
+primrec of_unsigned :: "bool list \<Rightarrow> 'a"
+ where "of_unsigned [] = 0"
+ | "of_unsigned (b # bs) = of_bool b + 2 * of_unsigned bs"
+
+end
+
+context comm_ring_1
+begin
+
+definition of_signed :: "bool list \<Rightarrow> 'a"
+ where "of_signed bs = (if bs = [] then 0 else if last bs
+ then - (of_unsigned (map Not bs) + 1) else of_unsigned bs)"
+
+end
+
+class semiring_bits = semiring_parity +
+ assumes half_measure: "a div 2 \<noteq> a \<Longrightarrow> euclidean_size (a div 2) < euclidean_size a"
+ \<comment> \<open>It is not clear whether this could be derived from already existing assumptions.\<close>
+begin
+
+function bits_of :: "'a \<Rightarrow> bool list"
+ where "bits_of a = odd a # (let b = a div 2 in if a = b then [] else bits_of b)"
+ by auto
+
+termination
+ by (relation "measure euclidean_size") (auto intro: half_measure)
+
+lemma bits_of_not_empty [simp]:
+ "bits_of a \<noteq> []"
+ by (induction a rule: bits_of.induct) simp_all
+
+lemma bits_of_0 [simp]:
+ "bits_of 0 = [False]"
+ by simp
+
+lemma bits_of_1 [simp]:
+ "bits_of 1 = [True, False]"
+ by simp
+
+lemma bits_of_double [simp]:
+ "bits_of (a * 2) = False # (if a = 0 then [] else bits_of a)"
+ by simp (simp add: mult_2_right)
+
+lemma bits_of_add_1_double [simp]:
+ "bits_of (1 + a * 2) = True # (if a + 1 = 0 then [] else bits_of a)"
+ by simp (simp add: mult_2_right algebra_simps)
+
+declare bits_of.simps [simp del]
+
+lemma not_last_bits_of_nat [simp]:
+ "\<not> last (bits_of (of_nat n))"
+ by (induction n rule: parity_induct)
+ (use of_nat_neq_0 in \<open>simp_all add: algebra_simps\<close>)
+
+lemma of_unsigned_bits_of_nat:
+ "of_unsigned (bits_of (of_nat n)) = of_nat n"
+ by (induction n rule: parity_induct)
+ (use of_nat_neq_0 in \<open>simp_all add: algebra_simps\<close>)
+
+end
+
+instance nat :: semiring_bits
+ by standard simp
+
+lemma bits_of_Suc_double [simp]:
+ "bits_of (Suc (n * 2)) = True # bits_of n"
+ using bits_of_add_1_double [of n] by simp
+
+lemma of_unsigned_bits_of:
+ "of_unsigned (bits_of n) = n" for n :: nat
+ using of_unsigned_bits_of_nat [of n, where ?'a = nat] by simp
+
+class ring_bits = ring_parity + semiring_bits
+begin
+
+lemma bits_of_minus_1 [simp]:
+ "bits_of (- 1) = [True]"
+ using bits_of.simps [of "- 1"] by simp
+
+lemma bits_of_double [simp]:
+ "bits_of (- (a * 2)) = False # (if a = 0 then [] else bits_of (- a))"
+ using bits_of.simps [of "- (a * 2)"] nonzero_mult_div_cancel_right [of 2 "- a"]
+ by simp (simp add: mult_2_right)
+
+lemma bits_of_minus_1_diff_double [simp]:
+ "bits_of (- 1 - a * 2) = True # (if a = 0 then [] else bits_of (- 1 - a))"
+proof -
+ have [simp]: "- 1 - a = - a - 1"
+ by (simp add: algebra_simps)
+ show ?thesis
+ using bits_of.simps [of "- 1 - a * 2"] div_mult_self1 [of 2 "- 1" "- a"]
+ by simp (simp add: mult_2_right algebra_simps)
+qed
+
+lemma last_bits_of_neg_of_nat [simp]:
+ "last (bits_of (- 1 - of_nat n))"
+proof (induction n rule: parity_induct)
+ case zero
+ then show ?case
+ by simp
+next
+ case (even n)
+ then show ?case
+ by (simp add: algebra_simps)
+next
+ case (odd n)
+ then have "last (bits_of ((- 1 - of_nat n) * 2))"
+ by auto
+ also have "(- 1 - of_nat n) * 2 = - 1 - (1 + 2 * of_nat n)"
+ by (simp add: algebra_simps)
+ finally show ?case
+ by simp
+qed
+
+lemma of_signed_bits_of_nat:
+ "of_signed (bits_of (of_nat n)) = of_nat n"
+ by (simp add: of_signed_def of_unsigned_bits_of_nat)
+
+lemma of_signed_bits_neg_of_nat:
+ "of_signed (bits_of (- 1 - of_nat n)) = - 1 - of_nat n"
+proof -
+ have "of_unsigned (map Not (bits_of (- 1 - of_nat n))) = of_nat n"
+ proof (induction n rule: parity_induct)
+ case zero
+ then show ?case
+ by simp
+ next
+ case (even n)
+ then show ?case
+ by (simp add: algebra_simps)
+ next
+ case (odd n)
+ have *: "- 1 - (1 + of_nat n * 2) = - 2 - of_nat n * 2"
+ by (simp add: algebra_simps) (metis add_assoc one_add_one)
+ from odd show ?case
+ using bits_of_double [of "of_nat (Suc n)"] of_nat_neq_0
+ by (simp add: algebra_simps *)
+ qed
+ then show ?thesis
+ by (simp add: of_signed_def algebra_simps)
+qed
+
+lemma of_signed_bits_of_int:
+ "of_signed (bits_of (of_int k)) = of_int k"
+ by (cases k rule: int_cases)
+ (simp_all add: of_signed_bits_of_nat of_signed_bits_neg_of_nat)
+
+end
+
+instance int :: ring_bits
+ by standard auto
+
+lemma of_signed_bits_of:
+ "of_signed (bits_of k) = k" for k :: int
+ using of_signed_bits_of_int [of k, where ?'a = int] by simp
+
+end