proof of concept for algebraically founded bit lists
authorhaftmann
Wed, 21 Mar 2018 20:17:25 +0100
changeset 67909 f55b07f4d1ee
parent 67908 537f891d8f14
child 67910 b42473502373
proof of concept for algebraically founded bit lists
src/HOL/ROOT
src/HOL/ex/Bit_Lists.thy
--- a/src/HOL/ROOT	Wed Mar 21 19:39:24 2018 +0100
+++ b/src/HOL/ROOT	Wed Mar 21 20:17:25 2018 +0100
@@ -527,6 +527,7 @@
     Ballot
     BinEx
     Birthday_Paradox
+    Bit_Lists
     Bubblesort
     CTL
     Cartouche_Examples
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/Bit_Lists.thy	Wed Mar 21 20:17:25 2018 +0100
@@ -0,0 +1,169 @@
+(*  Author:  Florian Haftmann, TUM
+*)
+
+section \<open>Proof of concept for algebraically founded lists of bits\<close>
+
+theory Bit_Lists
+  imports Main
+begin
+
+context comm_semiring_1
+begin
+
+primrec of_unsigned :: "bool list \<Rightarrow> 'a"
+  where "of_unsigned [] = 0"
+  | "of_unsigned (b # bs) = of_bool b + 2 * of_unsigned bs"
+
+end
+
+context comm_ring_1
+begin
+
+definition of_signed :: "bool list \<Rightarrow> 'a"
+  where "of_signed bs = (if bs = [] then 0 else if last bs
+    then - (of_unsigned (map Not bs) + 1) else of_unsigned bs)"
+
+end
+
+class semiring_bits = semiring_parity +
+  assumes half_measure: "a div 2 \<noteq> a \<Longrightarrow> euclidean_size (a div 2) < euclidean_size a"
+  \<comment> \<open>It is not clear whether this could be derived from already existing assumptions.\<close>
+begin
+
+function bits_of :: "'a \<Rightarrow> bool list"
+  where "bits_of a = odd a # (let b = a div 2 in if a = b then [] else bits_of b)"
+  by auto
+
+termination
+  by (relation "measure euclidean_size") (auto intro: half_measure)
+
+lemma bits_of_not_empty [simp]:
+  "bits_of a \<noteq> []"
+  by (induction a rule: bits_of.induct) simp_all
+
+lemma bits_of_0 [simp]:
+  "bits_of 0 = [False]"
+  by simp
+
+lemma bits_of_1 [simp]:
+  "bits_of 1 = [True, False]"
+  by simp
+
+lemma bits_of_double [simp]:
+  "bits_of (a * 2) = False # (if a = 0 then [] else bits_of a)"
+  by simp (simp add: mult_2_right)
+
+lemma bits_of_add_1_double [simp]:
+  "bits_of (1 + a * 2) = True # (if a + 1 = 0 then [] else bits_of a)"
+  by simp (simp add: mult_2_right algebra_simps)
+
+declare bits_of.simps [simp del]
+
+lemma not_last_bits_of_nat [simp]:
+  "\<not> last (bits_of (of_nat n))"
+  by (induction n rule: parity_induct)
+    (use of_nat_neq_0 in \<open>simp_all add: algebra_simps\<close>)
+
+lemma of_unsigned_bits_of_nat:
+  "of_unsigned (bits_of (of_nat n)) = of_nat n"
+  by (induction n rule: parity_induct)
+    (use of_nat_neq_0 in \<open>simp_all add: algebra_simps\<close>)
+
+end
+
+instance nat :: semiring_bits
+  by standard simp
+
+lemma bits_of_Suc_double [simp]:
+  "bits_of (Suc (n * 2)) = True # bits_of n"
+  using bits_of_add_1_double [of n] by simp
+
+lemma of_unsigned_bits_of:
+  "of_unsigned (bits_of n) = n" for n :: nat
+  using of_unsigned_bits_of_nat [of n, where ?'a = nat] by simp
+
+class ring_bits = ring_parity + semiring_bits
+begin
+
+lemma bits_of_minus_1 [simp]:
+  "bits_of (- 1) = [True]"
+  using bits_of.simps [of "- 1"] by simp
+
+lemma bits_of_double [simp]:
+  "bits_of (- (a * 2)) = False # (if a = 0 then [] else bits_of (- a))"
+  using bits_of.simps [of "- (a * 2)"] nonzero_mult_div_cancel_right [of 2 "- a"]
+  by simp (simp add: mult_2_right)
+
+lemma bits_of_minus_1_diff_double [simp]:
+  "bits_of (- 1 - a * 2) = True # (if a = 0 then [] else bits_of (- 1 - a))"
+proof -
+  have [simp]: "- 1 - a = - a - 1"
+    by (simp add: algebra_simps)
+  show ?thesis
+    using bits_of.simps [of "- 1 - a * 2"] div_mult_self1 [of 2 "- 1" "- a"]
+    by simp (simp add: mult_2_right algebra_simps)
+qed
+
+lemma last_bits_of_neg_of_nat [simp]:
+  "last (bits_of (- 1 - of_nat n))"
+proof (induction n rule: parity_induct)
+  case zero
+  then show ?case
+    by simp
+next
+  case (even n)
+  then show ?case
+    by (simp add: algebra_simps)
+next
+  case (odd n)
+  then have "last (bits_of ((- 1 - of_nat n) * 2))"
+    by auto
+  also have "(- 1 - of_nat n) * 2 = - 1 - (1 + 2 * of_nat n)"
+    by (simp add: algebra_simps)
+  finally show ?case
+    by simp
+qed
+
+lemma of_signed_bits_of_nat:
+  "of_signed (bits_of (of_nat n)) = of_nat n"
+  by (simp add: of_signed_def of_unsigned_bits_of_nat)
+
+lemma of_signed_bits_neg_of_nat:
+  "of_signed (bits_of (- 1 - of_nat n)) = - 1 - of_nat n"
+proof -
+  have "of_unsigned (map Not (bits_of (- 1 - of_nat n))) = of_nat n"
+  proof (induction n rule: parity_induct)
+    case zero
+    then show ?case
+      by simp
+  next
+    case (even n)
+    then show ?case
+      by (simp add: algebra_simps)
+  next
+    case (odd n)
+    have *: "- 1 - (1 + of_nat n * 2) = - 2 - of_nat n * 2"
+      by (simp add: algebra_simps) (metis add_assoc one_add_one)
+    from odd show ?case
+      using bits_of_double [of "of_nat (Suc n)"] of_nat_neq_0
+      by (simp add: algebra_simps *)
+  qed
+  then show ?thesis
+    by (simp add: of_signed_def algebra_simps)
+qed
+
+lemma of_signed_bits_of_int:
+  "of_signed (bits_of (of_int k)) = of_int k"
+  by (cases k rule: int_cases)
+    (simp_all add: of_signed_bits_of_nat of_signed_bits_neg_of_nat)
+
+end
+
+instance int :: ring_bits
+  by standard auto
+
+lemma of_signed_bits_of:
+  "of_signed (bits_of k) = k" for k :: int
+  using of_signed_bits_of_int [of k, where ?'a = int] by simp
+
+end