adding an example for a datatype refinement which would allow rtrancl to be executable on an infinite type
--- a/src/HOL/IsaMakefile Wed Feb 01 15:28:02 2012 +0100
+++ b/src/HOL/IsaMakefile Thu Feb 02 10:12:11 2012 +0100
@@ -1051,10 +1051,10 @@
ex/Case_Product.thy ex/Chinese.thy ex/Classical.thy \
ex/Coercion_Examples.thy ex/Coherent.thy \
ex/Dedekind_Real.thy ex/Efficient_Nat_examples.thy \
- ex/Eval_Examples.thy ex/Fundefs.thy ex/Gauge_Integration.thy \
- ex/Groebner_Examples.thy ex/Guess.thy ex/HarmonicSeries.thy \
- ex/Hebrew.thy ex/Hex_Bin_Examples.thy ex/Higher_Order_Logic.thy \
- ex/Iff_Oracle.thy ex/Induction_Schema.thy \
+ ex/Eval_Examples.thy ex/Executable_Relation.thy ex/Fundefs.thy \
+ ex/Gauge_Integration.thy ex/Groebner_Examples.thy ex/Guess.thy \
+ ex/HarmonicSeries.thy ex/Hebrew.thy ex/Hex_Bin_Examples.thy \
+ ex/Higher_Order_Logic.thy ex/Iff_Oracle.thy ex/Induction_Schema.thy \
ex/Interpretation_with_Defs.thy ex/Intuitionistic.thy \
ex/Lagrange.thy ex/List_to_Set_Comprehension_Examples.thy \
ex/LocaleTest2.thy ex/MT.thy ex/MergeSort.thy ex/Meson_Test.thy \
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/Executable_Relation.thy Thu Feb 02 10:12:11 2012 +0100
@@ -0,0 +1,79 @@
+theory Executable_Relation
+imports Main
+begin
+
+text {*
+ Current problem: rtrancl is not executable on an infinite type.
+*}
+
+lemma
+ "(x, (y :: nat)) : rtrancl (R Un S) \<Longrightarrow> (x, y) : (rtrancl R) Un (rtrancl S)"
+(* quickcheck[exhaustive] fails ! *)
+oops
+
+code_thms rtrancl
+
+hide_const (open) rtrancl trancl
+
+quotient_type 'a rel = "('a * 'a) set" / "(op =)"
+morphisms set_of_rel rel_of_set by (metis identity_equivp)
+
+lemma [simp]:
+ "rel_of_set (set_of_rel S) = S"
+by (rule Quotient_abs_rep[OF Quotient_rel])
+
+lemma [simp]:
+ "set_of_rel (rel_of_set R) = R"
+by (rule Quotient_rep_abs[OF Quotient_rel]) (rule refl)
+
+no_notation
+ Set.member ("(_/ : _)" [50, 51] 50)
+
+quotient_definition member :: "'a * 'a => 'a rel => bool" where
+ "member" is "Set.member :: 'a * 'a => ('a * 'a) set => bool"
+
+notation
+ member ("(_/ : _)" [50, 51] 50)
+
+quotient_definition union :: "'a rel => 'a rel => 'a rel" where
+ "union" is "Set.union :: ('a * 'a) set => ('a * 'a) set => ('a * 'a) set"
+
+quotient_definition rtrancl :: "'a rel => 'a rel" where
+ "rtrancl" is "Transitive_Closure.rtrancl :: ('a * 'a) set => ('a * 'a) set"
+
+definition reflcl_raw
+where "reflcl_raw R = R \<union> Id"
+
+quotient_definition reflcl :: "('a * 'a) set => 'a rel" where
+ "reflcl" is "reflcl_raw :: ('a * 'a) set => ('a * 'a) set"
+
+code_datatype reflcl rel_of_set
+
+lemma member_code[code]:
+ "(x, y) : rel_of_set R = Set.member (x, y) R"
+ "(x, y) : reflcl R = ((x = y) \<or> Set.member (x, y) R)"
+unfolding member_def reflcl_def reflcl_raw_def map_fun_def_raw o_def id_def
+by auto
+
+lemma union_code[code]:
+ "union (rel_of_set R) (rel_of_set S) = rel_of_set (Set.union R S)"
+ "union (reflcl R) (rel_of_set S) = reflcl (Set.union R S)"
+ "union (reflcl R) (reflcl S) = reflcl (Set.union R S)"
+ "union (rel_of_set R) (reflcl S) = reflcl (Set.union R S)"
+unfolding union_def reflcl_def reflcl_raw_def map_fun_def_raw o_def id_def
+by (auto intro: arg_cong[where f=rel_of_set])
+
+lemma rtrancl_code[code]:
+ "rtrancl (rel_of_set R) = reflcl (Transitive_Closure.trancl R)"
+ "rtrancl (reflcl R) = reflcl (Transitive_Closure.trancl R)"
+unfolding rtrancl_def reflcl_def reflcl_raw_def map_fun_def_raw o_def id_def
+by (auto intro: arg_cong[where f=rel_of_set])
+
+quickcheck_generator rel constructors: rel_of_set
+
+lemma
+ "(x, (y :: nat)) : rtrancl (union R S) \<Longrightarrow> (x, y) : (union (rtrancl R) (rtrancl S))"
+quickcheck[exhaustive]
+oops
+
+end
--- a/src/HOL/ex/ROOT.ML Wed Feb 01 15:28:02 2012 +0100
+++ b/src/HOL/ex/ROOT.ML Thu Feb 02 10:12:11 2012 +0100
@@ -72,7 +72,8 @@
"List_to_Set_Comprehension_Examples",
"Set_Algebras",
"Seq",
- "Simproc_Tests"
+ "Simproc_Tests",
+ "Executable_Relation"
];
if getenv "ISABELLE_GHC" = "" then ()