merged
authorhuffman
Wed, 03 Mar 2010 10:40:40 -0800
changeset 35563 f5ec817df77f
parent 35562 e27550a842b9 (current diff)
parent 35548 6d3fa3a37822 (diff)
child 35564 20995afa8fa1
merged
src/HOLCF/Representable.thy
--- a/Admin/Mercurial/isabelle-style.diff	Wed Mar 03 08:49:11 2010 -0800
+++ b/Admin/Mercurial/isabelle-style.diff	Wed Mar 03 10:40:40 2010 -0800
@@ -1,34 +1,38 @@
-diff -r gitweb/changelogentry.tmpl isabelle/changelogentry.tmpl
-2,8c2
-< <a class="title" href="{url}rev/#node|short#{sessionvars%urlparameter}"><span class="age">#date|age# ago</span>#desc|strip|firstline|escape#<span class="logtags"> {inbranch%inbranchtag}{branches%branchtag}{tags%tagtag}</span></a>
-< </div>
-< <div class="title_text">
-< <div class="log_link">
-< <a href="{url}rev/#node|short#{sessionvars%urlparameter}">changeset</a><br/>
-< </div>
-< <i>#author|obfuscate# [#date|rfc822date#] rev #rev#</i><br/>
----
-> <a class="title" href="{url}rev/#node|short#{sessionvars%urlparameter}"><span class="age">#date|age# ago</span>#author|obfuscate# [#date|rfc822date#] rev #rev#<span class="logtags"> {inbranch%inbranchtag}{branches%branchtag}{tags%tagtag}</span></a>
-12a7,9
-> <div class="files">
-> #files#
-> </div>
-diff -r gitweb/changeset.tmpl isabelle/changeset.tmpl
-19c19
-< <a class="title" href="{url}raw-rev/#node|short#">#desc|strip|escape|firstline# <span class="logtags">{inbranch%inbranchtag}{branches%branchtag}{tags%tagtag}</span></a>
----
-> <a class="title" href="{url}raw-rev/#node|short#">#desc|strip|escape# <span class="logtags">{inbranch%inbranchtag}{branches%branchtag}{tags%tagtag}</span></a>
-diff -r gitweb/map isabelle/map
-29c29
-< annotateline = '<tr style="font-family:monospace" class="parity#parity#"><td class="linenr" style="text-align: right;"><a href="#url#annotate/#node|short#/#file|urlescape#{sessionvars%urlparameter}#l{targetline}" title="{node|short}: {desc|escape|firstline}">#author|user#@#rev#</a></td><td><pre><a class="linenr" href="##lineid#" id="#lineid#">#linenumber#</a></pre></td><td><pre>#line|escape#</pre></td></tr>'
----
-> annotateline = '<tr style="font-family:monospace" class="parity#parity#"><td class="linenr" style="text-align: right;"><a href="#url#annotate/#node|short#/#file|urlescape#{sessionvars%urlparameter}#l{targetline}" title="{node|short}: {desc|escape}">#author|user#@#rev#</a></td><td><pre><a class="linenr" href="##lineid#" id="#lineid#">#linenumber#</a></pre></td><td><pre>#line|escape#</pre></td></tr>'
-59,60c59,60
-< shortlogentry = '<tr class="parity#parity#"><td class="age"><i>#date|age# ago</i></td><td><i>#author|person#</i></td><td><a class="list" href="{url}rev/#node|short#{sessionvars%urlparameter}"><b>#desc|strip|firstline|escape#</b> <span class="logtags">{inbranch%inbranchtag}{branches%branchtag}{tags%tagtag}</span></a></td><td class="link" nowrap><a href="{url}rev/#node|short#{sessionvars%urlparameter}">changeset</a> | <a href="{url}file/#node|short#{sessionvars%urlparameter}">files</a></td></tr>'
-< filelogentry = '<tr class="parity#parity#"><td class="age"><i>#date|age# ago</i></td><td><a class="list" href="{url}rev/#node|short#{sessionvars%urlparameter}"><b>#desc|strip|firstline|escape#</b></a></td><td class="link"><a href="{url}file/#node|short#/#file|urlescape#{sessionvars%urlparameter}">file</a>&nbsp;|&nbsp;<a href="{url}diff/#node|short#/#file|urlescape#{sessionvars%urlparameter}">diff</a>&nbsp;|&nbsp;<a href="{url}annotate/#node|short#/#file|urlescape#{sessionvars%urlparameter}">annotate</a> #rename%filelogrename#</td></tr>'
----
-> shortlogentry = '<tr class="parity#parity#"><td class="age"><i>#date|age# ago</i></td><td><i>#date|shortdate#</i></td><td><i>#author|person#</i></td><td><a class="list" href="{url}rev/#node|short#{sessionvars%urlparameter}"><b>#desc|strip|escape#</b> <span class="logtags">{inbranch%inbranchtag}{branches%branchtag}{tags%tagtag}</span></a></td><td class="link" nowrap><a href="{url}rev/#node|short#{sessionvars%urlparameter}">changeset</a> | <a href="{url}file/#node|short#{sessionvars%urlparameter}">files</a></td></tr>'
-> filelogentry = '<tr class="parity#parity#"><td class="age"><i>#date|age# ago</i></td><td><i>#date|shortdate#</i></td><td><i>#author|person#</i></td><td><a class="list" href="{url}rev/#node|short#{sessionvars%urlparameter}"><b>#desc|strip|escape#</b></a></td><td class="link"><a href="{url}file/#node|short#/#file|urlescape#{sessionvars%urlparameter}">file</a>&nbsp;|&nbsp;<a href="{url}diff/#node|short#/#file|urlescape#{sessionvars%urlparameter}">diff</a>&nbsp;|&nbsp;<a href="{url}annotate/#node|short#/#file|urlescape#{sessionvars%urlparameter}">annotate</a> #rename%filelogrename#</td></tr>'
-diff -r gitweb/summary.tmpl isabelle/summary.tmpl
-34d33
-< <tr><td>owner</td><td>#owner|obfuscate#</td></tr>
+diff -u gitweb/changelogentry.tmpl isabelle/changelogentry.tmpl
+--- gitweb/changelogentry.tmpl	2010-02-01 16:34:34.000000000 +0100
++++ isabelle/changelogentry.tmpl	2010-03-03 15:12:12.000000000 +0100
+@@ -1,14 +1,12 @@
+ <div>
+-<a class="title" href="{url}rev/{node|short}{sessionvars%urlparameter}"><span class="age">{date|age}</span>{desc|strip|firstline|escape|nonempty}<span class="logtags"> {inbranch%inbranchtag}{branches%branchtag}{tags%tagtag}</span></a>
+-</div>
+-<div class="title_text">
+-<div class="log_link">
+-<a href="{url}rev/{node|short}{sessionvars%urlparameter}">changeset</a><br/>
+-</div>
+-<i>{author|obfuscate} [{date|rfc822date}] rev {rev}</i><br/>
++<a class="title" href="{url}rev/{node|short}{sessionvars%urlparameter}"><span class="age">{date|age}</span>
++{author|obfuscate} [{date|rfc822date}] rev {rev}<span class="logtags"> {inbranch%inbranchtag}{branches%branchtag}{tags%tagtag}</span></a>
+ </div>
+ <div class="log_body">
+ {desc|strip|escape|addbreaks|nonempty}
+ <br/>
++<div class="files">
++{files}
++</div>
+ <br/>
+ </div>
+diff -u gitweb/map isabelle/map
+--- gitweb/map	2010-02-01 16:34:34.000000000 +0100
++++ isabelle/map	2010-03-03 15:13:25.000000000 +0100
+@@ -206,9 +206,10 @@
+   <tr class="parity{parity}">
+     <td class="age"><i>{date|age}</i></td>
+     <td><i>{author|person}</i></td>
++    <td><i>{date|shortdate}</i></td>
+     <td>
+       <a class="list" href="{url}rev/{node|short}{sessionvars%urlparameter}">
+-        <b>{desc|strip|firstline|escape|nonempty}</b>
++        <b>{desc|strip|escape|nonempty}</b>
+         <span class="logtags">{inbranch%inbranchtag}{branches%branchtag}{tags%tagtag}</span>
+       </a>
+     </td>
--- a/NEWS	Wed Mar 03 08:49:11 2010 -0800
+++ b/NEWS	Wed Mar 03 10:40:40 2010 -0800
@@ -6,15 +6,20 @@
 
 *** General ***
 
-* Authentic syntax for *all* term constants: provides simple and
-robust correspondence between formal entities and concrete syntax.
-Substantial INCOMPATIBILITY concerning low-level syntax translations
-(translation rules and translation functions in ML).  Some hints on
-upgrading:
+* Authentic syntax for *all* logical entities (type classes, type
+constructors, term constants): provides simple and robust
+correspondence between formal entities and concrete syntax.  Within
+the parse tree / AST representations, "constants" are decorated by
+their category (class, type, const) and spelled out explicitly with
+their full internal name.
+
+Substantial INCOMPATIBILITY concerning low-level syntax declarations
+and translations (translation rules and translation functions in ML).
+Some hints on upgrading:
 
   - Many existing uses of 'syntax' and 'translations' can be replaced
-    by more modern 'notation' and 'abbreviation', which are
-    independent of this issue.
+    by more modern 'type_notation', 'notation' and 'abbreviation',
+    which are independent of this issue.
 
   - 'translations' require markup within the AST; the term syntax
     provides the following special forms:
@@ -27,16 +32,29 @@
     system indicates accidental variables via the error "rhs contains
     extra variables".
 
+    Type classes and type constructors are marked according to their
+    concrete syntax.  Some old translations rules need to be written
+    for the "type" category, using type constructor application
+    instead of pseudo-term application of the default category
+    "logic".
+
   - 'parse_translation' etc. in ML may use the following
     antiquotations:
 
+      @{class_syntax c}   -- type class c within parse tree / AST
+      @{term_syntax c}    -- type constructor c within parse tree / AST
       @{const_syntax c}   -- ML version of "CONST c" above
       @{syntax_const c}   -- literally c (checked wrt. 'syntax' declarations)
 
+  - Literal types within 'typed_print_translations', i.e. those *not*
+    represented as pseudo-terms are represented verbatim.  Use @{class
+    c} or @{type_name c} here instead of the above syntax
+    antiquotations.
+
 Note that old non-authentic syntax was based on unqualified base
-names, so all of the above would coincide.  Recall that 'print_syntax'
-and ML_command "set Syntax.trace_ast" help to diagnose syntax
-problems.
+names, so all of the above "constant" names would coincide.  Recall
+that 'print_syntax' and ML_command "set Syntax.trace_ast" help to
+diagnose syntax problems.
 
 * Type constructors admit general mixfix syntax, not just infix.
 
--- a/doc-src/Locales/Locales/Examples3.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/doc-src/Locales/Locales/Examples3.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -63,7 +63,7 @@
 	statements:
 	@{subgoals [display]}
 	This is Presburger arithmetic, which can be solved by the
-	method @{text arith}. *}
+        method @{text arith}. *}
       by arith+
     txt {* \normalsize In order to show the equations, we put ourselves
       in a situation where the lattice theorems can be used in a
--- a/doc-src/Locales/Locales/document/Examples3.tex	Wed Mar 03 08:49:11 2010 -0800
+++ b/doc-src/Locales/Locales/document/Examples3.tex	Wed Mar 03 10:40:40 2010 -0800
@@ -141,7 +141,7 @@
 \ {\isadigit{2}}{\isachardot}\ {\isasymAnd}x\ y{\isachardot}\ {\isasymexists}sup{\isasymge}x{\isachardot}\ y\ {\isasymle}\ sup\ {\isasymand}\ {\isacharparenleft}{\isasymforall}z{\isachardot}\ x\ {\isasymle}\ z\ {\isasymand}\ y\ {\isasymle}\ z\ {\isasymlongrightarrow}\ sup\ {\isasymle}\ z{\isacharparenright}%
 \end{isabelle}
 	This is Presburger arithmetic, which can be solved by the
-	method \isa{arith}.%
+        method \isa{arith}.%
 \end{isamarkuptxt}%
 \isamarkuptrue%
 \ \ \ \ \ \ \isacommand{by}\isamarkupfalse%
--- a/src/HOL/Bali/AxSem.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Bali/AxSem.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -58,10 +58,9 @@
   "\<lambda>Vals:v. b"  == "(\<lambda>v. b) \<circ> CONST the_In3"
 
   --{* relation on result values, state and auxiliary variables *}
-types 'a assn   =        "res \<Rightarrow> state \<Rightarrow> 'a \<Rightarrow> bool"
+types 'a assn = "res \<Rightarrow> state \<Rightarrow> 'a \<Rightarrow> bool"
 translations
-      "res"    <= (type) "AxSem.res"
-      "a assn" <= (type) "vals \<Rightarrow> state \<Rightarrow> a \<Rightarrow> bool"
+  (type) "'a assn" <= (type) "vals \<Rightarrow> state \<Rightarrow> 'a \<Rightarrow> bool"
 
 definition assn_imp :: "'a assn \<Rightarrow> 'a assn \<Rightarrow> bool" (infixr "\<Rightarrow>" 25) where
  "P \<Rightarrow> Q \<equiv> \<forall>Y s Z. P Y s Z \<longrightarrow> Q Y s Z"
--- a/src/HOL/Bali/Basis.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Bali/Basis.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -213,11 +213,6 @@
 *}
 (* e.g. lemmas is_stmt_rews = is_stmt_def [of "In1l x", simplified] *)
 
-translations
-  "option"<= (type) "Option.option"
-  "list"  <= (type) "List.list"
-  "sum3"  <= (type) "Basis.sum3"
-
 
 section "quantifiers for option type"
 
--- a/src/HOL/Bali/Decl.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Bali/Decl.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -149,24 +149,24 @@
         access :: acc_modi
 
 translations
-  "decl" <= (type) "\<lparr>access::acc_modi\<rparr>"
-  "decl" <= (type) "\<lparr>access::acc_modi,\<dots>::'a\<rparr>"
+  (type) "decl" <= (type) "\<lparr>access::acc_modi\<rparr>"
+  (type) "decl" <= (type) "\<lparr>access::acc_modi,\<dots>::'a\<rparr>"
 
 subsection {* Member (field or method)*}
 record  member = decl +
          static :: stat_modi
 
 translations
-  "member" <= (type) "\<lparr>access::acc_modi,static::bool\<rparr>"
-  "member" <= (type) "\<lparr>access::acc_modi,static::bool,\<dots>::'a\<rparr>"
+  (type) "member" <= (type) "\<lparr>access::acc_modi,static::bool\<rparr>"
+  (type) "member" <= (type) "\<lparr>access::acc_modi,static::bool,\<dots>::'a\<rparr>"
 
 subsection {* Field *}
 
 record field = member +
         type :: ty
 translations
-  "field" <= (type) "\<lparr>access::acc_modi, static::bool, type::ty\<rparr>"
-  "field" <= (type) "\<lparr>access::acc_modi, static::bool, type::ty,\<dots>::'a\<rparr>"
+  (type) "field" <= (type) "\<lparr>access::acc_modi, static::bool, type::ty\<rparr>"
+  (type) "field" <= (type) "\<lparr>access::acc_modi, static::bool, type::ty,\<dots>::'a\<rparr>"
 
 types     
         fdecl           (* field declaration, cf. 8.3 *)
@@ -174,7 +174,7 @@
 
 
 translations
-  "fdecl" <= (type) "vname \<times> field"
+  (type) "fdecl" <= (type) "vname \<times> field"
 
 subsection  {* Method *}
 
@@ -193,17 +193,17 @@
 
 
 translations
-  "mhead" <= (type) "\<lparr>access::acc_modi, static::bool, 
+  (type) "mhead" <= (type) "\<lparr>access::acc_modi, static::bool, 
                       pars::vname list, resT::ty\<rparr>"
-  "mhead" <= (type) "\<lparr>access::acc_modi, static::bool, 
+  (type) "mhead" <= (type) "\<lparr>access::acc_modi, static::bool, 
                       pars::vname list, resT::ty,\<dots>::'a\<rparr>"
-  "mbody" <= (type) "\<lparr>lcls::(vname \<times> ty) list,stmt::stmt\<rparr>"
-  "mbody" <= (type) "\<lparr>lcls::(vname \<times> ty) list,stmt::stmt,\<dots>::'a\<rparr>"      
-  "methd" <= (type) "\<lparr>access::acc_modi, static::bool, 
+  (type) "mbody" <= (type) "\<lparr>lcls::(vname \<times> ty) list,stmt::stmt\<rparr>"
+  (type) "mbody" <= (type) "\<lparr>lcls::(vname \<times> ty) list,stmt::stmt,\<dots>::'a\<rparr>"      
+  (type) "methd" <= (type) "\<lparr>access::acc_modi, static::bool, 
                       pars::vname list, resT::ty,mbody::mbody\<rparr>"
-  "methd" <= (type) "\<lparr>access::acc_modi, static::bool, 
+  (type) "methd" <= (type) "\<lparr>access::acc_modi, static::bool, 
                       pars::vname list, resT::ty,mbody::mbody,\<dots>::'a\<rparr>"
-  "mdecl" <= (type) "sig \<times> methd"
+  (type) "mdecl" <= (type) "sig \<times> methd"
 
 
 definition mhead :: "methd \<Rightarrow> mhead" where
@@ -306,13 +306,13 @@
         = "qtname \<times> iface"
 
 translations
-  "ibody" <= (type) "\<lparr>access::acc_modi,imethods::(sig \<times> mhead) list\<rparr>"
-  "ibody" <= (type) "\<lparr>access::acc_modi,imethods::(sig \<times> mhead) list,\<dots>::'a\<rparr>"
-  "iface" <= (type) "\<lparr>access::acc_modi,imethods::(sig \<times> mhead) list,
+  (type) "ibody" <= (type) "\<lparr>access::acc_modi,imethods::(sig \<times> mhead) list\<rparr>"
+  (type) "ibody" <= (type) "\<lparr>access::acc_modi,imethods::(sig \<times> mhead) list,\<dots>::'a\<rparr>"
+  (type) "iface" <= (type) "\<lparr>access::acc_modi,imethods::(sig \<times> mhead) list,
                       isuperIfs::qtname list\<rparr>"
-  "iface" <= (type) "\<lparr>access::acc_modi,imethods::(sig \<times> mhead) list,
+  (type) "iface" <= (type) "\<lparr>access::acc_modi,imethods::(sig \<times> mhead) list,
                       isuperIfs::qtname list,\<dots>::'a\<rparr>"
-  "idecl" <= (type) "qtname \<times> iface"
+  (type) "idecl" <= (type) "qtname \<times> iface"
 
 definition ibody :: "iface \<Rightarrow> ibody" where
   "ibody i \<equiv> \<lparr>access=access i,imethods=imethods i\<rparr>"
@@ -337,17 +337,17 @@
         = "qtname \<times> class"
 
 translations
-  "cbody" <= (type) "\<lparr>access::acc_modi,cfields::fdecl list,
+  (type) "cbody" <= (type) "\<lparr>access::acc_modi,cfields::fdecl list,
                       methods::mdecl list,init::stmt\<rparr>"
-  "cbody" <= (type) "\<lparr>access::acc_modi,cfields::fdecl list,
+  (type) "cbody" <= (type) "\<lparr>access::acc_modi,cfields::fdecl list,
                       methods::mdecl list,init::stmt,\<dots>::'a\<rparr>"
-  "class" <= (type) "\<lparr>access::acc_modi,cfields::fdecl list,
+  (type) "class" <= (type) "\<lparr>access::acc_modi,cfields::fdecl list,
                       methods::mdecl list,init::stmt,
                       super::qtname,superIfs::qtname list\<rparr>"
-  "class" <= (type) "\<lparr>access::acc_modi,cfields::fdecl list,
+  (type) "class" <= (type) "\<lparr>access::acc_modi,cfields::fdecl list,
                       methods::mdecl list,init::stmt,
                       super::qtname,superIfs::qtname list,\<dots>::'a\<rparr>"
-  "cdecl" <= (type) "qtname \<times> class"
+  (type) "cdecl" <= (type) "qtname \<times> class"
 
 definition cbody :: "class \<Rightarrow> cbody" where
   "cbody c \<equiv> \<lparr>access=access c, cfields=cfields c,methods=methods c,init=init c\<rparr>"
@@ -404,8 +404,8 @@
         "classes"::"cdecl list"
 
 translations
-     "prog"<= (type) "\<lparr>ifaces::idecl list,classes::cdecl list\<rparr>"
-     "prog"<= (type) "\<lparr>ifaces::idecl list,classes::cdecl list,\<dots>::'a\<rparr>"
+     (type) "prog" <= (type) "\<lparr>ifaces::idecl list,classes::cdecl list\<rparr>"
+     (type) "prog" <= (type) "\<lparr>ifaces::idecl list,classes::cdecl list,\<dots>::'a\<rparr>"
 
 abbreviation
   iface :: "prog  \<Rightarrow> (qtname, iface) table"
--- a/src/HOL/Bali/DeclConcepts.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Bali/DeclConcepts.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -1377,7 +1377,7 @@
   fspec = "vname \<times> qtname"
 
 translations 
-  "fspec" <= (type) "vname \<times> qtname" 
+  (type) "fspec" <= (type) "vname \<times> qtname" 
 
 definition imethds :: "prog \<Rightarrow> qtname \<Rightarrow> (sig,qtname \<times> mhead) tables" where
 "imethds G I 
--- a/src/HOL/Bali/Eval.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Bali/Eval.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -99,8 +99,8 @@
 types vvar  =         "val \<times> (val \<Rightarrow> state \<Rightarrow> state)"
       vals  =        "(val, vvar, val list) sum3"
 translations
-     "vvar" <= (type) "val \<times> (val \<Rightarrow> state \<Rightarrow> state)"
-     "vals" <= (type)"(val, vvar, val list) sum3" 
+  (type) "vvar" <= (type) "val \<times> (val \<Rightarrow> state \<Rightarrow> state)"
+  (type) "vals" <= (type) "(val, vvar, val list) sum3" 
 
 text {* To avoid redundancy and to reduce the number of rules, there is only 
  one evaluation rule for each syntactic term. This is also true for variables
--- a/src/HOL/Bali/Name.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Bali/Name.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -78,11 +78,7 @@
   qtname_qtname_def: "qtname (q::'a qtname_ext_type) \<equiv> q"
 
 translations
-  "mname"  <= "Name.mname"
-  "xname"  <= "Name.xname"
-  "tname"  <= "Name.tname"
-  "ename"  <= "Name.ename"
-  "qtname" <= (type) "\<lparr>pid::pname,tid::tname\<rparr>"
+  (type) "qtname" <= (type) "\<lparr>pid::pname,tid::tname\<rparr>"
   (type) "'a qtname_scheme" <= (type) "\<lparr>pid::pname,tid::tname,\<dots>::'a\<rparr>"
 
 
--- a/src/HOL/Bali/State.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Bali/State.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -33,10 +33,10 @@
           "values" :: "(vn, val) table"      
 
 translations 
-  "fspec" <= (type) "vname \<times> qtname" 
-  "vn"    <= (type) "fspec + int"
-  "obj"   <= (type) "\<lparr>tag::obj_tag, values::vn \<Rightarrow> val option\<rparr>"
-  "obj"   <= (type) "\<lparr>tag::obj_tag, values::vn \<Rightarrow> val option,\<dots>::'a\<rparr>"
+  (type) "fspec" <= (type) "vname \<times> qtname" 
+  (type) "vn"    <= (type) "fspec + int"
+  (type) "obj"   <= (type) "\<lparr>tag::obj_tag, values::vn \<Rightarrow> val option\<rparr>"
+  (type) "obj"   <= (type) "\<lparr>tag::obj_tag, values::vn \<Rightarrow> val option,\<dots>::'a\<rparr>"
 
 definition the_Arr :: "obj option \<Rightarrow> ty \<times> int \<times> (vn, val) table" where
  "the_Arr obj \<equiv> SOME (T,k,t). obj = Some \<lparr>tag=Arr T k,values=t\<rparr>"
@@ -134,7 +134,7 @@
 translations
   "Heap" => "CONST Inl"
   "Stat" => "CONST Inr"
-  "oref" <= (type) "loc + qtname"
+  (type) "oref" <= (type) "loc + qtname"
 
 definition fields_table :: "prog \<Rightarrow> qtname \<Rightarrow> (fspec \<Rightarrow> field \<Rightarrow> bool)  \<Rightarrow> (fspec, ty) table" where
  "fields_table G C P 
@@ -213,9 +213,9 @@
         = "(lname, val) table" *) (* defined in Value.thy local variables *)
 
 translations
- "globs"  <= (type) "(oref , obj) table"
- "heap"   <= (type) "(loc  , obj) table"
-(*  "locals" <= (type) "(lname, val) table" *)
+ (type) "globs"  <= (type) "(oref , obj) table"
+ (type) "heap"   <= (type) "(loc  , obj) table"
+(*  (type) "locals" <= (type) "(lname, val) table" *)
 
 datatype st = (* pure state, i.e. contents of all variables *)
          st globs locals
@@ -567,10 +567,8 @@
   state = "abopt \<times> st"          --{* state including abruption information *}
 
 translations
-  "abopt"       <= (type) "State.abrupt option"
-  "abopt"       <= (type) "abrupt option"
-  "state"      <= (type) "abopt \<times> State.st"
-  "state"      <= (type) "abopt \<times> st"
+  (type) "abopt" <= (type) "abrupt option"
+  (type) "state" <= (type) "abopt \<times> st"
 
 abbreviation
   Norm :: "st \<Rightarrow> state"
--- a/src/HOL/Bali/Table.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Bali/Table.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -42,8 +42,7 @@
   where "table_of \<equiv> map_of"
 
 translations
-  (type)"'a \<rightharpoonup> 'b"       <= (type)"'a \<Rightarrow> 'b Datatype.option"
-  (type)"('a, 'b) table" <= (type)"'a \<rightharpoonup> 'b"
+  (type) "('a, 'b) table" <= (type) "'a \<rightharpoonup> 'b"
 
 (* ### To map *)
 lemma map_add_find_left[simp]:
--- a/src/HOL/Bali/Term.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Bali/Term.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -88,7 +88,7 @@
 statement *}
 
 translations
- "locals" <= (type) "(lname, val) table"
+ (type) "locals" <= (type) "(lname, val) table"
 
 datatype inv_mode                  --{* invocation mode for method calls *}
         = Static                   --{* static *}
@@ -100,8 +100,8 @@
           parTs::"ty list"        
 
 translations
-  "sig" <= (type) "\<lparr>name::mname,parTs::ty list\<rparr>"
-  "sig" <= (type) "\<lparr>name::mname,parTs::ty list,\<dots>::'a\<rparr>"
+  (type) "sig" <= (type) "\<lparr>name::mname,parTs::ty list\<rparr>"
+  (type) "sig" <= (type) "\<lparr>name::mname,parTs::ty list,\<dots>::'a\<rparr>"
 
 --{* function codes for unary operations *}
 datatype unop =  UPlus    -- {*{\tt +} unary plus*} 
@@ -237,11 +237,8 @@
  
 types "term" = "(expr+stmt,var,expr list) sum3"
 translations
-  "sig"   <= (type) "mname \<times> ty list"
-  "var"   <= (type) "Term.var"
-  "expr"  <= (type) "Term.expr"
-  "stmt"  <= (type) "Term.stmt"
-  "term"  <= (type) "(expr+stmt,var,expr list) sum3"
+  (type) "sig"   <= (type) "mname \<times> ty list"
+  (type) "term"  <= (type) "(expr+stmt,var,expr list) sum3"
 
 abbreviation this :: expr
   where "this == Acc (LVar This)"
--- a/src/HOL/Bali/Type.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Bali/Type.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -30,11 +30,6 @@
         = PrimT prim_ty --{* primitive type *}
         | RefT  ref_ty  --{* reference type *}
 
-translations
-  "prim_ty" <= (type) "Type.prim_ty"
-  "ref_ty"  <= (type) "Type.ref_ty"
-  "ty"      <= (type) "Type.ty"
-
 abbreviation "NT == RefT NullT"
 abbreviation "Iface I == RefT (IfaceT I)"
 abbreviation "Class C == RefT (ClassT C)"
--- a/src/HOL/Bali/Value.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Bali/Value.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -17,9 +17,6 @@
         | Addr loc      --{* addresses, i.e. locations of objects *}
 
 
-translations "val" <= (type) "Term.val"
-             "loc" <= (type) "Term.loc"
-
 consts   the_Bool   :: "val \<Rightarrow> bool"  
 primrec "the_Bool (Bool b) = b"
 consts   the_Intg   :: "val \<Rightarrow> int"
--- a/src/HOL/Bali/WellType.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Bali/WellType.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -37,10 +37,10 @@
          lcl:: "lenv"    --{* local environment *}     
   
 translations
-  "lenv" <= (type) "(lname, ty) table"
-  "lenv" <= (type) "lname \<Rightarrow> ty option"
-  "env" <= (type) "\<lparr>prg::prog,cls::qtname,lcl::lenv\<rparr>"
-  "env" <= (type) "\<lparr>prg::prog,cls::qtname,lcl::lenv,\<dots>::'a\<rparr>"
+  (type) "lenv" <= (type) "(lname, ty) table"
+  (type) "lenv" <= (type) "lname \<Rightarrow> ty option"
+  (type) "env" <= (type) "\<lparr>prg::prog,cls::qtname,lcl::lenv\<rparr>"
+  (type) "env" <= (type) "\<lparr>prg::prog,cls::qtname,lcl::lenv,\<dots>::'a\<rparr>"
 
 
 abbreviation
@@ -238,9 +238,9 @@
 
 section "Typing for terms"
 
-types tys  =        "ty + ty list"
+types tys  = "ty + ty list"
 translations
-  "tys"   <= (type) "ty + ty list"
+  (type) "tys" <= (type) "ty + ty list"
 
 
 inductive
--- a/src/HOL/IMPP/Hoare.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/IMPP/Hoare.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -18,7 +18,7 @@
 
 types 'a assn = "'a => state => bool"
 translations
-  "a assn"   <= (type)"a => state => bool"
+  (type) "'a assn" <= (type) "'a => state => bool"
 
 definition
   state_not_singleton :: bool where
--- a/src/HOL/Imperative_HOL/Heap_Monad.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Imperative_HOL/Heap_Monad.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -286,14 +286,14 @@
 by auto
 
 lemma graph_implies_dom:
-	"mrec_graph x y \<Longrightarrow> mrec_dom x"
+  "mrec_graph x y \<Longrightarrow> mrec_dom x"
 apply (induct rule:mrec_graph.induct) 
 apply (rule accpI)
 apply (erule mrec_rel.cases)
 by simp
 
 lemma f_default: "\<not> mrec_dom (f, g, x, h) \<Longrightarrow> mrec f g x h = (Inr Exn, undefined)"
-	unfolding mrec_def 
+  unfolding mrec_def 
   by (rule fundef_default_value[OF mrec_sumC_def graph_implies_dom, of _ _ "(f, g, x, h)", simplified])
 
 lemma f_di_reverse: 
--- a/src/HOL/Imperative_HOL/ex/Linked_Lists.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Imperative_HOL/ex/Linked_Lists.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -27,8 +27,8 @@
   [simp del]: "make_llist []     = return Empty"
             | "make_llist (x#xs) = do tl   \<leftarrow> make_llist xs;
                                       next \<leftarrow> Ref.new tl;
-	                              return (Node x next)
-		                   done"
+                                      return (Node x next)
+                                   done"
 
 
 text {* define traverse using the MREC combinator *}
--- a/src/HOL/IsaMakefile	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/IsaMakefile	Wed Mar 03 10:40:40 2010 -0800
@@ -47,6 +47,7 @@
   HOL-MicroJava \
   HOL-Mirabelle \
   HOL-Modelcheck \
+  HOL-Mutabelle \
   HOL-NanoJava \
   HOL-Nitpick_Examples \
   HOL-Nominal-Examples \
--- a/src/HOL/Library/Numeral_Type.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Library/Numeral_Type.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -32,7 +32,7 @@
 
 syntax "_type_card" :: "type => nat" ("(1CARD/(1'(_')))")
 
-translations "CARD(t)" => "CONST card (CONST UNIV \<Colon> t set)"
+translations "CARD('t)" => "CONST card (CONST UNIV \<Colon> 't set)"
 
 typed_print_translation {*
 let
--- a/src/HOL/Library/RBT.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Library/RBT.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -11,135 +11,151 @@
 begin
 
 datatype color = R | B
-datatype ('a,'b)"rbt" = Empty | Tr color "('a,'b)rbt" 'a 'b "('a,'b)rbt"
+datatype ('a, 'b) rbt = Empty | Branch color "('a, 'b) rbt" 'a 'b "('a, 'b) rbt"
+
+lemma rbt_cases:
+  obtains (Empty) "t = Empty" 
+  | (Red) l k v r where "t = Branch R l k v r" 
+  | (Black) l k v r where "t = Branch B l k v r"
+proof (cases t)
+  case Empty with that show thesis by blast
+next
+  case (Branch c) with that show thesis by (cases c) blast+
+qed
+
+text {* Content of a tree *}
+
+primrec entries
+where 
+  "entries Empty = []"
+| "entries (Branch _ l k v r) = entries l @ (k,v) # entries r"
 
 text {* Search tree properties *}
 
-primrec
-  pin_tree :: "'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> bool"
+primrec entry_in_tree :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool"
 where
-  "pin_tree k v Empty = False"
-| "pin_tree k v (Tr c l x y r) = (k = x \<and> v = y \<or> pin_tree k v l \<or> pin_tree k v r)"
+  "entry_in_tree k v Empty = False"
+| "entry_in_tree k v (Branch c l x y r) \<longleftrightarrow> k = x \<and> v = y \<or> entry_in_tree k v l \<or> entry_in_tree k v r"
 
-primrec
-  keys :: "('k,'v) rbt \<Rightarrow> 'k set"
+primrec keys :: "('k, 'v) rbt \<Rightarrow> 'k set"
 where
   "keys Empty = {}"
-| "keys (Tr _ l k _ r) = { k } \<union> keys l \<union> keys r"
+| "keys (Branch _ l k _ r) = { k } \<union> keys l \<union> keys r"
 
-lemma pint_keys: "pin_tree k v t \<Longrightarrow> k \<in> keys t" by (induct t) auto
+lemma entry_in_tree_keys:
+  "entry_in_tree k v t \<Longrightarrow> k \<in> keys t"
+  by (induct t) auto
 
-primrec tlt :: "'a\<Colon>order \<Rightarrow> ('a,'b) rbt \<Rightarrow> bool"
+definition tree_less :: "'a\<Colon>order \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool"
 where
-  "tlt k Empty = True"
-| "tlt k (Tr c lt kt v rt) = (kt < k \<and> tlt k lt \<and> tlt k rt)"
+  tree_less_prop: "tree_less k t \<longleftrightarrow> (\<forall>x\<in>keys t. x < k)"
+
+abbreviation tree_less_symbol (infix "|\<guillemotleft>" 50)
+where "t |\<guillemotleft> x \<equiv> tree_less x t"
 
-abbreviation tllt (infix "|\<guillemotleft>" 50)
-where "t |\<guillemotleft> x == tlt x t"
+definition tree_greater :: "'a\<Colon>order \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool" (infix "\<guillemotleft>|" 50) 
+where
+  tree_greater_prop: "tree_greater k t = (\<forall>x\<in>keys t. k < x)"
 
-primrec tgt :: "'a\<Colon>order \<Rightarrow> ('a,'b) rbt \<Rightarrow> bool" (infix "\<guillemotleft>|" 50) 
-where
-  "tgt k Empty = True"
-| "tgt k (Tr c lt kt v rt) = (k < kt \<and> tgt k lt \<and> tgt k rt)"
+lemma tree_less_simps [simp]:
+  "tree_less k Empty = True"
+  "tree_less k (Branch c lt kt v rt) \<longleftrightarrow> kt < k \<and> tree_less k lt \<and> tree_less k rt"
+  by (auto simp add: tree_less_prop)
 
-lemma tlt_prop: "(t |\<guillemotleft> k) = (\<forall>x\<in>keys t. x < k)" by (induct t) auto
-lemma tgt_prop: "(k \<guillemotleft>| t) = (\<forall>x\<in>keys t. k < x)" by (induct t) auto
-lemmas tlgt_props = tlt_prop tgt_prop
+lemma tree_greater_simps [simp]:
+  "tree_greater k Empty = True"
+  "tree_greater k (Branch c lt kt v rt) \<longleftrightarrow> k < kt \<and> tree_greater k lt \<and> tree_greater k rt"
+  by (auto simp add: tree_greater_prop)
 
-lemmas tgt_nit = tgt_prop pint_keys
-lemmas tlt_nit = tlt_prop pint_keys
+lemmas tree_ord_props = tree_less_prop tree_greater_prop
 
-lemma tlt_trans: "\<lbrakk> t |\<guillemotleft> x; x < y \<rbrakk> \<Longrightarrow> t |\<guillemotleft> y"
-  and tgt_trans: "\<lbrakk> x < y; y \<guillemotleft>| t\<rbrakk> \<Longrightarrow> x \<guillemotleft>| t"
-by (auto simp: tlgt_props)
-
+lemmas tree_greater_nit = tree_greater_prop entry_in_tree_keys
+lemmas tree_less_nit = tree_less_prop entry_in_tree_keys
 
-primrec st :: "('a::linorder, 'b) rbt \<Rightarrow> bool"
-where
-  "st Empty = True"
-| "st (Tr c l k v r) = (l |\<guillemotleft> k \<and> k \<guillemotleft>| r \<and> st l \<and> st r)"
+lemma tree_less_trans: "t |\<guillemotleft> x \<Longrightarrow> x < y \<Longrightarrow> t |\<guillemotleft> y"
+  and tree_greater_trans: "x < y \<Longrightarrow> y \<guillemotleft>| t \<Longrightarrow> x \<guillemotleft>| t"
+by (auto simp: tree_ord_props)
 
-primrec map_of :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> 'a \<rightharpoonup> 'b"
+primrec sorted :: "('a::linorder, 'b) rbt \<Rightarrow> bool"
 where
-  "map_of Empty k = None"
-| "map_of (Tr _ l x y r) k = (if k < x then map_of l k else if x < k then map_of r k else Some y)"
+  "sorted Empty = True"
+| "sorted (Branch c l k v r) = (l |\<guillemotleft> k \<and> k \<guillemotleft>| r \<and> sorted l \<and> sorted r)"
 
-lemma map_of_tlt[simp]: "t |\<guillemotleft> k \<Longrightarrow> map_of t k = None" 
+primrec lookup :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> 'a \<rightharpoonup> 'b"
+where
+  "lookup Empty k = None"
+| "lookup (Branch _ l x y r) k = (if k < x then lookup l k else if x < k then lookup r k else Some y)"
+
+lemma lookup_tree_less[simp]: "t |\<guillemotleft> k \<Longrightarrow> lookup t k = None" 
 by (induct t) auto
 
-lemma map_of_tgt[simp]: "k \<guillemotleft>| t \<Longrightarrow> map_of t k = None"
+lemma lookup_tree_greater[simp]: "k \<guillemotleft>| t \<Longrightarrow> lookup t k = None"
 by (induct t) auto
 
-lemma mapof_keys: "st t \<Longrightarrow> dom (map_of t) = keys t"
-by (induct t) (auto simp: dom_def tgt_prop tlt_prop)
+lemma lookup_keys: "sorted t \<Longrightarrow> dom (lookup t) = keys t"
+by (induct t) (auto simp: dom_def tree_greater_prop tree_less_prop)
 
-lemma mapof_pit: "st t \<Longrightarrow> (map_of t k = Some v) = pin_tree k v t"
-by (induct t) (auto simp: tlt_prop tgt_prop pint_keys)
+lemma lookup_pit: "sorted t \<Longrightarrow> (lookup t k = Some v) = entry_in_tree k v t"
+by (induct t) (auto simp: tree_less_prop tree_greater_prop entry_in_tree_keys)
 
-lemma map_of_Empty: "map_of Empty = empty"
+lemma lookup_Empty: "lookup Empty = empty"
 by (rule ext) simp
 
 (* a kind of extensionality *)
-lemma mapof_from_pit: 
-  assumes st: "st t1" "st t2" 
-  and eq: "\<And>v. pin_tree (k\<Colon>'a\<Colon>linorder) v t1 = pin_tree k v t2" 
-  shows "map_of t1 k = map_of t2 k"
-proof (cases "map_of t1 k")
+lemma lookup_from_pit: 
+  assumes sorted: "sorted t1" "sorted t2" 
+  and eq: "\<And>v. entry_in_tree (k\<Colon>'a\<Colon>linorder) v t1 = entry_in_tree k v t2" 
+  shows "lookup t1 k = lookup t2 k"
+proof (cases "lookup t1 k")
   case None
-  then have "\<And>v. \<not> pin_tree k v t1"
-    by (simp add: mapof_pit[symmetric] st)
+  then have "\<And>v. \<not> entry_in_tree k v t1"
+    by (simp add: lookup_pit[symmetric] sorted)
   with None show ?thesis
-    by (cases "map_of t2 k") (auto simp: mapof_pit st eq)
+    by (cases "lookup t2 k") (auto simp: lookup_pit sorted eq)
 next
   case (Some a)
   then show ?thesis
-    apply (cases "map_of t2 k")
-    apply (auto simp: mapof_pit st eq)
-    by (auto simp add: mapof_pit[symmetric] st Some)
+    apply (cases "lookup t2 k")
+    apply (auto simp: lookup_pit sorted eq)
+    by (auto simp add: lookup_pit[symmetric] sorted Some)
 qed
 
 subsection {* Red-black properties *}
 
-primrec treec :: "('a,'b) rbt \<Rightarrow> color"
+primrec color_of :: "('a, 'b) rbt \<Rightarrow> color"
 where
-  "treec Empty = B"
-| "treec (Tr c _ _ _ _) = c"
+  "color_of Empty = B"
+| "color_of (Branch c _ _ _ _) = c"
 
-primrec inv1 :: "('a,'b) rbt \<Rightarrow> bool"
+primrec bheight :: "('a,'b) rbt \<Rightarrow> nat"
+where
+  "bheight Empty = 0"
+| "bheight (Branch c lt k v rt) = (if c = B then Suc (bheight lt) else bheight lt)"
+
+primrec inv1 :: "('a, 'b) rbt \<Rightarrow> bool"
 where
   "inv1 Empty = True"
-| "inv1 (Tr c lt k v rt) = (inv1 lt \<and> inv1 rt \<and> (c = B \<or> treec lt = B \<and> treec rt = B))"
+| "inv1 (Branch c lt k v rt) \<longleftrightarrow> inv1 lt \<and> inv1 rt \<and> (c = B \<or> color_of lt = B \<and> color_of rt = B)"
 
-(* Weaker version *)
-primrec inv1l :: "('a,'b) rbt \<Rightarrow> bool"
+primrec inv1l :: "('a, 'b) rbt \<Rightarrow> bool" -- {* Weaker version *}
 where
   "inv1l Empty = True"
-| "inv1l (Tr c l k v r) = (inv1 l \<and> inv1 r)"
+| "inv1l (Branch c l k v r) = (inv1 l \<and> inv1 r)"
 lemma [simp]: "inv1 t \<Longrightarrow> inv1l t" by (cases t) simp+
 
-primrec bh :: "('a,'b) rbt \<Rightarrow> nat"
-where
-  "bh Empty = 0"
-| "bh (Tr c lt k v rt) = (if c = B then Suc (bh lt) else bh lt)"
-
-primrec inv2 :: "('a,'b) rbt \<Rightarrow> bool"
+primrec inv2 :: "('a, 'b) rbt \<Rightarrow> bool"
 where
   "inv2 Empty = True"
-| "inv2 (Tr c lt k v rt) = (inv2 lt \<and> inv2 rt \<and> bh lt = bh rt)"
+| "inv2 (Branch c lt k v rt) = (inv2 lt \<and> inv2 rt \<and> bheight lt = bheight rt)"
 
-definition
-  "isrbt t = (inv1 t \<and> inv2 t \<and> treec t = B \<and> st t)"
-
-lemma isrbt_st[simp]: "isrbt t \<Longrightarrow> st t" by (simp add: isrbt_def)
+definition is_rbt :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> bool" where
+  "is_rbt t \<longleftrightarrow> inv1 t \<and> inv2 t \<and> color_of t = B \<and> sorted t"
 
-lemma rbt_cases:
-  obtains (Empty) "t = Empty" 
-  | (Red) l k v r where "t = Tr R l k v r" 
-  | (Black) l k v r where "t = Tr B l k v r" 
-by (cases t, simp) (case_tac "color", auto)
+lemma is_rbt_sorted [simp]:
+  "is_rbt t \<Longrightarrow> sorted t" by (simp add: is_rbt_def)
 
-theorem Empty_isrbt[simp]: "isrbt Empty"
-unfolding isrbt_def by simp
+theorem Empty_is_rbt [simp]:
+  "is_rbt Empty" by (simp add: is_rbt_def)
 
 
 subsection {* Insertion *}
@@ -147,80 +163,80 @@
 fun (* slow, due to massive case splitting *)
   balance :: "('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 where
-  "balance (Tr R a w x b) s t (Tr R c y z d) = Tr R (Tr B a w x b) s t (Tr B c y z d)" |
-  "balance (Tr R (Tr R a w x b) s t c) y z d = Tr R (Tr B a w x b) s t (Tr B c y z d)" |
-  "balance (Tr R a w x (Tr R b s t c)) y z d = Tr R (Tr B a w x b) s t (Tr B c y z d)" |
-  "balance a w x (Tr R b s t (Tr R c y z d)) = Tr R (Tr B a w x b) s t (Tr B c y z d)" |
-  "balance a w x (Tr R (Tr R b s t c) y z d) = Tr R (Tr B a w x b) s t (Tr B c y z d)" |
-  "balance a s t b = Tr B a s t b"
+  "balance (Branch R a w x b) s t (Branch R c y z d) = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
+  "balance (Branch R (Branch R a w x b) s t c) y z d = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
+  "balance (Branch R a w x (Branch R b s t c)) y z d = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
+  "balance a w x (Branch R b s t (Branch R c y z d)) = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
+  "balance a w x (Branch R (Branch R b s t c) y z d) = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
+  "balance a s t b = Branch B a s t b"
 
 lemma balance_inv1: "\<lbrakk>inv1l l; inv1l r\<rbrakk> \<Longrightarrow> inv1 (balance l k v r)" 
   by (induct l k v r rule: balance.induct) auto
 
-lemma balance_bh: "bh l = bh r \<Longrightarrow> bh (balance l k v r) = Suc (bh l)"
+lemma balance_bheight: "bheight l = bheight r \<Longrightarrow> bheight (balance l k v r) = Suc (bheight l)"
   by (induct l k v r rule: balance.induct) auto
 
 lemma balance_inv2: 
-  assumes "inv2 l" "inv2 r" "bh l = bh r"
+  assumes "inv2 l" "inv2 r" "bheight l = bheight r"
   shows "inv2 (balance l k v r)"
   using assms
   by (induct l k v r rule: balance.induct) auto
 
-lemma balance_tgt[simp]: "(v \<guillemotleft>| balance a k x b) = (v \<guillemotleft>| a \<and> v \<guillemotleft>| b \<and> v < k)" 
+lemma balance_tree_greater[simp]: "(v \<guillemotleft>| balance a k x b) = (v \<guillemotleft>| a \<and> v \<guillemotleft>| b \<and> v < k)" 
   by (induct a k x b rule: balance.induct) auto
 
-lemma balance_tlt[simp]: "(balance a k x b |\<guillemotleft> v) = (a |\<guillemotleft> v \<and> b |\<guillemotleft> v \<and> k < v)"
+lemma balance_tree_less[simp]: "(balance a k x b |\<guillemotleft> v) = (a |\<guillemotleft> v \<and> b |\<guillemotleft> v \<and> k < v)"
   by (induct a k x b rule: balance.induct) auto
 
-lemma balance_st: 
+lemma balance_sorted: 
   fixes k :: "'a::linorder"
-  assumes "st l" "st r" "l |\<guillemotleft> k" "k \<guillemotleft>| r"
-  shows "st (balance l k v r)"
+  assumes "sorted l" "sorted r" "l |\<guillemotleft> k" "k \<guillemotleft>| r"
+  shows "sorted (balance l k v r)"
 using assms proof (induct l k v r rule: balance.induct)
   case ("2_2" a x w b y t c z s va vb vd vc)
-  hence "y < z \<and> z \<guillemotleft>| Tr B va vb vd vc" 
-    by (auto simp add: tlgt_props)
-  hence "tgt y (Tr B va vb vd vc)" by (blast dest: tgt_trans)
+  hence "y < z \<and> z \<guillemotleft>| Branch B va vb vd vc" 
+    by (auto simp add: tree_ord_props)
+  hence "tree_greater y (Branch B va vb vd vc)" by (blast dest: tree_greater_trans)
   with "2_2" show ?case by simp
 next
   case ("3_2" va vb vd vc x w b y s c z)
-  from "3_2" have "x < y \<and> tlt x (Tr B va vb vd vc)" 
-    by (simp add: tlt.simps tgt.simps)
-  hence "tlt y (Tr B va vb vd vc)" by (blast dest: tlt_trans)
+  from "3_2" have "x < y \<and> tree_less x (Branch B va vb vd vc)" 
+    by simp
+  hence "tree_less y (Branch B va vb vd vc)" by (blast dest: tree_less_trans)
   with "3_2" show ?case by simp
 next
   case ("3_3" x w b y s c z t va vb vd vc)
-  from "3_3" have "y < z \<and> tgt z (Tr B va vb vd vc)" by simp
-  hence "tgt y (Tr B va vb vd vc)" by (blast dest: tgt_trans)
+  from "3_3" have "y < z \<and> tree_greater z (Branch B va vb vd vc)" by simp
+  hence "tree_greater y (Branch B va vb vd vc)" by (blast dest: tree_greater_trans)
   with "3_3" show ?case by simp
 next
   case ("3_4" vd ve vg vf x w b y s c z t va vb vii vc)
-  hence "x < y \<and> tlt x (Tr B vd ve vg vf)" by simp
-  hence 1: "tlt y (Tr B vd ve vg vf)" by (blast dest: tlt_trans)
-  from "3_4" have "y < z \<and> tgt z (Tr B va vb vii vc)" by simp
-  hence "tgt y (Tr B va vb vii vc)" by (blast dest: tgt_trans)
+  hence "x < y \<and> tree_less x (Branch B vd ve vg vf)" by simp
+  hence 1: "tree_less y (Branch B vd ve vg vf)" by (blast dest: tree_less_trans)
+  from "3_4" have "y < z \<and> tree_greater z (Branch B va vb vii vc)" by simp
+  hence "tree_greater y (Branch B va vb vii vc)" by (blast dest: tree_greater_trans)
   with 1 "3_4" show ?case by simp
 next
   case ("4_2" va vb vd vc x w b y s c z t dd)
-  hence "x < y \<and> tlt x (Tr B va vb vd vc)" by simp
-  hence "tlt y (Tr B va vb vd vc)" by (blast dest: tlt_trans)
+  hence "x < y \<and> tree_less x (Branch B va vb vd vc)" by simp
+  hence "tree_less y (Branch B va vb vd vc)" by (blast dest: tree_less_trans)
   with "4_2" show ?case by simp
 next
   case ("5_2" x w b y s c z t va vb vd vc)
-  hence "y < z \<and> tgt z (Tr B va vb vd vc)" by simp
-  hence "tgt y (Tr B va vb vd vc)" by (blast dest: tgt_trans)
+  hence "y < z \<and> tree_greater z (Branch B va vb vd vc)" by simp
+  hence "tree_greater y (Branch B va vb vd vc)" by (blast dest: tree_greater_trans)
   with "5_2" show ?case by simp
 next
   case ("5_3" va vb vd vc x w b y s c z t)
-  hence "x < y \<and> tlt x (Tr B va vb vd vc)" by simp
-  hence "tlt y (Tr B va vb vd vc)" by (blast dest: tlt_trans)
+  hence "x < y \<and> tree_less x (Branch B va vb vd vc)" by simp
+  hence "tree_less y (Branch B va vb vd vc)" by (blast dest: tree_less_trans)
   with "5_3" show ?case by simp
 next
   case ("5_4" va vb vg vc x w b y s c z t vd ve vii vf)
-  hence "x < y \<and> tlt x (Tr B va vb vg vc)" by simp
-  hence 1: "tlt y (Tr B va vb vg vc)" by (blast dest: tlt_trans)
-  from "5_4" have "y < z \<and> tgt z (Tr B vd ve vii vf)" by simp
-  hence "tgt y (Tr B vd ve vii vf)" by (blast dest: tgt_trans)
+  hence "x < y \<and> tree_less x (Branch B va vb vg vc)" by simp
+  hence 1: "tree_less y (Branch B va vb vg vc)" by (blast dest: tree_less_trans)
+  from "5_4" have "y < z \<and> tree_greater z (Branch B vd ve vii vf)" by simp
+  hence "tree_greater y (Branch B vd ve vii vf)" by (blast dest: tree_greater_trans)
   with 1 "5_4" show ?case by simp
 qed simp+
 
@@ -229,62 +245,62 @@
 by (induct l k v r rule: balance.induct) auto
 
 lemma balance_pit:  
-  "pin_tree k x (balance l v y r) = (pin_tree k x l \<or> k = v \<and> x = y \<or> pin_tree k x r)" 
+  "entry_in_tree k x (balance l v y r) = (entry_in_tree k x l \<or> k = v \<and> x = y \<or> entry_in_tree k x r)" 
 by (induct l v y r rule: balance.induct) auto
 
-lemma map_of_balance[simp]: 
+lemma lookup_balance[simp]: 
 fixes k :: "'a::linorder"
-assumes "st l" "st r" "l |\<guillemotleft> k" "k \<guillemotleft>| r"
-shows "map_of (balance l k v r) x = map_of (Tr B l k v r) x"
-by (rule mapof_from_pit) (auto simp:assms balance_pit balance_st)
+assumes "sorted l" "sorted r" "l |\<guillemotleft> k" "k \<guillemotleft>| r"
+shows "lookup (balance l k v r) x = lookup (Branch B l k v r) x"
+by (rule lookup_from_pit) (auto simp:assms balance_pit balance_sorted)
 
 primrec paint :: "color \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 where
   "paint c Empty = Empty"
-| "paint c (Tr _ l k v r) = Tr c l k v r"
+| "paint c (Branch _ l k v r) = Branch c l k v r"
 
 lemma paint_inv1l[simp]: "inv1l t \<Longrightarrow> inv1l (paint c t)" by (cases t) auto
 lemma paint_inv1[simp]: "inv1l t \<Longrightarrow> inv1 (paint B t)" by (cases t) auto
 lemma paint_inv2[simp]: "inv2 t \<Longrightarrow> inv2 (paint c t)" by (cases t) auto
-lemma paint_treec[simp]: "treec (paint B t) = B" by (cases t) auto
-lemma paint_st[simp]: "st t \<Longrightarrow> st (paint c t)" by (cases t) auto
-lemma paint_pit[simp]: "pin_tree k x (paint c t) = pin_tree k x t" by (cases t) auto
-lemma paint_mapof[simp]: "map_of (paint c t) = map_of t" by (rule ext) (cases t, auto)
-lemma paint_tgt[simp]: "(v \<guillemotleft>| paint c t) = (v \<guillemotleft>| t)" by (cases t) auto
-lemma paint_tlt[simp]: "(paint c t |\<guillemotleft> v) = (t |\<guillemotleft> v)" by (cases t) auto
+lemma paint_color_of[simp]: "color_of (paint B t) = B" by (cases t) auto
+lemma paint_sorted[simp]: "sorted t \<Longrightarrow> sorted (paint c t)" by (cases t) auto
+lemma paint_pit[simp]: "entry_in_tree k x (paint c t) = entry_in_tree k x t" by (cases t) auto
+lemma paint_lookup[simp]: "lookup (paint c t) = lookup t" by (rule ext) (cases t, auto)
+lemma paint_tree_greater[simp]: "(v \<guillemotleft>| paint c t) = (v \<guillemotleft>| t)" by (cases t) auto
+lemma paint_tree_less[simp]: "(paint c t |\<guillemotleft> v) = (t |\<guillemotleft> v)" by (cases t) auto
 
 fun
   ins :: "('a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 where
-  "ins f k v Empty = Tr R Empty k v Empty" |
-  "ins f k v (Tr B l x y r) = (if k < x then balance (ins f k v l) x y r
+  "ins f k v Empty = Branch R Empty k v Empty" |
+  "ins f k v (Branch B l x y r) = (if k < x then balance (ins f k v l) x y r
                                else if k > x then balance l x y (ins f k v r)
-                               else Tr B l x (f k y v) r)" |
-  "ins f k v (Tr R l x y r) = (if k < x then Tr R (ins f k v l) x y r
-                               else if k > x then Tr R l x y (ins f k v r)
-                               else Tr R l x (f k y v) r)"
+                               else Branch B l x (f k y v) r)" |
+  "ins f k v (Branch R l x y r) = (if k < x then Branch R (ins f k v l) x y r
+                               else if k > x then Branch R l x y (ins f k v r)
+                               else Branch R l x (f k y v) r)"
 
 lemma ins_inv1_inv2: 
   assumes "inv1 t" "inv2 t"
-  shows "inv2 (ins f k x t)" "bh (ins f k x t) = bh t" 
-  "treec t = B \<Longrightarrow> inv1 (ins f k x t)" "inv1l (ins f k x t)"
+  shows "inv2 (ins f k x t)" "bheight (ins f k x t) = bheight t" 
+  "color_of t = B \<Longrightarrow> inv1 (ins f k x t)" "inv1l (ins f k x t)"
   using assms
-  by (induct f k x t rule: ins.induct) (auto simp: balance_inv1 balance_inv2 balance_bh)
+  by (induct f k x t rule: ins.induct) (auto simp: balance_inv1 balance_inv2 balance_bheight)
 
-lemma ins_tgt[simp]: "(v \<guillemotleft>| ins f k x t) = (v \<guillemotleft>| t \<and> k > v)"
+lemma ins_tree_greater[simp]: "(v \<guillemotleft>| ins f k x t) = (v \<guillemotleft>| t \<and> k > v)"
   by (induct f k x t rule: ins.induct) auto
-lemma ins_tlt[simp]: "(ins f k x t |\<guillemotleft> v) = (t |\<guillemotleft> v \<and> k < v)"
+lemma ins_tree_less[simp]: "(ins f k x t |\<guillemotleft> v) = (t |\<guillemotleft> v \<and> k < v)"
   by (induct f k x t rule: ins.induct) auto
-lemma ins_st[simp]: "st t \<Longrightarrow> st (ins f k x t)"
-  by (induct f k x t rule: ins.induct) (auto simp: balance_st)
+lemma ins_sorted[simp]: "sorted t \<Longrightarrow> sorted (ins f k x t)"
+  by (induct f k x t rule: ins.induct) (auto simp: balance_sorted)
 
 lemma keys_ins: "keys (ins f k v t) = { k } \<union> keys t"
 by (induct f k v t rule: ins.induct) auto
 
-lemma map_of_ins: 
+lemma lookup_ins: 
   fixes k :: "'a::linorder"
-  assumes "st t"
-  shows "map_of (ins f k v t) x = ((map_of t)(k |-> case map_of t k of None \<Rightarrow> v 
+  assumes "sorted t"
+  shows "lookup (ins f k v t) x = ((lookup t)(k |-> case lookup t k of None \<Rightarrow> v 
                                                        | Some w \<Rightarrow> f k w v)) x"
 using assms by (induct f k v t rule: ins.induct) auto
 
@@ -293,98 +309,97 @@
 where
   "insertwithkey f k v t = paint B (ins f k v t)"
 
-lemma insertwk_st: "st t \<Longrightarrow> st (insertwithkey f k x t)"
+lemma insertwk_sorted: "sorted t \<Longrightarrow> sorted (insertwithkey f k x t)"
   by (auto simp: insertwithkey_def)
 
-theorem insertwk_isrbt: 
-  assumes inv: "isrbt t" 
-  shows "isrbt (insertwithkey f k x t)"
+theorem insertwk_is_rbt: 
+  assumes inv: "is_rbt t" 
+  shows "is_rbt (insertwithkey f k x t)"
 using assms
-unfolding insertwithkey_def isrbt_def
+unfolding insertwithkey_def is_rbt_def
 by (auto simp: ins_inv1_inv2)
 
-lemma map_of_insertwk: 
-  assumes "st t"
-  shows "map_of (insertwithkey f k v t) x = ((map_of t)(k |-> case map_of t k of None \<Rightarrow> v 
+lemma lookup_insertwk: 
+  assumes "sorted t"
+  shows "lookup (insertwithkey f k v t) x = ((lookup t)(k |-> case lookup t k of None \<Rightarrow> v 
                                                        | Some w \<Rightarrow> f k w v)) x"
 unfolding insertwithkey_def using assms
-by (simp add:map_of_ins)
+by (simp add:lookup_ins)
 
 definition
   insertw_def: "insertwith f = insertwithkey (\<lambda>_. f)"
 
-lemma insertw_st: "st t \<Longrightarrow> st (insertwith f k v t)" by (simp add: insertwk_st insertw_def)
-theorem insertw_isrbt: "isrbt t \<Longrightarrow> isrbt (insertwith f k v t)" by (simp add: insertwk_isrbt insertw_def)
+lemma insertw_sorted: "sorted t \<Longrightarrow> sorted (insertwith f k v t)" by (simp add: insertwk_sorted insertw_def)
+theorem insertw_is_rbt: "is_rbt t \<Longrightarrow> is_rbt (insertwith f k v t)" by (simp add: insertwk_is_rbt insertw_def)
 
-lemma map_of_insertw:
-  assumes "isrbt t"
-  shows "map_of (insertwith f k v t) = (map_of t)(k \<mapsto> (if k:dom (map_of t) then f (the (map_of t k)) v else v))"
+lemma lookup_insertw:
+  assumes "is_rbt t"
+  shows "lookup (insertwith f k v t) = (lookup t)(k \<mapsto> (if k:dom (lookup t) then f (the (lookup t k)) v else v))"
 using assms
 unfolding insertw_def
-by (rule_tac ext) (cases "map_of t k", auto simp:map_of_insertwk dom_def)
-
+by (rule_tac ext) (cases "lookup t k", auto simp:lookup_insertwk dom_def)
 
-definition
-  "insrt k v t = insertwithkey (\<lambda>_ _ nv. nv) k v t"
+definition insert :: "'a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
+  "insert k v t = insertwithkey (\<lambda>_ _ nv. nv) k v t"
 
-lemma insrt_st: "st t \<Longrightarrow> st (insrt k v t)" by (simp add: insertwk_st insrt_def)
-theorem insrt_isrbt: "isrbt t \<Longrightarrow> isrbt (insrt k v t)" by (simp add: insertwk_isrbt insrt_def)
+lemma insert_sorted: "sorted t \<Longrightarrow> sorted (insert k v t)" by (simp add: insertwk_sorted insert_def)
+theorem insert_is_rbt: "is_rbt t \<Longrightarrow> is_rbt (insert k v t)" by (simp add: insertwk_is_rbt insert_def)
 
-lemma map_of_insert: 
-  assumes "isrbt t"
-  shows "map_of (insrt k v t) = (map_of t)(k\<mapsto>v)"
-unfolding insrt_def
+lemma lookup_insert: 
+  assumes "is_rbt t"
+  shows "lookup (insert k v t) = (lookup t)(k\<mapsto>v)"
+unfolding insert_def
 using assms
-by (rule_tac ext) (simp add: map_of_insertwk split:option.split)
+by (rule_tac ext) (simp add: lookup_insertwk split:option.split)
 
 
 subsection {* Deletion *}
 
-lemma bh_paintR'[simp]: "treec t = B \<Longrightarrow> bh (paint R t) = bh t - 1"
+lemma bheight_paintR'[simp]: "color_of t = B \<Longrightarrow> bheight (paint R t) = bheight t - 1"
 by (cases t rule: rbt_cases) auto
 
 fun
   balleft :: "('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 where
-  "balleft (Tr R a k x b) s y c = Tr R (Tr B a k x b) s y c" |
-  "balleft bl k x (Tr B a s y b) = balance bl k x (Tr R a s y b)" |
-  "balleft bl k x (Tr R (Tr B a s y b) t z c) = Tr R (Tr B bl k x a) s y (balance b t z (paint R c))" |
+  "balleft (Branch R a k x b) s y c = Branch R (Branch B a k x b) s y c" |
+  "balleft bl k x (Branch B a s y b) = balance bl k x (Branch R a s y b)" |
+  "balleft bl k x (Branch R (Branch B a s y b) t z c) = Branch R (Branch B bl k x a) s y (balance b t z (paint R c))" |
   "balleft t k x s = Empty"
 
 lemma balleft_inv2_with_inv1:
-  assumes "inv2 lt" "inv2 rt" "bh lt + 1 = bh rt" "inv1 rt"
-  shows "bh (balleft lt k v rt) = bh lt + 1"
+  assumes "inv2 lt" "inv2 rt" "bheight lt + 1 = bheight rt" "inv1 rt"
+  shows "bheight (balleft lt k v rt) = bheight lt + 1"
   and   "inv2 (balleft lt k v rt)"
 using assms 
-by (induct lt k v rt rule: balleft.induct) (auto simp: balance_inv2 balance_bh)
+by (induct lt k v rt rule: balleft.induct) (auto simp: balance_inv2 balance_bheight)
 
 lemma balleft_inv2_app: 
-  assumes "inv2 lt" "inv2 rt" "bh lt + 1 = bh rt" "treec rt = B"
+  assumes "inv2 lt" "inv2 rt" "bheight lt + 1 = bheight rt" "color_of rt = B"
   shows "inv2 (balleft lt k v rt)" 
-        "bh (balleft lt k v rt) = bh rt"
+        "bheight (balleft lt k v rt) = bheight rt"
 using assms 
-by (induct lt k v rt rule: balleft.induct) (auto simp add: balance_inv2 balance_bh)+ 
+by (induct lt k v rt rule: balleft.induct) (auto simp add: balance_inv2 balance_bheight)+ 
 
-lemma balleft_inv1: "\<lbrakk>inv1l a; inv1 b; treec b = B\<rbrakk> \<Longrightarrow> inv1 (balleft a k x b)"
+lemma balleft_inv1: "\<lbrakk>inv1l a; inv1 b; color_of b = B\<rbrakk> \<Longrightarrow> inv1 (balleft a k x b)"
   by (induct a k x b rule: balleft.induct) (simp add: balance_inv1)+
 
 lemma balleft_inv1l: "\<lbrakk> inv1l lt; inv1 rt \<rbrakk> \<Longrightarrow> inv1l (balleft lt k x rt)"
 by (induct lt k x rt rule: balleft.induct) (auto simp: balance_inv1)
 
-lemma balleft_st: "\<lbrakk> st l; st r; tlt k l; tgt k r \<rbrakk> \<Longrightarrow> st (balleft l k v r)"
+lemma balleft_sorted: "\<lbrakk> sorted l; sorted r; tree_less k l; tree_greater k r \<rbrakk> \<Longrightarrow> sorted (balleft l k v r)"
 apply (induct l k v r rule: balleft.induct)
-apply (auto simp: balance_st)
-apply (unfold tgt_prop tlt_prop)
+apply (auto simp: balance_sorted)
+apply (unfold tree_greater_prop tree_less_prop)
 by force+
 
-lemma balleft_tgt: 
+lemma balleft_tree_greater: 
   fixes k :: "'a::order"
   assumes "k \<guillemotleft>| a" "k \<guillemotleft>| b" "k < x" 
   shows "k \<guillemotleft>| balleft a x t b"
 using assms 
 by (induct a x t b rule: balleft.induct) auto
 
-lemma balleft_tlt: 
+lemma balleft_tree_less: 
   fixes k :: "'a::order"
   assumes "a |\<guillemotleft> k" "b |\<guillemotleft> k" "x < k" 
   shows "balleft a x t b |\<guillemotleft> k"
@@ -392,52 +407,52 @@
 by (induct a x t b rule: balleft.induct) auto
 
 lemma balleft_pit: 
-  assumes "inv1l l" "inv1 r" "bh l + 1 = bh r"
-  shows "pin_tree k v (balleft l a b r) = (pin_tree k v l \<or> k = a \<and> v = b \<or> pin_tree k v r)"
+  assumes "inv1l l" "inv1 r" "bheight l + 1 = bheight r"
+  shows "entry_in_tree k v (balleft l a b r) = (entry_in_tree k v l \<or> k = a \<and> v = b \<or> entry_in_tree k v r)"
 using assms 
 by (induct l k v r rule: balleft.induct) (auto simp: balance_pit)
 
 fun
   balright :: "('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 where
-  "balright a k x (Tr R b s y c) = Tr R a k x (Tr B b s y c)" |
-  "balright (Tr B a k x b) s y bl = balance (Tr R a k x b) s y bl" |
-  "balright (Tr R a k x (Tr B b s y c)) t z bl = Tr R (balance (paint R a) k x b) s y (Tr B c t z bl)" |
+  "balright a k x (Branch R b s y c) = Branch R a k x (Branch B b s y c)" |
+  "balright (Branch B a k x b) s y bl = balance (Branch R a k x b) s y bl" |
+  "balright (Branch R a k x (Branch B b s y c)) t z bl = Branch R (balance (paint R a) k x b) s y (Branch B c t z bl)" |
   "balright t k x s = Empty"
 
 lemma balright_inv2_with_inv1:
-  assumes "inv2 lt" "inv2 rt" "bh lt = bh rt + 1" "inv1 lt"
-  shows "inv2 (balright lt k v rt) \<and> bh (balright lt k v rt) = bh lt"
+  assumes "inv2 lt" "inv2 rt" "bheight lt = bheight rt + 1" "inv1 lt"
+  shows "inv2 (balright lt k v rt) \<and> bheight (balright lt k v rt) = bheight lt"
 using assms
-by (induct lt k v rt rule: balright.induct) (auto simp: balance_inv2 balance_bh)
+by (induct lt k v rt rule: balright.induct) (auto simp: balance_inv2 balance_bheight)
 
-lemma balright_inv1: "\<lbrakk>inv1 a; inv1l b; treec a = B\<rbrakk> \<Longrightarrow> inv1 (balright a k x b)"
+lemma balright_inv1: "\<lbrakk>inv1 a; inv1l b; color_of a = B\<rbrakk> \<Longrightarrow> inv1 (balright a k x b)"
 by (induct a k x b rule: balright.induct) (simp add: balance_inv1)+
 
 lemma balright_inv1l: "\<lbrakk> inv1 lt; inv1l rt \<rbrakk> \<Longrightarrow>inv1l (balright lt k x rt)"
 by (induct lt k x rt rule: balright.induct) (auto simp: balance_inv1)
 
-lemma balright_st: "\<lbrakk> st l; st r; tlt k l; tgt k r \<rbrakk> \<Longrightarrow> st (balright l k v r)"
+lemma balright_sorted: "\<lbrakk> sorted l; sorted r; tree_less k l; tree_greater k r \<rbrakk> \<Longrightarrow> sorted (balright l k v r)"
 apply (induct l k v r rule: balright.induct)
-apply (auto simp:balance_st)
-apply (unfold tlt_prop tgt_prop)
+apply (auto simp:balance_sorted)
+apply (unfold tree_less_prop tree_greater_prop)
 by force+
 
-lemma balright_tgt: 
+lemma balright_tree_greater: 
   fixes k :: "'a::order"
   assumes "k \<guillemotleft>| a" "k \<guillemotleft>| b" "k < x" 
   shows "k \<guillemotleft>| balright a x t b"
 using assms by (induct a x t b rule: balright.induct) auto
 
-lemma balright_tlt: 
+lemma balright_tree_less: 
   fixes k :: "'a::order"
   assumes "a |\<guillemotleft> k" "b |\<guillemotleft> k" "x < k" 
   shows "balright a x t b |\<guillemotleft> k"
 using assms by (induct a x t b rule: balright.induct) auto
 
 lemma balright_pit:
-  assumes "inv1 l" "inv1l r" "bh l = bh r + 1" "inv2 l" "inv2 r"
-  shows "pin_tree x y (balright l k v r) = (pin_tree x y l \<or> x = k \<and> y = v \<or> pin_tree x y r)"
+  assumes "inv1 l" "inv1l r" "bheight l = bheight r + 1" "inv2 l" "inv2 r"
+  shows "entry_in_tree x y (balright l k v r) = (entry_in_tree x y l \<or> x = k \<and> y = v \<or> entry_in_tree x y r)"
 using assms by (induct l k v r rule: balright.induct) (auto simp: balance_pit)
 
 
@@ -448,50 +463,50 @@
 where
   "app Empty x = x" 
 | "app x Empty = x" 
-| "app (Tr R a k x b) (Tr R c s y d) = (case (app b c) of
-                                      Tr R b2 t z c2 \<Rightarrow> (Tr R (Tr R a k x b2) t z (Tr R c2 s y d)) |
-                                      bc \<Rightarrow> Tr R a k x (Tr R bc s y d))" 
-| "app (Tr B a k x b) (Tr B c s y d) = (case (app b c) of
-                                      Tr R b2 t z c2 \<Rightarrow> Tr R (Tr B a k x b2) t z (Tr B c2 s y d) |
-                                      bc \<Rightarrow> balleft a k x (Tr B bc s y d))" 
-| "app a (Tr R b k x c) = Tr R (app a b) k x c" 
-| "app (Tr R a k x b) c = Tr R a k x (app b c)" 
+| "app (Branch R a k x b) (Branch R c s y d) = (case (app b c) of
+                                      Branch R b2 t z c2 \<Rightarrow> (Branch R (Branch R a k x b2) t z (Branch R c2 s y d)) |
+                                      bc \<Rightarrow> Branch R a k x (Branch R bc s y d))" 
+| "app (Branch B a k x b) (Branch B c s y d) = (case (app b c) of
+                                      Branch R b2 t z c2 \<Rightarrow> Branch R (Branch B a k x b2) t z (Branch B c2 s y d) |
+                                      bc \<Rightarrow> balleft a k x (Branch B bc s y d))" 
+| "app a (Branch R b k x c) = Branch R (app a b) k x c" 
+| "app (Branch R a k x b) c = Branch R a k x (app b c)" 
 
 lemma app_inv2:
-  assumes "inv2 lt" "inv2 rt" "bh lt = bh rt"
-  shows "bh (app lt rt) = bh lt" "inv2 (app lt rt)"
+  assumes "inv2 lt" "inv2 rt" "bheight lt = bheight rt"
+  shows "bheight (app lt rt) = bheight lt" "inv2 (app lt rt)"
 using assms 
 by (induct lt rt rule: app.induct) 
    (auto simp: balleft_inv2_app split: rbt.splits color.splits)
 
 lemma app_inv1: 
   assumes "inv1 lt" "inv1 rt"
-  shows "treec lt = B \<Longrightarrow> treec rt = B \<Longrightarrow> inv1 (app lt rt)"
+  shows "color_of lt = B \<Longrightarrow> color_of rt = B \<Longrightarrow> inv1 (app lt rt)"
          "inv1l (app lt rt)"
 using assms 
 by (induct lt rt rule: app.induct)
    (auto simp: balleft_inv1 split: rbt.splits color.splits)
 
-lemma app_tgt[simp]: 
+lemma app_tree_greater[simp]: 
   fixes k :: "'a::linorder"
   assumes "k \<guillemotleft>| l" "k \<guillemotleft>| r" 
   shows "k \<guillemotleft>| app l r"
 using assms 
 by (induct l r rule: app.induct)
-   (auto simp: balleft_tgt split:rbt.splits color.splits)
+   (auto simp: balleft_tree_greater split:rbt.splits color.splits)
 
-lemma app_tlt[simp]: 
+lemma app_tree_less[simp]: 
   fixes k :: "'a::linorder"
   assumes "l |\<guillemotleft> k" "r |\<guillemotleft> k" 
   shows "app l r |\<guillemotleft> k"
 using assms 
 by (induct l r rule: app.induct)
-   (auto simp: balleft_tlt split:rbt.splits color.splits)
+   (auto simp: balleft_tree_less split:rbt.splits color.splits)
 
-lemma app_st: 
+lemma app_sorted: 
   fixes k :: "'a::linorder"
-  assumes "st l" "st r" "l |\<guillemotleft> k" "k \<guillemotleft>| r"
-  shows "st (app l r)"
+  assumes "sorted l" "sorted r" "l |\<guillemotleft> k" "k \<guillemotleft>| r"
+  shows "sorted (app l r)"
 using assms proof (induct l r rule: app.induct)
   case (3 a x v b c y w d)
   hence ineqs: "a |\<guillemotleft> x" "x \<guillemotleft>| b" "b |\<guillemotleft> k" "k \<guillemotleft>| c" "c |\<guillemotleft> y" "y \<guillemotleft>| d"
@@ -500,55 +515,55 @@
   show ?case
     apply (cases "app b c" rule: rbt_cases)
     apply auto
-    by (metis app_tgt app_tlt ineqs ineqs tlt.simps(2) tgt.simps(2) tgt_trans tlt_trans)+
+    by (metis app_tree_greater app_tree_less ineqs ineqs tree_less_simps(2) tree_greater_simps(2) tree_greater_trans tree_less_trans)+
 next
   case (4 a x v b c y w d)
-  hence "x < k \<and> tgt k c" by simp
-  hence "tgt x c" by (blast dest: tgt_trans)
-  with 4 have 2: "tgt x (app b c)" by (simp add: app_tgt)
-  from 4 have "k < y \<and> tlt k b" by simp
-  hence "tlt y b" by (blast dest: tlt_trans)
-  with 4 have 3: "tlt y (app b c)" by (simp add: app_tlt)
+  hence "x < k \<and> tree_greater k c" by simp
+  hence "tree_greater x c" by (blast dest: tree_greater_trans)
+  with 4 have 2: "tree_greater x (app b c)" by (simp add: app_tree_greater)
+  from 4 have "k < y \<and> tree_less k b" by simp
+  hence "tree_less y b" by (blast dest: tree_less_trans)
+  with 4 have 3: "tree_less y (app b c)" by (simp add: app_tree_less)
   show ?case
   proof (cases "app b c" rule: rbt_cases)
     case Empty
-    from 4 have "x < y \<and> tgt y d" by auto
-    hence "tgt x d" by (blast dest: tgt_trans)
-    with 4 Empty have "st a" and "st (Tr B Empty y w d)" and "tlt x a" and "tgt x (Tr B Empty y w d)" by auto
-    with Empty show ?thesis by (simp add: balleft_st)
+    from 4 have "x < y \<and> tree_greater y d" by auto
+    hence "tree_greater x d" by (blast dest: tree_greater_trans)
+    with 4 Empty have "sorted a" and "sorted (Branch B Empty y w d)" and "tree_less x a" and "tree_greater x (Branch B Empty y w d)" by auto
+    with Empty show ?thesis by (simp add: balleft_sorted)
   next
     case (Red lta va ka rta)
-    with 2 4 have "x < va \<and> tlt x a" by simp
-    hence 5: "tlt va a" by (blast dest: tlt_trans)
-    from Red 3 4 have "va < y \<and> tgt y d" by simp
-    hence "tgt va d" by (blast dest: tgt_trans)
+    with 2 4 have "x < va \<and> tree_less x a" by simp
+    hence 5: "tree_less va a" by (blast dest: tree_less_trans)
+    from Red 3 4 have "va < y \<and> tree_greater y d" by simp
+    hence "tree_greater va d" by (blast dest: tree_greater_trans)
     with Red 2 3 4 5 show ?thesis by simp
   next
     case (Black lta va ka rta)
-    from 4 have "x < y \<and> tgt y d" by auto
-    hence "tgt x d" by (blast dest: tgt_trans)
-    with Black 2 3 4 have "st a" and "st (Tr B (app b c) y w d)" and "tlt x a" and "tgt x (Tr B (app b c) y w d)" by auto
-    with Black show ?thesis by (simp add: balleft_st)
+    from 4 have "x < y \<and> tree_greater y d" by auto
+    hence "tree_greater x d" by (blast dest: tree_greater_trans)
+    with Black 2 3 4 have "sorted a" and "sorted (Branch B (app b c) y w d)" and "tree_less x a" and "tree_greater x (Branch B (app b c) y w d)" by auto
+    with Black show ?thesis by (simp add: balleft_sorted)
   qed
 next
   case (5 va vb vd vc b x w c)
-  hence "k < x \<and> tlt k (Tr B va vb vd vc)" by simp
-  hence "tlt x (Tr B va vb vd vc)" by (blast dest: tlt_trans)
-  with 5 show ?case by (simp add: app_tlt)
+  hence "k < x \<and> tree_less k (Branch B va vb vd vc)" by simp
+  hence "tree_less x (Branch B va vb vd vc)" by (blast dest: tree_less_trans)
+  with 5 show ?case by (simp add: app_tree_less)
 next
   case (6 a x v b va vb vd vc)
-  hence "x < k \<and> tgt k (Tr B va vb vd vc)" by simp
-  hence "tgt x (Tr B va vb vd vc)" by (blast dest: tgt_trans)
-  with 6 show ?case by (simp add: app_tgt)
+  hence "x < k \<and> tree_greater k (Branch B va vb vd vc)" by simp
+  hence "tree_greater x (Branch B va vb vd vc)" by (blast dest: tree_greater_trans)
+  with 6 show ?case by (simp add: app_tree_greater)
 qed simp+
 
 lemma app_pit: 
-  assumes "inv2 l" "inv2 r" "bh l = bh r" "inv1 l" "inv1 r"
-  shows "pin_tree k v (app l r) = (pin_tree k v l \<or> pin_tree k v r)"
+  assumes "inv2 l" "inv2 r" "bheight l = bheight r" "inv1 l" "inv1 r"
+  shows "entry_in_tree k v (app l r) = (entry_in_tree k v l \<or> entry_in_tree k v r)"
 using assms 
 proof (induct l r rule: app.induct)
   case (4 _ _ _ b c)
-  hence a: "bh (app b c) = bh b" by (simp add: app_inv2)
+  hence a: "bheight (app b c) = bheight b" by (simp add: app_inv2)
   from 4 have b: "inv1l (app b c)" by (simp add: app_inv1)
 
   show ?case
@@ -570,21 +585,21 @@
   del :: "('a\<Colon>linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 where
   "del x Empty = Empty" |
-  "del x (Tr c a y s b) = (if x < y then delformLeft x a y s b else (if x > y then delformRight x a y s b else app a b))" |
-  "delformLeft x (Tr B lt z v rt) y s b = balleft (del x (Tr B lt z v rt)) y s b" |
-  "delformLeft x a y s b = Tr R (del x a) y s b" |
-  "delformRight x a y s (Tr B lt z v rt) = balright a y s (del x (Tr B lt z v rt))" | 
-  "delformRight x a y s b = Tr R a y s (del x b)"
+  "del x (Branch c a y s b) = (if x < y then delformLeft x a y s b else (if x > y then delformRight x a y s b else app a b))" |
+  "delformLeft x (Branch B lt z v rt) y s b = balleft (del x (Branch B lt z v rt)) y s b" |
+  "delformLeft x a y s b = Branch R (del x a) y s b" |
+  "delformRight x a y s (Branch B lt z v rt) = balright a y s (del x (Branch B lt z v rt))" | 
+  "delformRight x a y s b = Branch R a y s (del x b)"
 
 lemma 
   assumes "inv2 lt" "inv1 lt"
   shows
-  "\<lbrakk>inv2 rt; bh lt = bh rt; inv1 rt\<rbrakk> \<Longrightarrow>
-  inv2 (delformLeft x lt k v rt) \<and> bh (delformLeft x lt k v rt) = bh lt \<and> (treec lt = B \<and> treec rt = B \<and> inv1 (delformLeft x lt k v rt) \<or> (treec lt \<noteq> B \<or> treec rt \<noteq> B) \<and> inv1l (delformLeft x lt k v rt))"
-  and "\<lbrakk>inv2 rt; bh lt = bh rt; inv1 rt\<rbrakk> \<Longrightarrow>
-  inv2 (delformRight x lt k v rt) \<and> bh (delformRight x lt k v rt) = bh lt \<and> (treec lt = B \<and> treec rt = B \<and> inv1 (delformRight x lt k v rt) \<or> (treec lt \<noteq> B \<or> treec rt \<noteq> B) \<and> inv1l (delformRight x lt k v rt))"
-  and del_inv1_inv2: "inv2 (del x lt) \<and> (treec lt = R \<and> bh (del x lt) = bh lt \<and> inv1 (del x lt) 
-  \<or> treec lt = B \<and> bh (del x lt) = bh lt - 1 \<and> inv1l (del x lt))"
+  "\<lbrakk>inv2 rt; bheight lt = bheight rt; inv1 rt\<rbrakk> \<Longrightarrow>
+  inv2 (delformLeft x lt k v rt) \<and> bheight (delformLeft x lt k v rt) = bheight lt \<and> (color_of lt = B \<and> color_of rt = B \<and> inv1 (delformLeft x lt k v rt) \<or> (color_of lt \<noteq> B \<or> color_of rt \<noteq> B) \<and> inv1l (delformLeft x lt k v rt))"
+  and "\<lbrakk>inv2 rt; bheight lt = bheight rt; inv1 rt\<rbrakk> \<Longrightarrow>
+  inv2 (delformRight x lt k v rt) \<and> bheight (delformRight x lt k v rt) = bheight lt \<and> (color_of lt = B \<and> color_of rt = B \<and> inv1 (delformRight x lt k v rt) \<or> (color_of lt \<noteq> B \<or> color_of rt \<noteq> B) \<and> inv1l (delformRight x lt k v rt))"
+  and del_inv1_inv2: "inv2 (del x lt) \<and> (color_of lt = R \<and> bheight (del x lt) = bheight lt \<and> inv1 (del x lt) 
+  \<or> color_of lt = B \<and> bheight (del x lt) = bheight lt - 1 \<and> inv1l (del x lt))"
 using assms
 proof (induct x lt k v rt and x lt k v rt and x lt rule: delformLeft_delformRight_del.induct)
 case (2 y c _ y')
@@ -601,55 +616,55 @@
   qed
 next
   case (3 y lt z v rta y' ss bb) 
-  thus ?case by (cases "treec (Tr B lt z v rta) = B \<and> treec bb = B") (simp add: balleft_inv2_with_inv1 balleft_inv1 balleft_inv1l)+
+  thus ?case by (cases "color_of (Branch B lt z v rta) = B \<and> color_of bb = B") (simp add: balleft_inv2_with_inv1 balleft_inv1 balleft_inv1l)+
 next
   case (5 y a y' ss lt z v rta)
-  thus ?case by (cases "treec a = B \<and> treec (Tr B lt z v rta) = B") (simp add: balright_inv2_with_inv1 balright_inv1 balright_inv1l)+
+  thus ?case by (cases "color_of a = B \<and> color_of (Branch B lt z v rta) = B") (simp add: balright_inv2_with_inv1 balright_inv1 balright_inv1l)+
 next
-  case ("6_1" y a y' ss) thus ?case by (cases "treec a = B \<and> treec Empty = B") simp+
+  case ("6_1" y a y' ss) thus ?case by (cases "color_of a = B \<and> color_of Empty = B") simp+
 qed auto
 
 lemma 
-  delformLeft_tlt: "\<lbrakk>tlt v lt; tlt v rt; k < v\<rbrakk> \<Longrightarrow> tlt v (delformLeft x lt k y rt)"
-  and delformRight_tlt: "\<lbrakk>tlt v lt; tlt v rt; k < v\<rbrakk> \<Longrightarrow> tlt v (delformRight x lt k y rt)"
-  and del_tlt: "tlt v lt \<Longrightarrow> tlt v (del x lt)"
+  delformLeft_tree_less: "\<lbrakk>tree_less v lt; tree_less v rt; k < v\<rbrakk> \<Longrightarrow> tree_less v (delformLeft x lt k y rt)"
+  and delformRight_tree_less: "\<lbrakk>tree_less v lt; tree_less v rt; k < v\<rbrakk> \<Longrightarrow> tree_less v (delformRight x lt k y rt)"
+  and del_tree_less: "tree_less v lt \<Longrightarrow> tree_less v (del x lt)"
 by (induct x lt k y rt and x lt k y rt and x lt rule: delformLeft_delformRight_del.induct) 
-   (auto simp: balleft_tlt balright_tlt)
+   (auto simp: balleft_tree_less balright_tree_less)
 
-lemma delformLeft_tgt: "\<lbrakk>tgt v lt; tgt v rt; k > v\<rbrakk> \<Longrightarrow> tgt v (delformLeft x lt k y rt)"
-  and delformRight_tgt: "\<lbrakk>tgt v lt; tgt v rt; k > v\<rbrakk> \<Longrightarrow> tgt v (delformRight x lt k y rt)"
-  and del_tgt: "tgt v lt \<Longrightarrow> tgt v (del x lt)"
+lemma delformLeft_tree_greater: "\<lbrakk>tree_greater v lt; tree_greater v rt; k > v\<rbrakk> \<Longrightarrow> tree_greater v (delformLeft x lt k y rt)"
+  and delformRight_tree_greater: "\<lbrakk>tree_greater v lt; tree_greater v rt; k > v\<rbrakk> \<Longrightarrow> tree_greater v (delformRight x lt k y rt)"
+  and del_tree_greater: "tree_greater v lt \<Longrightarrow> tree_greater v (del x lt)"
 by (induct x lt k y rt and x lt k y rt and x lt rule: delformLeft_delformRight_del.induct)
-   (auto simp: balleft_tgt balright_tgt)
+   (auto simp: balleft_tree_greater balright_tree_greater)
 
-lemma "\<lbrakk>st lt; st rt; tlt k lt; tgt k rt\<rbrakk> \<Longrightarrow> st (delformLeft x lt k y rt)"
-  and "\<lbrakk>st lt; st rt; tlt k lt; tgt k rt\<rbrakk> \<Longrightarrow> st (delformRight x lt k y rt)"
-  and del_st: "st lt \<Longrightarrow> st (del x lt)"
+lemma "\<lbrakk>sorted lt; sorted rt; tree_less k lt; tree_greater k rt\<rbrakk> \<Longrightarrow> sorted (delformLeft x lt k y rt)"
+  and "\<lbrakk>sorted lt; sorted rt; tree_less k lt; tree_greater k rt\<rbrakk> \<Longrightarrow> sorted (delformRight x lt k y rt)"
+  and del_sorted: "sorted lt \<Longrightarrow> sorted (del x lt)"
 proof (induct x lt k y rt and x lt k y rt and x lt rule: delformLeft_delformRight_del.induct)
   case (3 x lta zz v rta yy ss bb)
-  from 3 have "tlt yy (Tr B lta zz v rta)" by simp
-  hence "tlt yy (del x (Tr B lta zz v rta))" by (rule del_tlt)
-  with 3 show ?case by (simp add: balleft_st)
+  from 3 have "tree_less yy (Branch B lta zz v rta)" by simp
+  hence "tree_less yy (del x (Branch B lta zz v rta))" by (rule del_tree_less)
+  with 3 show ?case by (simp add: balleft_sorted)
 next
   case ("4_2" x vaa vbb vdd vc yy ss bb)
-  hence "tlt yy (Tr R vaa vbb vdd vc)" by simp
-  hence "tlt yy (del x (Tr R vaa vbb vdd vc))" by (rule del_tlt)
+  hence "tree_less yy (Branch R vaa vbb vdd vc)" by simp
+  hence "tree_less yy (del x (Branch R vaa vbb vdd vc))" by (rule del_tree_less)
   with "4_2" show ?case by simp
 next
   case (5 x aa yy ss lta zz v rta) 
-  hence "tgt yy (Tr B lta zz v rta)" by simp
-  hence "tgt yy (del x (Tr B lta zz v rta))" by (rule del_tgt)
-  with 5 show ?case by (simp add: balright_st)
+  hence "tree_greater yy (Branch B lta zz v rta)" by simp
+  hence "tree_greater yy (del x (Branch B lta zz v rta))" by (rule del_tree_greater)
+  with 5 show ?case by (simp add: balright_sorted)
 next
   case ("6_2" x aa yy ss vaa vbb vdd vc)
-  hence "tgt yy (Tr R vaa vbb vdd vc)" by simp
-  hence "tgt yy (del x (Tr R vaa vbb vdd vc))" by (rule del_tgt)
+  hence "tree_greater yy (Branch R vaa vbb vdd vc)" by simp
+  hence "tree_greater yy (del x (Branch R vaa vbb vdd vc))" by (rule del_tree_greater)
   with "6_2" show ?case by simp
-qed (auto simp: app_st)
+qed (auto simp: app_sorted)
 
-lemma "\<lbrakk>st lt; st rt; tlt kt lt; tgt kt rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bh lt = bh rt; x < kt\<rbrakk> \<Longrightarrow> pin_tree k v (delformLeft x lt kt y rt) = (False \<or> (x \<noteq> k \<and> pin_tree k v (Tr c lt kt y rt)))"
-  and "\<lbrakk>st lt; st rt; tlt kt lt; tgt kt rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bh lt = bh rt; x > kt\<rbrakk> \<Longrightarrow> pin_tree k v (delformRight x lt kt y rt) = (False \<or> (x \<noteq> k \<and> pin_tree k v (Tr c lt kt y rt)))"
-  and del_pit: "\<lbrakk>st t; inv1 t; inv2 t\<rbrakk> \<Longrightarrow> pin_tree k v (del x t) = (False \<or> (x \<noteq> k \<and> pin_tree k v t))"
+lemma "\<lbrakk>sorted lt; sorted rt; tree_less kt lt; tree_greater kt rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bheight lt = bheight rt; x < kt\<rbrakk> \<Longrightarrow> entry_in_tree k v (delformLeft x lt kt y rt) = (False \<or> (x \<noteq> k \<and> entry_in_tree k v (Branch c lt kt y rt)))"
+  and "\<lbrakk>sorted lt; sorted rt; tree_less kt lt; tree_greater kt rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bheight lt = bheight rt; x > kt\<rbrakk> \<Longrightarrow> entry_in_tree k v (delformRight x lt kt y rt) = (False \<or> (x \<noteq> k \<and> entry_in_tree k v (Branch c lt kt y rt)))"
+  and del_pit: "\<lbrakk>sorted t; inv1 t; inv2 t\<rbrakk> \<Longrightarrow> entry_in_tree k v (del x t) = (False \<or> (x \<noteq> k \<and> entry_in_tree k v t))"
 proof (induct x lt kt y rt and x lt kt y rt and x t rule: delformLeft_delformRight_del.induct)
   case (2 xx c aa yy ss bb)
   have "xx = yy \<or> xx < yy \<or> xx > yy" by auto
@@ -657,68 +672,68 @@
     assume "xx = yy"
     with 2 show ?thesis proof (cases "xx = k")
       case True
-      from 2 `xx = yy` `xx = k` have "st (Tr c aa yy ss bb) \<and> k = yy" by simp
-      hence "\<not> pin_tree k v aa" "\<not> pin_tree k v bb" by (auto simp: tlt_nit tgt_prop)
+      from 2 `xx = yy` `xx = k` have "sorted (Branch c aa yy ss bb) \<and> k = yy" by simp
+      hence "\<not> entry_in_tree k v aa" "\<not> entry_in_tree k v bb" by (auto simp: tree_less_nit tree_greater_prop)
       with `xx = yy` 2 `xx = k` show ?thesis by (simp add: app_pit)
     qed (simp add: app_pit)
   qed simp+
 next    
   case (3 xx lta zz vv rta yy ss bb)
-  def mt[simp]: mt == "Tr B lta zz vv rta"
+  def mt[simp]: mt == "Branch B lta zz vv rta"
   from 3 have "inv2 mt \<and> inv1 mt" by simp
-  hence "inv2 (del xx mt) \<and> (treec mt = R \<and> bh (del xx mt) = bh mt \<and> inv1 (del xx mt) \<or> treec mt = B \<and> bh (del xx mt) = bh mt - 1 \<and> inv1l (del xx mt))" by (blast dest: del_inv1_inv2)
-  with 3 have 4: "pin_tree k v (delformLeft xx mt yy ss bb) = (False \<or> xx \<noteq> k \<and> pin_tree k v mt \<or> (k = yy \<and> v = ss) \<or> pin_tree k v bb)" by (simp add: balleft_pit)
+  hence "inv2 (del xx mt) \<and> (color_of mt = R \<and> bheight (del xx mt) = bheight mt \<and> inv1 (del xx mt) \<or> color_of mt = B \<and> bheight (del xx mt) = bheight mt - 1 \<and> inv1l (del xx mt))" by (blast dest: del_inv1_inv2)
+  with 3 have 4: "entry_in_tree k v (delformLeft xx mt yy ss bb) = (False \<or> xx \<noteq> k \<and> entry_in_tree k v mt \<or> (k = yy \<and> v = ss) \<or> entry_in_tree k v bb)" by (simp add: balleft_pit)
   thus ?case proof (cases "xx = k")
     case True
-    from 3 True have "tgt yy bb \<and> yy > k" by simp
-    hence "tgt k bb" by (blast dest: tgt_trans)
-    with 3 4 True show ?thesis by (auto simp: tgt_nit)
+    from 3 True have "tree_greater yy bb \<and> yy > k" by simp
+    hence "tree_greater k bb" by (blast dest: tree_greater_trans)
+    with 3 4 True show ?thesis by (auto simp: tree_greater_nit)
   qed auto
 next
   case ("4_1" xx yy ss bb)
   show ?case proof (cases "xx = k")
     case True
-    with "4_1" have "tgt yy bb \<and> k < yy" by simp
-    hence "tgt k bb" by (blast dest: tgt_trans)
+    with "4_1" have "tree_greater yy bb \<and> k < yy" by simp
+    hence "tree_greater k bb" by (blast dest: tree_greater_trans)
     with "4_1" `xx = k` 
-   have "pin_tree k v (Tr R Empty yy ss bb) = pin_tree k v Empty" by (auto simp: tgt_nit)
+   have "entry_in_tree k v (Branch R Empty yy ss bb) = entry_in_tree k v Empty" by (auto simp: tree_greater_nit)
     thus ?thesis by auto
   qed simp+
 next
   case ("4_2" xx vaa vbb vdd vc yy ss bb)
   thus ?case proof (cases "xx = k")
     case True
-    with "4_2" have "k < yy \<and> tgt yy bb" by simp
-    hence "tgt k bb" by (blast dest: tgt_trans)
-    with True "4_2" show ?thesis by (auto simp: tgt_nit)
+    with "4_2" have "k < yy \<and> tree_greater yy bb" by simp
+    hence "tree_greater k bb" by (blast dest: tree_greater_trans)
+    with True "4_2" show ?thesis by (auto simp: tree_greater_nit)
   qed simp
 next
   case (5 xx aa yy ss lta zz vv rta)
-  def mt[simp]: mt == "Tr B lta zz vv rta"
+  def mt[simp]: mt == "Branch B lta zz vv rta"
   from 5 have "inv2 mt \<and> inv1 mt" by simp
-  hence "inv2 (del xx mt) \<and> (treec mt = R \<and> bh (del xx mt) = bh mt \<and> inv1 (del xx mt) \<or> treec mt = B \<and> bh (del xx mt) = bh mt - 1 \<and> inv1l (del xx mt))" by (blast dest: del_inv1_inv2)
-  with 5 have 3: "pin_tree k v (delformRight xx aa yy ss mt) = (pin_tree k v aa \<or> (k = yy \<and> v = ss) \<or> False \<or> xx \<noteq> k \<and> pin_tree k v mt)" by (simp add: balright_pit)
+  hence "inv2 (del xx mt) \<and> (color_of mt = R \<and> bheight (del xx mt) = bheight mt \<and> inv1 (del xx mt) \<or> color_of mt = B \<and> bheight (del xx mt) = bheight mt - 1 \<and> inv1l (del xx mt))" by (blast dest: del_inv1_inv2)
+  with 5 have 3: "entry_in_tree k v (delformRight xx aa yy ss mt) = (entry_in_tree k v aa \<or> (k = yy \<and> v = ss) \<or> False \<or> xx \<noteq> k \<and> entry_in_tree k v mt)" by (simp add: balright_pit)
   thus ?case proof (cases "xx = k")
     case True
-    from 5 True have "tlt yy aa \<and> yy < k" by simp
-    hence "tlt k aa" by (blast dest: tlt_trans)
-    with 3 5 True show ?thesis by (auto simp: tlt_nit)
+    from 5 True have "tree_less yy aa \<and> yy < k" by simp
+    hence "tree_less k aa" by (blast dest: tree_less_trans)
+    with 3 5 True show ?thesis by (auto simp: tree_less_nit)
   qed auto
 next
   case ("6_1" xx aa yy ss)
   show ?case proof (cases "xx = k")
     case True
-    with "6_1" have "tlt yy aa \<and> k > yy" by simp
-    hence "tlt k aa" by (blast dest: tlt_trans)
-    with "6_1" `xx = k` show ?thesis by (auto simp: tlt_nit)
+    with "6_1" have "tree_less yy aa \<and> k > yy" by simp
+    hence "tree_less k aa" by (blast dest: tree_less_trans)
+    with "6_1" `xx = k` show ?thesis by (auto simp: tree_less_nit)
   qed simp
 next
   case ("6_2" xx aa yy ss vaa vbb vdd vc)
   thus ?case proof (cases "xx = k")
     case True
-    with "6_2" have "k > yy \<and> tlt yy aa" by simp
-    hence "tlt k aa" by (blast dest: tlt_trans)
-    with True "6_2" show ?thesis by (auto simp: tlt_nit)
+    with "6_2" have "k > yy \<and> tree_less yy aa" by simp
+    hence "tree_less k aa" by (blast dest: tree_less_trans)
+    with True "6_2" show ?thesis by (auto simp: tree_less_nit)
   qed simp
 qed simp
 
@@ -726,36 +741,36 @@
 definition delete where
   delete_def: "delete k t = paint B (del k t)"
 
-theorem delete_isrbt[simp]: assumes "isrbt t" shows "isrbt (delete k t)"
+theorem delete_is_rbt[simp]: assumes "is_rbt t" shows "is_rbt (delete k t)"
 proof -
-  from assms have "inv2 t" and "inv1 t" unfolding isrbt_def by auto 
-  hence "inv2 (del k t) \<and> (treec t = R \<and> bh (del k t) = bh t \<and> inv1 (del k t) \<or> treec t = B \<and> bh (del k t) = bh t - 1 \<and> inv1l (del k t))" by (rule del_inv1_inv2)
-  hence "inv2 (del k t) \<and> inv1l (del k t)" by (cases "treec t") auto
+  from assms have "inv2 t" and "inv1 t" unfolding is_rbt_def by auto 
+  hence "inv2 (del k t) \<and> (color_of t = R \<and> bheight (del k t) = bheight t \<and> inv1 (del k t) \<or> color_of t = B \<and> bheight (del k t) = bheight t - 1 \<and> inv1l (del k t))" by (rule del_inv1_inv2)
+  hence "inv2 (del k t) \<and> inv1l (del k t)" by (cases "color_of t") auto
   with assms show ?thesis
-    unfolding isrbt_def delete_def
-    by (auto intro: paint_st del_st)
+    unfolding is_rbt_def delete_def
+    by (auto intro: paint_sorted del_sorted)
 qed
 
 lemma delete_pit: 
-  assumes "isrbt t" 
-  shows "pin_tree k v (delete x t) = (x \<noteq> k \<and> pin_tree k v t)"
-  using assms unfolding isrbt_def delete_def
+  assumes "is_rbt t" 
+  shows "entry_in_tree k v (delete x t) = (x \<noteq> k \<and> entry_in_tree k v t)"
+  using assms unfolding is_rbt_def delete_def
   by (auto simp: del_pit)
 
-lemma map_of_delete:
-  assumes isrbt: "isrbt t"
-  shows "map_of (delete k t) = (map_of t)|`(-{k})"
+lemma lookup_delete:
+  assumes is_rbt: "is_rbt t"
+  shows "lookup (delete k t) = (lookup t)|`(-{k})"
 proof
   fix x
-  show "map_of (delete k t) x = (map_of t |` (-{k})) x" 
+  show "lookup (delete k t) x = (lookup t |` (-{k})) x" 
   proof (cases "x = k")
     assume "x = k" 
-    with isrbt show ?thesis
-      by (cases "map_of (delete k t) k") (auto simp: mapof_pit delete_pit)
+    with is_rbt show ?thesis
+      by (cases "lookup (delete k t) k") (auto simp: lookup_pit delete_pit)
   next
     assume "x \<noteq> k"
     thus ?thesis
-      by auto (metis isrbt delete_isrbt delete_pit isrbt_st mapof_from_pit)
+      by auto (metis is_rbt delete_is_rbt delete_pit is_rbt_sorted lookup_from_pit)
   qed
 qed
 
@@ -765,43 +780,43 @@
   unionwithkey :: "('a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 where
   "unionwithkey f t Empty = t"
-| "unionwithkey f t (Tr c lt k v rt) = unionwithkey f (unionwithkey f (insertwithkey f k v t) lt) rt"
+| "unionwithkey f t (Branch c lt k v rt) = unionwithkey f (unionwithkey f (insertwithkey f k v t) lt) rt"
 
-lemma unionwk_st: "st lt \<Longrightarrow> st (unionwithkey f lt rt)" 
-  by (induct rt arbitrary: lt) (auto simp: insertwk_st)
-theorem unionwk_isrbt[simp]: "isrbt lt \<Longrightarrow> isrbt (unionwithkey f lt rt)" 
-  by (induct rt arbitrary: lt) (simp add: insertwk_isrbt)+
+lemma unionwk_sorted: "sorted lt \<Longrightarrow> sorted (unionwithkey f lt rt)" 
+  by (induct rt arbitrary: lt) (auto simp: insertwk_sorted)
+theorem unionwk_is_rbt[simp]: "is_rbt lt \<Longrightarrow> is_rbt (unionwithkey f lt rt)" 
+  by (induct rt arbitrary: lt) (simp add: insertwk_is_rbt)+
 
 definition
   unionwith where
   "unionwith f = unionwithkey (\<lambda>_. f)"
 
-theorem unionw_isrbt: "isrbt lt \<Longrightarrow> isrbt (unionwith f lt rt)" unfolding unionwith_def by simp
+theorem unionw_is_rbt: "is_rbt lt \<Longrightarrow> is_rbt (unionwith f lt rt)" unfolding unionwith_def by simp
 
 definition union where
   "union = unionwithkey (%_ _ rv. rv)"
 
-theorem union_isrbt: "isrbt lt \<Longrightarrow> isrbt (union lt rt)" unfolding union_def by simp
+theorem union_is_rbt: "is_rbt lt \<Longrightarrow> is_rbt (union lt rt)" unfolding union_def by simp
 
-lemma union_Tr[simp]:
-  "union t (Tr c lt k v rt) = union (union (insrt k v t) lt) rt"
-  unfolding union_def insrt_def
+lemma union_Branch[simp]:
+  "union t (Branch c lt k v rt) = union (union (insert k v t) lt) rt"
+  unfolding union_def insert_def
   by simp
 
-lemma map_of_union:
-  assumes "isrbt s" "st t"
-  shows "map_of (union s t) = map_of s ++ map_of t"
+lemma lookup_union:
+  assumes "is_rbt s" "sorted t"
+  shows "lookup (union s t) = lookup s ++ lookup t"
 using assms
 proof (induct t arbitrary: s)
   case Empty thus ?case by (auto simp: union_def)
 next
-  case (Tr c l k v r s)
-  hence strl: "st r" "st l" "l |\<guillemotleft> k" "k \<guillemotleft>| r" by auto
+  case (Branch c l k v r s)
+  hence sortedrl: "sorted r" "sorted l" "l |\<guillemotleft> k" "k \<guillemotleft>| r" by auto
 
-  have meq: "map_of s(k \<mapsto> v) ++ map_of l ++ map_of r =
-    map_of s ++
-    (\<lambda>a. if a < k then map_of l a
-    else if k < a then map_of r a else Some v)" (is "?m1 = ?m2")
+  have meq: "lookup s(k \<mapsto> v) ++ lookup l ++ lookup r =
+    lookup s ++
+    (\<lambda>a. if a < k then lookup l a
+    else if k < a then lookup r a else Some v)" (is "?m1 = ?m2")
   proof (rule ext)
     fix a
 
@@ -809,7 +824,7 @@
     thus "?m1 a = ?m2 a"
     proof (elim disjE)
       assume "k < a"
-      with `l |\<guillemotleft> k` have "l |\<guillemotleft> a" by (rule tlt_trans)
+      with `l |\<guillemotleft> k` have "l |\<guillemotleft> a" by (rule tree_less_trans)
       with `k < a` show ?thesis
         by (auto simp: map_add_def split: option.splits)
     next
@@ -818,20 +833,20 @@
       show ?thesis by (auto simp: map_add_def)
     next
       assume "a < k"
-      from this `k \<guillemotleft>| r` have "a \<guillemotleft>| r" by (rule tgt_trans)
+      from this `k \<guillemotleft>| r` have "a \<guillemotleft>| r" by (rule tree_greater_trans)
       with `a < k` show ?thesis
         by (auto simp: map_add_def split: option.splits)
     qed
   qed
 
-  from Tr
+  from Branch
   have IHs:
-    "map_of (union (union (insrt k v s) l) r) = map_of (union (insrt k v s) l) ++ map_of r"
-    "map_of (union (insrt k v s) l) = map_of (insrt k v s) ++ map_of l"
-    by (auto intro: union_isrbt insrt_isrbt)
+    "lookup (union (union (insert k v s) l) r) = lookup (union (insert k v s) l) ++ lookup r"
+    "lookup (union (insert k v s) l) = lookup (insert k v s) ++ lookup l"
+    by (auto intro: union_is_rbt insert_is_rbt)
   
   with meq show ?case
-    by (auto simp: map_of_insert[OF Tr(3)])
+    by (auto simp: lookup_insert[OF Branch(3)])
 qed
 
 subsection {* Adjust *}
@@ -840,33 +855,33 @@
   adjustwithkey :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a\<Colon>linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 where
   "adjustwithkey f k Empty = Empty"
-| "adjustwithkey f k (Tr c lt x v rt) = (if k < x then (Tr c (adjustwithkey f k lt) x v rt) else if k > x then (Tr c lt x v (adjustwithkey f k rt)) else (Tr c lt x (f x v) rt))"
+| "adjustwithkey f k (Branch c lt x v rt) = (if k < x then (Branch c (adjustwithkey f k lt) x v rt) else if k > x then (Branch c lt x v (adjustwithkey f k rt)) else (Branch c lt x (f x v) rt))"
 
-lemma adjustwk_treec: "treec (adjustwithkey f k t) = treec t" by (induct t) simp+
-lemma adjustwk_inv1: "inv1 (adjustwithkey f k t) = inv1 t" by (induct t) (simp add: adjustwk_treec)+
-lemma adjustwk_inv2: "inv2 (adjustwithkey f k t) = inv2 t" "bh (adjustwithkey f k t) = bh t" by (induct t) simp+
-lemma adjustwk_tgt: "tgt k (adjustwithkey f kk t) = tgt k t" by (induct t) simp+
-lemma adjustwk_tlt: "tlt k (adjustwithkey f kk t) = tlt k t" by (induct t) simp+
-lemma adjustwk_st: "st (adjustwithkey f k t) = st t" by (induct t) (simp add: adjustwk_tlt adjustwk_tgt)+
+lemma adjustwk_color_of: "color_of (adjustwithkey f k t) = color_of t" by (induct t) simp+
+lemma adjustwk_inv1: "inv1 (adjustwithkey f k t) = inv1 t" by (induct t) (simp add: adjustwk_color_of)+
+lemma adjustwk_inv2: "inv2 (adjustwithkey f k t) = inv2 t" "bheight (adjustwithkey f k t) = bheight t" by (induct t) simp+
+lemma adjustwk_tree_greater: "tree_greater k (adjustwithkey f kk t) = tree_greater k t" by (induct t) simp+
+lemma adjustwk_tree_less: "tree_less k (adjustwithkey f kk t) = tree_less k t" by (induct t) simp+
+lemma adjustwk_sorted: "sorted (adjustwithkey f k t) = sorted t" by (induct t) (simp add: adjustwk_tree_less adjustwk_tree_greater)+
 
-theorem adjustwk_isrbt[simp]: "isrbt (adjustwithkey f k t) = isrbt t" 
-unfolding isrbt_def by (simp add: adjustwk_inv2 adjustwk_treec adjustwk_st adjustwk_inv1 )
+theorem adjustwk_is_rbt[simp]: "is_rbt (adjustwithkey f k t) = is_rbt t" 
+unfolding is_rbt_def by (simp add: adjustwk_inv2 adjustwk_color_of adjustwk_sorted adjustwk_inv1 )
 
 theorem adjustwithkey_map[simp]:
-  "map_of (adjustwithkey f k t) x = 
-  (if x = k then case map_of t x of None \<Rightarrow> None | Some y \<Rightarrow> Some (f k y)
-            else map_of t x)"
+  "lookup (adjustwithkey f k t) x = 
+  (if x = k then case lookup t x of None \<Rightarrow> None | Some y \<Rightarrow> Some (f k y)
+            else lookup t x)"
 by (induct t arbitrary: x) (auto split:option.splits)
 
 definition adjust where
   "adjust f = adjustwithkey (\<lambda>_. f)"
 
-theorem adjust_isrbt[simp]: "isrbt (adjust f k t) = isrbt t" unfolding adjust_def by simp
+theorem adjust_is_rbt[simp]: "is_rbt (adjust f k t) = is_rbt t" unfolding adjust_def by simp
 
 theorem adjust_map[simp]:
-  "map_of (adjust f k t) x = 
-  (if x = k then case map_of t x of None \<Rightarrow> None | Some y \<Rightarrow> Some (f y)
-            else map_of t x)"
+  "lookup (adjust f k t) x = 
+  (if x = k then case lookup t x of None \<Rightarrow> None | Some y \<Rightarrow> Some (f y)
+            else lookup t x)"
 unfolding adjust_def by simp
 
 subsection {* Map *}
@@ -875,27 +890,27 @@
   mapwithkey :: "('a::linorder \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'c) rbt"
 where
   "mapwithkey f Empty = Empty"
-| "mapwithkey f (Tr c lt k v rt) = Tr c (mapwithkey f lt) k (f k v) (mapwithkey f rt)"
+| "mapwithkey f (Branch c lt k v rt) = Branch c (mapwithkey f lt) k (f k v) (mapwithkey f rt)"
 
 theorem mapwk_keys[simp]: "keys (mapwithkey f t) = keys t" by (induct t) auto
-lemma mapwk_tgt: "tgt k (mapwithkey f t) = tgt k t" by (induct t) simp+
-lemma mapwk_tlt: "tlt k (mapwithkey f t) = tlt k t" by (induct t) simp+
-lemma mapwk_st: "st (mapwithkey f t) = st t"  by (induct t) (simp add: mapwk_tlt mapwk_tgt)+
-lemma mapwk_treec: "treec (mapwithkey f t) = treec t" by (induct t) simp+
-lemma mapwk_inv1: "inv1 (mapwithkey f t) = inv1 t" by (induct t) (simp add: mapwk_treec)+
-lemma mapwk_inv2: "inv2 (mapwithkey f t) = inv2 t" "bh (mapwithkey f t) = bh t" by (induct t) simp+
-theorem mapwk_isrbt[simp]: "isrbt (mapwithkey f t) = isrbt t" 
-unfolding isrbt_def by (simp add: mapwk_inv1 mapwk_inv2 mapwk_st mapwk_treec)
+lemma mapwk_tree_greater: "tree_greater k (mapwithkey f t) = tree_greater k t" by (induct t) simp+
+lemma mapwk_tree_less: "tree_less k (mapwithkey f t) = tree_less k t" by (induct t) simp+
+lemma mapwk_sorted: "sorted (mapwithkey f t) = sorted t"  by (induct t) (simp add: mapwk_tree_less mapwk_tree_greater)+
+lemma mapwk_color_of: "color_of (mapwithkey f t) = color_of t" by (induct t) simp+
+lemma mapwk_inv1: "inv1 (mapwithkey f t) = inv1 t" by (induct t) (simp add: mapwk_color_of)+
+lemma mapwk_inv2: "inv2 (mapwithkey f t) = inv2 t" "bheight (mapwithkey f t) = bheight t" by (induct t) simp+
+theorem mapwk_is_rbt[simp]: "is_rbt (mapwithkey f t) = is_rbt t" 
+unfolding is_rbt_def by (simp add: mapwk_inv1 mapwk_inv2 mapwk_sorted mapwk_color_of)
 
-theorem map_of_mapwk[simp]: "map_of (mapwithkey f t) x = Option.map (f x) (map_of t x)"
+theorem lookup_mapwk[simp]: "lookup (mapwithkey f t) x = Option.map (f x) (lookup t x)"
 by (induct t) auto
 
 definition map
 where map_def: "map f == mapwithkey (\<lambda>_. f)"
 
 theorem map_keys[simp]: "keys (map f t) = keys t" unfolding map_def by simp
-theorem map_isrbt[simp]: "isrbt (map f t) = isrbt t" unfolding map_def by simp
-theorem map_of_map[simp]: "map_of (map f t) = Option.map f o map_of t"
+theorem map_is_rbt[simp]: "is_rbt (map f t) = is_rbt t" unfolding map_def by simp
+theorem lookup_map[simp]: "lookup (map f t) = Option.map f o lookup t"
   by (rule ext) (simp add:map_def)
 
 subsection {* Fold *}
@@ -906,62 +921,57 @@
   foldwithkey :: "('a::linorder \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> ('a,'b) rbt \<Rightarrow> 'c \<Rightarrow> 'c"
 where
   "foldwithkey f Empty v = v"
-| "foldwithkey f (Tr c lt k x rt) v = foldwithkey f rt (f k x (foldwithkey f lt v))"
+| "foldwithkey f (Branch c lt k x rt) v = foldwithkey f rt (f k x (foldwithkey f lt v))"
 
-primrec alist_of
-where 
-  "alist_of Empty = []"
-| "alist_of (Tr _ l k v r) = alist_of l @ (k,v) # alist_of r"
-
-lemma map_of_alist_of_aux: "st (Tr c t1 k v t2) \<Longrightarrow> RBT.map_of (Tr c t1 k v t2) = RBT.map_of t2 ++ [k\<mapsto>v] ++ RBT.map_of t1"
+lemma lookup_entries_aux: "sorted (Branch c t1 k v t2) \<Longrightarrow> RBT.lookup (Branch c t1 k v t2) = RBT.lookup t2 ++ [k\<mapsto>v] ++ RBT.lookup t1"
 proof (rule ext)
   fix x
-  assume ST: "st (Tr c t1 k v t2)"
-  let ?thesis = "RBT.map_of (Tr c t1 k v t2) x = (RBT.map_of t2 ++ [k \<mapsto> v] ++ RBT.map_of t1) x"
+  assume SORTED: "sorted (Branch c t1 k v t2)"
+  let ?thesis = "RBT.lookup (Branch c t1 k v t2) x = (RBT.lookup t2 ++ [k \<mapsto> v] ++ RBT.lookup t1) x"
 
-  have DOM_T1: "!!k'. k'\<in>dom (RBT.map_of t1) \<Longrightarrow> k>k'"
+  have DOM_T1: "!!k'. k'\<in>dom (RBT.lookup t1) \<Longrightarrow> k>k'"
   proof -
     fix k'
-    from ST have "t1 |\<guillemotleft> k" by simp
-    with tlt_prop have "\<forall>k'\<in>keys t1. k>k'" by auto
-    moreover assume "k'\<in>dom (RBT.map_of t1)"
-    ultimately show "k>k'" using RBT.mapof_keys ST by auto
+    from SORTED have "t1 |\<guillemotleft> k" by simp
+    with tree_less_prop have "\<forall>k'\<in>keys t1. k>k'" by auto
+    moreover assume "k'\<in>dom (RBT.lookup t1)"
+    ultimately show "k>k'" using RBT.lookup_keys SORTED by auto
   qed
 
-  have DOM_T2: "!!k'. k'\<in>dom (RBT.map_of t2) \<Longrightarrow> k<k'"
+  have DOM_T2: "!!k'. k'\<in>dom (RBT.lookup t2) \<Longrightarrow> k<k'"
   proof -
     fix k'
-    from ST have "k \<guillemotleft>| t2" by simp
-    with tgt_prop have "\<forall>k'\<in>keys t2. k<k'" by auto
-    moreover assume "k'\<in>dom (RBT.map_of t2)"
-    ultimately show "k<k'" using RBT.mapof_keys ST by auto
+    from SORTED have "k \<guillemotleft>| t2" by simp
+    with tree_greater_prop have "\<forall>k'\<in>keys t2. k<k'" by auto
+    moreover assume "k'\<in>dom (RBT.lookup t2)"
+    ultimately show "k<k'" using RBT.lookup_keys SORTED by auto
   qed
 
   {
     assume C: "x<k"
-    hence "RBT.map_of (Tr c t1 k v t2) x = RBT.map_of t1 x" by simp
+    hence "RBT.lookup (Branch c t1 k v t2) x = RBT.lookup t1 x" by simp
     moreover from C have "x\<notin>dom [k\<mapsto>v]" by simp
-    moreover have "x\<notin>dom (RBT.map_of t2)" proof
-      assume "x\<in>dom (RBT.map_of t2)"
+    moreover have "x\<notin>dom (RBT.lookup t2)" proof
+      assume "x\<in>dom (RBT.lookup t2)"
       with DOM_T2 have "k<x" by blast
       with C show False by simp
     qed
     ultimately have ?thesis by (simp add: map_add_upd_left map_add_dom_app_simps)
   } moreover {
     assume [simp]: "x=k"
-    hence "RBT.map_of (Tr c t1 k v t2) x = [k \<mapsto> v] x" by simp
-    moreover have "x\<notin>dom (RBT.map_of t1)" proof
-      assume "x\<in>dom (RBT.map_of t1)"
+    hence "RBT.lookup (Branch c t1 k v t2) x = [k \<mapsto> v] x" by simp
+    moreover have "x\<notin>dom (RBT.lookup t1)" proof
+      assume "x\<in>dom (RBT.lookup t1)"
       with DOM_T1 have "k>x" by blast
       thus False by simp
     qed
     ultimately have ?thesis by (simp add: map_add_upd_left map_add_dom_app_simps)
   } moreover {
     assume C: "x>k"
-    hence "RBT.map_of (Tr c t1 k v t2) x = RBT.map_of t2 x" by (simp add: less_not_sym[of k x])
+    hence "RBT.lookup (Branch c t1 k v t2) x = RBT.lookup t2 x" by (simp add: less_not_sym[of k x])
     moreover from C have "x\<notin>dom [k\<mapsto>v]" by simp
-    moreover have "x\<notin>dom (RBT.map_of t1)" proof
-      assume "x\<in>dom (RBT.map_of t1)"
+    moreover have "x\<notin>dom (RBT.lookup t1)" proof
+      assume "x\<in>dom (RBT.lookup t1)"
       with DOM_T1 have "k>x" by simp
       with C show False by simp
     qed
@@ -969,35 +979,38 @@
   } ultimately show ?thesis using less_linear by blast
 qed
 
-lemma map_of_alist_of:
-  shows "st t \<Longrightarrow> Map.map_of (alist_of t) = map_of t"
+lemma map_of_entries:
+  shows "sorted t \<Longrightarrow> map_of (entries t) = lookup t"
 proof (induct t)
-  case Empty thus ?case by (simp add: RBT.map_of_Empty)
+  case Empty thus ?case by (simp add: RBT.lookup_Empty)
 next
-  case (Tr c t1 k v t2)
-  hence "Map.map_of (alist_of (Tr c t1 k v t2)) = RBT.map_of t2 ++ [k \<mapsto> v] ++ RBT.map_of t1" by simp
-  also note map_of_alist_of_aux[OF Tr.prems,symmetric]
+  case (Branch c t1 k v t2)
+  hence "map_of (entries (Branch c t1 k v t2)) = RBT.lookup t2 ++ [k \<mapsto> v] ++ RBT.lookup t1" by simp
+  also note lookup_entries_aux [OF Branch.prems,symmetric]
   finally show ?case .
 qed
 
-lemma fold_alist_fold:
-  "foldwithkey f t x = foldl (\<lambda>x (k,v). f k v x) x (alist_of t)"
+lemma fold_entries_fold:
+  "foldwithkey f t x = foldl (\<lambda>x (k,v). f k v x) x (entries t)"
 by (induct t arbitrary: x) auto
 
-lemma alist_pit[simp]: "(k, v) \<in> set (alist_of t) = pin_tree k v t"
+lemma entries_pit[simp]: "(k, v) \<in> set (entries t) = entry_in_tree k v t"
 by (induct t) auto
 
-lemma sorted_alist:
-  "st t \<Longrightarrow> sorted (List.map fst (alist_of t))"
+lemma sorted_entries:
+  "sorted t \<Longrightarrow> List.sorted (List.map fst (entries t))"
 by (induct t) 
-  (force simp: sorted_append sorted_Cons tlgt_props 
-      dest!:pint_keys)+
+  (force simp: sorted_append sorted_Cons tree_ord_props 
+      dest!: entry_in_tree_keys)+
 
-lemma distinct_alist:
-  "st t \<Longrightarrow> distinct (List.map fst (alist_of t))"
+lemma distinct_entries:
+  "sorted t \<Longrightarrow> distinct (List.map fst (entries t))"
 by (induct t) 
-  (force simp: sorted_append sorted_Cons tlgt_props 
-      dest!:pint_keys)+
+  (force simp: sorted_append sorted_Cons tree_ord_props 
+      dest!: entry_in_tree_keys)+
+
+hide (open) const Empty insert delete entries lookup map fold union adjust sorted
+
 (*>*)
 
 text {* 
@@ -1010,20 +1023,20 @@
 text {*
   The type @{typ "('k, 'v) rbt"} denotes red-black trees with keys of
   type @{typ "'k"} and values of type @{typ "'v"}. To function
-  properly, the key type must belong to the @{text "linorder"} class.
+  properly, the key type musorted belong to the @{text "linorder"} class.
 
   A value @{term t} of this type is a valid red-black tree if it
-  satisfies the invariant @{text "isrbt t"}.
+  satisfies the invariant @{text "is_rbt t"}.
   This theory provides lemmas to prove that the invariant is
   satisfied throughout the computation.
 
-  The interpretation function @{const "map_of"} returns the partial
+  The interpretation function @{const "RBT.lookup"} returns the partial
   map represented by a red-black tree:
-  @{term_type[display] "map_of"}
+  @{term_type[display] "RBT.lookup"}
 
   This function should be used for reasoning about the semantics of the RBT
   operations. Furthermore, it implements the lookup functionality for
-  the data structure: It is executable and the lookup is performed in
+  the data sortedructure: It is executable and the lookup is performed in
   $O(\log n)$.  
 *}
 
@@ -1032,19 +1045,19 @@
 text {*
   Currently, the following operations are supported:
 
-  @{term_type[display] "Empty"}
+  @{term_type[display] "RBT.Empty"}
   Returns the empty tree. $O(1)$
 
-  @{term_type[display] "insrt"}
+  @{term_type[display] "RBT.insert"}
   Updates the map at a given position. $O(\log n)$
 
-  @{term_type[display] "delete"}
+  @{term_type[display] "RBT.delete"}
   Deletes a map entry at a given position. $O(\log n)$
 
-  @{term_type[display] "union"}
+  @{term_type[display] "RBT.union"}
   Forms the union of two trees, preferring entries from the first one.
 
-  @{term_type[display] "map"}
+  @{term_type[display] "RBT.map"}
   Maps a function over the values of a map. $O(n)$
 *}
 
@@ -1053,47 +1066,47 @@
 
 text {*
   \noindent
-  @{thm Empty_isrbt}\hfill(@{text "Empty_isrbt"})
+  @{thm Empty_is_rbt}\hfill(@{text "Empty_is_rbt"})
 
   \noindent
-  @{thm insrt_isrbt}\hfill(@{text "insrt_isrbt"})
+  @{thm insert_is_rbt}\hfill(@{text "insert_is_rbt"})
 
   \noindent
-  @{thm delete_isrbt}\hfill(@{text "delete_isrbt"})
+  @{thm delete_is_rbt}\hfill(@{text "delete_is_rbt"})
 
   \noindent
-  @{thm union_isrbt}\hfill(@{text "union_isrbt"})
+  @{thm union_is_rbt}\hfill(@{text "union_is_rbt"})
 
   \noindent
-  @{thm map_isrbt}\hfill(@{text "map_isrbt"})
+  @{thm map_is_rbt}\hfill(@{text "map_is_rbt"})
 *}
 
 subsection {* Map Semantics *}
 
 text {*
   \noindent
-  \underline{@{text "map_of_Empty"}}
-  @{thm[display] map_of_Empty}
+  \underline{@{text "lookup_Empty"}}
+  @{thm[display] lookup_Empty}
   \vspace{1ex}
 
   \noindent
-  \underline{@{text "map_of_insert"}}
-  @{thm[display] map_of_insert}
+  \underline{@{text "lookup_insert"}}
+  @{thm[display] lookup_insert}
   \vspace{1ex}
 
   \noindent
-  \underline{@{text "map_of_delete"}}
-  @{thm[display] map_of_delete}
+  \underline{@{text "lookup_delete"}}
+  @{thm[display] lookup_delete}
   \vspace{1ex}
 
   \noindent
-  \underline{@{text "map_of_union"}}
-  @{thm[display] map_of_union}
+  \underline{@{text "lookup_union"}}
+  @{thm[display] lookup_union}
   \vspace{1ex}
 
   \noindent
-  \underline{@{text "map_of_map"}}
-  @{thm[display] map_of_map}
+  \underline{@{text "lookup_map"}}
+  @{thm[display] lookup_map}
   \vspace{1ex}
 *}
 
--- a/src/HOL/Library/Transitive_Closure_Table.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Library/Transitive_Closure_Table.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -107,25 +107,25 @@
     proof (cases as)
       case Nil
       with xxs have x: "x = a" and xs: "xs = bs @ a # cs"
-	by auto
+        by auto
       from x xs `rtrancl_path r x xs y` have cs: "rtrancl_path r x cs y"
-	by (auto elim: rtrancl_path_appendE)
+        by (auto elim: rtrancl_path_appendE)
       from xs have "length cs < length xs" by simp
       then show ?thesis
-	by (rule less(1)) (iprover intro: cs less(2))+
+        by (rule less(1)) (iprover intro: cs less(2))+
     next
       case (Cons d ds)
       with xxs have xs: "xs = ds @ a # (bs @ [a] @ cs)"
-	by auto
+        by auto
       with `rtrancl_path r x xs y` obtain xa: "rtrancl_path r x (ds @ [a]) a"
         and ay: "rtrancl_path r a (bs @ a # cs) y"
-	by (auto elim: rtrancl_path_appendE)
+        by (auto elim: rtrancl_path_appendE)
       from ay have "rtrancl_path r a cs y" by (auto elim: rtrancl_path_appendE)
       with xa have xy: "rtrancl_path r x ((ds @ [a]) @ cs) y"
-	by (rule rtrancl_path_trans)
+        by (rule rtrancl_path_trans)
       from xs have "length ((ds @ [a]) @ cs) < length xs" by simp
       then show ?thesis
-	by (rule less(1)) (iprover intro: xy less(2))+
+        by (rule less(1)) (iprover intro: xy less(2))+
     qed
   qed
 qed
--- a/src/HOL/Map.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Map.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -12,10 +12,10 @@
 begin
 
 types ('a,'b) "~=>" = "'a => 'b option"  (infixr "~=>" 0)
-translations (type) "a ~=> b " <= (type) "a => b option"
+translations (type) "'a ~=> 'b" <= (type) "'a => 'b option"
 
-syntax (xsymbols)
-  "~=>" :: "[type, type] => type"  (infixr "\<rightharpoonup>" 0)
+type_notation (xsymbols)
+  "~=>"  (infixr "\<rightharpoonup>" 0)
 
 abbreviation
   empty :: "'a ~=> 'b" where
--- a/src/HOL/MicroJava/J/Decl.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/MicroJava/J/Decl.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -23,12 +23,12 @@
 
 
 translations
-  "fdecl"   <= (type) "vname \<times> ty"
-  "sig"     <= (type) "mname \<times> ty list"
-  "mdecl c" <= (type) "sig \<times> ty \<times> c"
-  "class c" <= (type) "cname \<times> fdecl list \<times> (c mdecl) list"
-  "cdecl c" <= (type) "cname \<times> (c class)"
-  "prog  c" <= (type) "(c cdecl) list"
+  (type) "fdecl" <= (type) "vname \<times> ty"
+  (type) "sig" <= (type) "mname \<times> ty list"
+  (type) "'c mdecl" <= (type) "sig \<times> ty \<times> 'c"
+  (type) "'c class" <= (type) "cname \<times> fdecl list \<times> ('c mdecl) list"
+  (type) "'c cdecl" <= (type) "cname \<times> ('c class)"
+  (type) "'c prog" <= (type) "('c cdecl) list"
 
 
 definition "class" :: "'c prog => (cname \<rightharpoonup> 'c class)" where
--- a/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -15,8 +15,6 @@
 
 declare vector_add_ldistrib[simp] vector_ssub_ldistrib[simp] vector_smult_assoc[simp] vector_smult_rneg[simp]
 declare vector_sadd_rdistrib[simp] vector_sub_rdistrib[simp]
-declare dot_ladd[simp] dot_radd[simp] dot_lsub[simp] dot_rsub[simp]
-declare dot_lmult[simp] dot_rmult[simp] dot_lneg[simp] dot_rneg[simp]
 declare UNIV_1[simp]
 
 (*lemma dim1in[intro]:"Suc 0 \<in> {1::nat .. CARD(1)}" by auto*)
@@ -1717,7 +1715,7 @@
     using norm_basis and dimindex_ge_1 by auto
   thus ?thesis apply(rule_tac x="basis a" in exI, rule_tac x=1 in exI) using True by auto
 next case False thus ?thesis using False using separating_hyperplane_closed_point[OF assms]
-    apply - apply(erule exE)+ unfolding dot_rzero apply(rule_tac x=a in exI, rule_tac x=b in exI) by auto qed
+    apply - apply(erule exE)+ unfolding inner.zero_right apply(rule_tac x=a in exI, rule_tac x=b in exI) by auto qed
 
 subsection {* Now set-to-set for closed/compact sets. *}
 
--- a/src/HOL/Multivariate_Analysis/Derivative.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Multivariate_Analysis/Derivative.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -12,6 +12,9 @@
 (* Because I do not want to type this all the time *)
 lemmas linear_linear = linear_conv_bounded_linear[THEN sym]
 
+(** move this **)
+declare norm_vec1[simp]
+
 subsection {* Derivatives *}
 
 text {* The definition is slightly tricky since we make it work over
@@ -612,7 +615,7 @@
     finally have "\<bar>(f (x + c *\<^sub>R basis j) - f x - D *v (c *\<^sub>R basis j)) $ k\<bar> \<le> \<bar>D $ k $ j\<bar> / 2 * \<bar>c\<bar>" by simp
     hence "\<bar>f (x + c *\<^sub>R basis j) $ k - f x $ k - c * D $ k $ j\<bar> \<le> \<bar>D $ k $ j\<bar> / 2 * \<bar>c\<bar>"
       unfolding vector_component_simps matrix_vector_mul_component unfolding smult_conv_scaleR[symmetric] 
-      unfolding dot_rmult dot_basis unfolding smult_conv_scaleR by simp  } note * = this
+      unfolding inner_simps dot_basis smult_conv_scaleR by simp  } note * = this
   have "x + d *\<^sub>R basis j \<in> ball x e" "x - d *\<^sub>R basis j \<in> ball x e"
     unfolding mem_ball vector_dist_norm using norm_basis[of j] d by auto
   hence **:"((f (x - d *\<^sub>R basis j))$k \<le> (f x)$k \<and> (f (x + d *\<^sub>R basis j))$k \<le> (f x)$k) \<or>
@@ -702,20 +705,17 @@
 
 subsection {* A nice generalization (see Havin's proof of 5.19 from Rudin's book). *}
 
-lemma inner_eq_dot: fixes a::"real^'n"
-  shows "a \<bullet> b = inner a b" unfolding inner_vector_def dot_def by auto
-
 lemma mvt_general: fixes f::"real\<Rightarrow>real^'n"
   assumes "a<b" "continuous_on {a..b} f" "\<forall>x\<in>{a<..<b}. (f has_derivative f'(x)) (at x)"
   shows "\<exists>x\<in>{a<..<b}. norm(f b - f a) \<le> norm(f'(x) (b - a))" proof-
   have "\<exists>x\<in>{a<..<b}. (op \<bullet> (f b - f a) \<circ> f) b - (op \<bullet> (f b - f a) \<circ> f) a = (f b - f a) \<bullet> f' x (b - a)"
-    apply(rule mvt) apply(rule assms(1))unfolding inner_eq_dot apply(rule continuous_on_inner continuous_on_intros assms(2))+ 
+    apply(rule mvt) apply(rule assms(1)) apply(rule continuous_on_inner continuous_on_intros assms(2))+ 
     unfolding o_def apply(rule,rule has_derivative_lift_dot) using assms(3) by auto
   then guess x .. note x=this
   show ?thesis proof(cases "f a = f b")
     case False have "norm (f b - f a) * norm (f b - f a) = norm (f b - f a)^2" by(simp add:class_semiring.semiring_rules)
-    also have "\<dots> = (f b - f a) \<bullet> (f b - f a)" unfolding norm_pow_2 ..
-    also have "\<dots> = (f b - f a) \<bullet> f' x (b - a)" using x by auto
+    also have "\<dots> = (f b - f a) \<bullet> (f b - f a)" unfolding power2_norm_eq_inner ..
+    also have "\<dots> = (f b - f a) \<bullet> f' x (b - a)" using x unfolding inner_simps by auto
     also have "\<dots> \<le> norm (f b - f a) * norm (f' x (b - a))" by(rule norm_cauchy_schwarz)
     finally show ?thesis using False x(1) by(auto simp add: real_mult_left_cancel) next
     case True thus ?thesis using assms(1) apply(rule_tac x="(a + b) /2" in bexI) by auto qed qed
@@ -751,9 +751,6 @@
   also have "\<dots> \<le> B * norm(y - x)" apply(rule **) using * and u by auto
   finally show ?thesis by(auto simp add:norm_minus_commute) qed 
 
-(** move this **)
-declare norm_vec1[simp]
-
 lemma onorm_vec1: fixes f::"real \<Rightarrow> real"
   shows "onorm (\<lambda>x. vec1 (f (dest_vec1 x))) = onorm f" proof-
   have "\<forall>x::real^1. norm x = 1 \<longleftrightarrow> x\<in>{vec1 -1, vec1 (1::real)}" unfolding forall_vec1 by(auto simp add:Cart_eq)
--- a/src/HOL/Multivariate_Analysis/Determinants.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Multivariate_Analysis/Determinants.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -837,7 +837,7 @@
   unfolding orthogonal_transformation_def
   apply auto
   apply (erule_tac x=v in allE)+
-  apply (simp add: real_vector_norm_def)
+  apply (simp add: norm_eq_sqrt_inner)
   by (simp add: dot_norm  linear_add[symmetric])
 
 definition "orthogonal_matrix (Q::'a::semiring_1^'n^'n) \<longleftrightarrow> transpose Q ** Q = mat 1 \<and> Q ** transpose Q = mat 1"
@@ -879,7 +879,7 @@
         by simp_all
       from fd[rule_format, of "basis i" "basis j", unfolded matrix_works[OF lf, symmetric] dot_matrix_vector_mul]
       have "?A$i$j = ?m1 $ i $ j"
-        by (simp add: dot_def matrix_matrix_mult_def columnvector_def rowvector_def basis_def th0 setsum_delta[OF fU] mat_def)}
+        by (simp add: inner_vector_def matrix_matrix_mult_def columnvector_def rowvector_def basis_def th0 setsum_delta[OF fU] mat_def)}
     hence "orthogonal_matrix ?mf" unfolding orthogonal_matrix by vector
     with lf have ?rhs by blast}
   moreover
@@ -929,8 +929,7 @@
       unfolding dot_norm_neg dist_norm[symmetric]
       unfolding th0 fd[rule_format] by (simp add: power2_eq_square field_simps)}
   note fc = this
-  show ?thesis unfolding linear_def vector_eq
-    by (simp add: dot_lmult dot_ladd dot_rmult dot_radd fc ring_simps)
+  show ?thesis unfolding linear_def vector_eq smult_conv_scaleR by (simp add: inner_simps fc ring_simps)
 qed
 
 lemma isometry_linear:
@@ -972,7 +971,7 @@
     "x' = norm x *s x0'" "y' = norm y *s y0'"
     "norm x0 = 1" "norm x0' = 1" "norm y0 = 1" "norm y0' = 1"
     "norm(x0' - y0') = norm(x0 - y0)"
-
+    hence *:"x0 \<bullet> y0 = x0' \<bullet> y0' + y0' \<bullet> x0' - y0 \<bullet> x0 " by(simp add: norm_eq norm_eq_1 inner_simps)
     have "norm(x' - y') = norm(x - y)"
       apply (subst H(1))
       apply (subst H(2))
@@ -980,9 +979,8 @@
       apply (subst H(4))
       using H(5-9)
       apply (simp add: norm_eq norm_eq_1)
-      apply (simp add: dot_lsub dot_rsub dot_lmult dot_rmult)
-      apply (simp add: ring_simps)
-      by (simp only: right_distrib[symmetric])}
+      apply (simp add: inner_simps smult_conv_scaleR) unfolding *
+      by (simp add: ring_simps) }
   note th0 = this
   let ?g = "\<lambda>x. if x = 0 then 0 else norm x *s f (inverse (norm x) *s x)"
   {fix x:: "real ^'n" assume nx: "norm x = 1"
--- a/src/HOL/Multivariate_Analysis/Euclidean_Space.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Multivariate_Analysis/Euclidean_Space.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -100,6 +100,12 @@
   instance ..
 end
 
+instantiation cart :: (scaleR, finite) scaleR
+begin
+  definition vector_scaleR_def: "scaleR = (\<lambda> r x.  (\<chi> i. scaleR r (x$i)))"
+  instance ..
+end
+
 instantiation cart :: (ord,finite) ord
 begin
   definition vector_le_def:
@@ -108,12 +114,31 @@
   instance by (intro_classes)
 end
 
-instantiation cart :: (scaleR, finite) scaleR
+text{* The ordering on real^1 is linear. *}
+
+class cart_one = assumes UNIV_one: "card (UNIV \<Colon> 'a set) = Suc 0"
 begin
-  definition vector_scaleR_def: "scaleR = (\<lambda> r x.  (\<chi> i. scaleR r (x$i)))"
-  instance ..
+  subclass finite
+  proof from UNIV_one show "finite (UNIV :: 'a set)"
+      by (auto intro!: card_ge_0_finite) qed
 end
 
+instantiation num1 :: cart_one begin
+instance proof
+  show "CARD(1) = Suc 0" by auto
+qed end
+
+instantiation cart :: (linorder,cart_one) linorder begin
+instance proof
+  guess a B using UNIV_one[where 'a='b] unfolding card_Suc_eq apply- by(erule exE)+
+  hence *:"UNIV = {a}" by auto
+  have "\<And>P. (\<forall>i\<in>UNIV. P i) \<longleftrightarrow> P a" unfolding * by auto hence all:"\<And>P. (\<forall>i. P i) \<longleftrightarrow> P a" by auto
+  fix x y z::"'a^'b::cart_one" note * = vector_le_def vector_less_def all Cart_eq
+  show "x\<le>x" "(x < y) = (x \<le> y \<and> \<not> y \<le> x)" "x\<le>y \<or> y\<le>x" unfolding * by(auto simp only:field_simps)
+  { assume "x\<le>y" "y\<le>z" thus "x\<le>z" unfolding * by(auto simp only:field_simps) }
+  { assume "x\<le>y" "y\<le>x" thus "x=y" unfolding * by(auto simp only:field_simps) }
+qed end
+
 text{* Also the scalar-vector multiplication. *}
 
 definition vector_scalar_mult:: "'a::times \<Rightarrow> 'a ^ 'n \<Rightarrow> 'a ^ 'n" (infixl "*s" 70)
@@ -123,25 +148,11 @@
 
 definition "vec x = (\<chi> i. x)"
 
-text{* Dot products. *}
-
-definition dot :: "'a::{comm_monoid_add, times} ^ 'n \<Rightarrow> 'a ^ 'n \<Rightarrow> 'a" (infix "\<bullet>" 70) where
-  "x \<bullet> y = setsum (\<lambda>i. x$i * y$i) UNIV"
-
-lemma dot_1[simp]: "(x::'a::{comm_monoid_add, times}^1) \<bullet> y = (x$1) * (y$1)"
-  by (simp add: dot_def setsum_1)
-
-lemma dot_2[simp]: "(x::'a::{comm_monoid_add, times}^2) \<bullet> y = (x$1) * (y$1) + (x$2) * (y$2)"
-  by (simp add: dot_def setsum_2)
-
-lemma dot_3[simp]: "(x::'a::{comm_monoid_add, times}^3) \<bullet> y = (x$1) * (y$1) + (x$2) * (y$2) + (x$3) * (y$3)"
-  by (simp add: dot_def setsum_3)
-
 subsection {* A naive proof procedure to lift really trivial arithmetic stuff from the basis of the vector space. *}
 
 method_setup vector = {*
 let
-  val ss1 = HOL_basic_ss addsimps [@{thm dot_def}, @{thm setsum_addf} RS sym,
+  val ss1 = HOL_basic_ss addsimps [@{thm setsum_addf} RS sym,
   @{thm setsum_subtractf} RS sym, @{thm setsum_right_distrib},
   @{thm setsum_left_distrib}, @{thm setsum_negf} RS sym]
   val ss2 = @{simpset} addsimps
@@ -165,8 +176,6 @@
 lemma vec_0[simp]: "vec 0 = 0" by (vector vector_zero_def)
 lemma vec_1[simp]: "vec 1 = 1" by (vector vector_one_def)
 
-
-
 text{* Obvious "component-pushing". *}
 
 lemma vec_component [simp]: "vec x $ i = x"
@@ -791,6 +800,8 @@
 
 subsection {* Inner products *}
 
+abbreviation inner_bullet (infix "\<bullet>" 70)  where "x \<bullet> y \<equiv> inner x y"
+
 instantiation cart :: (real_inner, finite) real_inner
 begin
 
@@ -821,27 +832,6 @@
 
 end
 
-subsection{* Properties of the dot product.  *}
-
-lemma dot_sym: "(x::'a:: {comm_monoid_add, ab_semigroup_mult} ^ 'n) \<bullet> y = y \<bullet> x"
-  by (vector mult_commute)
-lemma dot_ladd: "((x::'a::ring ^ 'n) + y) \<bullet> z = (x \<bullet> z) + (y \<bullet> z)"
-  by (vector ring_simps)
-lemma dot_radd: "x \<bullet> (y + (z::'a::ring ^ 'n)) = (x \<bullet> y) + (x \<bullet> z)"
-  by (vector ring_simps)
-lemma dot_lsub: "((x::'a::ring ^ 'n) - y) \<bullet> z = (x \<bullet> z) - (y \<bullet> z)"
-  by (vector ring_simps)
-lemma dot_rsub: "(x::'a::ring ^ 'n) \<bullet> (y - z) = (x \<bullet> y) - (x \<bullet> z)"
-  by (vector ring_simps)
-lemma dot_lmult: "(c *s x) \<bullet> y = (c::'a::ring) * (x \<bullet> y)" by (vector ring_simps)
-lemma dot_rmult: "x \<bullet> (c *s y) = (c::'a::comm_ring) * (x \<bullet> y)" by (vector ring_simps)
-lemma dot_lneg: "(-x) \<bullet> (y::'a::ring ^ 'n) = -(x \<bullet> y)" by vector
-lemma dot_rneg: "(x::'a::ring ^ 'n) \<bullet> (-y) = -(x \<bullet> y)" by vector
-lemma dot_lzero[simp]: "0 \<bullet> x = (0::'a::{comm_monoid_add, mult_zero})" by vector
-lemma dot_rzero[simp]: "x \<bullet> 0 = (0::'a::{comm_monoid_add, mult_zero})" by vector
-lemma dot_pos_le[simp]: "(0::'a\<Colon>linordered_ring_strict) <= x \<bullet> x"
-  by (simp add: dot_def setsum_nonneg)
-
 lemma setsum_squares_eq_0_iff: assumes fS: "finite F" and fp: "\<forall>x \<in> F. f x \<ge> (0 ::'a::ordered_ab_group_add)" shows "setsum f F = 0 \<longleftrightarrow> (ALL x:F. f x = 0)"
 using fS fp setsum_nonneg[OF fp]
 proof (induct set: finite)
@@ -855,12 +845,6 @@
   show ?case by (simp add: h)
 qed
 
-lemma dot_eq_0: "x \<bullet> x = 0 \<longleftrightarrow> (x::'a::{linordered_ring_strict,ring_no_zero_divisors} ^ 'n) = 0"
-  by (simp add: dot_def setsum_squares_eq_0_iff Cart_eq)
-
-lemma dot_pos_lt[simp]: "(0 < x \<bullet> x) \<longleftrightarrow> (x::'a::{linordered_ring_strict,ring_no_zero_divisors} ^ 'n) \<noteq> 0" using dot_eq_0[of x] dot_pos_le[of x]
-  by (auto simp add: le_less)
-
 subsection{* The collapse of the general concepts to dimension one. *}
 
 lemma vector_one: "(x::'a ^1) = (\<chi> i. (x$1))"
@@ -994,12 +978,8 @@
 lemma norm_mul[simp]: "norm(a *s x) = abs(a) * norm x"
   by (simp add: norm_vector_def vector_component setL2_right_distrib
            abs_mult cong: strong_setL2_cong)
-lemma norm_eq_0_dot: "(norm x = 0) \<longleftrightarrow> (x \<bullet> x = (0::real))"
-  by (simp add: norm_vector_def dot_def setL2_def power2_eq_square)
-lemma real_vector_norm_def: "norm x = sqrt (x \<bullet> x)"
-  by (simp add: norm_vector_def setL2_def dot_def power2_eq_square)
-lemma norm_pow_2: "norm x ^ 2 = x \<bullet> x"
-  by (simp add: real_vector_norm_def)
+lemma norm_eq_0_dot: "(norm x = 0) \<longleftrightarrow> (inner x x = (0::real))"
+  by (simp add: norm_vector_def setL2_def power2_eq_square)
 lemma norm_eq_0_imp: "norm x = 0 ==> x = (0::real ^'n)" by (metis norm_eq_zero)
 lemma vector_mul_eq_0[simp]: "(a *s x = 0) \<longleftrightarrow> a = (0::'a::idom) \<or> x = 0"
   by vector
@@ -1011,34 +991,17 @@
   by (metis vector_mul_lcancel)
 lemma vector_mul_rcancel_imp: "x \<noteq> 0 \<Longrightarrow> (a::real) *s x = b *s x ==> a = b"
   by (metis vector_mul_rcancel)
+
 lemma norm_cauchy_schwarz:
   fixes x y :: "real ^ 'n"
-  shows "x \<bullet> y <= norm x * norm y"
-proof-
-  {assume "norm x = 0"
-    hence ?thesis by (simp add: dot_lzero dot_rzero)}
-  moreover
-  {assume "norm y = 0"
-    hence ?thesis by (simp add: dot_lzero dot_rzero)}
-  moreover
-  {assume h: "norm x \<noteq> 0" "norm y \<noteq> 0"
-    let ?z = "norm y *s x - norm x *s y"
-    from h have p: "norm x * norm y > 0" by (metis norm_ge_zero le_less zero_compare_simps)
-    from dot_pos_le[of ?z]
-    have "(norm x * norm y) * (x \<bullet> y) \<le> norm x ^2 * norm y ^2"
-      apply (simp add: dot_rsub dot_lsub dot_lmult dot_rmult ring_simps)
-      by (simp add: norm_pow_2[symmetric] power2_eq_square dot_sym)
-    hence "x\<bullet>y \<le> (norm x ^2 * norm y ^2) / (norm x * norm y)" using p
-      by (simp add: field_simps)
-    hence ?thesis using h by (simp add: power2_eq_square)}
-  ultimately show ?thesis by metis
-qed
+  shows "inner x y <= norm x * norm y"
+  using Cauchy_Schwarz_ineq2[of x y] by auto
 
 lemma norm_cauchy_schwarz_abs:
   fixes x y :: "real ^ 'n"
-  shows "\<bar>x \<bullet> y\<bar> \<le> norm x * norm y"
+  shows "\<bar>inner x y\<bar> \<le> norm x * norm y"
   using norm_cauchy_schwarz[of x y] norm_cauchy_schwarz[of x "-y"]
-  by (simp add: real_abs_def dot_rneg)
+  by (simp add: real_abs_def)
 
 lemma norm_triangle_sub:
   fixes x y :: "'a::real_normed_vector"
@@ -1064,21 +1027,21 @@
 lemma real_abs_sub_norm: "\<bar>norm (x::real ^ 'n) - norm y\<bar> <= norm(x - y)"
   by (rule norm_triangle_ineq3)
 lemma norm_le: "norm(x::real ^ 'n) <= norm(y) \<longleftrightarrow> x \<bullet> x <= y \<bullet> y"
-  by (simp add: real_vector_norm_def)
+  by (simp add: norm_eq_sqrt_inner) 
 lemma norm_lt: "norm(x::real ^ 'n) < norm(y) \<longleftrightarrow> x \<bullet> x < y \<bullet> y"
-  by (simp add: real_vector_norm_def)
-lemma norm_eq: "norm(x::real ^ 'n) = norm y \<longleftrightarrow> x \<bullet> x = y \<bullet> y"
-  by (simp add: order_eq_iff norm_le)
+  by (simp add: norm_eq_sqrt_inner)
+lemma norm_eq: "norm(x::real ^ 'n) = norm (y::real ^ 'n) \<longleftrightarrow> x \<bullet> x = y \<bullet> y"
+  apply(subst order_eq_iff) unfolding norm_le by auto
 lemma norm_eq_1: "norm(x::real ^ 'n) = 1 \<longleftrightarrow> x \<bullet> x = 1"
-  by (simp add: real_vector_norm_def)
+  unfolding norm_eq_sqrt_inner by auto
 
 text{* Squaring equations and inequalities involving norms.  *}
 
 lemma dot_square_norm: "x \<bullet> x = norm(x)^2"
-  by (simp add: real_vector_norm_def)
+  by (simp add: norm_eq_sqrt_inner)
 
 lemma norm_eq_square: "norm(x) = a \<longleftrightarrow> 0 <= a \<and> x \<bullet> x = a^2"
-  by (auto simp add: real_vector_norm_def)
+  by (auto simp add: norm_eq_sqrt_inner)
 
 lemma real_abs_le_square_iff: "\<bar>x\<bar> \<le> \<bar>y\<bar> \<longleftrightarrow> (x::real)^2 \<le> y^2"
 proof-
@@ -1106,12 +1069,14 @@
 
 text{* Dot product in terms of the norm rather than conversely. *}
 
+lemmas inner_simps = inner.add_left inner.add_right inner.diff_right inner.diff_left 
+inner.scaleR_left inner.scaleR_right
+
 lemma dot_norm: "x \<bullet> y = (norm(x + y) ^2 - norm x ^ 2 - norm y ^ 2) / 2"
-  by (simp add: norm_pow_2 dot_ladd dot_radd dot_sym)
+  unfolding power2_norm_eq_inner inner_simps inner_commute by auto 
 
 lemma dot_norm_neg: "x \<bullet> y = ((norm x ^ 2 + norm y ^ 2) - norm(x - y) ^ 2) / 2"
-  by (simp add: norm_pow_2 dot_ladd dot_radd dot_lsub dot_rsub dot_sym)
-
+  unfolding power2_norm_eq_inner inner_simps inner_commute by(auto simp add:group_simps)
 
 text{* Equality of vectors in terms of @{term "op \<bullet>"} products.    *}
 
@@ -1120,14 +1085,12 @@
   assume "?lhs" then show ?rhs by simp
 next
   assume ?rhs
-  then have "x \<bullet> x - x \<bullet> y = 0 \<and> x \<bullet> y - y\<bullet> y = 0" by simp
-  hence "x \<bullet> (x - y) = 0 \<and> y \<bullet> (x - y) = 0"
-    by (simp add: dot_rsub dot_lsub dot_sym)
-  then have "(x - y) \<bullet> (x - y) = 0" by (simp add: ring_simps dot_lsub dot_rsub)
-  then show "x = y" by (simp add: dot_eq_0)
+  then have "x \<bullet> x - x \<bullet> y = 0 \<and> x \<bullet> y - y \<bullet> y = 0" by simp
+  hence "x \<bullet> (x - y) = 0 \<and> y \<bullet> (x - y) = 0" by (simp add: inner_simps inner_commute)
+  then have "(x - y) \<bullet> (x - y) = 0" by (simp add: ring_simps inner_simps inner_commute)
+  then show "x = y" by (simp)
 qed
 
-
 subsection{* General linear decision procedure for normed spaces. *}
 
 lemma norm_cmul_rule_thm:
@@ -1456,15 +1419,14 @@
   finally show ?thesis .
 qed
 
-lemma dot_lsum: "finite S \<Longrightarrow> setsum f S \<bullet> (y::'a::{comm_ring}^'n) = setsum (\<lambda>x. f x \<bullet> y) S "
-  by (induct rule: finite_induct, auto simp add: dot_lzero dot_ladd dot_radd)
-
-lemma dot_rsum: "finite S \<Longrightarrow> (y::'a::{comm_ring}^'n) \<bullet> setsum f S = setsum (\<lambda>x. y \<bullet> f x) S "
-  by (induct rule: finite_induct, auto simp add: dot_rzero dot_radd)
+lemma dot_lsum: "finite S \<Longrightarrow> setsum f S \<bullet> (y::'a::{real_inner}^'n) = setsum (\<lambda>x. f x \<bullet> y) S "
+  apply(induct rule: finite_induct) by(auto simp add: inner_simps)
+
+lemma dot_rsum: "finite S \<Longrightarrow> (y::'a::{real_inner}^'n) \<bullet> setsum f S = setsum (\<lambda>x. y \<bullet> f x) S "
+  apply(induct rule: finite_induct) by(auto simp add: inner_simps)
 
 subsection{* Basis vectors in coordinate directions. *}
 
-
 definition "basis k = (\<chi> i. if i = k then 1 else 0)"
 
 lemma basis_component [simp]: "basis k $ i = (if k=i then 1 else 0)"
@@ -1475,11 +1437,9 @@
 
 lemma norm_basis:
   shows "norm (basis k :: real ^'n) = 1"
-  apply (simp add: basis_def real_vector_norm_def dot_def)
+  apply (simp add: basis_def norm_eq_sqrt_inner) unfolding inner_vector_def
   apply (vector delta_mult_idempotent)
-  using setsum_delta[of "UNIV :: 'n set" "k" "\<lambda>k. 1::real"]
-  apply auto
-  done
+  using setsum_delta[of "UNIV :: 'n set" "k" "\<lambda>k. 1::real"] by auto
 
 lemma norm_basis_1: "norm(basis 1 :: real ^'n::{finite,one}) = 1"
   by (rule norm_basis)
@@ -1515,8 +1475,8 @@
   by auto
 
 lemma dot_basis:
-  shows "basis i \<bullet> x = x$i" "x \<bullet> (basis i :: 'a^'n) = (x$i :: 'a::semiring_1)"
-  by (auto simp add: dot_def basis_def cond_application_beta  cond_value_iff setsum_delta cong del: if_weak_cong)
+  shows "basis i \<bullet> x = x$i" "x \<bullet> (basis i) = (x$i)"
+  unfolding inner_vector_def by (auto simp add: basis_def cond_application_beta  cond_value_iff setsum_delta cong del: if_weak_cong)
 
 lemma inner_basis:
   fixes x :: "'a::{real_inner, real_algebra_1} ^ 'n"
@@ -1532,7 +1492,7 @@
   shows "basis k \<noteq> (0:: 'a::semiring_1 ^'n)"
   by (simp add: basis_eq_0)
 
-lemma vector_eq_ldot: "(\<forall>x. x \<bullet> y = x \<bullet> z) \<longleftrightarrow> y = (z::'a::semiring_1^'n)"
+lemma vector_eq_ldot: "(\<forall>x. x \<bullet> y = x \<bullet> z) \<longleftrightarrow> y = (z::real^'n)"
   apply (auto simp add: Cart_eq dot_basis)
   apply (erule_tac x="basis i" in allE)
   apply (simp add: dot_basis)
@@ -1541,7 +1501,7 @@
   apply (simp add: Cart_eq)
   done
 
-lemma vector_eq_rdot: "(\<forall>z. x \<bullet> z = y \<bullet> z) \<longleftrightarrow> x = (y::'a::semiring_1^'n)"
+lemma vector_eq_rdot: "(\<forall>z. x \<bullet> z = y \<bullet> z) \<longleftrightarrow> x = (y::real^'n)"
   apply (auto simp add: Cart_eq dot_basis)
   apply (erule_tac x="basis i" in allE)
   apply (simp add: dot_basis)
@@ -1555,31 +1515,29 @@
 definition "orthogonal x y \<longleftrightarrow> (x \<bullet> y = 0)"
 
 lemma orthogonal_basis:
-  shows "orthogonal (basis i :: 'a^'n) x \<longleftrightarrow> x$i = (0::'a::ring_1)"
-  by (auto simp add: orthogonal_def dot_def basis_def cond_value_iff cond_application_beta setsum_delta cong del: if_weak_cong)
+  shows "orthogonal (basis i) x \<longleftrightarrow> x$i = (0::real)"
+  by (auto simp add: orthogonal_def inner_vector_def basis_def cond_value_iff cond_application_beta setsum_delta cong del: if_weak_cong)
 
 lemma orthogonal_basis_basis:
-  shows "orthogonal (basis i :: 'a::ring_1^'n) (basis j) \<longleftrightarrow> i \<noteq> j"
+  shows "orthogonal (basis i :: real^'n) (basis j) \<longleftrightarrow> i \<noteq> j"
   unfolding orthogonal_basis[of i] basis_component[of j] by simp
 
   (* FIXME : Maybe some of these require less than comm_ring, but not all*)
 lemma orthogonal_clauses:
-  "orthogonal a (0::'a::comm_ring ^'n)"
-  "orthogonal a x ==> orthogonal a (c *s x)"
+  "orthogonal a (0::real ^'n)"
+  "orthogonal a x ==> orthogonal a (c *\<^sub>R x)"
   "orthogonal a x ==> orthogonal a (-x)"
   "orthogonal a x \<Longrightarrow> orthogonal a y ==> orthogonal a (x + y)"
   "orthogonal a x \<Longrightarrow> orthogonal a y ==> orthogonal a (x - y)"
   "orthogonal 0 a"
-  "orthogonal x a ==> orthogonal (c *s x) a"
+  "orthogonal x a ==> orthogonal (c *\<^sub>R x) a"
   "orthogonal x a ==> orthogonal (-x) a"
   "orthogonal x a \<Longrightarrow> orthogonal y a ==> orthogonal (x + y) a"
   "orthogonal x a \<Longrightarrow> orthogonal y a ==> orthogonal (x - y) a"
-  unfolding orthogonal_def dot_rneg dot_rmult dot_radd dot_rsub
-  dot_lzero dot_rzero dot_lneg dot_lmult dot_ladd dot_lsub
-  by simp_all
-
-lemma orthogonal_commute: "orthogonal (x::'a::{ab_semigroup_mult,comm_monoid_add} ^'n)y \<longleftrightarrow> orthogonal y x"
-  by (simp add: orthogonal_def dot_sym)
+  unfolding orthogonal_def inner_simps by auto
+
+lemma orthogonal_commute: "orthogonal (x::real ^'n)y \<longleftrightarrow> orthogonal y x"
+  by (simp add: orthogonal_def inner_commute)
 
 subsection{* Explicit vector construction from lists. *}
 
@@ -1969,7 +1927,7 @@
 lemma choice_iff: "(\<forall>x. \<exists>y. P x y) \<longleftrightarrow> (\<exists>f. \<forall>x. P x (f x))" by metis
 
 lemma adjoint_works_lemma:
-  fixes f:: "'a::ring_1 ^'n \<Rightarrow> 'a ^'m"
+  fixes f:: "real ^'n \<Rightarrow> real ^'m"
   assumes lf: "linear f"
   shows "\<forall>x y. f x \<bullet> y = x \<bullet> adjoint f y"
 proof-
@@ -1977,8 +1935,8 @@
   let ?M = "UNIV :: 'm set"
   have fN: "finite ?N" by simp
   have fM: "finite ?M" by simp
-  {fix y:: "'a ^ 'm"
-    let ?w = "(\<chi> i. (f (basis i) \<bullet> y)) :: 'a ^ 'n"
+  {fix y:: "real ^ 'm"
+    let ?w = "(\<chi> i. (f (basis i) \<bullet> y)) :: real ^ 'n"
     {fix x
       have "f x \<bullet> y = f (setsum (\<lambda>i. (x$i) *s basis i) ?N) \<bullet> y"
         by (simp only: basis_expansion)
@@ -1987,7 +1945,7 @@
         by (simp add: linear_cmul[OF lf])
       finally have "f x \<bullet> y = x \<bullet> ?w"
         apply (simp only: )
-        apply (simp add: dot_def setsum_left_distrib setsum_right_distrib setsum_commute[of _ ?M ?N] ring_simps)
+        apply (simp add: inner_vector_def setsum_left_distrib setsum_right_distrib setsum_commute[of _ ?M ?N] ring_simps)
         done}
   }
   then show ?thesis unfolding adjoint_def
@@ -1997,34 +1955,34 @@
 qed
 
 lemma adjoint_works:
-  fixes f:: "'a::ring_1 ^'n \<Rightarrow> 'a ^'m"
+  fixes f:: "real ^'n \<Rightarrow> real ^'m"
   assumes lf: "linear f"
   shows "x \<bullet> adjoint f y = f x \<bullet> y"
   using adjoint_works_lemma[OF lf] by metis
 
-
 lemma adjoint_linear:
-  fixes f :: "'a::comm_ring_1 ^'n \<Rightarrow> 'a ^'m"
+  fixes f:: "real ^'n \<Rightarrow> real ^'m"
   assumes lf: "linear f"
   shows "linear (adjoint f)"
-  by (simp add: linear_def vector_eq_ldot[symmetric] dot_radd dot_rmult adjoint_works[OF lf])
+  unfolding linear_def vector_eq_ldot[symmetric] apply safe
+  unfolding inner_simps smult_conv_scaleR adjoint_works[OF lf] by auto
 
 lemma adjoint_clauses:
-  fixes f:: "'a::comm_ring_1 ^'n \<Rightarrow> 'a ^'m"
+  fixes f:: "real ^'n \<Rightarrow> real ^'m"
   assumes lf: "linear f"
   shows "x \<bullet> adjoint f y = f x \<bullet> y"
   and "adjoint f y \<bullet> x = y \<bullet> f x"
-  by (simp_all add: adjoint_works[OF lf] dot_sym )
+  by (simp_all add: adjoint_works[OF lf] inner_commute)
 
 lemma adjoint_adjoint:
-  fixes f:: "'a::comm_ring_1 ^ 'n \<Rightarrow> 'a ^'m"
+  fixes f:: "real ^'n \<Rightarrow> real ^'m"
   assumes lf: "linear f"
   shows "adjoint (adjoint f) = f"
   apply (rule ext)
   by (simp add: vector_eq_ldot[symmetric] adjoint_clauses[OF adjoint_linear[OF lf]] adjoint_clauses[OF lf])
 
 lemma adjoint_unique:
-  fixes f:: "'a::comm_ring_1 ^ 'n \<Rightarrow> 'a ^'m"
+  fixes f:: "real ^'n \<Rightarrow> real ^'m"
   assumes lf: "linear f" and u: "\<forall>x y. f' x \<bullet> y = x \<bullet> f y"
   shows "f' = adjoint f"
   apply (rule ext)
@@ -2101,11 +2059,11 @@
   by (auto simp add: basis_def cond_value_iff cond_application_beta setsum_delta[OF finite] cong del: if_weak_cong)
 
 lemma matrix_vector_mul_component:
-  shows "((A::'a::semiring_1^_^_) *v x)$k = (A$k) \<bullet> x"
-  by (simp add: matrix_vector_mult_def dot_def)
-
-lemma dot_lmul_matrix: "((x::'a::comm_semiring_1 ^_) v* A) \<bullet> y = x \<bullet> (A *v y)"
-  apply (simp add: dot_def matrix_vector_mult_def vector_matrix_mult_def setsum_left_distrib setsum_right_distrib mult_ac)
+  shows "((A::real^_^_) *v x)$k = (A$k) \<bullet> x"
+  by (simp add: matrix_vector_mult_def inner_vector_def)
+
+lemma dot_lmul_matrix: "((x::real ^_) v* A) \<bullet> y = x \<bullet> (A *v y)"
+  apply (simp add: inner_vector_def matrix_vector_mult_def vector_matrix_mult_def setsum_left_distrib setsum_right_distrib mult_ac)
   apply (subst setsum_commute)
   by simp
 
@@ -2133,7 +2091,7 @@
 text{* Two sometimes fruitful ways of looking at matrix-vector multiplication. *}
 
 lemma matrix_mult_dot: "A *v x = (\<chi> i. A$i \<bullet> x)"
-  by (simp add: matrix_vector_mult_def dot_def)
+  by (simp add: matrix_vector_mult_def inner_vector_def)
 
 lemma matrix_mult_vsum: "(A::'a::comm_semiring_1^'n^'m) *v x = setsum (\<lambda>i. (x$i) *s column i A) (UNIV:: 'n set)"
   by (simp add: matrix_vector_mult_def Cart_eq column_def mult_commute)
@@ -2194,15 +2152,15 @@
 lemma matrix_vector_column:"(A::'a::comm_semiring_1^'n^_) *v x = setsum (\<lambda>i. (x$i) *s ((transpose A)$i)) (UNIV:: 'n set)"
   by (simp add: matrix_vector_mult_def transpose_def Cart_eq mult_commute)
 
-lemma adjoint_matrix: "adjoint(\<lambda>x. (A::'a::comm_ring_1^'n^'m) *v x) = (\<lambda>x. transpose A *v x)"
+lemma adjoint_matrix: "adjoint(\<lambda>x. (A::real^'n^'m) *v x) = (\<lambda>x. transpose A *v x)"
   apply (rule adjoint_unique[symmetric])
   apply (rule matrix_vector_mul_linear)
-  apply (simp add: transpose_def dot_def matrix_vector_mult_def setsum_left_distrib setsum_right_distrib)
+  apply (simp add: transpose_def inner_vector_def matrix_vector_mult_def setsum_left_distrib setsum_right_distrib)
   apply (subst setsum_commute)
   apply (auto simp add: mult_ac)
   done
 
-lemma matrix_adjoint: assumes lf: "linear (f :: 'a::comm_ring_1^'n \<Rightarrow> 'a ^'m)"
+lemma matrix_adjoint: assumes lf: "linear (f :: real^'n \<Rightarrow> real ^'m)"
   shows "matrix(adjoint f) = transpose(matrix f)"
   apply (subst matrix_vector_mul[OF lf])
   unfolding adjoint_matrix matrix_of_matrix_vector_mul ..
@@ -2514,11 +2472,11 @@
   apply (auto simp add: Cart_eq matrix_vector_mult_def column_def  mult_commute UNIV_1)
   done
 
-lemma linear_to_scalars: assumes lf: "linear (f::'a::comm_ring_1 ^'n \<Rightarrow> 'a^1)"
+lemma linear_to_scalars: assumes lf: "linear (f::real ^'n \<Rightarrow> real^1)"
   shows "f = (\<lambda>x. vec1(row 1 (matrix f) \<bullet> x))"
   apply (rule ext)
   apply (subst matrix_works[OF lf, symmetric])
-  apply (simp add: Cart_eq matrix_vector_mult_def row_def dot_def mult_commute forall_1)
+  apply (simp add: Cart_eq matrix_vector_mult_def row_def inner_vector_def mult_commute forall_1)
   done
 
 lemma dest_vec1_eq_0: "dest_vec1 x = 0 \<longleftrightarrow> x = 0"
@@ -2624,11 +2582,11 @@
   have th0: "norm x = norm (pastecart (fstcart x) (sndcart x))"
     by (simp add: pastecart_fst_snd)
   have th1: "fstcart x \<bullet> fstcart x \<le> pastecart (fstcart x) (sndcart x) \<bullet> pastecart (fstcart x) (sndcart x)"
-    by (simp add: dot_def setsum_UNIV_sum pastecart_def setsum_nonneg)
+    by (simp add: inner_vector_def setsum_UNIV_sum pastecart_def setsum_nonneg)
   then show ?thesis
     unfolding th0
-    unfolding real_vector_norm_def real_sqrt_le_iff id_def
-    by (simp add: dot_def)
+    unfolding norm_eq_sqrt_inner real_sqrt_le_iff id_def
+    by (simp add: inner_vector_def)
 qed
 
 lemma dist_fstcart: "dist(fstcart (x::real^_)) (fstcart y) <= dist x y"
@@ -2639,18 +2597,18 @@
   have th0: "norm x = norm (pastecart (fstcart x) (sndcart x))"
     by (simp add: pastecart_fst_snd)
   have th1: "sndcart x \<bullet> sndcart x \<le> pastecart (fstcart x) (sndcart x) \<bullet> pastecart (fstcart x) (sndcart x)"
-    by (simp add: dot_def setsum_UNIV_sum pastecart_def setsum_nonneg)
+    by (simp add: inner_vector_def setsum_UNIV_sum pastecart_def setsum_nonneg)
   then show ?thesis
     unfolding th0
-    unfolding real_vector_norm_def real_sqrt_le_iff id_def
-    by (simp add: dot_def)
+    unfolding norm_eq_sqrt_inner real_sqrt_le_iff id_def
+    by (simp add: inner_vector_def)
 qed
 
 lemma dist_sndcart: "dist(sndcart (x::real^_)) (sndcart y) <= dist x y"
   unfolding dist_norm by (metis sndcart_sub[symmetric] norm_sndcart)
 
-lemma dot_pastecart: "(pastecart (x1::'a::{times,comm_monoid_add}^'n) (x2::'a::{times,comm_monoid_add}^'m)) \<bullet> (pastecart y1 y2) =  x1 \<bullet> y1 + x2 \<bullet> y2"
-  by (simp add: dot_def setsum_UNIV_sum pastecart_def)
+lemma dot_pastecart: "(pastecart (x1::real^'n) (x2::real^'m)) \<bullet> (pastecart y1 y2) =  x1 \<bullet> y1 + x2 \<bullet> y2"
+  by (simp add: inner_vector_def setsum_UNIV_sum pastecart_def)
 
 text {* TODO: move to NthRoot *}
 lemma sqrt_add_le_add_sqrt:
@@ -3586,8 +3544,8 @@
       {fix x assume xs: "x \<in> s"
         have t: "t \<subseteq> (insert b (insert a (t -{b})))" using b by auto
         from b(1) have "b \<in> span t" by (simp add: span_superset)
-        have bs: "b \<in> span (insert a (t - {b}))"
-          by (metis in_span_delete a sp mem_def subset_eq)
+        have bs: "b \<in> span (insert a (t - {b}))" apply(rule in_span_delete)
+          using  a sp unfolding subset_eq by auto
         from xs sp have "x \<in> span t" by blast
         with span_mono[OF t]
         have x: "x \<in> span (insert b (insert a (t - {b})))" ..
@@ -3842,11 +3800,8 @@
     (* FIXME : Move to some general theory ?*)
 definition "pairwise R S \<longleftrightarrow> (\<forall>x \<in> S. \<forall>y\<in> S. x\<noteq>y \<longrightarrow> R x y)"
 
-lemma vector_sub_project_orthogonal: "(b::'a::linordered_field^'n) \<bullet> (x - ((b \<bullet> x) / (b\<bullet>b)) *s b) = 0"
-  apply (cases "b = 0", simp)
-  apply (simp add: dot_rsub dot_rmult)
-  unfolding times_divide_eq_right[symmetric]
-  by (simp add: field_simps dot_eq_0)
+lemma vector_sub_project_orthogonal: "(b::real^'n) \<bullet> (x - ((b \<bullet> x) / (b \<bullet> b)) *s b) = 0"
+  unfolding inner_simps smult_conv_scaleR by auto
 
 lemma basis_orthogonal:
   fixes B :: "(real ^'n) set"
@@ -3861,7 +3816,7 @@
   from `\<exists>C. finite C \<and> card C \<le> card B \<and> span C = span B \<and> pairwise orthogonal C`
   obtain C where C: "finite C" "card C \<le> card B"
     "span C = span B" "pairwise orthogonal C" by blast
-  let ?a = "a - setsum (\<lambda>x. (x\<bullet>a / (x\<bullet>x)) *s x) C"
+  let ?a = "a - setsum (\<lambda>x. (x \<bullet> a / (x \<bullet> x)) *s x) C"
   let ?C = "insert ?a C"
   from C(1) have fC: "finite ?C" by simp
   from fB aB C(1,2) have cC: "card ?C \<le> card (insert a B)" by (simp add: card_insert_if)
@@ -3887,13 +3842,12 @@
       have fth: "finite (C - {y})" using C by simp
       have "orthogonal x y"
         using xa ya
-        unfolding orthogonal_def xa dot_lsub dot_rsub diff_eq_0_iff_eq
+        unfolding orthogonal_def xa inner_simps diff_eq_0_iff_eq
         apply simp
         apply (subst Cy)
         using C(1) fth
-        apply (simp only: setsum_clauses)
-        thm dot_ladd
-        apply (auto simp add: dot_ladd dot_radd dot_lmult dot_rmult dot_eq_0 dot_sym[of y a] dot_lsum[OF fth])
+        apply (simp only: setsum_clauses) unfolding smult_conv_scaleR
+        apply (auto simp add: inner_simps inner_eq_zero_iff inner_commute[of y a] dot_lsum[OF fth])
         apply (rule setsum_0')
         apply clarsimp
         apply (rule C(4)[unfolded pairwise_def orthogonal_def, rule_format])
@@ -3904,13 +3858,13 @@
       have fth: "finite (C - {x})" using C by simp
       have "orthogonal x y"
         using xa ya
-        unfolding orthogonal_def ya dot_rsub dot_lsub diff_eq_0_iff_eq
+        unfolding orthogonal_def ya inner_simps diff_eq_0_iff_eq
         apply simp
         apply (subst Cx)
         using C(1) fth
-        apply (simp only: setsum_clauses)
-        apply (subst dot_sym[of x])
-        apply (auto simp add: dot_radd dot_rmult dot_eq_0 dot_sym[of x a] dot_rsum[OF fth])
+        apply (simp only: setsum_clauses) unfolding smult_conv_scaleR
+        apply (subst inner_commute[of x])
+        apply (auto simp add: inner_simps inner_eq_zero_iff inner_commute[of x a] dot_rsum[OF fth])
         apply (rule setsum_0')
         apply clarsimp
         apply (rule C(4)[unfolded pairwise_def orthogonal_def, rule_format])
@@ -3945,7 +3899,8 @@
 qed
 
 lemma span_eq: "span S = span T \<longleftrightarrow> S \<subseteq> span T \<and> T \<subseteq> span S"
-  by (metis set_eq_subset span_mono span_span span_inc) (* FIXME: slow *)
+  using span_inc[unfolded subset_eq] using span_mono[of T "span S"] span_mono[of S "span T"]
+  by(auto simp add: span_span)
 
 (* ------------------------------------------------------------------------- *)
 (* Low-dimensional subset is in a hyperplane (weak orthogonal complement).   *)
@@ -3962,8 +3917,8 @@
   from B have fB: "finite B" "card B = dim S" using independent_bound by auto
   from span_mono[OF B(2)] span_mono[OF B(3)]
   have sSB: "span S = span B" by (simp add: span_span)
-  let ?a = "a - setsum (\<lambda>b. (a\<bullet>b / (b\<bullet>b)) *s b) B"
-  have "setsum (\<lambda>b. (a\<bullet>b / (b\<bullet>b)) *s b) B \<in> span S"
+  let ?a = "a - setsum (\<lambda>b. (a \<bullet> b / (b \<bullet> b)) *s b) B"
+  have "setsum (\<lambda>b. (a \<bullet> b / (b \<bullet> b)) *s b) B \<in> span S"
     unfolding sSB
     apply (rule span_setsum[OF fB(1)])
     apply clarsimp
@@ -3972,20 +3927,20 @@
   with a have a0:"?a  \<noteq> 0" by auto
   have "\<forall>x\<in>span B. ?a \<bullet> x = 0"
   proof(rule span_induct')
-    show "subspace (\<lambda>x. ?a \<bullet> x = 0)"
-      by (auto simp add: subspace_def mem_def dot_radd dot_rmult)
-  next
+    show "subspace (\<lambda>x. ?a \<bullet> x = 0)" by (auto simp add: subspace_def mem_def inner_simps smult_conv_scaleR)
+  
+next
     {fix x assume x: "x \<in> B"
       from x have B': "B = insert x (B - {x})" by blast
       have fth: "finite (B - {x})" using fB by simp
       have "?a \<bullet> x = 0"
         apply (subst B') using fB fth
         unfolding setsum_clauses(2)[OF fth]
-        apply simp
-        apply (clarsimp simp add: dot_lsub dot_ladd dot_lmult dot_lsum dot_eq_0)
+        apply simp unfolding inner_simps smult_conv_scaleR
+        apply (clarsimp simp add: inner_simps inner_eq_zero_iff smult_conv_scaleR dot_lsum)
         apply (rule setsum_0', rule ballI)
-        unfolding dot_sym
-        by (auto simp add: x field_simps dot_eq_0 intro: B(5)[unfolded pairwise_def orthogonal_def, rule_format])}
+        unfolding inner_commute
+        by (auto simp add: x field_simps inner_eq_zero_iff intro: B(5)[unfolded pairwise_def orthogonal_def, rule_format])}
     then show "\<forall>x \<in> B. ?a \<bullet> x = 0" by blast
   qed
   with a0 show ?thesis unfolding sSB by (auto intro: exI[where x="?a"])
@@ -4754,8 +4709,8 @@
   "columnvector (A *v v) = A ** columnvector v"
   by (vector columnvector_def matrix_matrix_mult_def matrix_vector_mult_def)
 
-lemma dot_matrix_product: "(x::'a::semiring_1^'n) \<bullet> y = (((rowvector x ::'a^'n^1) ** (columnvector y :: 'a^1^'n))$1)$1"
-  by (vector matrix_matrix_mult_def rowvector_def columnvector_def dot_def)
+lemma dot_matrix_product: "(x::real^'n) \<bullet> y = (((rowvector x ::real^'n^1) ** (columnvector y :: real^1^'n))$1)$1"
+  by (vector matrix_matrix_mult_def rowvector_def columnvector_def inner_vector_def)
 
 lemma dot_matrix_vector_mul:
   fixes A B :: "real ^'n ^'n" and x y :: "real ^'n"
@@ -4911,20 +4866,18 @@
     by (auto intro: real_sqrt_pow2)
   have th: "sqrt (real ?d) * infnorm x \<ge> 0"
     by (simp add: zero_le_mult_iff real_sqrt_ge_0_iff infnorm_pos_le)
-  have th1: "x\<bullet>x \<le> (sqrt (real ?d) * infnorm x)^2"
+  have th1: "x \<bullet> x \<le> (sqrt (real ?d) * infnorm x)^2"
     unfolding power_mult_distrib d2
+    unfolding real_of_nat_def inner_vector_def
+    apply (subst power2_abs[symmetric]) 
+    apply (rule setsum_bounded)
+    apply(auto simp add: power2_eq_square[symmetric])
     apply (subst power2_abs[symmetric])
-    unfolding real_of_nat_def dot_def power2_eq_square[symmetric]
-    apply (subst power2_abs[symmetric])
-    apply (rule setsum_bounded)
     apply (rule power_mono)
-    unfolding abs_of_nonneg[OF infnorm_pos_le]
     unfolding infnorm_def  Sup_finite_ge_iff[OF infnorm_set_lemma]
-    unfolding infnorm_set_image bex_simps
-    apply blast
-    by (rule abs_ge_zero)
-  from real_le_lsqrt[OF dot_pos_le th th1]
-  show ?thesis unfolding real_vector_norm_def id_def .
+    unfolding infnorm_set_image bex_simps apply(rule_tac x=i in exI) by auto
+  from real_le_lsqrt[OF inner_ge_zero th th1]
+  show ?thesis unfolding norm_eq_sqrt_inner id_def .
 qed
 
 (* Equality in Cauchy-Schwarz and triangle inequalities.                     *)
@@ -4938,16 +4891,14 @@
     hence ?thesis by simp}
   moreover
   {assume x: "x \<noteq> 0" and y: "y \<noteq> 0"
-    from dot_eq_0[of "norm y *s x - norm x *s y"]
+    from inner_eq_zero_iff[of "norm y *s x - norm x *s y"]
     have "?rhs \<longleftrightarrow> (norm y * (norm y * norm x * norm x - norm x * (x \<bullet> y)) - norm x * (norm y * (y \<bullet> x) - norm x * norm y * norm y) =  0)"
       using x y
-      unfolding dot_rsub dot_lsub dot_lmult dot_rmult
-      unfolding norm_pow_2[symmetric] power2_eq_square diff_eq_0_iff_eq apply (simp add: dot_sym)
-      apply (simp add: ring_simps)
-      apply metis
-      done
+      unfolding inner_simps smult_conv_scaleR
+      unfolding power2_norm_eq_inner[symmetric] power2_eq_square diff_eq_0_iff_eq apply (simp add: inner_commute)
+      apply (simp add: ring_simps) by metis
     also have "\<dots> \<longleftrightarrow> (2 * norm x * norm y * (norm x * norm y - x \<bullet> y) = 0)" using x y
-      by (simp add: ring_simps dot_sym)
+      by (simp add: ring_simps inner_commute)
     also have "\<dots> \<longleftrightarrow> ?lhs" using x y
       apply simp
       by metis
@@ -4969,8 +4920,7 @@
     unfolding norm_minus_cancel
       norm_mul by blast
   also have "\<dots> \<longleftrightarrow> ?lhs"
-    unfolding th[OF mult_nonneg_nonneg, OF norm_ge_zero[of x] norm_ge_zero[of y]] dot_lneg
-    by arith
+    unfolding th[OF mult_nonneg_nonneg, OF norm_ge_zero[of x] norm_ge_zero[of y]] inner_simps by auto
   finally show ?thesis ..
 qed
 
@@ -4993,8 +4943,8 @@
       by arith
     also have "\<dots> \<longleftrightarrow> norm x *s y = norm y *s x"
       unfolding norm_cauchy_schwarz_eq[symmetric]
-      unfolding norm_pow_2 dot_ladd dot_radd
-      by (simp add: norm_pow_2[symmetric] power2_eq_square dot_sym ring_simps)
+      unfolding power2_norm_eq_inner inner_simps
+      by (simp add: power2_norm_eq_inner[symmetric] power2_eq_square inner_commute ring_simps)
     finally have ?thesis .}
   ultimately show ?thesis by blast
 qed
@@ -5089,3 +5039,4 @@
 done
 
 end
+ 
\ No newline at end of file
--- a/src/HOL/Multivariate_Analysis/Integration.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Multivariate_Analysis/Integration.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -1310,9 +1310,12 @@
 lemma integral_empty[simp]: shows "integral {} f = 0"
   apply(rule integral_unique) using has_integral_empty .
 
-lemma has_integral_refl[intro]: shows "(f has_integral 0) {a..a}"
-  apply(rule has_integral_null) unfolding content_eq_0_interior
-  unfolding interior_closed_interval using interval_sing by auto
+lemma has_integral_refl[intro]: shows "(f has_integral 0) {a..a}" "(f has_integral 0) {a}"
+proof- have *:"{a} = {a..a}" apply(rule set_ext) unfolding mem_interval singleton_iff Cart_eq
+    apply safe prefer 3 apply(erule_tac x=i in allE) by(auto simp add: field_simps)
+  show "(f has_integral 0) {a..a}" "(f has_integral 0) {a}" unfolding *
+    apply(rule_tac[!] has_integral_null) unfolding content_eq_0_interior
+    unfolding interior_closed_interval using interval_sing by auto qed
 
 lemma integrable_on_refl[intro]: shows "f integrable_on {a..a}" unfolding integrable_on_def by auto
 
@@ -2811,6 +2814,9 @@
 
 subsection {* Special case of additivity we need for the FCT. *}
 
+lemma interval_bound_sing[simp]: "interval_upperbound {a} = a"  "interval_lowerbound {a} = a"
+  unfolding interval_upperbound_def interval_lowerbound_def unfolding Cart_eq by auto
+
 lemma additive_tagged_division_1: fixes f::"real^1 \<Rightarrow> 'a::real_normed_vector"
   assumes "dest_vec1 a \<le> dest_vec1 b" "p tagged_division_of {a..b}"
   shows "setsum (\<lambda>(x,k). f(interval_upperbound k) - f(interval_lowerbound k)) p = f b - f a"
--- a/src/HOL/Mutabelle/mutabelle_extra.ML	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Mutabelle/mutabelle_extra.ML	Wed Mar 03 10:40:40 2010 -0800
@@ -54,7 +54,7 @@
 
 (* quickcheck options *)
 (*val quickcheck_generator = "SML"*)
-val iterations = 100
+val iterations = 10
 val size = 5
 
 exception RANDOM;
--- a/src/HOL/NanoJava/AxSem.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/NanoJava/AxSem.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -13,10 +13,10 @@
       triple = "assn \<times> stmt \<times>  assn"
      etriple = "assn \<times> expr \<times> vassn"
 translations
-  "assn"   \<leftharpoondown> (type)"state => bool"
- "vassn"   \<leftharpoondown> (type)"val => assn"
-  "triple" \<leftharpoondown> (type)"assn \<times> stmt \<times>  assn"
- "etriple" \<leftharpoondown> (type)"assn \<times> expr \<times> vassn"
+  (type) "assn" \<leftharpoondown> (type) "state => bool"
+  (type) "vassn" \<leftharpoondown> (type) "val => assn"
+  (type) "triple" \<leftharpoondown> (type) "assn \<times> stmt \<times> assn"
+  (type) "etriple" \<leftharpoondown> (type) "assn \<times> expr \<times> vassn"
 
 
 subsection "Hoare Logic Rules"
--- a/src/HOL/NanoJava/Decl.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/NanoJava/Decl.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -38,11 +38,11 @@
         = "cdecl list"
 
 translations
-  "fdecl" \<leftharpoondown> (type)"fname \<times> ty"
-  "mdecl" \<leftharpoondown> (type)"mname \<times> ty \<times> ty \<times> stmt"
-  "class" \<leftharpoondown> (type)"cname \<times> fdecl list \<times> mdecl list"
-  "cdecl" \<leftharpoondown> (type)"cname \<times> class"
-  "prog " \<leftharpoondown> (type)"cdecl list"
+  (type) "fdecl" \<leftharpoondown> (type) "fname \<times> ty"
+  (type) "mdecl" \<leftharpoondown> (type) "mname \<times> ty \<times> ty \<times> stmt"
+  (type) "class" \<leftharpoondown> (type) "cname \<times> fdecl list \<times> mdecl list"
+  (type) "cdecl" \<leftharpoondown> (type) "cname \<times> class"
+  (type) "prog " \<leftharpoondown> (type) "cdecl list"
 
 consts
 
--- a/src/HOL/NanoJava/State.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/NanoJava/State.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -23,9 +23,8 @@
         obj = "cname \<times> fields"
 
 translations
-
-  "fields" \<leftharpoondown> (type)"fname => val option"
-  "obj"    \<leftharpoondown> (type)"cname \<times> fields"
+  (type) "fields" \<leftharpoondown> (type) "fname => val option"
+  (type) "obj"    \<leftharpoondown> (type) "cname \<times> fields"
 
 definition init_vars :: "('a \<rightharpoonup> 'b) => ('a \<rightharpoonup> val)" where
  "init_vars m == Option.map (\<lambda>T. Null) o m"
@@ -40,10 +39,9 @@
           locals :: locals
 
 translations
-
-  "heap"   \<leftharpoondown> (type)"loc   => obj option"
-  "locals" \<leftharpoondown> (type)"vname => val option"
-  "state" \<leftharpoondown> (type)"(|heap :: heap, locals :: locals|)"
+  (type) "heap" \<leftharpoondown> (type) "loc => obj option"
+  (type) "locals" \<leftharpoondown> (type) "vname => val option"
+  (type) "state" \<leftharpoondown> (type) "(|heap :: heap, locals :: locals|)"
 
 definition del_locs :: "state => state" where
  "del_locs s \<equiv> s (| locals := empty |)"
--- a/src/HOL/Old_Number_Theory/Euler.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Old_Number_Theory/Euler.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -162,8 +162,11 @@
 lemma aux2: "[| (a::int) < c; b < c |] ==> (a \<le> b | b \<le> a)"
   by auto
 
+lemma d22set_induct_old: "(\<And>a::int. 1 < a \<longrightarrow> P (a - 1) \<Longrightarrow> P a) \<Longrightarrow> P x"
+using d22set.induct by blast
+
 lemma SRStar_d22set_prop: "2 < p \<Longrightarrow> (SRStar p) = {1} \<union> (d22set (p - 1))"
-  apply (induct p rule: d22set.induct)
+  apply (induct p rule: d22set_induct_old)
   apply auto
   apply (simp add: SRStar_def d22set.simps)
   apply (simp add: SRStar_def d22set.simps, clarify)
--- a/src/HOL/Product_Type.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Product_Type.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -142,10 +142,10 @@
     by rule+
 qed
 
-syntax (xsymbols)
-  "*"      :: "[type, type] => type"         ("(_ \<times>/ _)" [21, 20] 20)
-syntax (HTML output)
-  "*"      :: "[type, type] => type"         ("(_ \<times>/ _)" [21, 20] 20)
+type_notation (xsymbols)
+  "*"  ("(_ \<times>/ _)" [21, 20] 20)
+type_notation (HTML output)
+  "*"  ("(_ \<times>/ _)" [21, 20] 20)
 
 consts
   Pair     :: "'a \<Rightarrow> 'b \<Rightarrow> 'a \<times> 'b"
--- a/src/HOL/Tools/Predicate_Compile/predicate_compile_quickcheck.ML	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Tools/Predicate_Compile/predicate_compile_quickcheck.ML	Wed Mar 03 10:40:40 2010 -0800
@@ -10,12 +10,10 @@
   val test_ref :
     ((unit -> int -> int -> int * int -> term list DSequence.dseq * (int * int)) option) Unsynchronized.ref
   val tracing : bool Unsynchronized.ref;
-  val quickcheck_compile_term : bool -> bool -> 
+  val quickcheck_compile_term : bool -> bool -> int ->
     Proof.context -> bool -> term -> int -> term list option * (bool list * bool);
 (*  val test_term : Proof.context -> bool -> int -> int -> int -> int -> term -> *)
-  val quiet : bool Unsynchronized.ref;
   val nrandom : int Unsynchronized.ref;
-  val depth : int Unsynchronized.ref;
   val debug : bool Unsynchronized.ref;
   val function_flattening : bool Unsynchronized.ref;
   val no_higher_order_predicate : string list Unsynchronized.ref;
@@ -31,19 +29,17 @@
 
 val tracing = Unsynchronized.ref false;
 
-val target = "Quickcheck"
+val quiet = Unsynchronized.ref true;
 
-val quiet = Unsynchronized.ref false;
+val target = "Quickcheck"
 
 val nrandom = Unsynchronized.ref 2;
 
-val depth = Unsynchronized.ref 8;
+val debug = Unsynchronized.ref false;
 
-val debug = Unsynchronized.ref false;
 val function_flattening = Unsynchronized.ref true;
 
-
-val no_higher_order_predicate = Unsynchronized.ref [];
+val no_higher_order_predicate = Unsynchronized.ref ([] : string list);
 
 val options = Options {
   expected_modes = NONE,
@@ -231,21 +227,21 @@
 
 (* quickcheck interface functions *)
 
-fun compile_term' options ctxt report t =
+fun compile_term' options depth ctxt report t =
   let
     val c = compile_term options ctxt t
     val dummy_report = ([], false)
   in
-    fn size => (try_upto (!quiet) (c size (!nrandom)) (!depth), dummy_report)
+    fn size => (try_upto (!quiet) (c size (!nrandom)) depth, dummy_report)
   end
 
-fun quickcheck_compile_term function_flattening fail_safe_function_flattening ctxt t =
+fun quickcheck_compile_term function_flattening fail_safe_function_flattening depth =
   let
      val options =
        set_fail_safe_function_flattening fail_safe_function_flattening
          (set_function_flattening function_flattening (get_options ()))
   in
-    compile_term' options ctxt t
+    compile_term' options depth
   end
 
 end;
--- a/src/HOL/Tools/numeral_syntax.ML	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Tools/numeral_syntax.ML	Wed Mar 03 10:40:40 2010 -0800
@@ -69,7 +69,7 @@
 
 in
 
-fun numeral_tr' show_sorts (*"number_of"*) (Type (@{type_syntax fun}, [_, T])) (t :: ts) =
+fun numeral_tr' show_sorts (*"number_of"*) (Type (@{type_name fun}, [_, T])) (t :: ts) =
       let val t' =
         if not (! show_types) andalso can Term.dest_Type T then syntax_numeral t
         else Syntax.const Syntax.constrainC $ syntax_numeral t $ Syntax.term_of_typ show_sorts T
--- a/src/HOL/Tools/record.ML	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Tools/record.ML	Wed Mar 03 10:40:40 2010 -0800
@@ -697,10 +697,8 @@
   let
     fun get_sort env xi =
       the_default (Sign.defaultS thy) (AList.lookup (op =) env (xi: indexname));
-    val map_sort = Sign.intern_sort thy;
   in
-    Syntax.typ_of_term (get_sort (Syntax.term_sorts map_sort t)) map_sort t
-    |> Sign.intern_tycons thy
+    Syntax.typ_of_term (get_sort (Syntax.term_sorts t)) t
   end;
 
 
@@ -752,8 +750,8 @@
 
                     val more' = mk_ext rest;
                   in
-                    (* FIXME authentic syntax *)
-                    list_comb (Syntax.const (suffix ext_typeN ext), alphas' @ [more'])
+                    list_comb
+                      (Syntax.const (Syntax.mark_type (suffix ext_typeN ext)), alphas' @ [more'])
                   end
               | NONE => err ("no fields defined for " ^ ext))
           | NONE => err (name ^ " is no proper field"))
@@ -857,7 +855,7 @@
     val T = decode_type thy t;
     val varifyT = varifyT (Term.maxidx_of_typ T);
 
-    val term_of_type = Syntax.term_of_typ (! Syntax.show_sorts) o Sign.extern_typ thy;
+    val term_of_type = Syntax.term_of_typ (! Syntax.show_sorts);
 
     fun strip_fields T =
       (case T of
@@ -922,8 +920,7 @@
 
     fun mk_type_abbr subst name alphas =
       let val abbrT = Type (name, map (fn a => varifyT (TFree (a, Sign.defaultS thy))) alphas) in
-        Syntax.term_of_typ (! Syntax.show_sorts)
-          (Sign.extern_typ thy (Envir.norm_type subst abbrT))
+        Syntax.term_of_typ (! Syntax.show_sorts) (Envir.norm_type subst abbrT)
       end;
 
     fun match rT T = Sign.typ_match thy (varifyT rT, T) Vartab.empty;
@@ -946,14 +943,14 @@
 
 fun record_ext_type_tr' name =
   let
-    val ext_type_name = suffix ext_typeN name;
+    val ext_type_name = Syntax.mark_type (suffix ext_typeN name);
     fun tr' ctxt ts =
       record_type_tr' ctxt (list_comb (Syntax.const ext_type_name, ts));
   in (ext_type_name, tr') end;
 
 fun record_ext_type_abbr_tr' abbr alphas zeta last_ext schemeT name =
   let
-    val ext_type_name = suffix ext_typeN name;
+    val ext_type_name = Syntax.mark_type (suffix ext_typeN name);
     fun tr' ctxt ts =
       record_type_abbr_tr' abbr alphas zeta last_ext schemeT ctxt
         (list_comb (Syntax.const ext_type_name, ts));
@@ -1949,8 +1946,7 @@
         val (args', more) = chop_last args;
         fun mk_ext' ((name, T), args) more = mk_ext (name, T) (args @ [more]);
         fun build Ts =
-          fold_rev mk_ext' (drop n ((extension_names ~~ Ts) ~~ chunks parent_chunks args'))
-            more;
+          fold_rev mk_ext' (drop n ((extension_names ~~ Ts) ~~ chunks parent_chunks args')) more;
       in
         if more = HOLogic.unit
         then build (map_range recT (parent_len + 1))
@@ -1960,27 +1956,25 @@
     val r_rec0 = mk_rec all_vars_more 0;
     val r_rec_unit0 = mk_rec (all_vars @ [HOLogic.unit]) 0;
 
-    fun r n = Free (rN, rec_schemeT n)
+    fun r n = Free (rN, rec_schemeT n);
     val r0 = r 0;
-    fun r_unit n = Free (rN, recT n)
+    fun r_unit n = Free (rN, recT n);
     val r_unit0 = r_unit 0;
-    val w = Free (wN, rec_schemeT 0)
+    val w = Free (wN, rec_schemeT 0);
 
 
     (* print translations *)
 
-    val external_names = Name_Space.external_names (Sign.naming_of ext_thy);
-
     val record_ext_type_abbr_tr's =
       let
-        val trnames = external_names (hd extension_names);
+        val trname = hd extension_names;
         val last_ext = unsuffix ext_typeN (fst extension);
-      in map (record_ext_type_abbr_tr' name alphas zeta last_ext rec_schemeT0) trnames end;
+      in [record_ext_type_abbr_tr' name alphas zeta last_ext rec_schemeT0 trname] end;
 
     val record_ext_type_tr's =
       let
         (*avoid conflict with record_type_abbr_tr's*)
-        val trnames = if parent_len > 0 then external_names extension_name else [];
+        val trnames = if parent_len > 0 then [extension_name] else [];
       in map record_ext_type_tr' trnames end;
 
     val advanced_print_translation =
--- a/src/HOL/Tools/typedef.ML	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Tools/typedef.ML	Wed Mar 03 10:40:40 2010 -0800
@@ -118,7 +118,7 @@
     fun add_def theory =
       if def then
         theory
-        |> Sign.add_consts_i [(name, setT', NoSyn)]   (* FIXME authentic syntax *)
+        |> Sign.add_consts_i [(name, setT', NoSyn)]
         |> PureThy.add_defs false [((Thm.def_binding name, Logic.mk_equals (setC, set)), [])]
         |-> (fn [th] => pair (SOME th))
       else (NONE, theory);
--- a/src/HOL/Typerep.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/Typerep.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -33,7 +33,7 @@
 typed_print_translation {*
 let
   fun typerep_tr' show_sorts (*"typerep"*)
-          (Type (@{type_syntax fun}, [Type (@{type_syntax itself}, [T]), _]))
+          (Type (@{type_name fun}, [Type (@{type_name itself}, [T]), _]))
           (Const (@{const_syntax TYPE}, _) :: ts) =
         Term.list_comb
           (Syntax.const @{syntax_const "_TYPEREP"} $ Syntax.term_of_typ show_sorts T, ts)
--- a/src/HOL/UNITY/Union.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/UNITY/Union.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -35,21 +35,22 @@
   safety_prop :: "'a program set => bool"
     "safety_prop X == SKIP: X & (\<forall>G. Acts G \<subseteq> UNION X Acts --> G \<in> X)"
 
+notation (xsymbols)
+  SKIP  ("\<bottom>") and
+  Join  (infixl "\<squnion>" 65)
+
 syntax
   "_JOIN1"     :: "[pttrns, 'b set] => 'b set"         ("(3JN _./ _)" 10)
   "_JOIN"      :: "[pttrn, 'a set, 'b set] => 'b set"  ("(3JN _:_./ _)" 10)
+syntax (xsymbols)
+  "_JOIN1" :: "[pttrns, 'b set] => 'b set"              ("(3\<Squnion> _./ _)" 10)
+  "_JOIN"  :: "[pttrn, 'a set, 'b set] => 'b set"       ("(3\<Squnion> _\<in>_./ _)" 10)
 
 translations
   "JN x: A. B" == "CONST JOIN A (%x. B)"
   "JN x y. B" == "JN x. JN y. B"
   "JN x. B" == "CONST JOIN (CONST UNIV) (%x. B)"
 
-syntax (xsymbols)
-  SKIP     :: "'a program"                              ("\<bottom>")
-  Join     :: "['a program, 'a program] => 'a program"  (infixl "\<squnion>" 65)
-  "_JOIN1" :: "[pttrns, 'b set] => 'b set"              ("(3\<Squnion> _./ _)" 10)
-  "_JOIN"  :: "[pttrn, 'a set, 'b set] => 'b set"       ("(3\<Squnion> _\<in>_./ _)" 10)
-
 
 subsection{*SKIP*}
 
--- a/src/HOL/ex/Numeral.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/ex/Numeral.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -327,7 +327,7 @@
       val k = int_of_num' n;
       val t' = Syntax.const @{syntax_const "_Numerals"} $ Syntax.free ("#" ^ string_of_int k);
     in case T
-     of Type (@{type_syntax fun}, [_, T']) =>
+     of Type (@{type_name fun}, [_, T']) =>
          if not (! show_types) andalso can Term.dest_Type T' then t'
          else Syntax.const Syntax.constrainC $ t' $ Syntax.term_of_typ show_sorts T'
       | T' => if T' = dummyT then t' else raise Match
--- a/src/HOL/ex/Predicate_Compile_Quickcheck.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOL/ex/Predicate_Compile_Quickcheck.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -7,9 +7,9 @@
 uses "../Tools/Predicate_Compile/predicate_compile_quickcheck.ML"
 begin
 
-setup {* Quickcheck.add_generator ("predicate_compile_wo_ff", Predicate_Compile_Quickcheck.quickcheck_compile_term false true) *}
-setup {* Quickcheck.add_generator ("predicate_compile_ff_fs", Predicate_Compile_Quickcheck.quickcheck_compile_term true true) *}
-setup {* Quickcheck.add_generator ("predicate_compile_ff_nofs", Predicate_Compile_Quickcheck.quickcheck_compile_term true false) *}
+setup {* Quickcheck.add_generator ("predicate_compile_wo_ff", Predicate_Compile_Quickcheck.quickcheck_compile_term false true 8) *}
+setup {* Quickcheck.add_generator ("predicate_compile_ff_fs", Predicate_Compile_Quickcheck.quickcheck_compile_term true true 8) *}
+setup {* Quickcheck.add_generator ("predicate_compile_ff_nofs", Predicate_Compile_Quickcheck.quickcheck_compile_term true false 8) *}
 
 (*
 datatype alphabet = a | b
--- a/src/HOLCF/One.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOLCF/One.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -10,7 +10,7 @@
 
 types one = "unit lift"
 translations
-  "one" <= (type) "unit lift" 
+  (type) "one" <= (type) "unit lift" 
 
 definition
   ONE :: "one"
--- a/src/HOLCF/Representable.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOLCF/Representable.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -50,7 +50,7 @@
 text "A TypeRep is an algebraic deflation over the universe of values."
 
 types TypeRep = "udom alg_defl"
-translations "TypeRep" \<leftharpoondown> (type) "udom alg_defl"
+translations (type) "TypeRep" \<leftharpoondown> (type) "udom alg_defl"
 
 definition
   Rep_of :: "'a::rep itself \<Rightarrow> TypeRep"
@@ -60,7 +60,7 @@
       (emb oo (approx i :: 'a \<rightarrow> 'a) oo prj)))"
 
 syntax "_REP" :: "type \<Rightarrow> TypeRep"  ("(1REP/(1'(_')))")
-translations "REP(t)" \<rightleftharpoons> "CONST Rep_of TYPE(t)"
+translations "REP('t)" \<rightleftharpoons> "CONST Rep_of TYPE('t)"
 
 lemma cast_REP:
   "cast\<cdot>REP('a::rep) = (emb::'a \<rightarrow> udom) oo (prj::udom \<rightarrow> 'a)"
--- a/src/HOLCF/Sprod.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOLCF/Sprod.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -22,10 +22,10 @@
 instance sprod :: ("{chfin,pcpo}", "{chfin,pcpo}") chfin
 by (rule typedef_chfin [OF type_definition_Sprod below_Sprod_def])
 
-syntax (xsymbols)
-  sprod          :: "[type, type] => type"        ("(_ \<otimes>/ _)" [21,20] 20)
-syntax (HTML output)
-  sprod          :: "[type, type] => type"        ("(_ \<otimes>/ _)" [21,20] 20)
+type_notation (xsymbols)
+  sprod  ("(_ \<otimes>/ _)" [21,20] 20)
+type_notation (HTML output)
+  sprod  ("(_ \<otimes>/ _)" [21,20] 20)
 
 lemma spair_lemma:
   "(strictify\<cdot>(\<Lambda> b. a)\<cdot>b, strictify\<cdot>(\<Lambda> a. b)\<cdot>a) \<in> Sprod"
--- a/src/HOLCF/Ssum.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOLCF/Ssum.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -24,10 +24,11 @@
 instance ssum :: ("{chfin,pcpo}", "{chfin,pcpo}") chfin
 by (rule typedef_chfin [OF type_definition_Ssum below_Ssum_def])
 
-syntax (xsymbols)
-  ssum          :: "[type, type] => type"       ("(_ \<oplus>/ _)" [21, 20] 20)
-syntax (HTML output)
-  ssum          :: "[type, type] => type"       ("(_ \<oplus>/ _)" [21, 20] 20)
+type_notation (xsymbols)
+  ssum  ("(_ \<oplus>/ _)" [21, 20] 20)
+type_notation (HTML output)
+  ssum  ("(_ \<oplus>/ _)" [21, 20] 20)
+
 
 subsection {* Definitions of constructors *}
 
--- a/src/HOLCF/Tr.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOLCF/Tr.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -14,7 +14,7 @@
   tr = "bool lift"
 
 translations
-  "tr" <= (type) "bool lift"
+  (type) "tr" <= (type) "bool lift"
 
 definition
   TT :: "tr" where
--- a/src/HOLCF/Up.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOLCF/Up.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -14,8 +14,8 @@
 
 datatype 'a u = Ibottom | Iup 'a
 
-syntax (xsymbols)
-  "u" :: "type \<Rightarrow> type" ("(_\<^sub>\<bottom>)" [1000] 999)
+type_notation (xsymbols)
+  u  ("(_\<^sub>\<bottom>)" [1000] 999)
 
 primrec Ifup :: "('a \<rightarrow> 'b::pcpo) \<Rightarrow> 'a u \<Rightarrow> 'b" where
     "Ifup f Ibottom = \<bottom>"
--- a/src/HOLCF/ex/Strict_Fun.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOLCF/ex/Strict_Fun.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -12,8 +12,8 @@
   = "{f :: 'a \<rightarrow> 'b. f\<cdot>\<bottom> = \<bottom>}"
 by simp_all
 
-syntax (xsymbols)
-  sfun :: "type \<Rightarrow> type \<Rightarrow> type" (infixr "\<rightarrow>!" 0)
+type_notation (xsymbols)
+  sfun  (infixr "\<rightarrow>!" 0)
 
 text {* TODO: Define nice syntax for abstraction, application. *}
 
--- a/src/HOLCF/holcf_logic.ML	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/HOLCF/holcf_logic.ML	Wed Mar 03 10:40:40 2010 -0800
@@ -31,21 +31,14 @@
 
 (* basic types *)
 
-fun mk_btyp t (S,T) = Type (t,[S,T]);
-
-local
-  val intern_type = Sign.intern_type @{theory};
-  val u = intern_type "u";
-in
+fun mk_btyp t (S, T) = Type (t, [S, T]);
 
-val cfun_arrow = intern_type "->";
+val cfun_arrow = @{type_name "cfun"};
 val op ->> = mk_btyp cfun_arrow;
-val mk_ssumT = mk_btyp (intern_type "++");
-val mk_sprodT = mk_btyp (intern_type "**");
-fun mk_uT T = Type (u, [T]);
-val trT = Type (intern_type "tr" , []);
-val oneT = Type (intern_type "one", []);
+val mk_ssumT = mk_btyp (@{type_name "ssum"});
+val mk_sprodT = mk_btyp (@{type_name "sprod"});
+fun mk_uT T = Type (@{type_name u}, [T]);
+val trT = @{typ tr};
+val oneT = @{typ one};
 
 end;
-
-end;
--- a/src/Pure/General/name_space.ML	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/Pure/General/name_space.ML	Wed Mar 03 10:40:40 2010 -0800
@@ -46,7 +46,6 @@
   val qualified_path: bool -> binding -> naming -> naming
   val transform_binding: naming -> binding -> binding
   val full_name: naming -> binding -> string
-  val external_names: naming -> string -> string list
   val declare: bool -> naming -> binding -> T -> string * T
   type 'a table = T * 'a Symtab.table
   val define: bool -> naming -> binding * 'a -> 'a table -> string * 'a table
@@ -309,8 +308,6 @@
     val pfxs = mandatory_prefixes spec;
   in pairself (map Long_Name.implode) (sfxs @ pfxs, sfxs) end;
 
-fun external_names naming = #2 o accesses naming o Binding.qualified_name;
-
 
 (* declaration *)
 
--- a/src/Pure/Isar/local_syntax.ML	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/Pure/Isar/local_syntax.ML	Wed Mar 03 10:40:40 2010 -0800
@@ -4,13 +4,11 @@
 Local syntax depending on theory syntax.
 *)
 
-val show_structs = Unsynchronized.ref false;
-
 signature LOCAL_SYNTAX =
 sig
   type T
   val syn_of: T -> Syntax.syntax
-  val structs_of: T -> string list
+  val idents_of: T -> {structs: string list, fixes: string list}
   val init: theory -> T
   val rebuild: theory -> T -> T
   datatype kind = Type | Const | Fixed
@@ -19,7 +17,6 @@
   val restore_mode: T -> T -> T
   val update_modesyntax: theory -> bool -> Syntax.mode ->
     (kind * (string * typ * mixfix)) list -> T -> T
-  val extern_term: T -> term -> term
 end;
 
 structure Local_Syntax: LOCAL_SYNTAX =
@@ -49,8 +46,7 @@
   Syntax.eq_syntax (Sign.syn_of thy, thy_syntax);
 
 fun syn_of (Syntax {local_syntax, ...}) = local_syntax;
-fun idents_of (Syntax {idents, ...}) = idents;
-val structs_of = #1 o idents_of;
+fun idents_of (Syntax {idents = (structs, fixes), ...}) = {structs = structs, fixes = fixes};
 
 
 (* build syntax *)
@@ -125,21 +121,4 @@
 fun update_modesyntax thy add mode args syntax =
   syntax |> set_mode mode |> update_syntax add thy args |> restore_mode syntax;
 
-
-(* extern_term *)
-
-fun extern_term syntax =
-  let
-    val (structs, fixes) = idents_of syntax;
-    fun map_free (t as Free (x, T)) =
-          let val i = find_index (fn s => s = x) structs + 1 in
-            if i = 0 andalso member (op =) fixes x then
-              Term.Const (Syntax.mark_fixed x, T)
-            else if i = 1 andalso not (! show_structs) then
-              Syntax.const "_struct" $ Syntax.const "_indexdefault"
-            else t
-          end
-      | map_free t = t;
-  in Term.map_aterms map_free end;
-
 end;
--- a/src/Pure/Isar/proof_context.ML	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/Pure/Isar/proof_context.ML	Wed Mar 03 10:40:40 2010 -0800
@@ -363,15 +363,11 @@
           (Pretty.str (setmp_CRITICAL show_question_marks true Term.string_of_vname (x', i))))
   | NONE => Pretty.mark Markup.var (Pretty.str s));
 
-fun class_markup _ c =    (* FIXME authentic syntax *)
-  Pretty.mark (Markup.tclassN, []) (Pretty.str c);
-
 fun plain_markup m _ s = Pretty.mark m (Pretty.str s);
 
 val token_trans =
  Syntax.tokentrans_mode ""
-  [("class", class_markup),
-   ("tfree", plain_markup Markup.tfree),
+  [("tfree", plain_markup Markup.tfree),
    ("tvar", plain_markup Markup.tvar),
    ("free", free_or_skolem),
    ("bound", plain_markup Markup.bound),
@@ -601,14 +597,12 @@
    {get_sort = get_sort thy (Variable.def_sort ctxt),
     map_const = fn a => ((true, #1 (Term.dest_Const (read_const_proper ctxt false a)))
       handle ERROR _ => (false, Consts.intern (consts_of ctxt) a)),
-    map_free = intern_skolem ctxt (Variable.def_type ctxt false),
-    map_type = Sign.intern_tycons thy,
-    map_sort = Sign.intern_sort thy}
+    map_free = intern_skolem ctxt (Variable.def_type ctxt false)}
   end;
 
 fun decode_term ctxt =
-  let val {get_sort, map_const, map_free, map_type, map_sort} = term_context ctxt
-  in Syntax.decode_term get_sort map_const map_free map_type map_sort end;
+  let val {get_sort, map_const, map_free} = term_context ctxt
+  in Syntax.decode_term get_sort map_const map_free end;
 
 end;
 
@@ -677,26 +671,23 @@
 fun parse_sort ctxt text =
   let
     val (syms, pos) = Syntax.parse_token Markup.sort text;
-    val S = Syntax.standard_parse_sort ctxt (syn_of ctxt)
-        (Sign.intern_sort (theory_of ctxt)) (syms, pos)
+    val S = Syntax.standard_parse_sort ctxt (syn_of ctxt) (syms, pos)
       handle ERROR msg => cat_error msg  ("Failed to parse sort" ^ Position.str_of pos)
   in S end;
 
 fun parse_typ ctxt text =
   let
-    val thy = ProofContext.theory_of ctxt;
+    val thy = theory_of ctxt;
     val get_sort = get_sort thy (Variable.def_sort ctxt);
-
     val (syms, pos) = Syntax.parse_token Markup.typ text;
-    val T = Sign.intern_tycons thy
-        (Syntax.standard_parse_typ ctxt (syn_of ctxt) get_sort (Sign.intern_sort thy) (syms, pos))
-      handle ERROR msg => cat_error msg  ("Failed to parse type" ^ Position.str_of pos);
+    val T = Syntax.standard_parse_typ ctxt (syn_of ctxt) get_sort (syms, pos)
+      handle ERROR msg => cat_error msg ("Failed to parse type" ^ Position.str_of pos);
   in T end;
 
 fun parse_term T ctxt text =
   let
     val thy = theory_of ctxt;
-    val {get_sort, map_const, map_free, map_type, map_sort} = term_context ctxt;
+    val {get_sort, map_const, map_free} = term_context ctxt;
 
     val (T', _) = TypeInfer.paramify_dummies T 0;
     val (markup, kind) = if T' = propT then (Markup.prop, "proposition") else (Markup.term, "term");
@@ -704,29 +695,35 @@
 
     fun check t = (Syntax.check_term ctxt (TypeInfer.constrain T' t); NONE)
       handle ERROR msg => SOME msg;
-    val t = Syntax.standard_parse_term (Syntax.pp ctxt) check get_sort map_const map_free
-        map_type map_sort ctxt (Sign.is_logtype thy) (syn_of ctxt) T' (syms, pos)
+    val t =
+      Syntax.standard_parse_term (Syntax.pp ctxt) check get_sort map_const map_free
+        ctxt (Sign.is_logtype thy) (syn_of ctxt) T' (syms, pos)
       handle ERROR msg => cat_error msg  ("Failed to parse " ^ kind ^ Position.str_of pos);
   in t end;
 
 
-fun unparse_sort ctxt S =
-  Syntax.standard_unparse_sort ctxt (syn_of ctxt) (Sign.extern_sort (theory_of ctxt) S);
+fun unparse_sort ctxt =
+  Syntax.standard_unparse_sort {extern_class = Sign.extern_class (theory_of ctxt)}
+    ctxt (syn_of ctxt);
 
-fun unparse_typ ctxt T =
-  Syntax.standard_unparse_typ ctxt (syn_of ctxt) (Sign.extern_typ (theory_of ctxt) T);
+fun unparse_typ ctxt =
+  let
+    val thy = theory_of ctxt;
+    val extern = {extern_class = Sign.extern_class thy, extern_type = Sign.extern_type thy};
+  in Syntax.standard_unparse_typ extern ctxt (syn_of ctxt) end;
 
-fun unparse_term ctxt t =
+fun unparse_term ctxt =
   let
     val thy = theory_of ctxt;
     val syntax = syntax_of ctxt;
     val consts = consts_of ctxt;
+    val extern =
+     {extern_class = Sign.extern_class thy,
+      extern_type = Sign.extern_type thy,
+      extern_const = Consts.extern consts};
   in
-    t
-    |> Sign.extern_term thy
-    |> Local_Syntax.extern_term syntax
-    |> Syntax.standard_unparse_term (Consts.extern consts) ctxt
-        (Local_Syntax.syn_of syntax) (not (PureThy.old_appl_syntax thy))
+    Syntax.standard_unparse_term (Local_Syntax.idents_of syntax) extern ctxt
+      (Local_Syntax.syn_of syntax) (not (PureThy.old_appl_syntax thy))
   end;
 
 in
@@ -1010,18 +1007,20 @@
       in Syntax.Constant d end
   | const_ast_tr _ _ asts = raise Syntax.AST ("const_ast_tr", asts);
 
+val typ = Simple_Syntax.read_typ;
+
 in
 
 val _ = Context.>> (Context.map_theory
- (Sign.add_syntax
-   [("_context_const", "id => logic", Delimfix "CONST _"),
-    ("_context_const", "id => aprop", Delimfix "CONST _"),
-    ("_context_const", "longid => logic", Delimfix "CONST _"),
-    ("_context_const", "longid => aprop", Delimfix "CONST _"),
-    ("_context_xconst", "id => logic", Delimfix "XCONST _"),
-    ("_context_xconst", "id => aprop", Delimfix "XCONST _"),
-    ("_context_xconst", "longid => logic", Delimfix "XCONST _"),
-    ("_context_xconst", "longid => aprop", Delimfix "XCONST _")] #>
+ (Sign.add_syntax_i
+   [("_context_const", typ "id => logic", Delimfix "CONST _"),
+    ("_context_const", typ "id => aprop", Delimfix "CONST _"),
+    ("_context_const", typ "longid => logic", Delimfix "CONST _"),
+    ("_context_const", typ "longid => aprop", Delimfix "CONST _"),
+    ("_context_xconst", typ "id => logic", Delimfix "XCONST _"),
+    ("_context_xconst", typ "id => aprop", Delimfix "XCONST _"),
+    ("_context_xconst", typ "longid => logic", Delimfix "XCONST _"),
+    ("_context_xconst", typ "longid => aprop", Delimfix "XCONST _")] #>
   Sign.add_advanced_trfuns
     ([("_context_const", const_ast_tr true), ("_context_xconst", const_ast_tr false)], [], [], [])));
 
@@ -1032,8 +1031,8 @@
 
 local
 
-fun type_syntax (Type (c, args), mx) =  (* FIXME authentic syntax *)
-      SOME (Local_Syntax.Type, (Long_Name.base_name c, Syntax.make_type (length args), mx))
+fun type_syntax (Type (c, args), mx) =
+      SOME (Local_Syntax.Type, (Syntax.mark_type c, Syntax.make_type (length args), mx))
   | type_syntax _ = NONE;
 
 fun const_syntax _ (Free (x, T), mx) = SOME (Local_Syntax.Fixed, (x, T, mx))
@@ -1345,7 +1344,7 @@
       val prt_term = Syntax.pretty_term ctxt;
 
       (*structures*)
-      val structs = Local_Syntax.structs_of (syntax_of ctxt);
+      val {structs, ...} = Local_Syntax.idents_of (syntax_of ctxt);
       val prt_structs =
         if null structs then []
         else [Pretty.block (Pretty.str "structures:" :: Pretty.brk 1 ::
@@ -1415,3 +1414,4 @@
   end;
 
 end;
+
--- a/src/Pure/ML/ml_antiquote.ML	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/Pure/ML/ml_antiquote.ML	Wed Mar 03 10:40:40 2010 -0800
@@ -104,7 +104,7 @@
 
 fun class syn = Args.theory -- Scan.lift Args.name_source >> (fn (thy, s) =>
   Sign.read_class thy s
-  |> syn ? Long_Name.base_name   (* FIXME authentic syntax *)
+  |> syn ? Syntax.mark_class
   |> ML_Syntax.print_string);
 
 val _ = inline "class" (class false);
@@ -130,7 +130,7 @@
 val _ = inline "type_name" (type_name "logical type" (fn (c, Type.LogicalType _) => c));
 val _ = inline "type_abbrev" (type_name "type abbreviation" (fn (c, Type.Abbreviation _) => c));
 val _ = inline "nonterminal" (type_name "nonterminal" (fn (c, Type.Nonterminal) => c));
-val _ = inline "type_syntax" (type_name "type" (fn (c, _) => Long_Name.base_name c));  (* FIXME authentic syntax *)
+val _ = inline "type_syntax" (type_name "type" (fn (c, _) => Syntax.mark_type c));
 
 
 (* constants *)
--- a/src/Pure/Proof/extraction.ML	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/Pure/Proof/extraction.ML	Wed Mar 03 10:40:40 2010 -0800
@@ -207,9 +207,11 @@
   let val thy' = add_syntax thy
   in fn s =>
     let val t = Logic.varify (Syntax.read_prop_global thy' s)
-    in (map Logic.dest_equals (Logic.strip_imp_prems t),
-      Logic.dest_equals (Logic.strip_imp_concl t))
-    end handle TERM _ => error ("Not a (conditional) meta equality:\n" ^ s)
+    in
+      (map Logic.dest_equals (Logic.strip_imp_prems t),
+        Logic.dest_equals (Logic.strip_imp_concl t))
+      handle TERM _ => error ("Not a (conditional) meta equality:\n" ^ s)
+    end
   end;
 
 (** preprocessor **)
--- a/src/Pure/Syntax/lexicon.ML	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/Pure/Syntax/lexicon.ML	Wed Mar 03 10:40:40 2010 -0800
@@ -30,12 +30,17 @@
   val read_int: string -> int option
   val read_xnum: string -> {radix: int, leading_zeros: int, value: int}
   val read_float: string -> {mant: int, exp: int}
-  val fixedN: string
-  val mark_fixed: string -> string
-  val unmark_fixed: string -> string
-  val constN: string
-  val mark_const: string -> string
-  val unmark_const: string -> string
+  val mark_class: string -> string val unmark_class: string -> string
+  val mark_type: string -> string val unmark_type: string -> string
+  val mark_const: string -> string val unmark_const: string -> string
+  val mark_fixed: string -> string val unmark_fixed: string -> string
+  val unmark:
+   {case_class: string -> 'a,
+    case_type: string -> 'a,
+    case_const: string -> 'a,
+    case_fixed: string -> 'a,
+    case_default: string -> 'a} -> string -> 'a
+  val is_marked: string -> bool
 end;
 
 signature LEXICON =
@@ -333,15 +338,32 @@
   in Scan.read Symbol_Pos.stopper scan (Symbol_Pos.explode (str, Position.none)) end;
 
 
-(* specific identifiers *)
+(* logical entities *)
+
+fun marker s = (prefix s, unprefix s);
+
+val (mark_class, unmark_class) = marker "\\<^class>";
+val (mark_type, unmark_type) = marker "\\<^type>";
+val (mark_const, unmark_const) = marker "\\<^const>";
+val (mark_fixed, unmark_fixed) = marker "\\<^fixed>";
 
-val fixedN = "\\<^fixed>";
-val mark_fixed = prefix fixedN;
-val unmark_fixed = unprefix fixedN;
+fun unmark {case_class, case_type, case_const, case_fixed, case_default} s =
+  (case try unmark_class s of
+    SOME c => case_class c
+  | NONE =>
+      (case try unmark_type s of
+        SOME c => case_type c
+      | NONE =>
+          (case try unmark_const s of
+            SOME c => case_const c
+          | NONE =>
+              (case try unmark_fixed s of
+                SOME c => case_fixed c
+              | NONE => case_default s))));
 
-val constN = "\\<^const>";
-val mark_const = prefix constN;
-val unmark_const = unprefix constN;
+val is_marked =
+  unmark {case_class = K true, case_type = K true, case_const = K true,
+    case_fixed = K true, case_default = K false};
 
 
 (* read numbers *)
@@ -371,7 +393,7 @@
 val ten = ord "0" + 10;
 val a = ord "a";
 val A = ord "A";
-val _ = a > A orelse sys_error "Bad ASCII";
+val _ = a > A orelse raise Fail "Bad ASCII";
 
 fun remap_hex c =
   let val x = ord c in
--- a/src/Pure/Syntax/printer.ML	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/Pure/Syntax/printer.ML	Wed Mar 03 10:40:40 2010 -0800
@@ -11,29 +11,32 @@
   val show_types: bool Unsynchronized.ref
   val show_no_free_types: bool Unsynchronized.ref
   val show_all_types: bool Unsynchronized.ref
+  val show_structs: bool Unsynchronized.ref
   val pp_show_brackets: Pretty.pp -> Pretty.pp
 end;
 
 signature PRINTER =
 sig
   include PRINTER0
-  val term_to_ast: Proof.context ->
-    (string -> (Proof.context -> bool -> typ -> term list -> term) list) -> term -> Ast.ast
+  val sort_to_ast: Proof.context ->
+    (string -> (Proof.context -> bool -> typ -> term list -> term) list) -> sort -> Ast.ast
   val typ_to_ast: Proof.context ->
     (string -> (Proof.context -> bool -> typ -> term list -> term) list) -> typ -> Ast.ast
-  val sort_to_ast: Proof.context ->
-    (string -> (Proof.context -> bool -> typ -> term list -> term) list) -> sort -> Ast.ast
+  val term_to_ast: {structs: string list, fixes: string list} -> string list -> Proof.context ->
+    (string -> (Proof.context -> bool -> typ -> term list -> term) list) -> term -> Ast.ast
   type prtabs
   val empty_prtabs: prtabs
   val update_prtabs: string -> SynExt.xprod list -> prtabs -> prtabs
   val remove_prtabs: string -> SynExt.xprod list -> prtabs -> prtabs
   val merge_prtabs: prtabs -> prtabs -> prtabs
-  val pretty_term_ast: (string -> xstring) -> Proof.context -> bool -> prtabs
-    -> (string -> (Proof.context -> Ast.ast list -> Ast.ast) list)
-    -> (string -> (Proof.context -> string -> Pretty.T) option) -> Ast.ast -> Pretty.T list
-  val pretty_typ_ast: Proof.context -> bool -> prtabs
-    -> (string -> (Proof.context -> Ast.ast list -> Ast.ast) list)
-    -> (string -> (Proof.context -> string -> Pretty.T) option) -> Ast.ast -> Pretty.T list
+  val pretty_term_ast: {extern_class: string -> xstring, extern_type: string -> xstring,
+      extern_const: string -> xstring} -> Proof.context -> bool -> prtabs ->
+    (string -> (Proof.context -> Ast.ast list -> Ast.ast) list) ->
+    (string -> (Proof.context -> string -> Pretty.T) option) -> Ast.ast -> Pretty.T list
+  val pretty_typ_ast: {extern_class: string -> xstring, extern_type: string -> xstring} ->
+    Proof.context -> bool -> prtabs ->
+    (string -> (Proof.context -> Ast.ast list -> Ast.ast) list) ->
+    (string -> (Proof.context -> string -> Pretty.T) option) -> Ast.ast -> Pretty.T list
 end;
 
 structure Printer: PRINTER =
@@ -47,6 +50,7 @@
 val show_brackets = Unsynchronized.ref false;
 val show_no_free_types = Unsynchronized.ref false;
 val show_all_types = Unsynchronized.ref false;
+val show_structs = Unsynchronized.ref false;
 
 fun pp_show_brackets pp = Pretty.pp (setmp_CRITICAL show_brackets true (Pretty.term pp),
   Pretty.typ pp, Pretty.sort pp, Pretty.classrel pp, Pretty.arity pp);
@@ -84,8 +88,7 @@
 
 fun ast_of_termT ctxt trf tm =
   let
-    fun ast_of (t as Const ("_class", _) $ Free _) = simple_ast_of t
-      | ast_of (t as Const ("_tfree", _) $ Free _) = simple_ast_of t
+    fun ast_of (t as Const ("_tfree", _) $ Free _) = simple_ast_of t
       | ast_of (t as Const ("_tvar", _) $ Var _) = simple_ast_of t
       | ast_of (Const (a, _)) = trans a []
       | ast_of (t as _ $ _) =
@@ -105,19 +108,32 @@
 
 (** term_to_ast **)
 
-fun mark_freevars ((t as Const (c, _)) $ u) =
-      if member (op =) SynExt.standard_token_markers c then (t $ u)
-      else t $ mark_freevars u
-  | mark_freevars (t $ u) = mark_freevars t $ mark_freevars u
-  | mark_freevars (Abs (x, T, t)) = Abs (x, T, mark_freevars t)
-  | mark_freevars (t as Free _) = Lexicon.const "_free" $ t
-  | mark_freevars (t as Var (xi, T)) =
-      if xi = SynExt.dddot_indexname then Const ("_DDDOT", T)
-      else Lexicon.const "_var" $ t
-  | mark_freevars a = a;
+fun ast_of_term idents consts ctxt trf
+    show_all_types no_freeTs show_types show_sorts show_structs tm =
+  let
+    val {structs, fixes} = idents;
 
-fun ast_of_term ctxt trf show_all_types no_freeTs show_types show_sorts tm =
-  let
+    fun mark_atoms ((t as Const (c, T)) $ u) =
+          if member (op =) SynExt.standard_token_markers c
+          then t $ u else mark_atoms t $ mark_atoms u
+      | mark_atoms (t $ u) = mark_atoms t $ mark_atoms u
+      | mark_atoms (Abs (x, T, t)) = Abs (x, T, mark_atoms t)
+      | mark_atoms (t as Const (c, T)) =
+          if member (op =) consts c then t
+          else Const (Lexicon.mark_const c, T)
+      | mark_atoms (t as Free (x, T)) =
+          let val i = find_index (fn s => s = x) structs + 1 in
+            if i = 0 andalso member (op =) fixes x then
+              Const (Lexicon.mark_fixed x, T)
+            else if i = 1 andalso not show_structs then
+              Lexicon.const "_struct" $ Lexicon.const "_indexdefault"
+            else Lexicon.const "_free" $ t
+          end
+      | mark_atoms (t as Var (xi, T)) =
+          if xi = SynExt.dddot_indexname then Const ("_DDDOT", T)
+          else Lexicon.const "_var" $ t
+      | mark_atoms a = a;
+
     fun prune_typs (t_seen as (Const _, _)) = t_seen
       | prune_typs (t as Free (x, ty), seen) =
           if ty = dummyT then (t, seen)
@@ -148,9 +164,9 @@
           Ast.mk_appl (constrain (c $ Lexicon.free x) T) (map ast_of ts)
       | (Const ("_idtdummy", T), ts) =>
           Ast.mk_appl (constrain (Lexicon.const "_idtdummy") T) (map ast_of ts)
-      | (c' as Const (c, T), ts) =>
+      | (const as Const (c, T), ts) =>
           if show_all_types
-          then Ast.mk_appl (constrain c' T) (map ast_of ts)
+          then Ast.mk_appl (constrain const T) (map ast_of ts)
           else trans c T ts
       | (t, ts) => Ast.mk_appl (simple_ast_of t) (map ast_of ts))
 
@@ -162,18 +178,18 @@
       if show_types andalso T <> dummyT then
         Ast.Appl [Ast.Constant SynExt.constrainC, simple_ast_of t,
           ast_of_termT ctxt trf (TypeExt.term_of_typ show_sorts T)]
-      else simple_ast_of t
+      else simple_ast_of t;
   in
     tm
     |> SynTrans.prop_tr'
-    |> (if show_types then #1 o prune_typs o rpair [] else I)
-    |> mark_freevars
+    |> show_types ? (#1 o prune_typs o rpair [])
+    |> mark_atoms
     |> ast_of
   end;
 
-fun term_to_ast ctxt trf tm =
-  ast_of_term ctxt trf (! show_all_types) (! show_no_free_types)
-    (! show_types orelse ! show_sorts orelse ! show_all_types) (! show_sorts) tm;
+fun term_to_ast idents consts ctxt trf tm =
+  ast_of_term idents consts ctxt trf (! show_all_types) (! show_no_free_types)
+    (! show_types orelse ! show_sorts orelse ! show_all_types) (! show_sorts) (! show_structs) tm;
 
 
 
@@ -267,8 +283,10 @@
   | is_chain [Arg _] = true
   | is_chain _  = false;
 
-fun pretty extern_const ctxt tabs trf tokentrf type_mode curried ast0 p0 =
+fun pretty extern ctxt tabs trf tokentrf type_mode curried ast0 p0 =
   let
+    val {extern_class, extern_type, extern_const} = extern;
+
     fun token_trans a x =
       (case tokentrf a of
         NONE =>
@@ -291,7 +309,7 @@
             val (Ts, args') = synT markup (symbs, args);
           in
             if type_mode then (astT (t, p) @ Ts, args')
-            else (pretty I ctxt tabs trf tokentrf true curried t p @ Ts, args')
+            else (pretty extern ctxt tabs trf tokentrf true curried t p @ Ts, args')
           end
       | synT markup (String s :: symbs, args) =
           let val (Ts, args') = synT markup (symbs, args);
@@ -312,7 +330,6 @@
             val (Ts, args') = synT markup (symbs, args);
             val T = if i < 0 then Pretty.fbrk else Pretty.brk i;
           in (T :: Ts, args') end
-      | synT _ (_ :: _, []) = sys_error "synT"
 
     and parT markup (pr, args, p, p': int) = #1 (synT markup
           (if p > p' orelse
@@ -320,13 +337,12 @@
             then [Block (1, Space "(" :: pr @ [Space ")"])]
             else pr, args))
 
-    and atomT a =
-      (case try Lexicon.unmark_const a of
-        SOME c => Pretty.mark (Markup.const c) (Pretty.str (extern_const c))
-      | NONE =>
-          (case try Lexicon.unmark_fixed a of
-            SOME x => the (token_trans "_free" x)
-          | NONE => Pretty.str a))
+    and atomT a = a |> Lexicon.unmark
+     {case_class = fn c => Pretty.mark (Markup.tclass c) (Pretty.str (extern_class c)),
+      case_type = fn c => Pretty.mark (Markup.tycon c) (Pretty.str (extern_type c)),
+      case_const = fn c => Pretty.mark (Markup.const c) (Pretty.str (extern_const c)),
+      case_fixed = fn x => the (token_trans "_free" x),
+      case_default = Pretty.str}
 
     and prefixT (_, a, [], _) = [atomT a]
       | prefixT (c, _, args, p) = astT (appT (c, args), p)
@@ -334,15 +350,16 @@
     and splitT 0 ([x], ys) = (x, ys)
       | splitT 0 (rev_xs, ys) = (Ast.Appl (rev rev_xs), ys)
       | splitT n (rev_xs, y :: ys) = splitT (n - 1) (y :: rev_xs, ys)
-      | splitT _ _ = sys_error "splitT"
 
     and combT (tup as (c, a, args, p)) =
       let
         val nargs = length args;
-        val markup = Pretty.mark
-          (Markup.const (Lexicon.unmark_const a) handle Fail _ =>
-            (Markup.fixed (Lexicon.unmark_fixed a)))
-          handle Fail _ => I;
+        val markup = a |> Lexicon.unmark
+         {case_class = Pretty.mark o Markup.tclass,
+          case_type = Pretty.mark o Markup.tycon,
+          case_const = Pretty.mark o Markup.const,
+          case_fixed = Pretty.mark o Markup.fixed,
+          case_default = K I};
 
         (*find matching table entry, or print as prefix / postfix*)
         fun prnt ([], []) = prefixT tup
@@ -371,15 +388,16 @@
 
 (* pretty_term_ast *)
 
-fun pretty_term_ast extern_const ctxt curried prtabs trf tokentrf ast =
-  pretty extern_const ctxt (mode_tabs prtabs (print_mode_value ()))
+fun pretty_term_ast extern ctxt curried prtabs trf tokentrf ast =
+  pretty extern ctxt (mode_tabs prtabs (print_mode_value ()))
     trf tokentrf false curried ast 0;
 
 
 (* pretty_typ_ast *)
 
-fun pretty_typ_ast ctxt _ prtabs trf tokentrf ast =
-  pretty I ctxt (mode_tabs prtabs (print_mode_value ()))
+fun pretty_typ_ast {extern_class, extern_type} ctxt _ prtabs trf tokentrf ast =
+  pretty {extern_class = extern_class, extern_type = extern_type, extern_const = I}
+    ctxt (mode_tabs prtabs (print_mode_value ()))
     trf tokentrf true false ast 0;
 
 end;
--- a/src/Pure/Syntax/syn_ext.ML	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/Pure/Syntax/syn_ext.ML	Wed Mar 03 10:40:40 2010 -0800
@@ -282,7 +282,8 @@
       if not (exists is_index args) then (const, typ, [])
       else
         let
-          val indexed_const = if const <> "" then "_indexed_" ^ const
+          val indexed_const =
+            if const <> "" then const ^ "_indexed"
             else err_in_mfix "Missing constant name for indexed syntax" mfix;
           val rangeT = Term.range_type typ handle Match =>
             err_in_mfix "Missing structure argument for indexed syntax" mfix;
@@ -387,7 +388,7 @@
 fun tokentrans_mode m trs = map (fn (s, f) => (m, s, f)) trs;
 
 val standard_token_classes =
-  ["class", "tfree", "tvar", "free", "bound", "var", "numeral", "inner_string"];
+  ["tfree", "tvar", "free", "bound", "var", "numeral", "inner_string"];
 
 val standard_token_markers = map (fn s => "_" ^ s) standard_token_classes;
 
--- a/src/Pure/Syntax/syn_trans.ML	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/Pure/Syntax/syn_trans.ML	Wed Mar 03 10:40:40 2010 -0800
@@ -34,16 +34,16 @@
   val non_typed_tr'': ('a -> term list -> term) -> 'a -> bool -> typ -> term list -> term
   val constrainAbsC: string
   val pure_trfuns:
-      (string * (Ast.ast list -> Ast.ast)) list *
-      (string * (term list -> term)) list *
-      (string * (term list -> term)) list *
-      (string * (Ast.ast list -> Ast.ast)) list
+    (string * (Ast.ast list -> Ast.ast)) list *
+    (string * (term list -> term)) list *
+    (string * (term list -> term)) list *
+    (string * (Ast.ast list -> Ast.ast)) list
   val pure_trfunsT: (string * (bool -> typ -> term list -> term)) list
   val struct_trfuns: string list ->
-      (string * (Ast.ast list -> Ast.ast)) list *
-      (string * (term list -> term)) list *
-      (string * (bool -> typ -> term list -> term)) list *
-      (string * (Ast.ast list -> Ast.ast)) list
+    (string * (Ast.ast list -> Ast.ast)) list *
+    (string * (term list -> term)) list *
+    (string * (bool -> typ -> term list -> term)) list *
+    (string * (Ast.ast list -> Ast.ast)) list
 end;
 
 signature SYN_TRANS =
@@ -131,7 +131,7 @@
 
 fun mk_type ty =
   Lexicon.const "_constrain" $
-    Lexicon.const "\\<^const>TYPE" $ (Lexicon.const "itself" $ ty);
+    Lexicon.const "\\<^const>TYPE" $ (Lexicon.const "\\<^type>itself" $ ty);
 
 fun ofclass_tr (*"_ofclass"*) [ty, cls] = cls $ mk_type ty
   | ofclass_tr (*"_ofclass"*) ts = raise TERM ("ofclass_tr", ts);
@@ -143,7 +143,7 @@
 
 (* meta propositions *)
 
-fun aprop_tr (*"_aprop"*) [t] = Lexicon.const "_constrain" $ t $ Lexicon.const "prop"
+fun aprop_tr (*"_aprop"*) [t] = Lexicon.const "_constrain" $ t $ Lexicon.const "\\<^type>prop"
   | aprop_tr (*"_aprop"*) ts = raise TERM ("aprop_tr", ts);
 
 
@@ -195,7 +195,8 @@
 fun update_name_tr (Free (x, T) :: ts) = list_comb (Free (suffix "_update" x, T), ts)
   | update_name_tr (Const (x, T) :: ts) = list_comb (Const (suffix "_update" x, T), ts)
   | update_name_tr (((c as Const ("_constrain", _)) $ t $ ty) :: ts) =
-      list_comb (c $ update_name_tr [t] $ (Lexicon.const "fun" $ ty $ Lexicon.const "dummy"), ts)
+      list_comb (c $ update_name_tr [t] $
+        (Lexicon.const "\\<^type>fun" $ ty $ Lexicon.const "\\<^type>dummy"), ts)
   | update_name_tr ts = raise TERM ("update_name_tr", ts);
 
 
@@ -368,7 +369,7 @@
     fun is_prop Ts t =
       fastype_of1 (Ts, t) = propT handle TERM _ => false;
 
-    fun is_term (Const ("\\<^const>Pure.term", _) $ _) = true
+    fun is_term (Const ("Pure.term", _) $ _) = true
       | is_term _ = false;
 
     fun tr' _ (t as Const _) = t
@@ -381,7 +382,7 @@
       | tr' Ts (t as Bound _) =
           if is_prop Ts t then aprop t else t
       | tr' Ts (Abs (x, T, t)) = Abs (x, T, tr' (T :: Ts) t)
-      | tr' Ts (t as t1 $ (t2 as Const ("\\<^const>TYPE", Type ("itself", [T])))) =
+      | tr' Ts (t as t1 $ (t2 as Const ("TYPE", Type ("itself", [T])))) =
           if is_prop Ts t andalso not (is_term t) then Const ("_type_prop", T) $ tr' Ts t1
           else tr' Ts t1 $ tr' Ts t2
       | tr' Ts (t as t1 $ t2) =
@@ -568,7 +569,7 @@
 
     val free_fixed = Term.map_aterms
       (fn t as Const (c, T) =>
-          (case try (unprefix Lexicon.fixedN) c of
+          (case try Lexicon.unmark_fixed c of
             NONE => t
           | SOME x => Free (x, T))
         | t => t);
--- a/src/Pure/Syntax/syntax.ML	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/Pure/Syntax/syntax.ML	Wed Mar 03 10:40:40 2010 -0800
@@ -29,7 +29,10 @@
   val mode_default: mode
   val mode_input: mode
   val merge_syntaxes: syntax -> syntax -> syntax
-  val basic_syn: syntax
+  val empty_syntax: syntax
+  val basic_syntax:
+   {read_class: theory -> xstring -> string,
+    read_type: theory -> xstring -> string} -> syntax
   val basic_nonterms: string list
   val print_gram: syntax -> unit
   val print_trans: syntax -> unit
@@ -41,25 +44,24 @@
   val ambiguity_limit: int Unsynchronized.ref
   val standard_parse_term: Pretty.pp -> (term -> string option) ->
     (((string * int) * sort) list -> string * int -> Term.sort) ->
-    (string -> bool * string) -> (string -> string option) ->
-    (typ -> typ) -> (sort -> sort) -> Proof.context ->
+    (string -> bool * string) -> (string -> string option) -> Proof.context ->
     (string -> bool) -> syntax -> typ -> Symbol_Pos.T list * Position.T -> term
   val standard_parse_typ: Proof.context -> syntax ->
-    ((indexname * sort) list -> indexname -> sort) -> (sort -> sort) ->
-    Symbol_Pos.T list * Position.T -> typ
-  val standard_parse_sort: Proof.context -> syntax -> (sort -> sort) ->
-    Symbol_Pos.T list * Position.T -> sort
+    ((indexname * sort) list -> indexname -> sort) -> Symbol_Pos.T list * Position.T -> typ
+  val standard_parse_sort: Proof.context -> syntax -> Symbol_Pos.T list * Position.T -> sort
   datatype 'a trrule =
     ParseRule of 'a * 'a |
     PrintRule of 'a * 'a |
     ParsePrintRule of 'a * 'a
   val map_trrule: ('a -> 'b) -> 'a trrule -> 'b trrule
   val is_const: syntax -> string -> bool
-  val standard_unparse_term: (string -> xstring) ->
-    Proof.context -> syntax -> bool -> term -> Pretty.T
-  val standard_unparse_typ: Proof.context -> syntax -> typ -> Pretty.T
-  val standard_unparse_sort: Proof.context -> syntax -> sort -> Pretty.T
-  val update_consts: string list -> syntax -> syntax
+  val standard_unparse_term: {structs: string list, fixes: string list} ->
+    {extern_class: string -> xstring, extern_type: string -> xstring,
+      extern_const: string -> xstring} -> Proof.context -> syntax -> bool -> term -> Pretty.T
+  val standard_unparse_typ: {extern_class: string -> xstring, extern_type: string -> xstring} ->
+    Proof.context -> syntax -> typ -> Pretty.T
+  val standard_unparse_sort: {extern_class: string -> xstring} ->
+    Proof.context -> syntax -> sort -> Pretty.T
   val update_trfuns:
     (string * ((ast list -> ast) * stamp)) list *
     (string * ((term list -> term) * stamp)) list *
@@ -300,7 +302,7 @@
       lexicon =
         if changed then fold Scan.extend_lexicon (SynExt.delims_of xprods) lexicon else lexicon,
       gram = if changed then Parser.extend_gram gram xprods else gram,
-      consts = Library.merge (op =) (consts1, filter_out (can Lexicon.unmark_const) consts2),
+      consts = Library.merge (op =) (consts1, filter_out Lexicon.is_marked consts2),
       prmodes = insert (op =) mode (Library.merge (op =) (prmodes1, prmodes2)),
       parse_ast_trtab =
         update_trtab "parse ast translation" (if_inout parse_ast_translation) parse_ast_trtab,
@@ -381,9 +383,9 @@
 
 (* basic syntax *)
 
-val basic_syn =
+fun basic_syntax read =
   empty_syntax
-  |> update_syntax mode_default TypeExt.type_ext
+  |> update_syntax mode_default (TypeExt.type_ext read)
   |> update_syntax mode_default SynExt.pure_ext;
 
 val basic_nonterms =
@@ -547,26 +549,25 @@
             map (Pretty.string_of_term pp) (take limit results)))
       end;
 
-fun standard_parse_term pp check get_sort map_const map_free map_type map_sort
-    ctxt is_logtype syn ty (syms, pos) =
+fun standard_parse_term pp check get_sort map_const map_free ctxt is_logtype syn ty (syms, pos) =
   read ctxt is_logtype syn ty (syms, pos)
-  |> map (TypeExt.decode_term get_sort map_const map_free map_type map_sort)
+  |> map (TypeExt.decode_term get_sort map_const map_free)
   |> disambig (Printer.pp_show_brackets pp) check;
 
 
 (* read types *)
 
-fun standard_parse_typ ctxt syn get_sort map_sort (syms, pos) =
+fun standard_parse_typ ctxt syn get_sort (syms, pos) =
   (case read ctxt (K false) syn SynExt.typeT (syms, pos) of
-    [t] => TypeExt.typ_of_term (get_sort (TypeExt.term_sorts map_sort t)) map_sort t
+    [t] => TypeExt.typ_of_term (get_sort (TypeExt.term_sorts t)) t
   | _ => error (ambiguity_msg pos));
 
 
 (* read sorts *)
 
-fun standard_parse_sort ctxt syn map_sort (syms, pos) =
+fun standard_parse_sort ctxt syn (syms, pos) =
   (case read ctxt (K false) syn TypeExt.sortT (syms, pos) of
-    [t] => TypeExt.sort_of_term map_sort t
+    [t] => TypeExt.sort_of_term t
   | _ => error (ambiguity_msg pos));
 
 
@@ -640,8 +641,8 @@
 
 fun unparse_t t_to_ast prt_t markup ctxt (Syntax (tabs, _)) curried t =
   let
-    val {print_trtab, print_ruletab, print_ast_trtab, tokentrtab, prtabs, ...} = tabs;
-    val ast = t_to_ast ctxt (lookup_tr' print_trtab) t;
+    val {consts, print_trtab, print_ruletab, print_ast_trtab, tokentrtab, prtabs, ...} = tabs;
+    val ast = t_to_ast consts ctxt (lookup_tr' print_trtab) t;
   in
     Pretty.markup markup (prt_t ctxt curried prtabs (lookup_tr' print_ast_trtab)
       (lookup_tokentr tokentrtab (print_mode_value ()))
@@ -650,14 +651,16 @@
 
 in
 
-fun standard_unparse_term extern =
-  unparse_t Printer.term_to_ast (Printer.pretty_term_ast extern) Markup.term;
+fun standard_unparse_term idents extern =
+  unparse_t (Printer.term_to_ast idents) (Printer.pretty_term_ast extern) Markup.term;
 
-fun standard_unparse_typ ctxt syn =
-  unparse_t Printer.typ_to_ast Printer.pretty_typ_ast Markup.typ ctxt syn false;
+fun standard_unparse_typ extern ctxt syn =
+  unparse_t (K Printer.typ_to_ast) (Printer.pretty_typ_ast extern) Markup.typ ctxt syn false;
 
-fun standard_unparse_sort ctxt syn =
-  unparse_t Printer.sort_to_ast Printer.pretty_typ_ast Markup.sort ctxt syn false;
+fun standard_unparse_sort {extern_class} ctxt syn =
+  unparse_t (K Printer.sort_to_ast)
+    (Printer.pretty_typ_ast {extern_class = extern_class, extern_type = I})
+    Markup.sort ctxt syn false;
 
 end;
 
@@ -667,7 +670,6 @@
 
 fun ext_syntax f decls = update_syntax mode_default (f decls);
 
-val update_consts = ext_syntax SynExt.syn_ext_const_names;
 val update_trfuns = ext_syntax SynExt.syn_ext_trfuns;
 val update_advanced_trfuns = ext_syntax SynExt.syn_ext_advanced_trfuns;
 val extend_tokentrfuns = ext_syntax SynExt.syn_ext_tokentrfuns;
--- a/src/Pure/Syntax/type_ext.ML	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/Pure/Syntax/type_ext.ML	Wed Mar 03 10:40:40 2010 -0800
@@ -1,19 +1,17 @@
 (*  Title:      Pure/Syntax/type_ext.ML
     Author:     Tobias Nipkow and Markus Wenzel, TU Muenchen
 
-Utilities for input and output of types.  Also the concrete syntax of
-types, which is required to bootstrap Pure.
+Utilities for input and output of types.  The concrete syntax of types.
 *)
 
 signature TYPE_EXT0 =
 sig
-  val sort_of_term: (sort -> sort) -> term -> sort
-  val term_sorts: (sort -> sort) -> term -> (indexname * sort) list
-  val typ_of_term: (indexname -> sort) -> (sort -> sort) -> term -> typ
+  val sort_of_term: term -> sort
+  val term_sorts: term -> (indexname * sort) list
+  val typ_of_term: (indexname -> sort) -> term -> typ
   val type_constraint: typ -> term -> term
   val decode_term: (((string * int) * sort) list -> string * int -> sort) ->
-    (string -> bool * string) -> (string -> string option) ->
-    (typ -> typ) -> (sort -> sort) -> term -> term
+    (string -> bool * string) -> (string -> string option) -> term -> term
   val term_of_typ: bool -> typ -> term
   val no_brackets: unit -> bool
   val no_type_brackets: unit -> bool
@@ -25,7 +23,9 @@
   val term_of_sort: sort -> term
   val tappl_ast_tr': Ast.ast * Ast.ast list -> Ast.ast
   val sortT: typ
-  val type_ext: SynExt.syn_ext
+  val type_ext:
+   {read_class: theory -> string -> string,
+    read_type: theory -> string -> string} -> SynExt.syn_ext
 end;
 
 structure TypeExt: TYPE_EXT =
@@ -35,30 +35,28 @@
 
 (* sort_of_term *)
 
-fun sort_of_term (map_sort: sort -> sort) tm =
+fun sort_of_term tm =
   let
-    fun classes (Const (c, _)) = [c]
-      | classes (Free (c, _)) = [c]
-      | classes (Const ("_class", _) $ Free (c, _)) = [c]
-      | classes (Const ("_classes", _) $ Const (c, _) $ cs) = c :: classes cs
-      | classes (Const ("_classes", _) $ Free (c, _) $ cs) = c :: classes cs
-      | classes (Const ("_classes", _) $ (Const ("_class", _) $ Free (c, _)) $ cs) = c :: classes cs
-      | classes tm = raise TERM ("sort_of_term: bad encoding of classes", [tm]);
+    fun err () = raise TERM ("sort_of_term: bad encoding of classes", [tm]);
+
+    fun class s = Lexicon.unmark_class s handle Fail _ => err ();
+
+    fun classes (Const (s, _)) = [class s]
+      | classes (Const ("_classes", _) $ Const (s, _) $ cs) = class s :: classes cs
+      | classes _ = err ();
 
     fun sort (Const ("_topsort", _)) = []
-      | sort (Const (c, _)) = [c]
-      | sort (Free (c, _)) = [c]
-      | sort (Const ("_class", _) $ Free (c, _)) = [c]
+      | sort (Const (s, _)) = [class s]
       | sort (Const ("_sort", _) $ cs) = classes cs
-      | sort tm = raise TERM ("sort_of_term: bad encoding of sort", [tm]);
-  in map_sort (sort tm) end;
+      | sort _ = err ();
+  in sort tm end;
 
 
 (* term_sorts *)
 
-fun term_sorts map_sort tm =
+fun term_sorts tm =
   let
-    val sort_of = sort_of_term map_sort;
+    val sort_of = sort_of_term;
 
     fun add_env (Const ("_ofsort", _) $ Free (x, _) $ cs) =
           insert (op =) ((x, ~1), sort_of cs)
@@ -76,11 +74,11 @@
 
 (* typ_of_term *)
 
-fun typ_of_term get_sort map_sort t =
+fun typ_of_term get_sort tm =
   let
-    fun typ_of (Free (x, _)) =
-          if Lexicon.is_tid x then TFree (x, get_sort (x, ~1))
-          else Type (x, [])
+    fun err () = raise TERM ("typ_of_term: bad encoding of type", [tm]);
+
+    fun typ_of (Free (x, _)) = TFree (x, get_sort (x, ~1))
       | typ_of (Var (xi, _)) = TVar (xi, get_sort xi)
       | typ_of (Const ("_tfree",_) $ (t as Free _)) = typ_of t
       | typ_of (Const ("_tvar",_) $ (t as Var _)) = typ_of t
@@ -90,17 +88,16 @@
       | typ_of (Const ("_ofsort", _) $ Var (xi, _) $ _) = TVar (xi, get_sort xi)
       | typ_of (Const ("_ofsort", _) $ (Const ("_tvar",_) $ Var (xi, _)) $ _) =
           TVar (xi, get_sort xi)
-      | typ_of (Const ("_dummy_ofsort", _) $ t) = TFree ("'_dummy_", sort_of_term map_sort t)
-      | typ_of tm =
+      | typ_of (Const ("_dummy_ofsort", _) $ t) = TFree ("'_dummy_", sort_of_term t)
+      | typ_of t =
           let
-            val (t, ts) = Term.strip_comb tm;
+            val (head, args) = Term.strip_comb t;
             val a =
-              (case t of
-                Const (x, _) => x
-              | Free (x, _) => x
-              | _ => raise TERM ("typ_of_term: bad encoding of type", [tm]));
-          in Type (a, map typ_of ts) end;
-  in typ_of t end;
+              (case head of
+                Const (c, _) => (Lexicon.unmark_type c handle Fail _ => err ())
+              | _ => err ());
+          in Type (a, map typ_of args) end;
+  in typ_of tm end;
 
 
 (* decode_term -- transform parse tree into raw term *)
@@ -109,30 +106,30 @@
   if T = dummyT then t
   else Const ("_type_constraint_", T --> T) $ t;
 
-fun decode_term get_sort map_const map_free map_type map_sort tm =
+fun decode_term get_sort map_const map_free tm =
   let
-    val sort_env = term_sorts map_sort tm;
-    val decodeT = map_type o typ_of_term (get_sort sort_env) map_sort;
+    val sort_env = term_sorts tm;
+    val decodeT = typ_of_term (get_sort sort_env);
 
     fun decode (Const ("_constrain", _) $ t $ typ) =
           type_constraint (decodeT typ) (decode t)
       | decode (Const ("_constrainAbs", _) $ (Abs (x, T, t)) $ typ) =
           if T = dummyT then Abs (x, decodeT typ, decode t)
-          else type_constraint (decodeT typ --> dummyT) (Abs (x, map_type T, decode t))
-      | decode (Abs (x, T, t)) = Abs (x, map_type T, decode t)
+          else type_constraint (decodeT typ --> dummyT) (Abs (x, T, decode t))
+      | decode (Abs (x, T, t)) = Abs (x, T, decode t)
       | decode (t $ u) = decode t $ decode u
       | decode (Const (a, T)) =
           let val c =
             (case try Lexicon.unmark_const a of
               SOME c => c
             | NONE => snd (map_const a))
-          in Const (c, map_type T) end
+          in Const (c, T) end
       | decode (Free (a, T)) =
           (case (map_free a, map_const a) of
-            (SOME x, _) => Free (x, map_type T)
-          | (_, (true, c)) => Const (c, map_type T)
-          | (_, (false, c)) => (if Long_Name.is_qualified c then Const else Free) (c, map_type T))
-      | decode (Var (xi, T)) = Var (xi, map_type T)
+            (SOME x, _) => Free (x, T)
+          | (_, (true, c)) => Const (c, T)
+          | (_, (false, c)) => (if Long_Name.is_qualified c then Const else Free) (c, T))
+      | decode (Var (xi, T)) = Var (xi, T)
       | decode (t as Bound _) = t;
   in decode tm end;
 
@@ -144,10 +141,9 @@
 
 fun term_of_sort S =
   let
-    fun class c = Lexicon.const "_class" $ Lexicon.free c;
+    val class = Lexicon.const o Lexicon.mark_class;
 
-    fun classes [] = sys_error "term_of_sort"
-      | classes [c] = class c
+    fun classes [c] = class c
       | classes (c :: cs) = Lexicon.const "_classes" $ class c $ classes cs;
   in
     (case S of
@@ -165,7 +161,8 @@
       if show_sorts then Lexicon.const "_ofsort" $ t $ term_of_sort S
       else t;
 
-    fun term_of (Type (a, Ts)) = Term.list_comb (Lexicon.const a, map term_of Ts)
+    fun term_of (Type (a, Ts)) =
+          Term.list_comb (Lexicon.const (Lexicon.mark_type a), map term_of Ts)
       | term_of (TFree (x, S)) = of_sort (Lexicon.const "_tfree" $ Lexicon.free x) S
       | term_of (TVar (xi, S)) = of_sort (Lexicon.const "_tvar" $ Lexicon.var xi) S;
   in term_of ty end;
@@ -193,15 +190,29 @@
 
 (* parse ast translations *)
 
-fun tapp_ast_tr (*"_tapp"*) [ty, f] = Ast.Appl [f, ty]
-  | tapp_ast_tr (*"_tapp"*) asts = raise Ast.AST ("tapp_ast_tr", asts);
+val class_ast = Ast.Constant o Lexicon.mark_class;
+val type_ast = Ast.Constant o Lexicon.mark_type;
+
+fun class_name_tr read_class (*"_class_name"*) [Ast.Variable c] = class_ast (read_class c)
+  | class_name_tr _ (*"_class_name"*) asts = raise Ast.AST ("class_name_tr", asts);
+
+fun classes_tr read_class (*"_classes"*) [Ast.Variable c, ast] =
+      Ast.mk_appl (Ast.Constant "_classes") [class_ast (read_class c), ast]
+  | classes_tr _ (*"_classes"*) asts = raise Ast.AST ("classes_tr", asts);
 
-fun tappl_ast_tr (*"_tappl"*) [ty, tys, f] =
-      Ast.Appl (f :: ty :: Ast.unfold_ast "_types" tys)
-  | tappl_ast_tr (*"_tappl"*) asts = raise Ast.AST ("tappl_ast_tr", asts);
+fun type_name_tr read_type (*"_type_name"*) [Ast.Variable c] = type_ast (read_type c)
+  | type_name_tr _ (*"_type_name"*) asts = raise Ast.AST ("type_name_tr", asts);
+
+fun tapp_ast_tr read_type (*"_tapp"*) [ty, Ast.Variable c] =
+      Ast.Appl [type_ast (read_type c), ty]
+  | tapp_ast_tr _ (*"_tapp"*) asts = raise Ast.AST ("tapp_ast_tr", asts);
+
+fun tappl_ast_tr read_type (*"_tappl"*) [ty, tys, Ast.Variable c] =
+      Ast.Appl (type_ast (read_type c) :: ty :: Ast.unfold_ast "_types" tys)
+  | tappl_ast_tr _ (*"_tappl"*) asts = raise Ast.AST ("tappl_ast_tr", asts);
 
 fun bracket_ast_tr (*"_bracket"*) [dom, cod] =
-      Ast.fold_ast_p "fun" (Ast.unfold_ast "_types" dom, cod)
+      Ast.fold_ast_p "\\<^type>fun" (Ast.unfold_ast "_types" dom, cod)
   | bracket_ast_tr (*"_bracket"*) asts = raise Ast.AST ("bracket_ast_tr", asts);
 
 
@@ -212,10 +223,10 @@
   | tappl_ast_tr' (f, ty :: tys) =
       Ast.Appl [Ast.Constant "_tappl", ty, Ast.fold_ast "_types" tys, f];
 
-fun fun_ast_tr' (*"fun"*) asts =
+fun fun_ast_tr' (*"\\<^type>fun"*) asts =
   if no_brackets () orelse no_type_brackets () then raise Match
   else
-    (case Ast.unfold_ast_p "fun" (Ast.Appl (Ast.Constant "fun" :: asts)) of
+    (case Ast.unfold_ast_p "\\<^type>fun" (Ast.Appl (Ast.Constant "\\<^type>fun" :: asts)) of
       (dom as _ :: _ :: _, cod)
         => Ast.Appl [Ast.Constant "_bracket", Ast.fold_ast "_types" dom, cod]
     | _ => raise Match);
@@ -229,20 +240,20 @@
 
 local open Lexicon SynExt in
 
-val type_ext = syn_ext' false (K false)
+fun type_ext {read_class, read_type} = syn_ext' false (K false)
   [Mfix ("_",           tidT --> typeT,                "", [], max_pri),
    Mfix ("_",           tvarT --> typeT,               "", [], max_pri),
-   Mfix ("_",           idT --> typeT,                 "", [], max_pri),
-   Mfix ("_",           longidT --> typeT,             "", [], max_pri),
+   Mfix ("_",           idT --> typeT,                 "_type_name", [], max_pri),
+   Mfix ("_",           longidT --> typeT,             "_type_name", [], max_pri),
    Mfix ("_::_",        [tidT, sortT] ---> typeT,      "_ofsort", [max_pri, 0], max_pri),
    Mfix ("_::_",        [tvarT, sortT] ---> typeT,     "_ofsort", [max_pri, 0], max_pri),
    Mfix ("'_()::_",     sortT --> typeT,               "_dummy_ofsort", [0], max_pri),
-   Mfix ("_",           idT --> sortT,                 "", [], max_pri),
-   Mfix ("_",           longidT --> sortT,             "", [], max_pri),
+   Mfix ("_",           idT --> sortT,                 "_class_name", [], max_pri),
+   Mfix ("_",           longidT --> sortT,             "_class_name", [], max_pri),
    Mfix ("{}",          sortT,                         "_topsort", [], max_pri),
    Mfix ("{_}",         classesT --> sortT,            "_sort", [], max_pri),
-   Mfix ("_",           idT --> classesT,              "", [], max_pri),
-   Mfix ("_",           longidT --> classesT,          "", [], max_pri),
+   Mfix ("_",           idT --> classesT,              "_class_name", [], max_pri),
+   Mfix ("_",           longidT --> classesT,          "_class_name", [], max_pri),
    Mfix ("_,_",         [idT, classesT] ---> classesT, "_classes", [], max_pri),
    Mfix ("_,_",         [longidT, classesT] ---> classesT, "_classes", [], max_pri),
    Mfix ("_ _",         [typeT, idT] ---> typeT,       "_tapp", [max_pri, 0], max_pri),
@@ -251,16 +262,21 @@
    Mfix ("((1'(_,/ _')) _)", [typeT, typesT, longidT] ---> typeT, "_tappl", [], max_pri),
    Mfix ("_",           typeT --> typesT,              "", [], max_pri),
    Mfix ("_,/ _",       [typeT, typesT] ---> typesT,   "_types", [], max_pri),
-   Mfix ("(_/ => _)",   [typeT, typeT] ---> typeT,     "fun", [1, 0], 0),
+   Mfix ("(_/ => _)",   [typeT, typeT] ---> typeT,     "\\<^type>fun", [1, 0], 0),
    Mfix ("([_]/ => _)", [typesT, typeT] ---> typeT,    "_bracket", [0, 0], 0),
    Mfix ("'(_')",       typeT --> typeT,               "", [0], max_pri),
-   Mfix ("'_",          typeT,                         "dummy", [], max_pri)]
-  []
+   Mfix ("'_",          typeT,                         "\\<^type>dummy", [], max_pri)]
+  ["_type_prop"]
   (map SynExt.mk_trfun
-   [("_tapp", K tapp_ast_tr), ("_tappl", K tappl_ast_tr), ("_bracket", K bracket_ast_tr)],
+   [("_class_name", class_name_tr o read_class o ProofContext.theory_of),
+    ("_classes", classes_tr o read_class o ProofContext.theory_of),
+    ("_type_name", type_name_tr o read_type o ProofContext.theory_of),
+    ("_tapp", tapp_ast_tr o read_type o ProofContext.theory_of),
+    ("_tappl", tappl_ast_tr o read_type o ProofContext.theory_of),
+    ("_bracket", K bracket_ast_tr)],
    [],
    [],
-   map SynExt.mk_trfun [("fun", K fun_ast_tr')])
+   map SynExt.mk_trfun [("\\<^type>fun", K fun_ast_tr')])
   []
   ([], []);
 
--- a/src/Pure/pure_thy.ML	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/Pure/pure_thy.ML	Wed Mar 03 10:40:40 2010 -0800
@@ -225,6 +225,8 @@
 
 val typ = Simple_Syntax.read_typ;
 val prop = Simple_Syntax.read_prop;
+
+val tycon = Syntax.mark_type;
 val const = Syntax.mark_const;
 
 val typeT = Syntax.typeT;
@@ -318,21 +320,21 @@
     (const "Pure.conjunction", typ "prop => prop => prop", Infixr ("&&&", 2))]
   #> Sign.add_syntax_i applC_syntax
   #> Sign.add_modesyntax_i (Symbol.xsymbolsN, true)
-   [("fun",      typ "type => type => type",   Mixfix ("(_/ \\<Rightarrow> _)", [1, 0], 0)),
-    ("_bracket", typ "types => type => type",  Mixfix ("([_]/ \\<Rightarrow> _)", [0, 0], 0)),
-    ("_ofsort",  typ "tid => sort => type",    Mixfix ("_\\<Colon>_", [1000, 0], 1000)),
-    ("_constrain", typ "logic => type => logic", Mixfix ("_\\<Colon>_", [4, 0], 3)),
-    ("_constrain", [spropT, typeT] ---> spropT, Mixfix ("_\\<Colon>_", [4, 0], 3)),
-    ("_idtyp",    typ "id => type => idt",     Mixfix ("_\\<Colon>_", [], 0)),
-    ("_idtypdummy", typ "type => idt",         Mixfix ("'_()\\<Colon>_", [], 0)),
-    ("_type_constraint_", typ "'a",            NoSyn),
-    ("_lambda",  typ "pttrns => 'a => logic",  Mixfix ("(3\\<lambda>_./ _)", [0, 3], 3)),
-    (const "==", typ "'a => 'a => prop",       Infixr ("\\<equiv>", 2)),
-    (const "all_binder", typ "idts => prop => prop", Mixfix ("(3\\<And>_./ _)", [0, 0], 0)),
-    (const "==>", typ "prop => prop => prop",  Infixr ("\\<Longrightarrow>", 1)),
-    ("_DDDOT",   typ "aprop",                  Delimfix "\\<dots>"),
-    ("_bigimpl", typ "asms => prop => prop",   Mixfix ("((1\\<lbrakk>_\\<rbrakk>)/ \\<Longrightarrow> _)", [0, 1], 1)),
-    ("_DDDOT",   typ "logic",                  Delimfix "\\<dots>")]
+   [(tycon "fun",         typ "type => type => type",   Mixfix ("(_/ \\<Rightarrow> _)", [1, 0], 0)),
+    ("_bracket",          typ "types => type => type",  Mixfix ("([_]/ \\<Rightarrow> _)", [0, 0], 0)),
+    ("_ofsort",           typ "tid => sort => type",    Mixfix ("_\\<Colon>_", [1000, 0], 1000)),
+    ("_constrain",        typ "logic => type => logic", Mixfix ("_\\<Colon>_", [4, 0], 3)),
+    ("_constrain",        [spropT, typeT] ---> spropT,  Mixfix ("_\\<Colon>_", [4, 0], 3)),
+    ("_idtyp",            typ "id => type => idt",      Mixfix ("_\\<Colon>_", [], 0)),
+    ("_idtypdummy",       typ "type => idt",            Mixfix ("'_()\\<Colon>_", [], 0)),
+    ("_type_constraint_", typ "'a",                     NoSyn),
+    ("_lambda",           typ "pttrns => 'a => logic",  Mixfix ("(3\\<lambda>_./ _)", [0, 3], 3)),
+    (const "==",          typ "'a => 'a => prop",       Infixr ("\\<equiv>", 2)),
+    (const "all_binder",  typ "idts => prop => prop",   Mixfix ("(3\\<And>_./ _)", [0, 0], 0)),
+    (const "==>",         typ "prop => prop => prop",   Infixr ("\\<Longrightarrow>", 1)),
+    ("_DDDOT",            typ "aprop",                  Delimfix "\\<dots>"),
+    ("_bigimpl",          typ "asms => prop => prop",   Mixfix ("((1\\<lbrakk>_\\<rbrakk>)/ \\<Longrightarrow> _)", [0, 1], 1)),
+    ("_DDDOT",            typ "logic",                  Delimfix "\\<dots>")]
   #> Sign.add_modesyntax_i ("", false)
    [(const "prop", typ "prop => prop", Mixfix ("_", [0], 0))]
   #> Sign.add_modesyntax_i ("HTML", false)
--- a/src/Pure/sign.ML	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/Pure/sign.ML	Wed Mar 03 10:40:40 2010 -0800
@@ -56,10 +56,7 @@
   val intern_sort: theory -> sort -> sort
   val extern_sort: theory -> sort -> sort
   val intern_typ: theory -> typ -> typ
-  val extern_typ: theory -> typ -> typ
   val intern_term: theory -> term -> term
-  val extern_term: theory -> term -> term
-  val intern_tycons: theory -> typ -> typ
   val the_type_decl: theory -> string -> Type.decl
   val arity_number: theory -> string -> int
   val arity_sorts: theory -> string -> sort -> sort list
@@ -157,7 +154,7 @@
     make_sign (Name_Space.default_naming, syn, tsig, consts);
 
   val empty =
-    make_sign (Name_Space.default_naming, Syntax.basic_syn, Type.empty_tsig, Consts.empty);
+    make_sign (Name_Space.default_naming, Syntax.empty_syntax, Type.empty_tsig, Consts.empty);
 
   fun merge pp (sign1, sign2) =
     let
@@ -266,41 +263,10 @@
   | map_term f g h (Abs (x, T, t)) = Abs (x, map_typ f g T, map_term f g h t)
   | map_term f g h (t $ u) = map_term f g h t $ map_term f g h u;
 
-val add_classesT = Term.fold_atyps
-  (fn TFree (_, S) => fold (insert (op =)) S
-    | TVar (_, S) => fold (insert (op =)) S
-    | _ => I);
-
-fun add_tyconsT (Type (c, Ts)) = insert (op =) c #> fold add_tyconsT Ts
-  | add_tyconsT _ = I;
-
-val add_consts = Term.fold_aterms (fn Const (c, _) => insert (op =) c | _ => I);
-
-fun mapping add_names f t =
-  let
-    fun f' (x: string) = let val y = f x in if x = y then NONE else SOME (x, y) end;
-    val tab = map_filter f' (add_names t []);
-    fun get x = the_default x (AList.lookup (op =) tab x);
-  in get end;
-
-fun typ_mapping f g thy T =
-  T |> map_typ
-    (mapping add_classesT (f thy) T)
-    (mapping add_tyconsT (g thy) T);
-
-fun term_mapping f g h thy t =
-  t |> map_term
-    (mapping (Term.fold_types add_classesT) (f thy) t)
-    (mapping (Term.fold_types add_tyconsT) (g thy) t)
-    (mapping add_consts (h thy) t);
-
 in
 
-val intern_typ = typ_mapping intern_class intern_type;
-val extern_typ = typ_mapping extern_class extern_type;
-val intern_term = term_mapping intern_class intern_type intern_const;
-val extern_term = term_mapping extern_class extern_type (K Syntax.mark_const);
-val intern_tycons = typ_mapping (K I) intern_type;
+fun intern_typ thy = map_typ (intern_class thy) (intern_type thy);
+fun intern_term thy = map_term (intern_class thy) (intern_type thy) (intern_const thy);
 
 end;
 
@@ -424,6 +390,27 @@
 val cert_arity = prep_arity (K I) certify_sort;
 
 
+(* type syntax entities *)
+
+local
+
+fun read_type thy text =
+  let
+    val (syms, pos) = Syntax.read_token text;
+    val c = intern_type thy (Symbol_Pos.content syms);
+    val _ = the_type_decl thy c;
+    val _ = Position.report (Markup.tycon c) pos;
+  in c end;
+
+in
+
+val _ = Context.>>
+  (Context.map_theory
+    (map_syn (K (Syntax.basic_syntax {read_class = read_class, read_type = read_type}))));
+
+end;
+
+
 
 (** signature extension functions **)  (*exception ERROR/TYPE*)
 
@@ -438,11 +425,13 @@
 
 (* add type constructors *)
 
+val type_syntax = Syntax.mark_type oo full_name;
+
 fun add_types types thy = thy |> map_sign (fn (naming, syn, tsig, consts) =>
   let
     val syn' =
       Syntax.update_type_gram true Syntax.mode_default
-        (map (fn (a, n, mx) => (Name.of_binding a, Syntax.make_type n, mx)) types) syn;
+        (map (fn (a, n, mx) => (type_syntax thy a, Syntax.make_type n, mx)) types) syn;
     val decls = map (fn (a, n, _) => (a, n)) types;
     val tsig' = fold (Type.add_type naming) decls tsig;
   in (naming, syn', tsig', consts) end);
@@ -452,9 +441,8 @@
 
 fun add_nonterminals ns thy = thy |> map_sign (fn (naming, syn, tsig, consts) =>
   let
-    val syn' = Syntax.update_consts (map Name.of_binding ns) syn;
     val tsig' = fold (Type.add_nonterminal naming) ns tsig;
-  in (naming, syn', tsig', consts) end);
+  in (naming, syn, tsig', consts) end);
 
 
 (* add type abbreviations *)
@@ -465,7 +453,7 @@
       val ctxt = ProofContext.init thy;
       val syn' =
         Syntax.update_type_gram true Syntax.mode_default
-          [(Name.of_binding b, Syntax.make_type (length vs), mx)] syn;
+          [(type_syntax thy b, Syntax.make_type (length vs), mx)] syn;
       val abbr = (b, vs, certify_typ_mode Type.mode_syntax thy (parse_typ ctxt rhs))
         handle ERROR msg => cat_error msg ("in type abbreviation " ^ quote (Binding.str_of b));
       val tsig' = Type.add_abbrev naming abbr tsig;
@@ -495,8 +483,8 @@
 
 fun type_notation add mode args =
   let
-    fun type_syntax (Type (c, args), mx) =  (* FIXME authentic syntax *)
-          SOME (Long_Name.base_name c, Syntax.make_type (length args), mx)
+    fun type_syntax (Type (c, args), mx) =
+          SOME (Syntax.mark_type c, Syntax.make_type (length args), mx)
       | type_syntax _ = NONE;
   in map_syn (Syntax.update_type_gram add mode (map_filter type_syntax args)) end;
 
@@ -579,9 +567,8 @@
 fun primitive_class (bclass, classes) thy =
   thy |> map_sign (fn (naming, syn, tsig, consts) =>
     let
-      val syn' = Syntax.update_consts [Name.of_binding bclass] syn;
       val tsig' = Type.add_class (Syntax.pp_global thy) naming (bclass, classes) tsig;
-    in (naming, syn', tsig', consts) end)
+    in (naming, syn, tsig', consts) end)
   |> add_consts_i [(Binding.map_name Logic.const_of_class bclass, Term.a_itselfT --> propT, NoSyn)];
 
 fun primitive_classrel arg thy = thy |> map_tsig (Type.add_classrel (Syntax.pp_global thy) arg);
--- a/src/Sequents/Sequents.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/Sequents/Sequents.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -65,7 +65,7 @@
 
 (* parse translation for sequences *)
 
-fun abs_seq' t = Abs ("s", Type (@{type_syntax seq'}, []), t);
+fun abs_seq' t = Abs ("s", Type (@{type_name seq'}, []), t);
 
 fun seqobj_tr (Const (@{syntax_const "_SeqO"}, _) $ f) =
       Const (@{const_syntax SeqO'}, dummyT) $ f
--- a/src/ZF/Induct/Comb.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/ZF/Induct/Comb.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -23,6 +23,9 @@
   | S
   | app ("p \<in> comb", "q \<in> comb")    (infixl "@@" 90)
 
+notation (xsymbols)
+  app  (infixl "\<bullet>" 90)
+
 text {*
   Inductive definition of contractions, @{text "-1->"} and
   (multi-step) reductions, @{text "--->"}.
@@ -39,9 +42,6 @@
   contract_multi :: "[i,i] => o"    (infixl "--->" 50)
   where "p ---> q == <p,q> \<in> contract^*"
 
-syntax (xsymbols)
-  "comb.app"    :: "[i, i] => i"             (infixl "\<bullet>" 90)
-
 inductive
   domains "contract" \<subseteq> "comb \<times> comb"
   intros
--- a/src/ZF/List_ZF.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/ZF/List_ZF.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -15,8 +15,8 @@
 
 
 syntax
- "[]"        :: i                                       ("[]")
- "_List"     :: "is => i"                                 ("[(_)]")
+ "_Nil" :: i  ("[]")
+ "_List" :: "is => i"  ("[(_)]")
 
 translations
   "[x, xs]"     == "CONST Cons(x, [xs])"
--- a/src/ZF/UNITY/Union.thy	Wed Mar 03 08:49:11 2010 -0800
+++ b/src/ZF/UNITY/Union.thy	Wed Mar 03 10:40:40 2010 -0800
@@ -40,23 +40,22 @@
   "safety_prop(X) == X\<subseteq>program &
       SKIP \<in> X & (\<forall>G \<in> program. Acts(G) \<subseteq> (\<Union>F \<in> X. Acts(F)) --> G \<in> X)"
   
+notation (xsymbols)
+  SKIP  ("\<bottom>") and
+  Join  (infixl "\<squnion>" 65)
+
 syntax
   "_JOIN1"     :: "[pttrns, i] => i"         ("(3JN _./ _)" 10)
   "_JOIN"      :: "[pttrn, i, i] => i"       ("(3JN _:_./ _)" 10)
+syntax (xsymbols)
+  "_JOIN1"  :: "[pttrns, i] => i"     ("(3\<Squnion> _./ _)" 10)
+  "_JOIN"   :: "[pttrn, i, i] => i"   ("(3\<Squnion> _ \<in> _./ _)" 10)
 
 translations
   "JN x:A. B"   == "CONST JOIN(A, (%x. B))"
   "JN x y. B"   == "JN x. JN y. B"
   "JN x. B"     == "CONST JOIN(CONST state,(%x. B))"
 
-notation (xsymbols)
-  SKIP  ("\<bottom>") and
-  Join  (infixl "\<squnion>" 65)
-
-syntax (xsymbols)
-  "_JOIN1"  :: "[pttrns, i] => i"     ("(3\<Squnion> _./ _)" 10)
-  "_JOIN"   :: "[pttrn, i, i] => i"   ("(3\<Squnion> _ \<in> _./ _)" 10)
-
 
 subsection{*SKIP*}