--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Algebra/More_Finite_Product.thy Thu Apr 06 08:33:37 2017 +0200
@@ -0,0 +1,104 @@
+(* Title: HOL/Algebra/More_Finite_Product.thy
+ Author: Jeremy Avigad
+*)
+
+section \<open>More on finite products\<close>
+
+theory More_Finite_Product
+imports
+ More_Group
+begin
+
+lemma (in comm_monoid) finprod_UN_disjoint:
+ "finite I \<Longrightarrow> (ALL i:I. finite (A i)) \<longrightarrow> (ALL i:I. ALL j:I. i ~= j \<longrightarrow>
+ (A i) Int (A j) = {}) \<longrightarrow>
+ (ALL i:I. ALL x: (A i). g x : carrier G) \<longrightarrow>
+ finprod G g (UNION I A) = finprod G (%i. finprod G g (A i)) I"
+ apply (induct set: finite)
+ apply force
+ apply clarsimp
+ apply (subst finprod_Un_disjoint)
+ apply blast
+ apply (erule finite_UN_I)
+ apply blast
+ apply (fastforce)
+ apply (auto intro!: funcsetI finprod_closed)
+ done
+
+lemma (in comm_monoid) finprod_Union_disjoint:
+ "[| finite C; (ALL A:C. finite A & (ALL x:A. f x : carrier G));
+ (ALL A:C. ALL B:C. A ~= B --> A Int B = {}) |]
+ ==> finprod G f (\<Union>C) = finprod G (finprod G f) C"
+ apply (frule finprod_UN_disjoint [of C id f])
+ apply auto
+ done
+
+lemma (in comm_monoid) finprod_one:
+ "finite A \<Longrightarrow> (\<And>x. x:A \<Longrightarrow> f x = \<one>) \<Longrightarrow> finprod G f A = \<one>"
+ by (induct set: finite) auto
+
+
+(* need better simplification rules for rings *)
+(* the next one holds more generally for abelian groups *)
+
+lemma (in cring) sum_zero_eq_neg: "x : carrier R \<Longrightarrow> y : carrier R \<Longrightarrow> x \<oplus> y = \<zero> \<Longrightarrow> x = \<ominus> y"
+ by (metis minus_equality)
+
+lemma (in domain) square_eq_one:
+ fixes x
+ assumes [simp]: "x : carrier R"
+ and "x \<otimes> x = \<one>"
+ shows "x = \<one> | x = \<ominus>\<one>"
+proof -
+ have "(x \<oplus> \<one>) \<otimes> (x \<oplus> \<ominus> \<one>) = x \<otimes> x \<oplus> \<ominus> \<one>"
+ by (simp add: ring_simprules)
+ also from \<open>x \<otimes> x = \<one>\<close> have "\<dots> = \<zero>"
+ by (simp add: ring_simprules)
+ finally have "(x \<oplus> \<one>) \<otimes> (x \<oplus> \<ominus> \<one>) = \<zero>" .
+ then have "(x \<oplus> \<one>) = \<zero> | (x \<oplus> \<ominus> \<one>) = \<zero>"
+ by (intro integral, auto)
+ then show ?thesis
+ apply auto
+ apply (erule notE)
+ apply (rule sum_zero_eq_neg)
+ apply auto
+ apply (subgoal_tac "x = \<ominus> (\<ominus> \<one>)")
+ apply (simp add: ring_simprules)
+ apply (rule sum_zero_eq_neg)
+ apply auto
+ done
+qed
+
+lemma (in Ring.domain) inv_eq_self: "x : Units R \<Longrightarrow> x = inv x \<Longrightarrow> x = \<one> \<or> x = \<ominus>\<one>"
+ by (metis Units_closed Units_l_inv square_eq_one)
+
+
+text \<open>
+ The following translates theorems about groups to the facts about
+ the units of a ring. (The list should be expanded as more things are
+ needed.)
+\<close>
+
+lemma (in ring) finite_ring_finite_units [intro]: "finite (carrier R) \<Longrightarrow> finite (Units R)"
+ by (rule finite_subset) auto
+
+lemma (in monoid) units_of_pow:
+ fixes n :: nat
+ shows "x \<in> Units G \<Longrightarrow> x (^)\<^bsub>units_of G\<^esub> n = x (^)\<^bsub>G\<^esub> n"
+ apply (induct n)
+ apply (auto simp add: units_group group.is_monoid
+ monoid.nat_pow_0 monoid.nat_pow_Suc units_of_one units_of_mult)
+ done
+
+lemma (in cring) units_power_order_eq_one: "finite (Units R) \<Longrightarrow> a : Units R
+ \<Longrightarrow> a (^) card(Units R) = \<one>"
+ apply (subst units_of_carrier [symmetric])
+ apply (subst units_of_one [symmetric])
+ apply (subst units_of_pow [symmetric])
+ apply assumption
+ apply (rule comm_group.power_order_eq_one)
+ apply (rule units_comm_group)
+ apply (unfold units_of_def, auto)
+ done
+
+end
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Algebra/More_Group.thy Thu Apr 06 08:33:37 2017 +0200
@@ -0,0 +1,136 @@
+(* Title: HOL/Algebra/More_Group.thy
+ Author: Jeremy Avigad
+*)
+
+section \<open>More on groups\<close>
+
+theory More_Group
+imports
+ Ring
+begin
+
+text \<open>
+ Show that the units in any monoid give rise to a group.
+
+ The file Residues.thy provides some infrastructure to use
+ facts about the unit group within the ring locale.
+\<close>
+
+definition units_of :: "('a, 'b) monoid_scheme => 'a monoid" where
+ "units_of G == (| carrier = Units G,
+ Group.monoid.mult = Group.monoid.mult G,
+ one = one G |)"
+
+lemma (in monoid) units_group: "group(units_of G)"
+ apply (unfold units_of_def)
+ apply (rule groupI)
+ apply auto
+ apply (subst m_assoc)
+ apply auto
+ apply (rule_tac x = "inv x" in bexI)
+ apply auto
+ done
+
+lemma (in comm_monoid) units_comm_group: "comm_group(units_of G)"
+ apply (rule group.group_comm_groupI)
+ apply (rule units_group)
+ apply (insert comm_monoid_axioms)
+ apply (unfold units_of_def Units_def comm_monoid_def comm_monoid_axioms_def)
+ apply auto
+ done
+
+lemma units_of_carrier: "carrier (units_of G) = Units G"
+ unfolding units_of_def by auto
+
+lemma units_of_mult: "mult(units_of G) = mult G"
+ unfolding units_of_def by auto
+
+lemma units_of_one: "one(units_of G) = one G"
+ unfolding units_of_def by auto
+
+lemma (in monoid) units_of_inv: "x : Units G ==> m_inv (units_of G) x = m_inv G x"
+ apply (rule sym)
+ apply (subst m_inv_def)
+ apply (rule the1_equality)
+ apply (rule ex_ex1I)
+ apply (subst (asm) Units_def)
+ apply auto
+ apply (erule inv_unique)
+ apply auto
+ apply (rule Units_closed)
+ apply (simp_all only: units_of_carrier [symmetric])
+ apply (insert units_group)
+ apply auto
+ apply (subst units_of_mult [symmetric])
+ apply (subst units_of_one [symmetric])
+ apply (erule group.r_inv, assumption)
+ apply (subst units_of_mult [symmetric])
+ apply (subst units_of_one [symmetric])
+ apply (erule group.l_inv, assumption)
+ done
+
+lemma (in group) inj_on_const_mult: "a: (carrier G) ==> inj_on (%x. a \<otimes> x) (carrier G)"
+ unfolding inj_on_def by auto
+
+lemma (in group) surj_const_mult: "a : (carrier G) ==> (%x. a \<otimes> x) ` (carrier G) = (carrier G)"
+ apply (auto simp add: image_def)
+ apply (rule_tac x = "(m_inv G a) \<otimes> x" in bexI)
+ apply auto
+(* auto should get this. I suppose we need "comm_monoid_simprules"
+ for ac_simps rewriting. *)
+ apply (subst m_assoc [symmetric])
+ apply auto
+ done
+
+lemma (in group) l_cancel_one [simp]:
+ "x : carrier G \<Longrightarrow> a : carrier G \<Longrightarrow> (x \<otimes> a = x) = (a = one G)"
+ apply auto
+ apply (subst l_cancel [symmetric])
+ prefer 4
+ apply (erule ssubst)
+ apply auto
+ done
+
+lemma (in group) r_cancel_one [simp]: "x : carrier G \<Longrightarrow> a : carrier G \<Longrightarrow>
+ (a \<otimes> x = x) = (a = one G)"
+ apply auto
+ apply (subst r_cancel [symmetric])
+ prefer 4
+ apply (erule ssubst)
+ apply auto
+ done
+
+(* Is there a better way to do this? *)
+lemma (in group) l_cancel_one' [simp]: "x : carrier G \<Longrightarrow> a : carrier G \<Longrightarrow>
+ (x = x \<otimes> a) = (a = one G)"
+ apply (subst eq_commute)
+ apply simp
+ done
+
+lemma (in group) r_cancel_one' [simp]: "x : carrier G \<Longrightarrow> a : carrier G \<Longrightarrow>
+ (x = a \<otimes> x) = (a = one G)"
+ apply (subst eq_commute)
+ apply simp
+ done
+
+(* This should be generalized to arbitrary groups, not just commutative
+ ones, using Lagrange's theorem. *)
+
+lemma (in comm_group) power_order_eq_one:
+ assumes fin [simp]: "finite (carrier G)"
+ and a [simp]: "a : carrier G"
+ shows "a (^) card(carrier G) = one G"
+proof -
+ have "(\<Otimes>x\<in>carrier G. x) = (\<Otimes>x\<in>carrier G. a \<otimes> x)"
+ by (subst (2) finprod_reindex [symmetric],
+ auto simp add: Pi_def inj_on_const_mult surj_const_mult)
+ also have "\<dots> = (\<Otimes>x\<in>carrier G. a) \<otimes> (\<Otimes>x\<in>carrier G. x)"
+ by (auto simp add: finprod_multf Pi_def)
+ also have "(\<Otimes>x\<in>carrier G. a) = a (^) card(carrier G)"
+ by (auto simp add: finprod_const)
+ finally show ?thesis
+(* uses the preceeding lemma *)
+ by auto
+qed
+
+end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Algebra/More_Ring.thy Thu Apr 06 08:33:37 2017 +0200
@@ -0,0 +1,77 @@
+(* Title: HOL/Algebra/More_Group.thy
+ Author: Jeremy Avigad
+*)
+
+section \<open>More on rings etc.\<close>
+
+theory More_Ring
+imports
+ Ring
+begin
+
+lemma (in cring) field_intro2: "\<zero>\<^bsub>R\<^esub> ~= \<one>\<^bsub>R\<^esub> \<Longrightarrow> \<forall>x \<in> carrier R - {\<zero>\<^bsub>R\<^esub>}. x \<in> Units R \<Longrightarrow> field R"
+ apply (unfold_locales)
+ apply (insert cring_axioms, auto)
+ apply (rule trans)
+ apply (subgoal_tac "a = (a \<otimes> b) \<otimes> inv b")
+ apply assumption
+ apply (subst m_assoc)
+ apply auto
+ apply (unfold Units_def)
+ apply auto
+ done
+
+lemma (in monoid) inv_char: "x : carrier G \<Longrightarrow> y : carrier G \<Longrightarrow>
+ x \<otimes> y = \<one> \<Longrightarrow> y \<otimes> x = \<one> \<Longrightarrow> inv x = y"
+ apply (subgoal_tac "x : Units G")
+ apply (subgoal_tac "y = inv x \<otimes> \<one>")
+ apply simp
+ apply (erule subst)
+ apply (subst m_assoc [symmetric])
+ apply auto
+ apply (unfold Units_def)
+ apply auto
+ done
+
+lemma (in comm_monoid) comm_inv_char: "x : carrier G \<Longrightarrow> y : carrier G \<Longrightarrow>
+ x \<otimes> y = \<one> \<Longrightarrow> inv x = y"
+ apply (rule inv_char)
+ apply auto
+ apply (subst m_comm, auto)
+ done
+
+lemma (in ring) inv_neg_one [simp]: "inv (\<ominus> \<one>) = \<ominus> \<one>"
+ apply (rule inv_char)
+ apply (auto simp add: l_minus r_minus)
+ done
+
+lemma (in monoid) inv_eq_imp_eq: "x : Units G \<Longrightarrow> y : Units G \<Longrightarrow>
+ inv x = inv y \<Longrightarrow> x = y"
+ apply (subgoal_tac "inv(inv x) = inv(inv y)")
+ apply (subst (asm) Units_inv_inv)+
+ apply auto
+ done
+
+lemma (in ring) Units_minus_one_closed [intro]: "\<ominus> \<one> : Units R"
+ apply (unfold Units_def)
+ apply auto
+ apply (rule_tac x = "\<ominus> \<one>" in bexI)
+ apply auto
+ apply (simp add: l_minus r_minus)
+ done
+
+lemma (in monoid) inv_one [simp]: "inv \<one> = \<one>"
+ apply (rule inv_char)
+ apply auto
+ done
+
+lemma (in ring) inv_eq_neg_one_eq: "x : Units R \<Longrightarrow> (inv x = \<ominus> \<one>) = (x = \<ominus> \<one>)"
+ apply auto
+ apply (subst Units_inv_inv [symmetric])
+ apply auto
+ done
+
+lemma (in monoid) inv_eq_one_eq: "x : Units G \<Longrightarrow> (inv x = \<one>) = (x = \<one>)"
+ by (metis Units_inv_inv inv_one)
+
+end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Algebra/Multiplicative_Group.thy Thu Apr 06 08:33:37 2017 +0200
@@ -0,0 +1,904 @@
+(* Title: HOL/Algebra/Multiplicative_Group.thy
+ Author: Simon Wimmer
+ Author: Lars Noschinski
+*)
+
+theory Multiplicative_Group
+imports
+ Complex_Main
+ Group
+ More_Group
+ More_Finite_Product
+ Coset
+ UnivPoly
+begin
+
+section {* Simplification Rules for Polynomials *}
+text_raw {* \label{sec:simp-rules} *}
+
+lemma (in ring_hom_cring) hom_sub[simp]:
+ assumes "x \<in> carrier R" "y \<in> carrier R"
+ shows "h (x \<ominus> y) = h x \<ominus>\<^bsub>S\<^esub> h y"
+ using assms by (simp add: R.minus_eq S.minus_eq)
+
+context UP_ring begin
+
+lemma deg_nzero_nzero:
+ assumes deg_p_nzero: "deg R p \<noteq> 0"
+ shows "p \<noteq> \<zero>\<^bsub>P\<^esub>"
+ using deg_zero deg_p_nzero by auto
+
+lemma deg_add_eq:
+ assumes c: "p \<in> carrier P" "q \<in> carrier P"
+ assumes "deg R q \<noteq> deg R p"
+ shows "deg R (p \<oplus>\<^bsub>P\<^esub> q) = max (deg R p) (deg R q)"
+proof -
+ let ?m = "max (deg R p) (deg R q)"
+ from assms have "coeff P p ?m = \<zero> \<longleftrightarrow> coeff P q ?m \<noteq> \<zero>"
+ by (metis deg_belowI lcoeff_nonzero[OF deg_nzero_nzero] linear max.absorb_iff2 max.absorb1)
+ then have "coeff P (p \<oplus>\<^bsub>P\<^esub> q) ?m \<noteq> \<zero>"
+ using assms by auto
+ then have "deg R (p \<oplus>\<^bsub>P\<^esub> q) \<ge> ?m"
+ using assms by (blast intro: deg_belowI)
+ with deg_add[OF c] show ?thesis by arith
+qed
+
+lemma deg_minus_eq:
+ assumes "p \<in> carrier P" "q \<in> carrier P" "deg R q \<noteq> deg R p"
+ shows "deg R (p \<ominus>\<^bsub>P\<^esub> q) = max (deg R p) (deg R q)"
+ using assms by (simp add: deg_add_eq a_minus_def)
+
+end
+
+context UP_cring begin
+
+lemma evalRR_add:
+ assumes "p \<in> carrier P" "q \<in> carrier P"
+ assumes x:"x \<in> carrier R"
+ shows "eval R R id x (p \<oplus>\<^bsub>P\<^esub> q) = eval R R id x p \<oplus> eval R R id x q"
+proof -
+ interpret UP_pre_univ_prop R R id by unfold_locales simp
+ interpret ring_hom_cring P R "eval R R id x" by unfold_locales (rule eval_ring_hom[OF x])
+ show ?thesis using assms by simp
+qed
+
+lemma evalRR_sub:
+ assumes "p \<in> carrier P" "q \<in> carrier P"
+ assumes x:"x \<in> carrier R"
+ shows "eval R R id x (p \<ominus>\<^bsub>P\<^esub> q) = eval R R id x p \<ominus> eval R R id x q"
+proof -
+ interpret UP_pre_univ_prop R R id by unfold_locales simp
+ interpret ring_hom_cring P R "eval R R id x" by unfold_locales (rule eval_ring_hom[OF x])
+ show ?thesis using assms by simp
+qed
+
+lemma evalRR_mult:
+ assumes "p \<in> carrier P" "q \<in> carrier P"
+ assumes x:"x \<in> carrier R"
+ shows "eval R R id x (p \<otimes>\<^bsub>P\<^esub> q) = eval R R id x p \<otimes> eval R R id x q"
+proof -
+ interpret UP_pre_univ_prop R R id by unfold_locales simp
+ interpret ring_hom_cring P R "eval R R id x" by unfold_locales (rule eval_ring_hom[OF x])
+ show ?thesis using assms by simp
+qed
+
+lemma evalRR_monom:
+ assumes a: "a \<in> carrier R" and x: "x \<in> carrier R"
+ shows "eval R R id x (monom P a d) = a \<otimes> x (^) d"
+proof -
+ interpret UP_pre_univ_prop R R id by unfold_locales simp
+ show ?thesis using assms by (simp add: eval_monom)
+qed
+
+lemma evalRR_one:
+ assumes x: "x \<in> carrier R"
+ shows "eval R R id x \<one>\<^bsub>P\<^esub> = \<one>"
+proof -
+ interpret UP_pre_univ_prop R R id by unfold_locales simp
+ interpret ring_hom_cring P R "eval R R id x" by unfold_locales (rule eval_ring_hom[OF x])
+ show ?thesis using assms by simp
+qed
+
+lemma carrier_evalRR:
+ assumes x: "x \<in> carrier R" and "p \<in> carrier P"
+ shows "eval R R id x p \<in> carrier R"
+proof -
+ interpret UP_pre_univ_prop R R id by unfold_locales simp
+ interpret ring_hom_cring P R "eval R R id x" by unfold_locales (rule eval_ring_hom[OF x])
+ show ?thesis using assms by simp
+qed
+
+lemmas evalRR_simps = evalRR_add evalRR_sub evalRR_mult evalRR_monom evalRR_one carrier_evalRR
+
+end
+
+
+
+section {* Properties of the Euler @{text \<phi>}-function *}
+text_raw {* \label{sec:euler-phi} *}
+
+text{*
+ In this section we prove that for every positive natural number the equation
+ $\sum_{d | n}^n \varphi(d) = n$ holds.
+*}
+
+lemma dvd_div_ge_1 :
+ fixes a b :: nat
+ assumes "a \<ge> 1" "b dvd a"
+ shows "a div b \<ge> 1"
+proof -
+ from \<open>b dvd a\<close> obtain c where "a = b * c" ..
+ with \<open>a \<ge> 1\<close> show ?thesis by simp
+qed
+
+lemma dvd_nat_bounds :
+ fixes n p :: nat
+ assumes "p > 0" "n dvd p"
+ shows "n > 0 \<and> n \<le> p"
+ using assms by (simp add: dvd_pos_nat dvd_imp_le)
+
+(* Deviates from the definition given in the library in number theory *)
+definition phi' :: "nat => nat"
+ where "phi' m = card {x. 1 \<le> x \<and> x \<le> m \<and> gcd x m = 1}"
+
+notation (latex_output)
+ phi' ("\<phi> _")
+
+lemma phi'_nonzero :
+ assumes "m > 0"
+ shows "phi' m > 0"
+proof -
+ have "1 \<in> {x. 1 \<le> x \<and> x \<le> m \<and> gcd x m = 1}" using assms by simp
+ hence "card {x. 1 \<le> x \<and> x \<le> m \<and> gcd x m = 1} > 0" by (auto simp: card_gt_0_iff)
+ thus ?thesis unfolding phi'_def by simp
+qed
+
+lemma dvd_div_eq_1:
+ fixes a b c :: nat
+ assumes "c dvd a" "c dvd b" "a div c = b div c"
+ shows "a = b" using assms dvd_mult_div_cancel[OF `c dvd a`] dvd_mult_div_cancel[OF `c dvd b`]
+ by presburger
+
+lemma dvd_div_eq_2:
+ fixes a b c :: nat
+ assumes "c>0" "a dvd c" "b dvd c" "c div a = c div b"
+ shows "a = b"
+ proof -
+ have "a > 0" "a \<le> c" using dvd_nat_bounds[OF assms(1-2)] by auto
+ have "a*(c div a) = c" using assms dvd_mult_div_cancel by fastforce
+ also have "\<dots> = b*(c div a)" using assms dvd_mult_div_cancel by fastforce
+ finally show "a = b" using `c>0` dvd_div_ge_1[OF _ `a dvd c`] by fastforce
+qed
+
+lemma div_mult_mono:
+ fixes a b c :: nat
+ assumes "a > 0" "a\<le>d"
+ shows "a * b div d \<le> b"
+proof -
+ have "a*b div d \<le> b*a div a" using assms div_le_mono2 mult.commute[of a b] by presburger
+ thus ?thesis using assms by force
+qed
+
+text{*
+ We arrive at the main result of this section:
+ For every positive natural number the equation $\sum_{d | n}^n \varphi(d) = n$ holds.
+
+ The outline of the proof for this lemma is as follows:
+ We count the $n$ fractions $1/n$, $\ldots$, $(n-1)/n$, $n/n$.
+ We analyze the reduced form $a/d = m/n$ for any of those fractions.
+ We want to know how many fractions $m/n$ have the reduced form denominator $d$.
+ The condition $1 \leq m \leq n$ is equivalent to the condition $1 \leq a \leq d$.
+ Therefore we want to know how many $a$ with $1 \leq a \leq d$ exist, s.t. @{term "gcd a d = 1"}.
+ This number is exactly @{term "phi' d"}.
+
+ Finally, by counting the fractions $m/n$ according to their reduced form denominator,
+ we get: @{term [display] "(\<Sum>d | d dvd n . phi' d) = n"}.
+ To formalize this proof in Isabelle, we analyze for an arbitrary divisor $d$ of $n$
+ \begin{itemize}
+ \item the set of reduced form numerators @{term "{a. (1::nat) \<le> a \<and> a \<le> d \<and> coprime a d}"}
+ \item the set of numerators $m$, for which $m/n$ has the reduced form denominator $d$,
+ i.e. the set @{term "{m \<in> {1::nat .. n}. n div gcd m n = d}"}
+ \end{itemize}
+ We show that @{term "\<lambda>a. a*n div d"} with the inverse @{term "\<lambda>a. a div gcd a n"} is
+ a bijection between theses sets, thus yielding the equality
+ @{term [display] "phi' d = card {m \<in> {1 .. n}. n div gcd m n = d}"}
+ This gives us
+ @{term [display] "(\<Sum>d | d dvd n . phi' d)
+ = card (\<Union>d \<in> {d. d dvd n}. {m \<in> {1 .. n}. n div gcd m n = d})"}
+ and by showing
+ @{term "(\<Union>d \<in> {d. d dvd n}. {m \<in> {1::nat .. n}. n div gcd m n = d}) \<supseteq> {1 .. n}"}
+ (this is our counting argument) the thesis follows.
+*}
+lemma sum_phi'_factors :
+ fixes n :: nat
+ assumes "n > 0"
+ shows "(\<Sum>d | d dvd n. phi' d) = n"
+proof -
+ { fix d assume "d dvd n" then obtain q where q: "n = d * q" ..
+ have "card {a. 1 \<le> a \<and> a \<le> d \<and> coprime a d} = card {m \<in> {1 .. n}. n div gcd m n = d}"
+ (is "card ?RF = card ?F")
+ proof (rule card_bij_eq)
+ { fix a b assume "a * n div d = b * n div d"
+ hence "a * (n div d) = b * (n div d)"
+ using dvd_div_mult[OF `d dvd n`] by (fastforce simp add: mult.commute)
+ hence "a = b" using dvd_div_ge_1[OF _ `d dvd n`] `n>0`
+ by (simp add: mult.commute nat_mult_eq_cancel1)
+ } thus "inj_on (\<lambda>a. a*n div d) ?RF" unfolding inj_on_def by blast
+ { fix a assume a:"a\<in>?RF"
+ hence "a * (n div d) \<ge> 1" using `n>0` dvd_div_ge_1[OF _ `d dvd n`] by simp
+ hence ge_1:"a * n div d \<ge> 1" by (simp add: `d dvd n` div_mult_swap)
+ have le_n:"a * n div d \<le> n" using div_mult_mono a by simp
+ have "gcd (a * n div d) n = n div d * gcd a d"
+ by (simp add: gcd_mult_distrib_nat q ac_simps)
+ hence "n div gcd (a * n div d) n = d*n div (d*(n div d))" using a by simp
+ hence "a * n div d \<in> ?F"
+ using ge_1 le_n by (fastforce simp add: `d dvd n` dvd_mult_div_cancel)
+ } thus "(\<lambda>a. a*n div d) ` ?RF \<subseteq> ?F" by blast
+ { fix m l assume A: "m \<in> ?F" "l \<in> ?F" "m div gcd m n = l div gcd l n"
+ hence "gcd m n = gcd l n" using dvd_div_eq_2[OF assms] by fastforce
+ hence "m = l" using dvd_div_eq_1[of "gcd m n" m l] A(3) by fastforce
+ } thus "inj_on (\<lambda>a. a div gcd a n) ?F" unfolding inj_on_def by blast
+ { fix m assume "m \<in> ?F"
+ hence "m div gcd m n \<in> ?RF" using dvd_div_ge_1
+ by (fastforce simp add: div_le_mono div_gcd_coprime)
+ } thus "(\<lambda>a. a div gcd a n) ` ?F \<subseteq> ?RF" by blast
+ qed force+
+ } hence phi'_eq:"\<And>d. d dvd n \<Longrightarrow> phi' d = card {m \<in> {1 .. n}. n div gcd m n = d}"
+ unfolding phi'_def by presburger
+ have fin:"finite {d. d dvd n}" using dvd_nat_bounds[OF `n>0`] by force
+ have "(\<Sum>d | d dvd n. phi' d)
+ = card (\<Union>d \<in> {d. d dvd n}. {m \<in> {1 .. n}. n div gcd m n = d})"
+ using card_UN_disjoint[OF fin, of "(\<lambda>d. {m \<in> {1 .. n}. n div gcd m n = d})"] phi'_eq
+ by fastforce
+ also have "(\<Union>d \<in> {d. d dvd n}. {m \<in> {1 .. n}. n div gcd m n = d}) = {1 .. n}" (is "?L = ?R")
+ proof
+ show "?L \<supseteq> ?R"
+ proof
+ fix m assume m: "m \<in> ?R"
+ thus "m \<in> ?L" using dvd_triv_right[of "n div gcd m n" "gcd m n"]
+ by (simp add: dvd_mult_div_cancel)
+ qed
+ qed fastforce
+ finally show ?thesis by force
+qed
+
+section {* Order of an Element of a Group *}
+text_raw {* \label{sec:order-elem} *}
+
+
+context group begin
+
+lemma pow_eq_div2 :
+ fixes m n :: nat
+ assumes x_car: "x \<in> carrier G"
+ assumes pow_eq: "x (^) m = x (^) n"
+ shows "x (^) (m - n) = \<one>"
+proof (cases "m < n")
+ case False
+ have "\<one> \<otimes> x (^) m = x (^) m" by (simp add: x_car)
+ also have "\<dots> = x (^) (m - n) \<otimes> x (^) n"
+ using False by (simp add: nat_pow_mult x_car)
+ also have "\<dots> = x (^) (m - n) \<otimes> x (^) m"
+ by (simp add: pow_eq)
+ finally show ?thesis by (simp add: x_car)
+qed simp
+
+definition ord where "ord a = Min {d \<in> {1 .. order G} . a (^) d = \<one>}"
+
+lemma
+ assumes finite:"finite (carrier G)"
+ assumes a:"a \<in> carrier G"
+ shows ord_ge_1: "1 \<le> ord a" and ord_le_group_order: "ord a \<le> order G"
+ and pow_ord_eq_1: "a (^) ord a = \<one>"
+proof -
+ have "\<not>inj_on (\<lambda>x. a (^) x) {0 .. order G}"
+ proof (rule notI)
+ assume A: "inj_on (\<lambda>x. a (^) x) {0 .. order G}"
+ have "order G + 1 = card {0 .. order G}" by simp
+ also have "\<dots> = card ((\<lambda>x. a (^) x) ` {0 .. order G})" (is "_ = card ?S")
+ using A by (simp add: card_image)
+ also have "?S = {a (^) x | x. x \<in> {0 .. order G}}" by blast
+ also have "\<dots> \<subseteq> carrier G" (is "?S \<subseteq> _") using a by blast
+ then have "card ?S \<le> order G" unfolding order_def
+ by (rule card_mono[OF finite])
+ finally show False by arith
+ qed
+
+ then obtain x y where x_y:"x \<noteq> y" "x \<in> {0 .. order G}" "y \<in> {0 .. order G}"
+ "a (^) x = a (^) y" unfolding inj_on_def by blast
+ obtain d where "1 \<le> d" "a (^) d = \<one>" "d \<le> order G"
+ proof cases
+ assume "y < x" with x_y show ?thesis
+ by (intro that[where d="x - y"]) (auto simp add: pow_eq_div2[OF a])
+ next
+ assume "\<not>y < x" with x_y show ?thesis
+ by (intro that[where d="y - x"]) (auto simp add: pow_eq_div2[OF a])
+ qed
+ hence "ord a \<in> {d \<in> {1 .. order G} . a (^) d = \<one>}"
+ unfolding ord_def using Min_in[of "{d \<in> {1 .. order G} . a (^) d = \<one>}"]
+ by fastforce
+ then show "1 \<le> ord a" and "ord a \<le> order G" and "a (^) ord a = \<one>"
+ by (auto simp: order_def)
+qed
+
+lemma finite_group_elem_finite_ord :
+ assumes "finite (carrier G)" "x \<in> carrier G"
+ shows "\<exists> d::nat. d \<ge> 1 \<and> x (^) d = \<one>"
+ using assms ord_ge_1 pow_ord_eq_1 by auto
+
+lemma ord_min:
+ assumes "finite (carrier G)" "1 \<le> d" "a \<in> carrier G" "a (^) d = \<one>" shows "ord a \<le> d"
+proof -
+ def Ord \<equiv> "{d \<in> {1..order G}. a (^) d = \<one>}"
+ have fin: "finite Ord" by (auto simp: Ord_def)
+ have in_ord: "ord a \<in> Ord"
+ using assms pow_ord_eq_1 ord_ge_1 ord_le_group_order by (auto simp: Ord_def)
+ then have "Ord \<noteq> {}" by auto
+
+ show ?thesis
+ proof (cases "d \<le> order G")
+ case True
+ then have "d \<in> Ord" using assms by (auto simp: Ord_def)
+ with fin in_ord show ?thesis
+ unfolding ord_def Ord_def[symmetric] by simp
+ next
+ case False
+ then show ?thesis using in_ord by (simp add: Ord_def)
+ qed
+qed
+
+lemma ord_inj :
+ assumes finite: "finite (carrier G)"
+ assumes a: "a \<in> carrier G"
+ shows "inj_on (\<lambda> x . a (^) x) {0 .. ord a - 1}"
+proof (rule inj_onI, rule ccontr)
+ fix x y assume A: "x \<in> {0 .. ord a - 1}" "y \<in> {0 .. ord a - 1}" "a (^) x= a (^) y" "x \<noteq> y"
+
+ have "finite {d \<in> {1..order G}. a (^) d = \<one>}" by auto
+
+ { fix x y assume A: "x < y" "x \<in> {0 .. ord a - 1}" "y \<in> {0 .. ord a - 1}"
+ "a (^) x = a (^) y"
+ hence "y - x < ord a" by auto
+ also have "\<dots> \<le> order G" using assms by (simp add: ord_le_group_order)
+ finally have y_x_range:"y - x \<in> {1 .. order G}" using A by force
+ have "a (^) (y-x) = \<one>" using a A by (simp add: pow_eq_div2)
+
+ hence y_x:"y - x \<in> {d \<in> {1.. order G}. a (^) d = \<one>}" using y_x_range by blast
+ have "min (y - x) (ord a) = ord a"
+ using Min.in_idem[OF `finite {d \<in> {1 .. order G} . a (^) d = \<one>}` y_x] ord_def by auto
+ with `y - x < ord a` have False by linarith
+ }
+ note X = this
+
+ { assume "x < y" with A X have False by blast }
+ moreover
+ { assume "x > y" with A X have False by metis }
+ moreover
+ { assume "x = y" then have False using A by auto}
+ ultimately
+ show False by fastforce
+qed
+
+lemma ord_inj' :
+ assumes finite: "finite (carrier G)"
+ assumes a: "a \<in> carrier G"
+ shows "inj_on (\<lambda> x . a (^) x) {1 .. ord a}"
+proof (rule inj_onI, rule ccontr)
+ fix x y :: nat
+ assume A:"x \<in> {1 .. ord a}" "y \<in> {1 .. ord a}" "a (^) x = a (^) y" "x\<noteq>y"
+ { assume "x < ord a" "y < ord a"
+ hence False using ord_inj[OF assms] A unfolding inj_on_def by fastforce
+ }
+ moreover
+ { assume "x = ord a" "y < ord a"
+ hence "a (^) y = a (^) (0::nat)" using pow_ord_eq_1[OF assms] A by auto
+ hence "y=0" using ord_inj[OF assms] `y < ord a` unfolding inj_on_def by force
+ hence False using A by fastforce
+ }
+ moreover
+ { assume "y = ord a" "x < ord a"
+ hence "a (^) x = a (^) (0::nat)" using pow_ord_eq_1[OF assms] A by auto
+ hence "x=0" using ord_inj[OF assms] `x < ord a` unfolding inj_on_def by force
+ hence False using A by fastforce
+ }
+ ultimately show False using A by force
+qed
+
+lemma ord_elems :
+ assumes "finite (carrier G)" "a \<in> carrier G"
+ shows "{a(^)x | x. x \<in> (UNIV :: nat set)} = {a(^)x | x. x \<in> {0 .. ord a - 1}}" (is "?L = ?R")
+proof
+ show "?R \<subseteq> ?L" by blast
+ { fix y assume "y \<in> ?L"
+ then obtain x::nat where x:"y = a(^)x" by auto
+ def r \<equiv> "x mod ord a"
+ then obtain q where q:"x = q * ord a + r" using mod_eqD by atomize_elim presburger
+ hence "y = (a(^)ord a)(^)q \<otimes> a(^)r"
+ using x assms by (simp add: mult.commute nat_pow_mult nat_pow_pow)
+ hence "y = a(^)r" using assms by (simp add: pow_ord_eq_1)
+ have "r < ord a" using ord_ge_1[OF assms] by (simp add: r_def)
+ hence "r \<in> {0 .. ord a - 1}" by (force simp: r_def)
+ hence "y \<in> {a(^)x | x. x \<in> {0 .. ord a - 1}}" using `y=a(^)r` by blast
+ }
+ thus "?L \<subseteq> ?R" by auto
+qed
+
+lemma ord_dvd_pow_eq_1 :
+ assumes "finite (carrier G)" "a \<in> carrier G" "a (^) k = \<one>"
+ shows "ord a dvd k"
+proof -
+ def r \<equiv> "k mod ord a"
+ then obtain q where q:"k = q*ord a + r" using mod_eqD by atomize_elim presburger
+ hence "a(^)k = (a(^)ord a)(^)q \<otimes> a(^)r"
+ using assms by (simp add: mult.commute nat_pow_mult nat_pow_pow)
+ hence "a(^)k = a(^)r" using assms by (simp add: pow_ord_eq_1)
+ hence "a(^)r = \<one>" using assms(3) by simp
+ have "r < ord a" using ord_ge_1[OF assms(1-2)] by (simp add: r_def)
+ hence "r = 0" using `a(^)r = \<one>` ord_def[of a] ord_min[of r a] assms(1-2) by linarith
+ thus ?thesis using q by simp
+qed
+
+lemma dvd_gcd :
+ fixes a b :: nat
+ obtains q where "a * (b div gcd a b) = b*q"
+proof
+ have "a * (b div gcd a b) = (a div gcd a b) * b" by (simp add: div_mult_swap dvd_div_mult)
+ also have "\<dots> = b * (a div gcd a b)" by simp
+ finally show "a * (b div gcd a b) = b * (a div gcd a b) " .
+qed
+
+lemma ord_pow_dvd_ord_elem :
+ assumes finite[simp]: "finite (carrier G)"
+ assumes a[simp]:"a \<in> carrier G"
+ shows "ord (a(^)n) = ord a div gcd n (ord a)"
+proof -
+ have "(a(^)n) (^) ord a = (a (^) ord a) (^) n"
+ by (simp add: mult.commute nat_pow_pow)
+ hence "(a(^)n) (^) ord a = \<one>" by (simp add: pow_ord_eq_1)
+ obtain q where "n * (ord a div gcd n (ord a)) = ord a * q" by (rule dvd_gcd)
+ hence "(a(^)n) (^) (ord a div gcd n (ord a)) = (a (^) ord a)(^)q" by (simp add : nat_pow_pow)
+ hence pow_eq_1: "(a(^)n) (^) (ord a div gcd n (ord a)) = \<one>"
+ by (auto simp add : pow_ord_eq_1[of a])
+ have "ord a \<ge> 1" using ord_ge_1 by simp
+ have ge_1:"ord a div gcd n (ord a) \<ge> 1"
+ proof -
+ have "gcd n (ord a) dvd ord a" by blast
+ thus ?thesis by (rule dvd_div_ge_1[OF `ord a \<ge> 1`])
+ qed
+ have "ord a \<le> order G" by (simp add: ord_le_group_order)
+ have "ord a div gcd n (ord a) \<le> order G"
+ proof -
+ have "ord a div gcd n (ord a) \<le> ord a" by simp
+ thus ?thesis using `ord a \<le> order G` by linarith
+ qed
+ hence ord_gcd_elem:"ord a div gcd n (ord a) \<in> {d \<in> {1..order G}. (a(^)n) (^) d = \<one>}"
+ using ge_1 pow_eq_1 by force
+ { fix d :: nat
+ assume d_elem:"d \<in> {d \<in> {1..order G}. (a(^)n) (^) d = \<one>}"
+ assume d_lt:"d < ord a div gcd n (ord a)"
+ hence pow_nd:"a(^)(n*d) = \<one>" using d_elem
+ by (simp add : nat_pow_pow)
+ hence "ord a dvd n*d" using assms by (auto simp add : ord_dvd_pow_eq_1)
+ then obtain q where "ord a * q = n*d" by (metis dvd_mult_div_cancel)
+ hence prod_eq:"(ord a div gcd n (ord a)) * q = (n div gcd n (ord a)) * d"
+ by (simp add: dvd_div_mult)
+ have cp:"coprime (ord a div gcd n (ord a)) (n div gcd n (ord a))"
+ proof -
+ have "coprime (n div gcd n (ord a)) (ord a div gcd n (ord a))"
+ using div_gcd_coprime[of n "ord a"] ge_1 by fastforce
+ thus ?thesis by (simp add: gcd.commute)
+ qed
+ have dvd_d:"(ord a div gcd n (ord a)) dvd d"
+ proof -
+ have "ord a div gcd n (ord a) dvd (n div gcd n (ord a)) * d" using prod_eq
+ by (metis dvd_triv_right mult.commute)
+ hence "ord a div gcd n (ord a) dvd d * (n div gcd n (ord a))"
+ by (simp add: mult.commute)
+ thus ?thesis using coprime_dvd_mult[OF cp, of d] by fastforce
+ qed
+ have "d > 0" using d_elem by simp
+ hence "ord a div gcd n (ord a) \<le> d" using dvd_d by (simp add : Nat.dvd_imp_le)
+ hence False using d_lt by simp
+ } hence ord_gcd_min: "\<And> d . d \<in> {d \<in> {1..order G}. (a(^)n) (^) d = \<one>}
+ \<Longrightarrow> d\<ge>ord a div gcd n (ord a)" by fastforce
+ have fin:"finite {d \<in> {1..order G}. (a(^)n) (^) d = \<one>}" by auto
+ thus ?thesis using Min_eqI[OF fin ord_gcd_min ord_gcd_elem]
+ unfolding ord_def by simp
+qed
+
+lemma ord_1_eq_1 :
+ assumes "finite (carrier G)"
+ shows "ord \<one> = 1"
+ using assms ord_ge_1 ord_min[of 1 \<one>] by force
+
+theorem lagrange_dvd:
+ assumes "finite(carrier G)" "subgroup H G" shows "(card H) dvd (order G)"
+ using assms by (simp add: lagrange[symmetric])
+
+lemma element_generates_subgroup:
+ assumes finite[simp]: "finite (carrier G)"
+ assumes a[simp]: "a \<in> carrier G"
+ shows "subgroup {a (^) i | i. i \<in> {0 .. ord a - 1}} G"
+proof
+ show "{a(^)i | i. i \<in> {0 .. ord a - 1} } \<subseteq> carrier G" by auto
+next
+ fix x y
+ assume A: "x \<in> {a(^)i | i. i \<in> {0 .. ord a - 1}}" "y \<in> {a(^)i | i. i \<in> {0 .. ord a - 1}}"
+ obtain i::nat where i:"x = a(^)i" and i2:"i \<in> UNIV" using A by auto
+ obtain j::nat where j:"y = a(^)j" and j2:"j \<in> UNIV" using A by auto
+ have "a(^)(i+j) \<in> {a(^)i | i. i \<in> {0 .. ord a - 1}}" using ord_elems[OF assms] A by auto
+ thus "x \<otimes> y \<in> {a(^)i | i. i \<in> {0 .. ord a - 1}}"
+ using i j a ord_elems assms by (auto simp add: nat_pow_mult)
+next
+ show "\<one> \<in> {a(^)i | i. i \<in> {0 .. ord a - 1}}" by force
+next
+ fix x assume x: "x \<in> {a(^)i | i. i \<in> {0 .. ord a - 1}}"
+ hence x_in_carrier: "x \<in> carrier G" by auto
+ then obtain d::nat where d:"x (^) d = \<one>" and "d\<ge>1"
+ using finite_group_elem_finite_ord by auto
+ have inv_1:"x(^)(d - 1) \<otimes> x = \<one>" using `d\<ge>1` d nat_pow_Suc[of x "d - 1"] by simp
+ have elem:"x (^) (d - 1) \<in> {a(^)i | i. i \<in> {0 .. ord a - 1}}"
+ proof -
+ obtain i::nat where i:"x = a(^)i" using x by auto
+ hence "x(^)(d - 1) \<in> {a(^)i | i. i \<in> (UNIV::nat set)}" by (auto simp add: nat_pow_pow)
+ thus ?thesis using ord_elems[of a] by auto
+ qed
+ have inv:"inv x = x(^)(d - 1)" using inv_equality[OF inv_1] x_in_carrier by blast
+ thus "inv x \<in> {a(^)i | i. i \<in> {0 .. ord a - 1}}" using elem inv by auto
+qed
+
+lemma ord_dvd_group_order :
+ assumes finite[simp]: "finite (carrier G)"
+ assumes a[simp]: "a \<in> carrier G"
+ shows "ord a dvd order G"
+proof -
+ have card_dvd:"card {a(^)i | i. i \<in> {0 .. ord a - 1}} dvd card (carrier G)"
+ using lagrange_dvd element_generates_subgroup unfolding order_def by simp
+ have "inj_on (\<lambda> i . a(^)i) {0..ord a - 1}" using ord_inj by simp
+ hence cards_eq:"card ( (\<lambda> i . a(^)i) ` {0..ord a - 1}) = card {0..ord a - 1}"
+ using card_image[of "\<lambda> i . a(^)i" "{0..ord a - 1}"] by auto
+ have "(\<lambda> i . a(^)i) ` {0..ord a - 1} = {a(^)i | i. i \<in> {0..ord a - 1}}" by auto
+ hence "card {a(^)i | i. i \<in> {0..ord a - 1}} = card {0..ord a - 1}" using cards_eq by simp
+ also have "\<dots> = ord a" using ord_ge_1[of a] by simp
+ finally show ?thesis using card_dvd by (simp add: order_def)
+qed
+
+end
+
+
+section {* Number of Roots of a Polynomial *}
+text_raw {* \label{sec:number-roots} *}
+
+
+definition mult_of :: "('a, 'b) ring_scheme \<Rightarrow> 'a monoid" where
+ "mult_of R \<equiv> \<lparr> carrier = carrier R - {\<zero>\<^bsub>R\<^esub>}, mult = mult R, one = \<one>\<^bsub>R\<^esub>\<rparr>"
+
+lemma carrier_mult_of: "carrier (mult_of R) = carrier R - {\<zero>\<^bsub>R\<^esub>}"
+ by (simp add: mult_of_def)
+
+lemma mult_mult_of: "mult (mult_of R) = mult R"
+ by (simp add: mult_of_def)
+
+lemma nat_pow_mult_of: "op (^)\<^bsub>mult_of R\<^esub> = (op (^)\<^bsub>R\<^esub> :: _ \<Rightarrow> nat \<Rightarrow> _)"
+ by (simp add: mult_of_def fun_eq_iff nat_pow_def)
+
+lemma one_mult_of: "\<one>\<^bsub>mult_of R\<^esub> = \<one>\<^bsub>R\<^esub>"
+ by (simp add: mult_of_def)
+
+lemmas mult_of_simps = carrier_mult_of mult_mult_of nat_pow_mult_of one_mult_of
+
+context field begin
+
+lemma field_mult_group :
+ shows "group (mult_of R)"
+ apply (rule groupI)
+ apply (auto simp: mult_of_simps m_assoc dest: integral)
+ by (metis Diff_iff Units_inv_Units Units_l_inv field_Units singletonE)
+
+lemma finite_mult_of: "finite (carrier R) \<Longrightarrow> finite (carrier (mult_of R))"
+ by (auto simp: mult_of_simps)
+
+lemma order_mult_of: "finite (carrier R) \<Longrightarrow> order (mult_of R) = order R - 1"
+ unfolding order_def carrier_mult_of by (simp add: card.remove)
+
+end
+
+
+
+lemma (in monoid) Units_pow_closed :
+ fixes d :: nat
+ assumes "x \<in> Units G"
+ shows "x (^) d \<in> Units G"
+ by (metis assms group.is_monoid monoid.nat_pow_closed units_group units_of_carrier units_of_pow)
+
+lemma (in comm_monoid) is_monoid:
+ shows "monoid G" by unfold_locales
+
+declare comm_monoid.is_monoid[intro?]
+
+lemma (in ring) r_right_minus_eq[simp]:
+ assumes "a \<in> carrier R" "b \<in> carrier R"
+ shows "a \<ominus> b = \<zero> \<longleftrightarrow> a = b"
+ using assms by (metis a_minus_def add.inv_closed minus_equality r_neg)
+
+context UP_cring begin
+
+lemma is_UP_cring:"UP_cring R" by (unfold_locales)
+lemma is_UP_ring :
+ shows "UP_ring R" by (unfold_locales)
+
+end
+
+context UP_domain begin
+
+
+lemma roots_bound:
+ assumes f [simp]: "f \<in> carrier P"
+ assumes f_not_zero: "f \<noteq> \<zero>\<^bsub>P\<^esub>"
+ assumes finite: "finite (carrier R)"
+ shows "finite {a \<in> carrier R . eval R R id a f = \<zero>} \<and>
+ card {a \<in> carrier R . eval R R id a f = \<zero>} \<le> deg R f" using f f_not_zero
+proof (induction "deg R f" arbitrary: f)
+ case 0
+ have "\<And>x. eval R R id x f \<noteq> \<zero>"
+ proof -
+ fix x
+ have "(\<Oplus>i\<in>{..deg R f}. id (coeff P f i) \<otimes> x (^) i) \<noteq> \<zero>"
+ using 0 lcoeff_nonzero_nonzero[where p = f] by simp
+ thus "eval R R id x f \<noteq> \<zero>" using 0 unfolding eval_def P_def by simp
+ qed
+ then have *: "{a \<in> carrier R. eval R R (\<lambda>a. a) a f = \<zero>} = {}"
+ by (auto simp: id_def)
+ show ?case by (simp add: *)
+next
+ case (Suc x)
+ show ?case
+ proof (cases "\<exists> a \<in> carrier R . eval R R id a f = \<zero>")
+ case True
+ then obtain a where a_carrier[simp]: "a \<in> carrier R" and a_root:"eval R R id a f = \<zero>" by blast
+ have R_not_triv: "carrier R \<noteq> {\<zero>}"
+ by (metis R.one_zeroI R.zero_not_one)
+ obtain q where q:"(q \<in> carrier P)" and
+ f:"f = (monom P \<one>\<^bsub>R\<^esub> 1 \<ominus>\<^bsub> P\<^esub> monom P a 0) \<otimes>\<^bsub>P\<^esub> q \<oplus>\<^bsub>P\<^esub> monom P (eval R R id a f) 0"
+ using remainder_theorem[OF Suc.prems(1) a_carrier R_not_triv] by auto
+ hence lin_fac: "f = (monom P \<one>\<^bsub>R\<^esub> 1 \<ominus>\<^bsub> P\<^esub> monom P a 0) \<otimes>\<^bsub>P\<^esub> q" using q by (simp add: a_root)
+ have deg:"deg R (monom P \<one>\<^bsub>R\<^esub> 1 \<ominus>\<^bsub> P\<^esub> monom P a 0) = 1"
+ using a_carrier by (simp add: deg_minus_eq)
+ hence mon_not_zero:"(monom P \<one>\<^bsub>R\<^esub> 1 \<ominus>\<^bsub> P\<^esub> monom P a 0) \<noteq> \<zero>\<^bsub>P\<^esub>"
+ by (fastforce simp del: r_right_minus_eq)
+ have q_not_zero:"q \<noteq> \<zero>\<^bsub>P\<^esub>" using Suc by (auto simp add : lin_fac)
+ hence "deg R q = x" using Suc deg deg_mult[OF mon_not_zero q_not_zero _ q]
+ by (simp add : lin_fac)
+ hence q_IH:"finite {a \<in> carrier R . eval R R id a q = \<zero>}
+ \<and> card {a \<in> carrier R . eval R R id a q = \<zero>} \<le> x" using Suc q q_not_zero by blast
+ have subs:"{a \<in> carrier R . eval R R id a f = \<zero>}
+ \<subseteq> {a \<in> carrier R . eval R R id a q = \<zero>} \<union> {a}" (is "?L \<subseteq> ?R \<union> {a}")
+ using a_carrier `q \<in> _`
+ by (auto simp: evalRR_simps lin_fac R.integral_iff)
+ have "{a \<in> carrier R . eval R R id a f = \<zero>} \<subseteq> insert a {a \<in> carrier R . eval R R id a q = \<zero>}"
+ using subs by auto
+ hence "card {a \<in> carrier R . eval R R id a f = \<zero>} \<le>
+ card (insert a {a \<in> carrier R . eval R R id a q = \<zero>})" using q_IH by (blast intro: card_mono)
+ also have "\<dots> \<le> deg R f" using q_IH `Suc x = _`
+ by (simp add: card_insert_if)
+ finally show ?thesis using q_IH `Suc x = _` using finite by force
+ next
+ case False
+ hence "card {a \<in> carrier R. eval R R id a f = \<zero>} = 0" using finite by auto
+ also have "\<dots> \<le> deg R f" by simp
+ finally show ?thesis using finite by auto
+ qed
+qed
+
+end
+
+lemma (in domain) num_roots_le_deg :
+ fixes p d :: nat
+ assumes finite:"finite (carrier R)"
+ assumes d_neq_zero : "d \<noteq> 0"
+ shows "card {x \<in> carrier R. x (^) d = \<one>} \<le> d"
+proof -
+ let ?f = "monom (UP R) \<one>\<^bsub>R\<^esub> d \<ominus>\<^bsub> (UP R)\<^esub> monom (UP R) \<one>\<^bsub>R\<^esub> 0"
+ have one_in_carrier:"\<one> \<in> carrier R" by simp
+ interpret R: UP_domain R "UP R" by (unfold_locales)
+ have "deg R ?f = d"
+ using d_neq_zero by (simp add: R.deg_minus_eq)
+ hence f_not_zero:"?f \<noteq> \<zero>\<^bsub>UP R\<^esub>" using d_neq_zero by (auto simp add : R.deg_nzero_nzero)
+ have roots_bound:"finite {a \<in> carrier R . eval R R id a ?f = \<zero>} \<and>
+ card {a \<in> carrier R . eval R R id a ?f = \<zero>} \<le> deg R ?f"
+ using finite by (intro R.roots_bound[OF _ f_not_zero]) simp
+ have subs:"{x \<in> carrier R. x (^) d = \<one>} \<subseteq> {a \<in> carrier R . eval R R id a ?f = \<zero>}"
+ by (auto simp: R.evalRR_simps)
+ then have "card {x \<in> carrier R. x (^) d = \<one>} \<le>
+ card {a \<in> carrier R. eval R R id a ?f = \<zero>}" using finite by (simp add : card_mono)
+ thus ?thesis using `deg R ?f = d` roots_bound by linarith
+qed
+
+
+
+section {* The Multiplicative Group of a Field *}
+text_raw {* \label{sec:mult-group} *}
+
+
+text {*
+ In this section we show that the multiplicative group of a finite field
+ is generated by a single element, i.e. it is cyclic. The proof is inspired
+ by the first proof given in the survey~\cite{conrad-cyclicity}.
+*}
+
+lemma (in group) pow_order_eq_1:
+ assumes "finite (carrier G)" "x \<in> carrier G" shows "x (^) order G = \<one>"
+ using assms by (metis nat_pow_pow ord_dvd_group_order pow_ord_eq_1 dvdE nat_pow_one)
+
+(* XXX remove in AFP devel, replaced by div_eq_dividend_iff *)
+lemma nat_div_eq: "a \<noteq> 0 \<Longrightarrow> (a :: nat) div b = a \<longleftrightarrow> b = 1"
+ apply rule
+ apply (cases "b = 0")
+ apply simp_all
+ apply (metis (full_types) One_nat_def Suc_lessI div_less_dividend less_not_refl3)
+ done
+
+lemma (in group)
+ assumes finite': "finite (carrier G)"
+ assumes "a \<in> carrier G"
+ shows pow_ord_eq_ord_iff: "group.ord G (a (^) k) = ord a \<longleftrightarrow> coprime k (ord a)" (is "?L \<longleftrightarrow> ?R")
+proof
+ assume A: ?L then show ?R
+ using assms ord_ge_1[OF assms] by (auto simp: nat_div_eq ord_pow_dvd_ord_elem)
+next
+ assume ?R then show ?L
+ using ord_pow_dvd_ord_elem[OF assms, of k] by auto
+qed
+
+context field begin
+
+lemma num_elems_of_ord_eq_phi':
+ assumes finite: "finite (carrier R)" and dvd: "d dvd order (mult_of R)"
+ and exists: "\<exists>a\<in>carrier (mult_of R). group.ord (mult_of R) a = d"
+ shows "card {a \<in> carrier (mult_of R). group.ord (mult_of R) a = d} = phi' d"
+proof -
+ note mult_of_simps[simp]
+ have finite': "finite (carrier (mult_of R))" using finite by (rule finite_mult_of)
+
+ interpret G:group "mult_of R" rewrites "op (^)\<^bsub>mult_of R\<^esub> = (op (^) :: _ \<Rightarrow> nat \<Rightarrow> _)" and "\<one>\<^bsub>mult_of R\<^esub> = \<one>"
+ by (rule field_mult_group) simp_all
+
+ from exists
+ obtain a where a:"a \<in> carrier (mult_of R)" and ord_a: "group.ord (mult_of R) a = d"
+ by (auto simp add: card_gt_0_iff)
+
+ have set_eq1:"{a(^)n| n. n \<in> {1 .. d}} = {x \<in> carrier (mult_of R). x (^) d = \<one>}"
+ proof (rule card_seteq)
+ show "finite {x \<in> carrier (mult_of R). x (^) d = \<one>}" using finite by auto
+
+ show "{a(^)n| n. n \<in> {1 ..d}} \<subseteq> {x \<in> carrier (mult_of R). x(^)d = \<one>}"
+ proof
+ fix x assume "x \<in> {a(^)n | n. n \<in> {1 .. d}}"
+ then obtain n where n:"x = a(^)n \<and> n \<in> {1 .. d}" by auto
+ have "x(^)d =(a(^)d)(^)n" using n a ord_a by (simp add:nat_pow_pow mult.commute)
+ hence "x(^)d = \<one>" using ord_a G.pow_ord_eq_1[OF finite' a] by fastforce
+ thus "x \<in> {x \<in> carrier (mult_of R). x(^)d = \<one>}" using G.nat_pow_closed[OF a] n by blast
+ qed
+
+ show "card {x \<in> carrier (mult_of R). x (^) d = \<one>} \<le> card {a(^)n | n. n \<in> {1 .. d}}"
+ proof -
+ have *:"{a(^)n | n. n \<in> {1 .. d }} = ((\<lambda> n. a(^)n) ` {1 .. d})" by auto
+ have "0 < order (mult_of R)" unfolding order_mult_of[OF finite]
+ using card_mono[OF finite, of "{\<zero>, \<one>}"] by (simp add: order_def)
+ have "card {x \<in> carrier (mult_of R). x (^) d = \<one>} \<le> card {x \<in> carrier R. x (^) d = \<one>}"
+ using finite by (auto intro: card_mono)
+ also have "\<dots> \<le> d" using `0 < order (mult_of R)` num_roots_le_deg[OF finite, of d]
+ by (simp add : dvd_pos_nat[OF _ `d dvd order (mult_of R)`])
+ finally show ?thesis using G.ord_inj'[OF finite' a] ord_a * by (simp add: card_image)
+ qed
+ qed
+
+ have set_eq2:"{x \<in> carrier (mult_of R) . group.ord (mult_of R) x = d}
+ = (\<lambda> n . a(^)n) ` {n \<in> {1 .. d}. group.ord (mult_of R) (a(^)n) = d}" (is "?L = ?R")
+ proof
+ { fix x assume x:"x \<in> (carrier (mult_of R)) \<and> group.ord (mult_of R) x = d"
+ hence "x \<in> {x \<in> carrier (mult_of R). x (^) d = \<one>}"
+ by (simp add: G.pow_ord_eq_1[OF finite', of x, symmetric])
+ then obtain n where n:"x = a(^)n \<and> n \<in> {1 .. d}" using set_eq1 by blast
+ hence "x \<in> ?R" using x by fast
+ } thus "?L \<subseteq> ?R" by blast
+ show "?R \<subseteq> ?L" using a by (auto simp add: carrier_mult_of[symmetric] simp del: carrier_mult_of)
+ qed
+ have "inj_on (\<lambda> n . a(^)n) {n \<in> {1 .. d}. group.ord (mult_of R) (a(^)n) = d}"
+ using G.ord_inj'[OF finite' a, unfolded ord_a] unfolding inj_on_def by fast
+ hence "card ((\<lambda>n. a(^)n) ` {n \<in> {1 .. d}. group.ord (mult_of R) (a(^)n) = d})
+ = card {k \<in> {1 .. d}. group.ord (mult_of R) (a(^)k) = d}"
+ using card_image by blast
+ thus ?thesis using set_eq2 G.pow_ord_eq_ord_iff[OF finite' `a \<in> _`, unfolded ord_a]
+ by (simp add: phi'_def)
+qed
+
+end
+
+
+theorem (in field) finite_field_mult_group_has_gen :
+ assumes finite:"finite (carrier R)"
+ shows "\<exists> a \<in> carrier (mult_of R) . carrier (mult_of R) = {a(^)i | i::nat . i \<in> UNIV}"
+proof -
+ note mult_of_simps[simp]
+ have finite': "finite (carrier (mult_of R))" using finite by (rule finite_mult_of)
+
+ interpret G: group "mult_of R" rewrites
+ "op (^)\<^bsub>mult_of R\<^esub> = (op (^) :: _ \<Rightarrow> nat \<Rightarrow> _)" and "\<one>\<^bsub>mult_of R\<^esub> = \<one>"
+ by (rule field_mult_group) (simp_all add: fun_eq_iff nat_pow_def)
+
+ let ?N = "\<lambda> x . card {a \<in> carrier (mult_of R). group.ord (mult_of R) a = x}"
+ have "0 < order R - 1" unfolding order_def using card_mono[OF finite, of "{\<zero>, \<one>}"] by simp
+ then have *: "0 < order (mult_of R)" using assms by (simp add: order_mult_of)
+ have fin: "finite {d. d dvd order (mult_of R) }" using dvd_nat_bounds[OF *] by force
+
+ have "(\<Sum>d | d dvd order (mult_of R). ?N d)
+ = card (UN d:{d . d dvd order (mult_of R) }. {a \<in> carrier (mult_of R). group.ord (mult_of R) a = d})"
+ (is "_ = card ?U")
+ using fin finite by (subst card_UN_disjoint) auto
+ also have "?U = carrier (mult_of R)"
+ proof
+ { fix x assume x:"x \<in> carrier (mult_of R)"
+ hence x':"x\<in>carrier (mult_of R)" by simp
+ then have "group.ord (mult_of R) x dvd order (mult_of R)"
+ using finite' G.ord_dvd_group_order[OF _ x'] by (simp add: order_mult_of)
+ hence "x \<in> ?U" using dvd_nat_bounds[of "order (mult_of R)" "group.ord (mult_of R) x"] x by blast
+ } thus "carrier (mult_of R) \<subseteq> ?U" by blast
+ qed auto
+ also have "card ... = order (mult_of R)"
+ using order_mult_of finite' by (simp add: order_def)
+ finally have sum_Ns_eq: "(\<Sum>d | d dvd order (mult_of R). ?N d) = order (mult_of R)" .
+
+ { fix d assume d:"d dvd order (mult_of R)"
+ have "card {a \<in> carrier (mult_of R). group.ord (mult_of R) a = d} \<le> phi' d"
+ proof cases
+ assume "card {a \<in> carrier (mult_of R). group.ord (mult_of R) a = d} = 0" thus ?thesis by presburger
+ next
+ assume "card {a \<in> carrier (mult_of R). group.ord (mult_of R) a = d} \<noteq> 0"
+ hence "\<exists>a \<in> carrier (mult_of R). group.ord (mult_of R) a = d" by (auto simp: card_eq_0_iff)
+ thus ?thesis using num_elems_of_ord_eq_phi'[OF finite d] by auto
+ qed
+ }
+ hence all_le:"\<And>i. i \<in> {d. d dvd order (mult_of R) }
+ \<Longrightarrow> (\<lambda>i. card {a \<in> carrier (mult_of R). group.ord (mult_of R) a = i}) i \<le> (\<lambda>i. phi' i) i" by fast
+ hence le:"(\<Sum>i | i dvd order (mult_of R). ?N i)
+ \<le> (\<Sum>i | i dvd order (mult_of R). phi' i)"
+ using sum_mono[of "{d . d dvd order (mult_of R)}"
+ "\<lambda>i. card {a \<in> carrier (mult_of R). group.ord (mult_of R) a = i}"] by presburger
+ have "order (mult_of R) = (\<Sum>d | d dvd order (mult_of R). phi' d)" using *
+ by (simp add: sum_phi'_factors)
+ hence eq:"(\<Sum>i | i dvd order (mult_of R). ?N i)
+ = (\<Sum>i | i dvd order (mult_of R). phi' i)" using le sum_Ns_eq by presburger
+ have "\<And>i. i \<in> {d. d dvd order (mult_of R) } \<Longrightarrow> ?N i = (\<lambda>i. phi' i) i"
+ proof (rule ccontr)
+ fix i
+ assume i1:"i \<in> {d. d dvd order (mult_of R)}" and "?N i \<noteq> phi' i"
+ hence "?N i = 0"
+ using num_elems_of_ord_eq_phi'[OF finite, of i] by (auto simp: card_eq_0_iff)
+ moreover have "0 < i" using * i1 by (simp add: dvd_nat_bounds[of "order (mult_of R)" i])
+ ultimately have "?N i < phi' i" using phi'_nonzero by presburger
+ hence "(\<Sum>i | i dvd order (mult_of R). ?N i)
+ < (\<Sum>i | i dvd order (mult_of R). phi' i)"
+ using sum_strict_mono_ex1[OF fin, of "?N" "\<lambda> i . phi' i"]
+ i1 all_le by auto
+ thus False using eq by force
+ qed
+ hence "?N (order (mult_of R)) > 0" using * by (simp add: phi'_nonzero)
+ then obtain a where a:"a \<in> carrier (mult_of R)" and a_ord:"group.ord (mult_of R) a = order (mult_of R)"
+ by (auto simp add: card_gt_0_iff)
+ hence set_eq:"{a(^)i | i::nat. i \<in> UNIV} = (\<lambda>x. a(^)x) ` {0 .. group.ord (mult_of R) a - 1}"
+ using G.ord_elems[OF finite'] by auto
+ have card_eq:"card ((\<lambda>x. a(^)x) ` {0 .. group.ord (mult_of R) a - 1}) = card {0 .. group.ord (mult_of R) a - 1}"
+ by (intro card_image G.ord_inj finite' a)
+ hence "card ((\<lambda> x . a(^)x) ` {0 .. group.ord (mult_of R) a - 1}) = card {0 ..order (mult_of R) - 1}"
+ using assms by (simp add: card_eq a_ord)
+ hence card_R_minus_1:"card {a(^)i | i::nat. i \<in> UNIV} = order (mult_of R)"
+ using * by (subst set_eq) auto
+ have **:"{a(^)i | i::nat. i \<in> UNIV} \<subseteq> carrier (mult_of R)"
+ using G.nat_pow_closed[OF a] by auto
+ with _ have "carrier (mult_of R) = {a(^)i|i::nat. i \<in> UNIV}"
+ by (rule card_seteq[symmetric]) (simp_all add: card_R_minus_1 finite order_def del: UNIV_I)
+ thus ?thesis using a by blast
+qed
+
+end
--- a/src/HOL/Number_Theory/MiscAlgebra.thy Thu Apr 06 22:04:30 2017 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,333 +0,0 @@
-(* Title: HOL/Number_Theory/MiscAlgebra.thy
- Author: Jeremy Avigad
-*)
-
-section \<open>Things that can be added to the Algebra library\<close>
-
-theory MiscAlgebra
-imports
- "~~/src/HOL/Algebra/Ring"
- "~~/src/HOL/Algebra/FiniteProduct"
-begin
-
-subsection \<open>Finiteness stuff\<close>
-
-lemma bounded_set1_int [intro]: "finite {(x::int). a < x & x < b & P x}"
- apply (subgoal_tac "{x. a < x & x < b & P x} <= {a<..<b}")
- apply (erule finite_subset)
- apply auto
- done
-
-
-subsection \<open>The rest is for the algebra libraries\<close>
-
-subsubsection \<open>These go in Group.thy\<close>
-
-text \<open>
- Show that the units in any monoid give rise to a group.
-
- The file Residues.thy provides some infrastructure to use
- facts about the unit group within the ring locale.
-\<close>
-
-definition units_of :: "('a, 'b) monoid_scheme => 'a monoid" where
- "units_of G == (| carrier = Units G,
- Group.monoid.mult = Group.monoid.mult G,
- one = one G |)"
-
-(*
-
-lemma (in monoid) Units_mult_closed [intro]:
- "x : Units G ==> y : Units G ==> x \<otimes> y : Units G"
- apply (unfold Units_def)
- apply (clarsimp)
- apply (rule_tac x = "xaa \<otimes> xa" in bexI)
- apply auto
- apply (subst m_assoc)
- apply auto
- apply (subst (2) m_assoc [symmetric])
- apply auto
- apply (subst m_assoc)
- apply auto
- apply (subst (2) m_assoc [symmetric])
- apply auto
-done
-
-*)
-
-lemma (in monoid) units_group: "group(units_of G)"
- apply (unfold units_of_def)
- apply (rule groupI)
- apply auto
- apply (subst m_assoc)
- apply auto
- apply (rule_tac x = "inv x" in bexI)
- apply auto
- done
-
-lemma (in comm_monoid) units_comm_group: "comm_group(units_of G)"
- apply (rule group.group_comm_groupI)
- apply (rule units_group)
- apply (insert comm_monoid_axioms)
- apply (unfold units_of_def Units_def comm_monoid_def comm_monoid_axioms_def)
- apply auto
- done
-
-lemma units_of_carrier: "carrier (units_of G) = Units G"
- unfolding units_of_def by auto
-
-lemma units_of_mult: "mult(units_of G) = mult G"
- unfolding units_of_def by auto
-
-lemma units_of_one: "one(units_of G) = one G"
- unfolding units_of_def by auto
-
-lemma (in monoid) units_of_inv: "x : Units G ==> m_inv (units_of G) x = m_inv G x"
- apply (rule sym)
- apply (subst m_inv_def)
- apply (rule the1_equality)
- apply (rule ex_ex1I)
- apply (subst (asm) Units_def)
- apply auto
- apply (erule inv_unique)
- apply auto
- apply (rule Units_closed)
- apply (simp_all only: units_of_carrier [symmetric])
- apply (insert units_group)
- apply auto
- apply (subst units_of_mult [symmetric])
- apply (subst units_of_one [symmetric])
- apply (erule group.r_inv, assumption)
- apply (subst units_of_mult [symmetric])
- apply (subst units_of_one [symmetric])
- apply (erule group.l_inv, assumption)
- done
-
-lemma (in group) inj_on_const_mult: "a: (carrier G) ==> inj_on (%x. a \<otimes> x) (carrier G)"
- unfolding inj_on_def by auto
-
-lemma (in group) surj_const_mult: "a : (carrier G) ==> (%x. a \<otimes> x) ` (carrier G) = (carrier G)"
- apply (auto simp add: image_def)
- apply (rule_tac x = "(m_inv G a) \<otimes> x" in bexI)
- apply auto
-(* auto should get this. I suppose we need "comm_monoid_simprules"
- for ac_simps rewriting. *)
- apply (subst m_assoc [symmetric])
- apply auto
- done
-
-lemma (in group) l_cancel_one [simp]:
- "x : carrier G \<Longrightarrow> a : carrier G \<Longrightarrow> (x \<otimes> a = x) = (a = one G)"
- apply auto
- apply (subst l_cancel [symmetric])
- prefer 4
- apply (erule ssubst)
- apply auto
- done
-
-lemma (in group) r_cancel_one [simp]: "x : carrier G \<Longrightarrow> a : carrier G \<Longrightarrow>
- (a \<otimes> x = x) = (a = one G)"
- apply auto
- apply (subst r_cancel [symmetric])
- prefer 4
- apply (erule ssubst)
- apply auto
- done
-
-(* Is there a better way to do this? *)
-lemma (in group) l_cancel_one' [simp]: "x : carrier G \<Longrightarrow> a : carrier G \<Longrightarrow>
- (x = x \<otimes> a) = (a = one G)"
- apply (subst eq_commute)
- apply simp
- done
-
-lemma (in group) r_cancel_one' [simp]: "x : carrier G \<Longrightarrow> a : carrier G \<Longrightarrow>
- (x = a \<otimes> x) = (a = one G)"
- apply (subst eq_commute)
- apply simp
- done
-
-(* This should be generalized to arbitrary groups, not just commutative
- ones, using Lagrange's theorem. *)
-
-lemma (in comm_group) power_order_eq_one:
- assumes fin [simp]: "finite (carrier G)"
- and a [simp]: "a : carrier G"
- shows "a (^) card(carrier G) = one G"
-proof -
- have "(\<Otimes>x\<in>carrier G. x) = (\<Otimes>x\<in>carrier G. a \<otimes> x)"
- by (subst (2) finprod_reindex [symmetric],
- auto simp add: Pi_def inj_on_const_mult surj_const_mult)
- also have "\<dots> = (\<Otimes>x\<in>carrier G. a) \<otimes> (\<Otimes>x\<in>carrier G. x)"
- by (auto simp add: finprod_multf Pi_def)
- also have "(\<Otimes>x\<in>carrier G. a) = a (^) card(carrier G)"
- by (auto simp add: finprod_const)
- finally show ?thesis
-(* uses the preceeding lemma *)
- by auto
-qed
-
-
-subsubsection \<open>Miscellaneous\<close>
-
-lemma (in cring) field_intro2: "\<zero>\<^bsub>R\<^esub> ~= \<one>\<^bsub>R\<^esub> \<Longrightarrow> \<forall>x \<in> carrier R - {\<zero>\<^bsub>R\<^esub>}. x \<in> Units R \<Longrightarrow> field R"
- apply (unfold_locales)
- apply (insert cring_axioms, auto)
- apply (rule trans)
- apply (subgoal_tac "a = (a \<otimes> b) \<otimes> inv b")
- apply assumption
- apply (subst m_assoc)
- apply auto
- apply (unfold Units_def)
- apply auto
- done
-
-lemma (in monoid) inv_char: "x : carrier G \<Longrightarrow> y : carrier G \<Longrightarrow>
- x \<otimes> y = \<one> \<Longrightarrow> y \<otimes> x = \<one> \<Longrightarrow> inv x = y"
- apply (subgoal_tac "x : Units G")
- apply (subgoal_tac "y = inv x \<otimes> \<one>")
- apply simp
- apply (erule subst)
- apply (subst m_assoc [symmetric])
- apply auto
- apply (unfold Units_def)
- apply auto
- done
-
-lemma (in comm_monoid) comm_inv_char: "x : carrier G \<Longrightarrow> y : carrier G \<Longrightarrow>
- x \<otimes> y = \<one> \<Longrightarrow> inv x = y"
- apply (rule inv_char)
- apply auto
- apply (subst m_comm, auto)
- done
-
-lemma (in ring) inv_neg_one [simp]: "inv (\<ominus> \<one>) = \<ominus> \<one>"
- apply (rule inv_char)
- apply (auto simp add: l_minus r_minus)
- done
-
-lemma (in monoid) inv_eq_imp_eq: "x : Units G \<Longrightarrow> y : Units G \<Longrightarrow>
- inv x = inv y \<Longrightarrow> x = y"
- apply (subgoal_tac "inv(inv x) = inv(inv y)")
- apply (subst (asm) Units_inv_inv)+
- apply auto
- done
-
-lemma (in ring) Units_minus_one_closed [intro]: "\<ominus> \<one> : Units R"
- apply (unfold Units_def)
- apply auto
- apply (rule_tac x = "\<ominus> \<one>" in bexI)
- apply auto
- apply (simp add: l_minus r_minus)
- done
-
-lemma (in monoid) inv_one [simp]: "inv \<one> = \<one>"
- apply (rule inv_char)
- apply auto
- done
-
-lemma (in ring) inv_eq_neg_one_eq: "x : Units R \<Longrightarrow> (inv x = \<ominus> \<one>) = (x = \<ominus> \<one>)"
- apply auto
- apply (subst Units_inv_inv [symmetric])
- apply auto
- done
-
-lemma (in monoid) inv_eq_one_eq: "x : Units G \<Longrightarrow> (inv x = \<one>) = (x = \<one>)"
- by (metis Units_inv_inv inv_one)
-
-
-subsubsection \<open>This goes in FiniteProduct\<close>
-
-lemma (in comm_monoid) finprod_UN_disjoint:
- "finite I \<Longrightarrow> (ALL i:I. finite (A i)) \<longrightarrow> (ALL i:I. ALL j:I. i ~= j \<longrightarrow>
- (A i) Int (A j) = {}) \<longrightarrow>
- (ALL i:I. ALL x: (A i). g x : carrier G) \<longrightarrow>
- finprod G g (UNION I A) = finprod G (%i. finprod G g (A i)) I"
- apply (induct set: finite)
- apply force
- apply clarsimp
- apply (subst finprod_Un_disjoint)
- apply blast
- apply (erule finite_UN_I)
- apply blast
- apply (fastforce)
- apply (auto intro!: funcsetI finprod_closed)
- done
-
-lemma (in comm_monoid) finprod_Union_disjoint:
- "[| finite C; (ALL A:C. finite A & (ALL x:A. f x : carrier G));
- (ALL A:C. ALL B:C. A ~= B --> A Int B = {}) |]
- ==> finprod G f (\<Union>C) = finprod G (finprod G f) C"
- apply (frule finprod_UN_disjoint [of C id f])
- apply auto
- done
-
-lemma (in comm_monoid) finprod_one:
- "finite A \<Longrightarrow> (\<And>x. x:A \<Longrightarrow> f x = \<one>) \<Longrightarrow> finprod G f A = \<one>"
- by (induct set: finite) auto
-
-
-(* need better simplification rules for rings *)
-(* the next one holds more generally for abelian groups *)
-
-lemma (in cring) sum_zero_eq_neg: "x : carrier R \<Longrightarrow> y : carrier R \<Longrightarrow> x \<oplus> y = \<zero> \<Longrightarrow> x = \<ominus> y"
- by (metis minus_equality)
-
-lemma (in domain) square_eq_one:
- fixes x
- assumes [simp]: "x : carrier R"
- and "x \<otimes> x = \<one>"
- shows "x = \<one> | x = \<ominus>\<one>"
-proof -
- have "(x \<oplus> \<one>) \<otimes> (x \<oplus> \<ominus> \<one>) = x \<otimes> x \<oplus> \<ominus> \<one>"
- by (simp add: ring_simprules)
- also from \<open>x \<otimes> x = \<one>\<close> have "\<dots> = \<zero>"
- by (simp add: ring_simprules)
- finally have "(x \<oplus> \<one>) \<otimes> (x \<oplus> \<ominus> \<one>) = \<zero>" .
- then have "(x \<oplus> \<one>) = \<zero> | (x \<oplus> \<ominus> \<one>) = \<zero>"
- by (intro integral, auto)
- then show ?thesis
- apply auto
- apply (erule notE)
- apply (rule sum_zero_eq_neg)
- apply auto
- apply (subgoal_tac "x = \<ominus> (\<ominus> \<one>)")
- apply (simp add: ring_simprules)
- apply (rule sum_zero_eq_neg)
- apply auto
- done
-qed
-
-lemma (in Ring.domain) inv_eq_self: "x : Units R \<Longrightarrow> x = inv x \<Longrightarrow> x = \<one> \<or> x = \<ominus>\<one>"
- by (metis Units_closed Units_l_inv square_eq_one)
-
-
-text \<open>
- The following translates theorems about groups to the facts about
- the units of a ring. (The list should be expanded as more things are
- needed.)
-\<close>
-
-lemma (in ring) finite_ring_finite_units [intro]: "finite (carrier R) \<Longrightarrow> finite (Units R)"
- by (rule finite_subset) auto
-
-lemma (in monoid) units_of_pow:
- fixes n :: nat
- shows "x \<in> Units G \<Longrightarrow> x (^)\<^bsub>units_of G\<^esub> n = x (^)\<^bsub>G\<^esub> n"
- apply (induct n)
- apply (auto simp add: units_group group.is_monoid
- monoid.nat_pow_0 monoid.nat_pow_Suc units_of_one units_of_mult)
- done
-
-lemma (in cring) units_power_order_eq_one: "finite (Units R) \<Longrightarrow> a : Units R
- \<Longrightarrow> a (^) card(Units R) = \<one>"
- apply (subst units_of_carrier [symmetric])
- apply (subst units_of_one [symmetric])
- apply (subst units_of_pow [symmetric])
- apply assumption
- apply (rule comm_group.power_order_eq_one)
- apply (rule units_comm_group)
- apply (unfold units_of_def, auto)
- done
-
-end
--- a/src/HOL/Number_Theory/Pocklington.thy Thu Apr 06 22:04:30 2017 +0200
+++ b/src/HOL/Number_Theory/Pocklington.thy Thu Apr 06 08:33:37 2017 +0200
@@ -131,14 +131,18 @@
lemma phi_lowerbound_1: assumes n: "n \<ge> 2"
shows "phi n \<ge> 1"
proof -
- have "1 \<le> card {0::int <.. 1}"
- by auto
- also have "... \<le> card {x. 0 < x \<and> x < n \<and> coprime x n}"
- apply (rule card_mono) using assms
- by auto (metis dual_order.antisym gcd_1_int gcd.commute int_one_le_iff_zero_less)
+ have "finite {x. 0 < x \<and> x < n}"
+ by simp
+ then have "finite {x. 0 < x \<and> x < n \<and> coprime x n}"
+ by (auto intro: rev_finite_subset)
+ moreover have "{0::int <.. 1} \<subseteq> {x. 0 < x \<and> x < n \<and> coprime x n}"
+ using n by (auto simp add: antisym_conv)
+ ultimately have "card {0::int <.. 1} \<le> card {x. 0 < x \<and> x < n \<and> coprime x n}"
+ by (rule card_mono)
also have "... = phi n"
by (simp add: phi_def)
- finally show ?thesis .
+ finally show ?thesis
+ by simp
qed
lemma phi_lowerbound_1_nat: assumes n: "n \<ge> 2"
--- a/src/HOL/Number_Theory/Quadratic_Reciprocity.thy Thu Apr 06 22:04:30 2017 +0200
+++ b/src/HOL/Number_Theory/Quadratic_Reciprocity.thy Thu Apr 06 08:33:37 2017 +0200
@@ -178,6 +178,7 @@
where "g_1 res = (THE x. P_1 res x)"
lemma P_1_lemma:
+ fixes res :: "int \<times> int"
assumes "0 \<le> fst res" "fst res < p" "0 \<le> snd res" "snd res < q"
shows "\<exists>!x. P_1 res x"
proof -
@@ -204,12 +205,35 @@
qed
lemma g_1_lemma:
+ fixes res :: "int \<times> int"
assumes "0 \<le> fst res" "fst res < p" "0 \<le> snd res" "snd res < q"
shows "P_1 res (g_1 res)"
- using assms P_1_lemma theI'[of "P_1 res"] g_1_def by presburger
+ using assms P_1_lemma [of res] theI' [of "P_1 res"] g_1_def
+ by auto
definition "BuC = Sets_pq Res_ge_0 Res_h Res_l"
+lemma finite_BuC [simp]:
+ "finite BuC"
+proof -
+ {
+ fix p q :: nat
+ have "finite {x. 0 < x \<and> x < int p * int q}"
+ by simp
+ then have "finite {x.
+ 0 < x \<and>
+ x < int p * int q \<and>
+ (int p - 1) div 2
+ < x mod int p \<and>
+ x mod int p < int p \<and>
+ 0 < x mod int q \<and>
+ x mod int q \<le> (int q - 1) div 2}"
+ by (auto intro: rev_finite_subset)
+ }
+ then show ?thesis
+ by (simp add: BuC_def)
+qed
+
lemma QR_lemma_04: "card BuC = card (Res_h p \<times> Res_l q)"
using card_bij_eq[of f_1 "BuC" "Res_h p \<times> Res_l q" g_1]
proof
@@ -245,7 +269,7 @@
with x show "y \<in> BuC"
unfolding P_1_def BuC_def mem_Collect_eq using SigmaE prod.sel by fastforce
qed
-qed (auto simp: BuC_def finite_subset f_1_def)
+qed (auto simp: finite_subset f_1_def, simp_all add: BuC_def)
lemma QR_lemma_05: "card (Res_h p \<times> Res_l q) = r"
proof -
--- a/src/HOL/Number_Theory/Residues.thy Thu Apr 06 22:04:30 2017 +0200
+++ b/src/HOL/Number_Theory/Residues.thy Thu Apr 06 08:33:37 2017 +0200
@@ -8,7 +8,12 @@
section \<open>Residue rings\<close>
theory Residues
-imports Cong MiscAlgebra
+imports
+ Cong
+ "~~/src/HOL/Algebra/More_Group"
+ "~~/src/HOL/Algebra/More_Ring"
+ "~~/src/HOL/Algebra/More_Finite_Product"
+ "~~/src/HOL/Algebra/Multiplicative_Group"
begin
definition QuadRes :: "int \<Rightarrow> int \<Rightarrow> bool" where
@@ -117,10 +122,10 @@
done
lemma finite [iff]: "finite (carrier R)"
- by (subst res_carrier_eq) auto
+ by (simp add: res_carrier_eq)
lemma finite_Units [iff]: "finite (Units R)"
- by (subst res_units_eq) auto
+ by (simp add: finite_ring_finite_units)
text \<open>
The function \<open>a \<mapsto> a mod m\<close> maps the integers to the
@@ -286,6 +291,28 @@
lemma phi_one [simp]: "phi 1 = 0"
by (auto simp add: phi_def card_eq_0_iff)
+lemma phi_leq: "phi x \<le> nat x - 1"
+proof -
+ have "phi x \<le> card {1..x - 1}"
+ unfolding phi_def by (rule card_mono) auto
+ then show ?thesis by simp
+qed
+
+lemma phi_nonzero:
+ "phi x > 0" if "2 \<le> x"
+proof -
+ have "finite {y. 0 < y \<and> y < x}"
+ by simp
+ then have "finite {y. 0 < y \<and> y < x \<and> coprime y x}"
+ by (auto intro: rev_finite_subset)
+ moreover have "1 \<in> {y. 0 < y \<and> y < x \<and> coprime y x}"
+ using that by simp
+ ultimately have "card {y. 0 < y \<and> y < x \<and> coprime y x} \<noteq> 0"
+ by auto
+ then show ?thesis
+ by (simp add: phi_def)
+qed
+
lemma (in residues) phi_eq: "phi m = card (Units R)"
by (simp add: phi_def res_units_eq)
@@ -413,4 +440,60 @@
by (metis residues_prime.wilson_theorem1 residues_prime.intro le_eq_less_or_eq)
qed
+text {*
+ This result can be transferred to the multiplicative group of
+ $\mathbb{Z}/p\mathbb{Z}$ for $p$ prime. *}
+
+lemma mod_nat_int_pow_eq:
+ fixes n :: nat and p a :: int
+ assumes "a \<ge> 0" "p \<ge> 0"
+ shows "(nat a ^ n) mod (nat p) = nat ((a ^ n) mod p)"
+ using assms
+ by (simp add: int_one_le_iff_zero_less nat_mod_distrib order_less_imp_le nat_power_eq[symmetric])
+
+theorem residue_prime_mult_group_has_gen :
+ fixes p :: nat
+ assumes prime_p : "prime p"
+ shows "\<exists>a \<in> {1 .. p - 1}. {1 .. p - 1} = {a^i mod p|i . i \<in> UNIV}"
+proof -
+ have "p\<ge>2" using prime_gt_1_nat[OF prime_p] by simp
+ interpret R:residues_prime "p" "residue_ring p" unfolding residues_prime_def
+ by (simp add: prime_p)
+ have car: "carrier (residue_ring (int p)) - {\<zero>\<^bsub>residue_ring (int p)\<^esub>} = {1 .. int p - 1}"
+ by (auto simp add: R.zero_cong R.res_carrier_eq)
+ obtain a where a:"a \<in> {1 .. int p - 1}"
+ and a_gen:"{1 .. int p - 1} = {a(^)\<^bsub>residue_ring (int p)\<^esub>i|i::nat . i \<in> UNIV}"
+ apply atomize_elim using field.finite_field_mult_group_has_gen[OF R.is_field]
+ by (auto simp add: car[symmetric] carrier_mult_of)
+ { fix x fix i :: nat assume x: "x \<in> {1 .. int p - 1}"
+ hence "x (^)\<^bsub>residue_ring (int p)\<^esub> i = x ^ i mod (int p)" using R.pow_cong[of x i] by auto}
+ note * = this
+ have **:"nat ` {1 .. int p - 1} = {1 .. p - 1}" (is "?L = ?R")
+ proof
+ { fix n assume n: "n \<in> ?L"
+ then have "n \<in> ?R" using `p\<ge>2` by force
+ } thus "?L \<subseteq> ?R" by blast
+ { fix n assume n: "n \<in> ?R"
+ then have "n \<in> ?L" using `p\<ge>2` Set_Interval.transfer_nat_int_set_functions(2) by fastforce
+ } thus "?R \<subseteq> ?L" by blast
+ qed
+ have "nat ` {a^i mod (int p) | i::nat. i \<in> UNIV} = {nat a^i mod p | i . i \<in> UNIV}" (is "?L = ?R")
+ proof
+ { fix x assume x: "x \<in> ?L"
+ then obtain i where i:"x = nat (a^i mod (int p))" by blast
+ hence "x = nat a ^ i mod p" using mod_nat_int_pow_eq[of a "int p" i] a `p\<ge>2` by auto
+ hence "x \<in> ?R" using i by blast
+ } thus "?L \<subseteq> ?R" by blast
+ { fix x assume x: "x \<in> ?R"
+ then obtain i where i:"x = nat a^i mod p" by blast
+ hence "x \<in> ?L" using mod_nat_int_pow_eq[of a "int p" i] a `p\<ge>2` by auto
+ } thus "?R \<subseteq> ?L" by blast
+ qed
+ hence "{1 .. p - 1} = {nat a^i mod p | i. i \<in> UNIV}"
+ using * a a_gen ** by presburger
+ moreover
+ have "nat a \<in> {1 .. p - 1}" using a by force
+ ultimately show ?thesis ..
+qed
+
end
--- a/src/HOL/ROOT Thu Apr 06 22:04:30 2017 +0200
+++ b/src/HOL/ROOT Thu Apr 06 08:33:37 2017 +0200
@@ -311,11 +311,15 @@
FiniteProduct (* Product operator for commutative groups *)
Sylow (* Sylow's theorem *)
Bij (* Automorphism Groups *)
+ More_Group
+ More_Finite_Product
+ Multiplicative_Group
(* Rings *)
Divisibility (* Rings *)
IntRing (* Ideals and residue classes *)
UnivPoly (* Polynomials *)
+ More_Ring
document_files "root.bib" "root.tex"
session "HOL-Auth" (timing) in Auth = HOL +