a theory using locally nameless terms and strong induction principles
authorurbanc
Thu, 31 May 2007 09:48:20 +0200 (2007-05-31)
changeset 23143 f72bc42882ea
parent 23142 cb1dbe64a4d5
child 23144 4a9c9e260abf
a theory using locally nameless terms and strong induction principles
src/HOL/Nominal/Examples/LocalWeakening.thy
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Nominal/Examples/LocalWeakening.thy	Thu May 31 09:48:20 2007 +0200
@@ -0,0 +1,174 @@
+(* $Id$ *)
+
+(* Formalisation of weakening using locally nameless    *)
+(* terms; the nominal infrastructure can derive         *)
+(* strong induction principles for such representations *)
+(*                                                      *)
+(* Authors: Christian Urban and Randy Pollack           *)
+theory LocalWeakening
+imports "../Nominal"
+begin
+
+atom_decl name
+
+(* Curry-style lambda terms in locally nameless *)
+(* representation without any binders           *)
+nominal_datatype llam = 
+    lPar "name"
+  | lVar "nat"
+  | lApp "llam" "llam"
+  | lLam "llam"
+
+lemma llam_cases:
+  "(\<exists>a. t = lPar a) \<or> (\<exists>n. t = lVar n) \<or> (\<exists>t1 t2. t = lApp t1 t2) \<or> 
+   (\<exists>t1. t = lLam t1)"
+by (induct t rule: llam.weak_induct)
+   (auto simp add: llam.inject)
+
+consts llam_size :: "llam \<Rightarrow> nat"
+
+nominal_primrec
+ "llam_size (lPar a) = 1"
+ "llam_size (lVar n) = 1"
+ "llam_size (lApp t1 t2) = 1 + (llam_size t1) + (llam_size t2)"
+ "llam_size (lLam t) = 1 + (llam_size t)"
+by (rule TrueI)+
+
+function  
+  vsub :: "llam \<Rightarrow> nat \<Rightarrow> llam \<Rightarrow> llam"
+where
+   vsub_lPar: "vsub (lPar p) x s = lPar p"
+ | vsub_lVar: "vsub (lVar n) x s = (if n < x then (lVar n)
+                      else (if n = x then s else (lVar (n - 1))))"
+ | vsub_lApp: "vsub (lApp t u) x s = (lApp (vsub t x s) (vsub u x s))"
+ | vsub_lLam: "vsub (lLam t) x s = (lLam (vsub t (x + 1) s))"
+using llam_cases
+apply(auto simp add: llam.inject)
+apply(rotate_tac 4)
+apply(drule_tac x="a" in meta_spec)
+apply(blast)
+done
+
+termination vsub
+proof
+  show "wf (measure (llam_size \<circ> fst))" by simp
+qed (auto)
+
+lemma vsub_eqvt[eqvt]:
+  fixes pi::"name prm" 
+  shows "pi\<bullet>(vsub t n s) = vsub (pi\<bullet>t) (pi\<bullet>n) (pi\<bullet>s)"
+by (induct t arbitrary: n rule: llam.weak_induct)
+   (simp_all add: perm_nat_def)
+
+constdefs
+  freshen :: "llam \<Rightarrow> name \<Rightarrow> llam"
+  "freshen t p \<equiv> vsub t 0 (lPar p)"
+
+lemma freshen_eqvt[eqvt]:
+  fixes pi::"name prm" 
+  shows "pi\<bullet>(freshen t p) = freshen (pi\<bullet>t) (pi\<bullet>p)"
+by (simp add: vsub_eqvt freshen_def perm_nat_def)
+
+nominal_datatype ty =
+    TVar "nat"
+  | TArr "ty" "ty" (infix "\<rightarrow>" 200)
+
+lemma ty_perm[simp]:
+  fixes pi ::"name prm"
+  and   T  ::"ty"
+  shows "pi\<bullet>T = T"
+by (induct T rule: ty.weak_induct)
+   (simp_all add: perm_nat_def)  
+
+lemma ty_fresh[simp]:
+  fixes x::"name"
+  and   T::"ty"
+  shows "x\<sharp>T"
+by (induct T rule: ty.weak_induct) 
+   (simp_all add: fresh_nat)
+
+text {* valid contexts *}
+types cxt = "(name\<times>ty) list"
+
+inductive2
+  valid :: "cxt \<Rightarrow> bool"
+where
+  v1[intro]: "valid []"
+| v2[intro]: "\<lbrakk>valid \<Gamma>;a\<sharp>\<Gamma>\<rbrakk>\<Longrightarrow> valid ((a,T)#\<Gamma>)"
+
+equivariance valid
+
+lemma v2_elim:
+  assumes a: "valid ((a,T)#\<Gamma>)"
+  shows   "a\<sharp>\<Gamma> \<and> valid \<Gamma>"
+using valid.cases[OF a]
+by (auto)
+
+inductive2
+  typing :: "cxt\<Rightarrow>llam\<Rightarrow>ty\<Rightarrow>bool" (" _ \<turnstile> _ : _ " [80,80,80] 80)
+where
+    t_lPar[intro]: "\<lbrakk>valid \<Gamma>; (a,T)\<in>set \<Gamma>\<rbrakk>\<Longrightarrow> \<Gamma> \<turnstile> lPar a : T"
+  | t_lApp[intro]: "\<lbrakk>\<Gamma> \<turnstile> t1 : T1\<rightarrow>T2; \<Gamma> \<turnstile> t2 : T1\<rbrakk>\<Longrightarrow> \<Gamma> \<turnstile> lApp t1 t2 : T2"
+  | t_lLam[intro]: "\<lbrakk>a\<sharp>t; ((a,T1)#\<Gamma>) \<turnstile> (freshen t a) : T2\<rbrakk>\<Longrightarrow> \<Gamma> \<turnstile> lLam t : T1\<rightarrow>T2"
+
+equivariance typing
+
+lemma typing_implies_valid:
+  assumes a: "\<Gamma> \<turnstile> t : T"
+  shows "valid \<Gamma>"
+using a
+by (induct) (auto dest: v2_elim)
+
+nominal_inductive typing
+  avoids t_lLam: a
+  by (auto simp add: fresh_prod dest: v2_elim typing_implies_valid)
+  
+(* strong induction principle for typing *)
+thm typing.strong_induct
+
+abbreviation
+  "sub_context" :: "cxt \<Rightarrow> cxt \<Rightarrow> bool" ("_ \<subseteq> _" [60,60] 60) 
+where
+  "\<Gamma>1 \<subseteq> \<Gamma>2 \<equiv> \<forall>x T. (x,T)\<in>set \<Gamma>1 \<longrightarrow> (x,T)\<in>set \<Gamma>2"
+
+lemma weakening_automatic:
+  assumes a: "\<Gamma>1 \<turnstile> t : T"
+  and     b: "\<Gamma>1 \<subseteq> \<Gamma>2"
+  and     c: "valid \<Gamma>2"
+shows "\<Gamma>2 \<turnstile> t : T"
+using a b c
+apply(nominal_induct \<Gamma>1 t T avoiding: \<Gamma>2 rule: typing.strong_induct)
+apply(auto)[1]
+apply(auto)[1]
+apply(drule_tac x="(a,T1)#\<Gamma>2" in meta_spec)
+apply(auto intro!: t_lLam)
+done
+
+lemma weakening:
+  assumes a: "\<Gamma>1 \<turnstile> t : T"
+  and     b: "\<Gamma>1 \<subseteq> \<Gamma>2"
+  and     c: "valid \<Gamma>2"
+shows "\<Gamma>2 \<turnstile> t : T"
+using a b c
+proof(nominal_induct \<Gamma>1 t T avoiding: \<Gamma>2 rule: typing.strong_induct)
+  case (t_lPar \<Gamma>1 x T \<Gamma>2)  (* variable case *)
+  have "\<Gamma>1 \<subseteq> \<Gamma>2" by fact 
+  moreover  
+  have "valid \<Gamma>2" by fact 
+  moreover 
+  have "(x,T)\<in> set \<Gamma>1" by fact
+  ultimately show "\<Gamma>2 \<turnstile> lPar x : T" by auto
+next
+  case (t_lLam x t T1 \<Gamma>1 T2 \<Gamma>2) (* lambda case *)
+  have vc: "x\<sharp>\<Gamma>2" "x\<sharp>t" by fact  (* variable convention *)
+  have ih: "\<lbrakk>(x,T1)#\<Gamma>1 \<subseteq> (x,T1)#\<Gamma>2; valid ((x,T1)#\<Gamma>2)\<rbrakk> \<Longrightarrow>  ((x,T1)#\<Gamma>2) \<turnstile> freshen t x : T2" by fact
+  have "\<Gamma>1 \<subseteq> \<Gamma>2" by fact
+  then have "(x,T1)#\<Gamma>1 \<subseteq> (x,T1)#\<Gamma>2" by simp
+  moreover
+  have "valid \<Gamma>2" by fact
+  then have "valid ((x,T1)#\<Gamma>2)" using vc by (simp add: v2)
+  ultimately have "((x,T1)#\<Gamma>2) \<turnstile> freshen t x : T2" using ih by simp
+  with vc show "\<Gamma>2 \<turnstile> lLam t : T1\<rightarrow>T2" by (auto simp add: fresh_prod)
+qed (auto) (* app case *)
+
+end