--- a/src/HOL/Word/Bit_Int.thy Sat Nov 12 19:44:56 2011 +0100
+++ b/src/HOL/Word/Bit_Int.thy Sat Nov 12 20:14:09 2011 +0100
@@ -357,7 +357,7 @@
done
lemmas int_and_le =
- xtr3 [OF bbw_ao_absorbs (2) [THEN conjunct2, symmetric] le_int_or] ;
+ xtr3 [OF bbw_ao_absorbs (2) [THEN conjunct2, symmetric] le_int_or]
lemma bin_nth_ops:
"!!x y. bin_nth (x AND y) n = (bin_nth x n & bin_nth y n)"
--- a/src/HOL/Word/Bool_List_Representation.thy Sat Nov 12 19:44:56 2011 +0100
+++ b/src/HOL/Word/Bool_List_Representation.thy Sat Nov 12 20:14:09 2011 +0100
@@ -276,7 +276,7 @@
apply auto
done
-lemma bin_nth_of_bl: "bin_nth (bl_to_bin bl) n = (n < length bl & rev bl ! n)";
+lemma bin_nth_of_bl: "bin_nth (bl_to_bin bl) n = (n < length bl & rev bl ! n)"
unfolding bl_to_bin_def by (simp add : bin_nth_of_bl_aux)
lemma bin_nth_bl [rule_format] : "ALL m w. n < m -->
@@ -717,7 +717,7 @@
by (induct n) auto
lemma bl_of_nth_nth_le [rule_format] : "ALL xs.
- length xs >= n --> bl_of_nth n (nth (rev xs)) = drop (length xs - n) xs";
+ length xs >= n --> bl_of_nth n (nth (rev xs)) = drop (length xs - n) xs"
apply (induct n, clarsimp)
apply clarsimp
apply (rule trans [OF _ hd_Cons_tl])