--- a/src/HOL/Data_Structures/Set2_Join_RBT.thy Tue Aug 20 09:48:22 2019 +0200
+++ b/src/HOL/Data_Structures/Set2_Join_RBT.thy Tue Aug 20 12:19:23 2019 +0200
@@ -32,7 +32,7 @@
B l' x' r' \<Rightarrow> baliR l' x' (joinR r' x r) |
R l' x' r' \<Rightarrow> R l' x' (joinR r' x r))"
-fun join :: "'a rbt \<Rightarrow> 'a \<Rightarrow> 'a rbt \<Rightarrow> 'a rbt" where
+definition join :: "'a rbt \<Rightarrow> 'a \<Rightarrow> 'a rbt \<Rightarrow> 'a rbt" where
"join l x r =
(if bheight l > bheight r
then paint Black (joinR l x r)
@@ -102,7 +102,7 @@
(* unused *)
lemma rbt_join: "\<lbrakk> invc l; invh l; invc r; invh r \<rbrakk> \<Longrightarrow> rbt(join l x r)"
by(simp add: invc2_joinL invc2_joinR invc_paint_Black invh_joinL invh_joinR invh_paint rbt_def
- color_paint_Black)
+ color_paint_Black join_def)
text \<open>To make sure the the black height is not increased unnecessarily:\<close>
@@ -112,7 +112,7 @@
lemma "\<lbrakk> rbt l; rbt r \<rbrakk> \<Longrightarrow> bheight(join l x r) \<le> max (bheight l) (bheight r) + 1"
using bheight_paint_Black[of "joinL l x r"] bheight_paint_Black[of "joinR l x r"]
bheight_joinL[of l r x] bheight_joinR[of l r x]
-by(auto simp: max_def rbt_def)
+by(auto simp: max_def rbt_def join_def)
subsubsection "Inorder properties"
@@ -133,7 +133,8 @@
qed
lemma "inorder(join l x r) = inorder l @ x # inorder r"
-by(auto simp: inorder_joinL inorder_joinR inorder_paint split!: tree.splits color.splits if_splits
+by(auto simp: inorder_joinL inorder_joinR inorder_paint join_def
+ split!: tree.splits color.splits if_splits
dest!: arg_cong[where f = inorder])
@@ -165,7 +166,7 @@
by (cases t) auto
lemma set_join: "set_tree (join l x r) = set_tree l \<union> {x} \<union> set_tree r"
-by(simp add: set_joinL set_joinR set_paint)
+by(simp add: set_joinL set_joinR set_paint join_def)
lemma bst_baliL:
"\<lbrakk>bst l; bst r; \<forall>x\<in>set_tree l. x < a; \<forall>x\<in>set_tree r. a < x\<rbrakk>
@@ -202,10 +203,10 @@
lemma bst_join:
"bst (Node l a n r) \<Longrightarrow> bst (join l a r)"
-by(auto simp: bst_paint bst_joinL bst_joinR)
+by(auto simp: bst_paint bst_joinL bst_joinR join_def)
lemma inv_join: "\<lbrakk> invc l; invh l; invc r; invh r \<rbrakk> \<Longrightarrow> invc(join l x r) \<and> invh(join l x r)"
-by (simp add: invc2_joinL invc2_joinR invc_paint_Black invh_joinL invh_joinR invh_paint)
+by (simp add: invc2_joinL invc2_joinR invc_paint_Black invh_joinL invh_joinR invh_paint join_def)
subsubsection "Interpretation of \<^locale>\<open>Set2_Join\<close> with Red-Black Tree"
@@ -216,11 +217,11 @@
proof (standard, goal_cases)
case 1 show ?case by (rule set_join)
next
- case 2 thus ?case by (simp add: bst_join del: join.simps)
+ case 2 thus ?case by (simp add: bst_join)
next
case 3 show ?case by simp
next
- case 4 thus ?case by (simp add: inv_join del: join.simps)
+ case 4 thus ?case by (simp add: inv_join)
next
case 5 thus ?case by simp
qed
--- a/src/HOL/Data_Structures/Set_Specs.thy Tue Aug 20 09:48:22 2019 +0200
+++ b/src/HOL/Data_Structures/Set_Specs.thy Tue Aug 20 12:19:23 2019 +0200
@@ -17,7 +17,7 @@
fixes invar :: "'s \<Rightarrow> bool"
assumes set_empty: "set empty = {}"
assumes set_isin: "invar s \<Longrightarrow> isin s x = (x \<in> set s)"
-assumes set_insert: "invar s \<Longrightarrow> set(insert x s) = Set.insert x (set s)"
+assumes set_insert: "invar s \<Longrightarrow> set(insert x s) = set s \<union> {x}"
assumes set_delete: "invar s \<Longrightarrow> set(delete x s) = set s - {x}"
assumes invar_empty: "invar empty"
assumes invar_insert: "invar s \<Longrightarrow> invar(insert x s)"