new example theory for transfer package
authorhuffman
Sat, 21 Apr 2012 13:49:31 +0200
changeset 47654 f7df7104d13e
parent 47652 1b722b100301
child 47655 b9e132e54d25
new example theory for transfer package
src/HOL/IsaMakefile
src/HOL/ex/ROOT.ML
src/HOL/ex/Transfer_Int_Nat.thy
--- a/src/HOL/IsaMakefile	Sat Apr 21 13:12:27 2012 +0200
+++ b/src/HOL/IsaMakefile	Sat Apr 21 13:49:31 2012 +0200
@@ -1036,6 +1036,7 @@
   ex/Simproc_Tests.thy ex/SVC_Oracle.thy		\
   ex/sledgehammer_tactics.ML ex/Seq.thy ex/Sqrt.thy ex/Sqrt_Script.thy 	\
   ex/Sudoku.thy ex/Tarski.thy ex/Termination.thy ex/Transfer_Ex.thy	\
+  ex/Transfer_Int_Nat.thy						\
   ex/Tree23.thy	ex/Unification.thy ex/While_Combinator_Example.thy	\
   ex/document/root.bib ex/document/root.tex ex/svc_funcs.ML		\
   ex/svc_test.thy ../Tools/interpretation_with_defs.ML
--- a/src/HOL/ex/ROOT.ML	Sat Apr 21 13:12:27 2012 +0200
+++ b/src/HOL/ex/ROOT.ML	Sat Apr 21 13:49:31 2012 +0200
@@ -57,6 +57,7 @@
   "Sqrt",
   "Sqrt_Script",
   "Transfer_Ex",
+  "Transfer_Int_Nat",
   "HarmonicSeries",
   "Refute_Examples",
   "Landau",
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/Transfer_Int_Nat.thy	Sat Apr 21 13:49:31 2012 +0200
@@ -0,0 +1,180 @@
+(*  Title:      HOL/ex/Transfer_Int_Nat.thy
+    Author:     Brian Huffman, TU Muenchen
+*)
+
+header {* Using the transfer method between nat and int *}
+
+theory Transfer_Int_Nat
+imports GCD "~~/src/HOL/Library/Quotient_List"
+begin
+
+subsection {* Correspondence relation *}
+
+definition ZN :: "int \<Rightarrow> nat \<Rightarrow> bool"
+  where "ZN = (\<lambda>z n. z = of_nat n)"
+
+subsection {* Transfer rules *}
+
+lemma bi_unique_ZN [transfer_rule]: "bi_unique ZN"
+  unfolding ZN_def bi_unique_def by simp
+
+lemma right_total_ZN [transfer_rule]: "right_total ZN"
+  unfolding ZN_def right_total_def by simp
+
+lemma ZN_0 [transfer_rule]: "ZN 0 0"
+  unfolding ZN_def by simp
+
+lemma ZN_1 [transfer_rule]: "ZN 1 1"
+  unfolding ZN_def by simp
+
+lemma ZN_add [transfer_rule]: "(ZN ===> ZN ===> ZN) (op +) (op +)"
+  unfolding fun_rel_def ZN_def by simp
+
+lemma ZN_mult [transfer_rule]: "(ZN ===> ZN ===> ZN) (op *) (op *)"
+  unfolding fun_rel_def ZN_def by (simp add: int_mult)
+
+lemma ZN_diff [transfer_rule]: "(ZN ===> ZN ===> ZN) tsub (op -)"
+  unfolding fun_rel_def ZN_def tsub_def by (simp add: zdiff_int)
+
+lemma ZN_power [transfer_rule]: "(ZN ===> op = ===> ZN) (op ^) (op ^)"
+  unfolding fun_rel_def ZN_def by (simp add: int_power)
+
+lemma ZN_nat_id [transfer_rule]: "(ZN ===> op =) nat id"
+  unfolding fun_rel_def ZN_def by simp
+
+lemma ZN_id_int [transfer_rule]: "(ZN ===> op =) id int"
+  unfolding fun_rel_def ZN_def by simp
+
+lemma ZN_All [transfer_rule]:
+  "((ZN ===> op =) ===> op =) (Ball {0..}) All"
+  unfolding fun_rel_def ZN_def by (auto dest: zero_le_imp_eq_int)
+
+lemma ZN_transfer_forall [transfer_rule]:
+  "((ZN ===> op =) ===> op =) (transfer_bforall (\<lambda>x. 0 \<le> x)) transfer_forall"
+  unfolding transfer_forall_def transfer_bforall_def
+  unfolding fun_rel_def ZN_def by (auto dest: zero_le_imp_eq_int)
+
+lemma ZN_Ex [transfer_rule]: "((ZN ===> op =) ===> op =) (Bex {0..}) Ex"
+  unfolding fun_rel_def ZN_def Bex_def atLeast_iff
+  by (metis zero_le_imp_eq_int zero_zle_int)
+
+lemma ZN_le [transfer_rule]: "(ZN ===> ZN ===> op =) (op \<le>) (op \<le>)"
+  unfolding fun_rel_def ZN_def by simp
+
+lemma ZN_less [transfer_rule]: "(ZN ===> ZN ===> op =) (op <) (op <)"
+  unfolding fun_rel_def ZN_def by simp
+
+lemma ZN_eq [transfer_rule]: "(ZN ===> ZN ===> op =) (op =) (op =)"
+  unfolding fun_rel_def ZN_def by simp
+
+lemma ZN_Suc [transfer_rule]: "(ZN ===> ZN) (\<lambda>x. x + 1) Suc"
+  unfolding fun_rel_def ZN_def by simp
+
+lemma ZN_numeral [transfer_rule]:
+  "(op = ===> ZN) numeral numeral"
+  unfolding fun_rel_def ZN_def by simp
+
+lemma ZN_dvd [transfer_rule]: "(ZN ===> ZN ===> op =) (op dvd) (op dvd)"
+  unfolding fun_rel_def ZN_def by (simp add: zdvd_int)
+
+lemma ZN_div [transfer_rule]: "(ZN ===> ZN ===> ZN) (op div) (op div)"
+  unfolding fun_rel_def ZN_def by (simp add: zdiv_int)
+
+lemma ZN_mod [transfer_rule]: "(ZN ===> ZN ===> ZN) (op mod) (op mod)"
+  unfolding fun_rel_def ZN_def by (simp add: zmod_int)
+
+lemma ZN_gcd [transfer_rule]: "(ZN ===> ZN ===> ZN) gcd gcd"
+  unfolding fun_rel_def ZN_def by (simp add: transfer_int_nat_gcd)
+
+text {* For derived operations, we can use the @{text "transfer_prover"}
+  method to help generate transfer rules. *}
+
+lemma ZN_listsum [transfer_rule]: "(list_all2 ZN ===> ZN) listsum listsum"
+  unfolding listsum_def [abs_def] by transfer_prover
+
+subsection {* Transfer examples *}
+
+lemma
+  assumes "\<And>i::int. 0 \<le> i \<Longrightarrow> i + 0 = i"
+  shows "\<And>i::nat. i + 0 = i"
+apply transfer
+apply fact
+done
+
+lemma
+  assumes "\<And>i k::int. \<lbrakk>0 \<le> i; 0 \<le> k; i < k\<rbrakk> \<Longrightarrow> \<exists>j\<in>{0..}. i + j = k"
+  shows "\<And>i k::nat. i < k \<Longrightarrow> \<exists>j. i + j = k"
+apply transfer
+apply fact
+done
+
+lemma
+  assumes "\<forall>x\<in>{0::int..}. \<forall>y\<in>{0..}. x * y div y = x"
+  shows "\<forall>x y :: nat. x * y div y = x"
+apply transfer
+apply fact
+done
+
+lemma
+  assumes "\<And>m n::int. \<lbrakk>0 \<le> m; 0 \<le> n; m * n = 0\<rbrakk> \<Longrightarrow> m = 0 \<or> n = 0"
+  shows "m * n = (0::nat) \<Longrightarrow> m = 0 \<or> n = 0"
+apply transfer
+apply fact
+done
+
+lemma
+  assumes "\<forall>x\<in>{0::int..}. \<exists>y\<in>{0..}. \<exists>z\<in>{0..}. x + 3 * y = 5 * z"
+  shows "\<forall>x::nat. \<exists>y z. x + 3 * y = 5 * z"
+apply transfer
+apply fact
+done
+
+text {* The @{text "fixing"} option prevents generalization over the free
+  variable @{text "n"}, allowing the local transfer rule to be used. *}
+
+lemma
+  assumes [transfer_rule]: "ZN x n"
+  assumes "\<forall>i\<in>{0..}. i < x \<longrightarrow> 2 * i < 3 * x"
+  shows "\<forall>i. i < n \<longrightarrow> 2 * i < 3 * n"
+apply (transfer fixing: n)
+apply fact
+done
+
+lemma
+  assumes "gcd (2^i) (3^j) = (1::int)"
+  shows "gcd (2^i) (3^j) = (1::nat)"
+apply (transfer fixing: i j)
+apply fact
+done
+
+lemma
+  assumes "\<And>x y z::int. \<lbrakk>0 \<le> x; 0 \<le> y; 0 \<le> z\<rbrakk> \<Longrightarrow> 
+    listsum [x, y, z] = 0 \<longleftrightarrow> list_all (\<lambda>x. x = 0) [x, y, z]"
+  shows "listsum [x, y, z] = (0::nat) \<longleftrightarrow> list_all (\<lambda>x. x = 0) [x, y, z]"
+apply transfer
+apply fact
+done
+
+text {* Quantifiers over higher types (e.g. @{text "nat list"}) may
+  generate @{text "Domainp"} assumptions when transferred. *}
+
+lemma
+  assumes "\<And>xs::int list. Domainp (list_all2 ZN) xs \<Longrightarrow>
+    (listsum xs = 0) = list_all (\<lambda>x. x = 0) xs"
+  shows "listsum xs = (0::nat) \<longleftrightarrow> list_all (\<lambda>x. x = 0) xs"
+apply transfer
+apply fact
+done
+
+text {* Equality on a higher type can be transferred if the relations
+  involved are bi-unique. *}
+
+lemma
+  assumes "\<And>xs\<Colon>int list. \<lbrakk>Domainp (list_all2 ZN) xs; xs \<noteq> []\<rbrakk> \<Longrightarrow>
+    listsum xs < listsum (map (\<lambda>x. x + 1) xs)"
+  shows "xs \<noteq> [] \<Longrightarrow> listsum xs < listsum (map Suc xs)"
+apply transfer
+apply fact
+done
+
+end