--- a/NEWS Fri Mar 14 18:02:16 2025 +0100
+++ b/NEWS Fri Mar 14 18:04:14 2025 +0100
@@ -20,6 +20,8 @@
- Changed definition of predicate refl_on to not constrain the domain
and range of the relation. To get the old semantics, explicitely use
the formula "r \<subset> A \<times> A \<and> refl_on A r". INCOMPATIBILITY.
+ - Strengthened lemmas. Minor INCOMPATIBILITY.
+ refl_on_empty[simp]
- Added lemmas.
reflp_on_refl_on_eq[pred_set_conv]
--- a/src/HOL/Relation.thy Fri Mar 14 18:02:16 2025 +0100
+++ b/src/HOL/Relation.thy Fri Mar 14 18:04:14 2025 +0100
@@ -239,7 +239,7 @@
lemma reflp_on_Sup: "\<forall>x\<in>S. reflp_on (A x) (R x) \<Longrightarrow> reflp_on (\<Union>(A ` S)) (\<Squnion>(R ` S))"
by (auto intro: reflp_onI dest: reflp_onD)
-lemma refl_on_empty [simp]: "refl_on {} {}"
+lemma refl_on_empty [simp]: "refl_on {} r"
by (simp add: refl_on_def)
lemma reflp_on_empty [simp]: "reflp_on {} R"