Refactoring (moving theorems into better locations), plus a bit of new material
authorpaulson <lp15@cam.ac.uk>
Mon, 14 Mar 2016 14:19:06 +0000
changeset 62618 f7f2467ab854
parent 62616 b89d4b320464
child 62619 7f17ebd3293e
Refactoring (moving theorems into better locations), plus a bit of new material
src/HOL/Finite_Set.thy
src/HOL/Fun.thy
src/HOL/Multivariate_Analysis/Cauchy_Integral_Thm.thy
src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy
src/HOL/Multivariate_Analysis/Integration.thy
src/HOL/Multivariate_Analysis/Path_Connected.thy
src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy
--- a/src/HOL/Finite_Set.thy	Sun Mar 13 14:42:07 2016 +0100
+++ b/src/HOL/Finite_Set.thy	Mon Mar 14 14:19:06 2016 +0000
@@ -291,6 +291,11 @@
   then show "finite A" by simp
 qed
 
+lemma finite_image_iff:
+  assumes "inj_on f A"
+  shows "finite (f ` A) \<longleftrightarrow> finite A"
+using assms finite_imageD by blast
+
 lemma finite_surj:
   "finite A \<Longrightarrow> B \<subseteq> f ` A \<Longrightarrow> finite B"
   by (erule finite_subset) (rule finite_imageI)
--- a/src/HOL/Fun.thy	Sun Mar 13 14:42:07 2016 +0100
+++ b/src/HOL/Fun.thy	Mon Mar 14 14:19:06 2016 +0000
@@ -210,7 +210,7 @@
 lemma bij_id[simp]: "bij id"
 by (simp add: bij_betw_def)
 
-lemma inj_onI:
+lemma inj_onI [intro?]:
     "(!! x y. [|  x:A;  y:A;  f(x) = f(y) |] ==> x=y) ==> inj_on f A"
 by (simp add: inj_on_def)
 
--- a/src/HOL/Multivariate_Analysis/Cauchy_Integral_Thm.thy	Sun Mar 13 14:42:07 2016 +0100
+++ b/src/HOL/Multivariate_Analysis/Cauchy_Integral_Thm.thy	Mon Mar 14 14:19:06 2016 +0000
@@ -1175,12 +1175,6 @@
 lemma Im_linepath: "Im(linepath (of_real a) (of_real b) x) = 0"
   by (simp add: linepath_def)
 
-lemma linepath_of_real: "(linepath (of_real a) (of_real b) x) = of_real ((1 - x)*a + x*b)"
-  by (simp add: scaleR_conv_of_real linepath_def)
-
-lemma of_real_linepath: "of_real (linepath a b x) = linepath (of_real a) (of_real b) x"
-  by (metis linepath_of_real mult.right_neutral of_real_def real_scaleR_def)
-
 lemma has_contour_integral_trivial [iff]: "(f has_contour_integral 0) (linepath a a)"
   by (simp add: has_contour_integral_linepath)
 
@@ -1351,42 +1345,6 @@
   by (simp add: contour_integral_def integral_def has_contour_integral contour_integrable_on)
 
 
-subsection\<open>Segments via convex hulls\<close>
-
-lemma segments_subset_convex_hull:
-    "closed_segment a b \<subseteq> (convex hull {a,b,c})"
-    "closed_segment a c \<subseteq> (convex hull {a,b,c})"
-    "closed_segment b c \<subseteq> (convex hull {a,b,c})"
-    "closed_segment b a \<subseteq> (convex hull {a,b,c})"
-    "closed_segment c a \<subseteq> (convex hull {a,b,c})"
-    "closed_segment c b \<subseteq> (convex hull {a,b,c})"
-by (auto simp: segment_convex_hull linepath_of_real  elim!: rev_subsetD [OF _ hull_mono])
-
-lemma midpoints_in_convex_hull:
-  assumes "x \<in> convex hull s" "y \<in> convex hull s"
-    shows "midpoint x y \<in> convex hull s"
-proof -
-  have "(1 - inverse(2)) *\<^sub>R x + inverse(2) *\<^sub>R y \<in> convex hull s"
-    apply (rule convexD_alt)
-    using assms
-    apply (auto simp: convex_convex_hull)
-    done
-  then show ?thesis
-    by (simp add: midpoint_def algebra_simps)
-qed
-
-lemma convex_hull_subset:
-    "s \<subseteq> convex hull t \<Longrightarrow> convex hull s \<subseteq> convex hull t"
-  by (simp add: convex_convex_hull subset_hull)
-
-lemma not_in_interior_convex_hull_3:
-  fixes a :: "complex"
-  shows "a \<notin> interior(convex hull {a,b,c})"
-        "b \<notin> interior(convex hull {a,b,c})"
-        "c \<notin> interior(convex hull {a,b,c})"
-  by (auto simp: card_insert_le_m1 not_in_interior_convex_hull)
-
-
 text\<open>Cauchy's theorem where there's a primitive\<close>
 
 lemma contour_integral_primitive_lemma:
--- a/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy	Sun Mar 13 14:42:07 2016 +0100
+++ b/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy	Mon Mar 14 14:19:06 2016 +0000
@@ -324,6 +324,16 @@
   shows "scaleR 2 x = x + x"
   unfolding one_add_one [symmetric] scaleR_left_distrib by simp
 
+lemma scaleR_half_double [simp]:
+  fixes a :: "'a::real_normed_vector"
+  shows "(1 / 2) *\<^sub>R (a + a) = a"
+proof -
+  have "\<And>r. r *\<^sub>R (a + a) = (r * 2) *\<^sub>R a"
+    by (metis scaleR_2 scaleR_scaleR)
+  then show ?thesis
+    by simp
+qed
+
 lemma vector_choose_size:
   assumes "0 \<le> c"
   obtains x :: "'a::{real_normed_vector, perfect_space}" where "norm x = c"
@@ -5759,7 +5769,7 @@
   shows "is_interval s \<Longrightarrow> connected s"
   using is_interval_convex convex_connected by auto
 
-lemma convex_box: "convex (cbox a b)" "convex (box a (b::'a::euclidean_space))"
+lemma convex_box [simp]: "convex (cbox a b)" "convex (box a (b::'a::euclidean_space))"
   apply (rule_tac[!] is_interval_convex)+
   using is_interval_box is_interval_cbox
   apply auto
@@ -6573,15 +6583,12 @@
 
 lemmas segment_image_interval = closed_segment_image_interval open_segment_image_interval
 
-lemma open_segment_eq: "open_segment a b = (if a=b then {} else {(1 - u) *\<^sub>R a + u *\<^sub>R b | u::real. 0 < u \<and> u < 1})"
-  by (auto simp: open_segment_def closed_segment_def segment_degen_0 segment_degen_1)
-
 lemma open_segment_bound1:
   assumes "x \<in> open_segment a b"
   shows "norm (x - a) < norm (b - a)"
 proof -
   obtain u where "x = (1 - u) *\<^sub>R a + u *\<^sub>R b" "0 < u" "u < 1" "a \<noteq> b"
-    using assms by (auto simp add: open_segment_eq split: if_split_asm)
+    using assms by (auto simp add: open_segment_image_interval split: if_split_asm)
   then show "norm (x - a) < norm (b - a)"
     apply clarify
     apply (auto simp: algebra_simps)
@@ -6657,7 +6664,21 @@
     shows "affine hull (open_segment a b) = (if a = b then {} else affine hull {a,b})"
 by (metis affine_hull_convex_hull affine_hull_empty closure_open_segment closure_same_affine_hull segment_convex_hull)
 
-subsubsection\<open>Betweenness\<close>
+lemma rel_interior_closure_convex_segment:
+  fixes S :: "_::euclidean_space set"
+  assumes "convex S" "a \<in> rel_interior S" "b \<in> closure S"
+    shows "open_segment a b \<subseteq> rel_interior S"
+proof
+  fix x
+  have [simp]: "(1 - u) *\<^sub>R a + u *\<^sub>R b = b - (1 - u) *\<^sub>R (b - a)" for u
+    by (simp add: algebra_simps)
+  assume "x \<in> open_segment a b"
+  then show "x \<in> rel_interior S"
+    unfolding closed_segment_def open_segment_def  using assms
+    by (auto intro: rel_interior_closure_convex_shrink)
+qed
+
+subsection\<open>Betweenness\<close>
 
 lemma between_mem_segment: "between (a,b) x \<longleftrightarrow> x \<in> closed_segment a b"
   unfolding between_def by auto
--- a/src/HOL/Multivariate_Analysis/Integration.thy	Sun Mar 13 14:42:07 2016 +0100
+++ b/src/HOL/Multivariate_Analysis/Integration.thy	Mon Mar 14 14:19:06 2016 +0000
@@ -1193,13 +1193,8 @@
   show ?thesis
   proof (cases "cbox a b \<inter> cbox c d = {}")
     case True
-    show ?thesis
-      apply (rule that[of "{cbox c d}"])
-      apply (subst insert_is_Un)
-      apply (rule division_disjoint_union)
-      using \<open>cbox c d \<noteq> {}\<close> True assms interior_subset
-      apply auto
-      done
+    then show ?thesis
+      by (metis that False assms division_disjoint_union division_of_self insert_is_Un interior_Int interior_empty)
   next
     case False
     obtain u v where uv: "cbox a b \<inter> cbox c d = cbox u v"
@@ -1220,13 +1215,14 @@
     finally have [simp]: "interior (cbox a b) \<inter> interior (\<Union>(p - {cbox u v})) = {}" by simp
     have cbe: "cbox a b \<union> cbox c d = cbox a b \<union> \<Union>(p - {cbox u v})"
       using p(8) unfolding uv[symmetric] by auto
-    show ?thesis
-      apply (rule that[of "p - {cbox u v}"])
-      apply (simp add: cbe)
-      apply (subst insert_is_Un)
-      apply (rule division_disjoint_union)
-      apply (simp_all add: assms division_of_self)
-      by (metis Diff_subset division_of_subset p(1) p(8))
+    have "insert (cbox a b) (p - {cbox u v}) division_of cbox a b \<union> \<Union>(p - {cbox u v})"
+    proof -
+      have "{cbox a b} division_of cbox a b"
+        by (simp add: assms division_of_self)
+      then show "insert (cbox a b) (p - {cbox u v}) division_of cbox a b \<union> \<Union>(p - {cbox u v})"
+        by (metis (no_types) Diff_subset \<open>interior (cbox a b) \<inter> interior (\<Union>(p - {cbox u v})) = {}\<close> division_disjoint_union division_of_subset insert_is_Un p(1) p(8))
+    qed
+    with that[of "p - {cbox u v}"] show ?thesis by (simp add: cbe)
   qed
 qed
 
@@ -1323,21 +1319,21 @@
           presume "k = cbox a b \<Longrightarrow> ?thesis"
             and "k' = cbox a b \<Longrightarrow> ?thesis"
             and "k \<noteq> cbox a b \<Longrightarrow> k' \<noteq> cbox a b \<Longrightarrow> ?thesis"
-          then show ?thesis by auto
+          then show ?thesis by linarith
         next
           assume as': "k  = cbox a b"
           show ?thesis
-            using as' k' q(5) x' by auto
+            using as' k' q(5) x' by blast 
         next
           assume as': "k' = cbox a b"
           show ?thesis
-            using as' k'(2) q(5) x by auto
+            using as' k'(2) q(5) x by blast
         }
         assume as': "k \<noteq> cbox a b" "k' \<noteq> cbox a b"
         obtain c d where k: "k = cbox c d"
           using q(4)[OF x(2,1)] by blast
         have "interior k \<inter> interior (cbox a b) = {}"
-          using as' k'(2) q(5) x by auto
+          using as' k'(2) q(5) x by blast
         then have "interior k \<subseteq> interior x"
         using interior_subset_union_intervals
           by (metis as(2) k q(2) x interior_subset_union_intervals)
@@ -1345,7 +1341,7 @@
         obtain c d where c_d: "k' = cbox c d"
           using q(4)[OF x'(2,1)] by blast
         have "interior k' \<inter> interior (cbox a b) = {}"
-          using as'(2) q(5) x' by auto
+          using as'(2) q(5) x' by blast
         then have "interior k' \<subseteq> interior x'"
           by (metis as(2) c_d interior_subset_union_intervals q(2) x'(1) x'(2))
         ultimately show ?thesis
--- a/src/HOL/Multivariate_Analysis/Path_Connected.thy	Sun Mar 13 14:42:07 2016 +0100
+++ b/src/HOL/Multivariate_Analysis/Path_Connected.thy	Mon Mar 14 14:19:06 2016 +0000
@@ -1152,7 +1152,7 @@
   using continuous_linepath_at
   by (auto intro!: continuous_at_imp_continuous_on)
 
-lemma path_linepath[intro]: "path (linepath a b)"
+lemma path_linepath[iff]: "path (linepath a b)"
   unfolding path_def
   by (rule continuous_on_linepath)
 
@@ -1168,8 +1168,7 @@
   by (simp add: linepath_def)
 
 lemma arc_linepath:
-  assumes "a \<noteq> b"
-  shows "arc (linepath a b)"
+  assumes "a \<noteq> b" shows [simp]: "arc (linepath a b)"
 proof -
   {
     fix x y :: "real"
@@ -1193,6 +1192,54 @@
 lemma subpath_refl: "subpath a a g = linepath (g a) (g a)"
   by (simp add: subpath_def linepath_def algebra_simps)
 
+lemma linepath_of_real: "(linepath (of_real a) (of_real b) x) = of_real ((1 - x)*a + x*b)"
+  by (simp add: scaleR_conv_of_real linepath_def)
+
+lemma of_real_linepath: "of_real (linepath a b x) = linepath (of_real a) (of_real b) x"
+  by (metis linepath_of_real mult.right_neutral of_real_def real_scaleR_def)
+
+
+subsection\<open>Segments via convex hulls\<close>
+
+lemma segments_subset_convex_hull:
+    "closed_segment a b \<subseteq> (convex hull {a,b,c})"
+    "closed_segment a c \<subseteq> (convex hull {a,b,c})"
+    "closed_segment b c \<subseteq> (convex hull {a,b,c})"
+    "closed_segment b a \<subseteq> (convex hull {a,b,c})"
+    "closed_segment c a \<subseteq> (convex hull {a,b,c})"
+    "closed_segment c b \<subseteq> (convex hull {a,b,c})"
+by (auto simp: segment_convex_hull linepath_of_real  elim!: rev_subsetD [OF _ hull_mono])
+
+lemma midpoints_in_convex_hull:
+  assumes "x \<in> convex hull s" "y \<in> convex hull s"
+    shows "midpoint x y \<in> convex hull s"
+proof -
+  have "(1 - inverse(2)) *\<^sub>R x + inverse(2) *\<^sub>R y \<in> convex hull s"
+    apply (rule convexD_alt)
+    using assms
+    apply (auto simp: convex_convex_hull)
+    done
+  then show ?thesis
+    by (simp add: midpoint_def algebra_simps)
+qed
+
+lemma convex_hull_subset:
+    "s \<subseteq> convex hull t \<Longrightarrow> convex hull s \<subseteq> convex hull t"
+  by (simp add: convex_convex_hull subset_hull)
+
+lemma not_in_interior_convex_hull_3:
+  fixes a :: "complex"
+  shows "a \<notin> interior(convex hull {a,b,c})"
+        "b \<notin> interior(convex hull {a,b,c})"
+        "c \<notin> interior(convex hull {a,b,c})"
+  by (auto simp: card_insert_le_m1 not_in_interior_convex_hull)
+
+lemma midpoint_in_closed_segment [simp]: "midpoint a b \<in> closed_segment a b"
+  using midpoints_in_convex_hull segment_convex_hull by blast
+
+lemma midpoint_in_open_segment [simp]: "midpoint a b \<in> open_segment a b \<longleftrightarrow> a \<noteq> b"
+  by (simp add: midpoint_eq_endpoint(1) midpoint_eq_endpoint(2) open_segment_def)
+
 
 subsection \<open>Bounding a point away from a path\<close>
 
--- a/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy	Sun Mar 13 14:42:07 2016 +0100
+++ b/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy	Mon Mar 14 14:19:06 2016 +0000
@@ -7310,7 +7310,7 @@
   finally show "closed (cbox a b)" .
 qed
 
-lemma interior_cbox [intro]:
+lemma interior_cbox [simp]:
   fixes a b :: "'a::euclidean_space"
   shows "interior (cbox a b) = box a b" (is "?L = ?R")
 proof(rule subset_antisym)
@@ -7376,7 +7376,7 @@
     unfolding cbox_def bounded_iff by auto
 qed
 
-lemma bounded_box:
+lemma bounded_box [simp]:
   fixes a :: "'a::euclidean_space"
   shows "bounded (box a b)"
   using bounded_cbox[of a b]
@@ -7384,12 +7384,12 @@
   using bounded_subset[of "cbox a b" "box a b"]
   by simp
 
-lemma not_interval_univ:
+lemma not_interval_UNIV [simp]:
   fixes a :: "'a::euclidean_space"
   shows "cbox a b \<noteq> UNIV" "box a b \<noteq> UNIV"
-  using bounded_box[of a b] bounded_cbox[of a b] by auto
-
-lemma compact_cbox:
+  using bounded_box[of a b] bounded_cbox[of a b] by force+
+
+lemma compact_cbox [simp]:
   fixes a :: "'a::euclidean_space"
   shows "compact (cbox a b)"
   using bounded_closed_imp_seq_compact[of "cbox a b"] using bounded_cbox[of a b]