--- a/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Thu Aug 29 19:22:48 2013 +0200
+++ b/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Thu Aug 29 20:46:55 2013 +0200
@@ -55,11 +55,11 @@
context topological_space
begin
-definition "topological_basis B =
- ((\<forall>b\<in>B. open b) \<and> (\<forall>x. open x \<longrightarrow> (\<exists>B'. B' \<subseteq> B \<and> \<Union>B' = x)))"
+definition "topological_basis B \<longleftrightarrow>
+ (\<forall>b\<in>B. open b) \<and> (\<forall>x. open x \<longrightarrow> (\<exists>B'. B' \<subseteq> B \<and> \<Union>B' = x))"
lemma topological_basis:
- "topological_basis B = (\<forall>x. open x \<longleftrightarrow> (\<exists>B'. B' \<subseteq> B \<and> \<Union>B' = x))"
+ "topological_basis B \<longleftrightarrow> (\<forall>x. open x \<longleftrightarrow> (\<exists>B'. B' \<subseteq> B \<and> \<Union>B' = x))"
unfolding topological_basis_def
apply safe
apply fastforce
@@ -198,7 +198,7 @@
by (atomize_elim) simp
lemma countable_dense_exists:
- shows "\<exists>D::'a set. countable D \<and> (\<forall>X. open X \<longrightarrow> X \<noteq> {} \<longrightarrow> (\<exists>d \<in> D. d \<in> X))"
+ "\<exists>D::'a set. countable D \<and> (\<forall>X. open X \<longrightarrow> X \<noteq> {} \<longrightarrow> (\<exists>d \<in> D. d \<in> X))"
proof -
let ?f = "(\<lambda>B'. SOME x. x \<in> B')"
have "countable (?f ` B)" using countable_basis by simp
@@ -667,7 +667,7 @@
lemma closedin_closed: "closedin (subtopology euclidean U) S \<longleftrightarrow> (\<exists>T. closed T \<and> S = U \<inter> T)"
by (simp add: closedin_subtopology closed_closedin Int_ac)
-lemma closedin_closed_Int: "closed S ==> closedin (subtopology euclidean U) (U \<inter> S)"
+lemma closedin_closed_Int: "closed S \<Longrightarrow> closedin (subtopology euclidean U) (U \<inter> S)"
by (metis closedin_closed)
lemma closed_closedin_trans:
@@ -818,7 +818,7 @@
apply (metis zero_le_dist order_trans dist_self)
done
-lemma ball_empty[intro]: "e \<le> 0 ==> ball x e = {}" by simp
+lemma ball_empty[intro]: "e \<le> 0 \<Longrightarrow> ball x e = {}" by simp
lemma euclidean_dist_l2:
fixes x y :: "'a :: euclidean_space"
@@ -830,11 +830,11 @@
lemma rational_boxes:
fixes x :: "'a\<Colon>euclidean_space"
- assumes "0 < e"
+ assumes "e > 0"
shows "\<exists>a b. (\<forall>i\<in>Basis. a \<bullet> i \<in> \<rat> \<and> b \<bullet> i \<in> \<rat> ) \<and> x \<in> box a b \<and> box a b \<subseteq> ball x e"
proof -
def e' \<equiv> "e / (2 * sqrt (real (DIM ('a))))"
- then have e: "0 < e'"
+ then have e: "e' > 0"
using assms by (auto intro!: divide_pos_pos simp: DIM_positive)
have "\<forall>i. \<exists>y. y \<in> \<rat> \<and> y < x \<bullet> i \<and> x \<bullet> i - y < e'" (is "\<forall>i. ?th i")
proof
@@ -1087,7 +1087,7 @@
by blast
let ?m = "min (e/2) (dist x y) "
from e2 y(2) have mp: "?m > 0"
- by (simp add: dist_nz[THEN sym])
+ by (simp add: dist_nz[symmetric])
from C[rule_format, OF mp] obtain z where z: "z \<in> S" "z \<noteq> x" "dist z x < ?m"
by blast
have th: "dist z y < e" using z y
@@ -1754,7 +1754,7 @@
lemma Lim_at_zero:
fixes a :: "'a::real_normed_vector"
- fixes l :: "'b::topological_space"
+ and l :: "'b::topological_space"
shows "(f ---> l) (at a) \<longleftrightarrow> ((\<lambda>x. f(a + x)) ---> l) (at 0)"
using LIM_offset_zero LIM_offset_zero_cancel ..
@@ -1880,7 +1880,8 @@
lemma closure_sequential:
fixes l :: "'a::first_countable_topology"
- shows "l \<in> closure S \<longleftrightarrow> (\<exists>x. (\<forall>n. x n \<in> S) \<and> (x ---> l) sequentially)" (is "?lhs = ?rhs")
+ shows "l \<in> closure S \<longleftrightarrow> (\<exists>x. (\<forall>n. x n \<in> S) \<and> (x ---> l) sequentially)"
+ (is "?lhs = ?rhs")
proof
assume "?lhs"
moreover
@@ -1917,7 +1918,7 @@
lemma closed_approachable:
fixes S :: "'a::metric_space set"
- shows "closed S ==> (\<forall>e>0. \<exists>y\<in>S. dist y x < e) \<longleftrightarrow> x \<in> S"
+ shows "closed S \<Longrightarrow> (\<forall>e>0. \<exists>y\<in>S. dist y x < e) \<longleftrightarrow> x \<in> S"
by (metis closure_closed closure_approachable)
lemma closure_contains_Inf:
@@ -2135,17 +2136,17 @@
using assms by (rule LIMSEQ_ignore_initial_segment) (* FIXME: redundant *)
lemma seq_offset_neg:
- "(f ---> l) sequentially ==> ((\<lambda>i. f(i - k)) ---> l) sequentially"
+ "(f ---> l) sequentially \<Longrightarrow> ((\<lambda>i. f(i - k)) ---> l) sequentially"
apply (rule topological_tendstoI)
apply (drule (2) topological_tendstoD)
apply (simp only: eventually_sequentially)
- apply (subgoal_tac "\<And>N k (n::nat). N + k <= n ==> N <= n - k")
+ apply (subgoal_tac "\<And>N k (n::nat). N + k <= n \<Longrightarrow> N <= n - k")
apply metis
apply arith
done
lemma seq_offset_rev:
- "((\<lambda>i. f(i + k)) ---> l) sequentially ==> (f ---> l) sequentially"
+ "((\<lambda>i. f(i + k)) ---> l) sequentially \<Longrightarrow> (f ---> l) sequentially"
by (rule LIMSEQ_offset) (* FIXME: redundant *)
lemma seq_harmonic: "((\<lambda>n. inverse (real n)) ---> 0) sequentially"
@@ -2184,7 +2185,7 @@
unfolding open_contains_ball by auto
qed
-lemma open_contains_cball_eq: "open S ==> (\<forall>x. x \<in> S \<longleftrightarrow> (\<exists>e>0. cball x e \<subseteq> S))"
+lemma open_contains_cball_eq: "open S \<Longrightarrow> (\<forall>x. x \<in> S \<longleftrightarrow> (\<exists>e>0. cball x e \<subseteq> S))"
by (metis open_contains_cball subset_eq order_less_imp_le centre_in_cball)
lemma mem_interior_cball: "x \<in> interior S \<longleftrightarrow> (\<exists>e>0. cball x e \<subseteq> S)"
@@ -2196,7 +2197,8 @@
lemma islimpt_ball:
fixes x y :: "'a::{real_normed_vector,perfect_space}"
- shows "y islimpt ball x e \<longleftrightarrow> 0 < e \<and> y \<in> cball x e" (is "?lhs = ?rhs")
+ shows "y islimpt ball x e \<longleftrightarrow> 0 < e \<and> y \<in> cball x e"
+ (is "?lhs = ?rhs")
proof
assume "?lhs"
{
@@ -2233,10 +2235,10 @@
case False
have "dist x (y - (d / (2 * dist y x)) *\<^sub>R (y - x)) =
norm (x - y + (d / (2 * norm (y - x))) *\<^sub>R (y - x))"
- unfolding mem_cball mem_ball dist_norm diff_diff_eq2 diff_add_eq[THEN sym]
+ unfolding mem_cball mem_ball dist_norm diff_diff_eq2 diff_add_eq[symmetric]
by auto
also have "\<dots> = \<bar>- 1 + d / (2 * norm (x - y))\<bar> * norm (x - y)"
- using scaleR_left_distrib[of "- 1" "d / (2 * norm (y - x))", THEN sym, of "y - x"]
+ using scaleR_left_distrib[of "- 1" "d / (2 * norm (y - x))", symmetric, of "y - x"]
unfolding scaleR_minus_left scaleR_one
by (auto simp add: norm_minus_commute)
also have "\<dots> = \<bar>- norm (x - y) + d / 2\<bar>"
@@ -2402,7 +2404,7 @@
using d as(1)[unfolded subset_eq] by blast
have "y - x \<noteq> 0" using `x \<noteq> y` by auto
then have **:"d / (2 * norm (y - x)) > 0"
- unfolding zero_less_norm_iff[THEN sym]
+ unfolding zero_less_norm_iff[symmetric]
using `d>0` divide_pos_pos[of d "2*norm (y - x)"] by auto
have "dist (y + (d / 2 / dist y x) *\<^sub>R (y - x)) x =
norm (y + (d / (2 * norm (y - x))) *\<^sub>R y - (d / (2 * norm (y - x))) *\<^sub>R x - x)"
@@ -2427,7 +2429,7 @@
lemma frontier_ball:
fixes a :: "'a::real_normed_vector"
- shows "0 < e ==> frontier(ball a e) = {x. dist a x = e}"
+ shows "0 < e \<Longrightarrow> frontier(ball a e) = {x. dist a x = e}"
apply (simp add: frontier_def closure_ball interior_open order_less_imp_le)
apply (simp add: set_eq_iff)
apply arith
@@ -2463,7 +2465,7 @@
lemma cball_sing:
fixes x :: "'a::metric_space"
- shows "e = 0 ==> cball x e = {x}"
+ shows "e = 0 \<Longrightarrow> cball x e = {x}"
by (auto simp add: set_eq_iff)
@@ -2501,10 +2503,10 @@
lemma bounded_empty [simp]: "bounded {}"
by (simp add: bounded_def)
-lemma bounded_subset: "bounded T \<Longrightarrow> S \<subseteq> T ==> bounded S"
+lemma bounded_subset: "bounded T \<Longrightarrow> S \<subseteq> T \<Longrightarrow> bounded S"
by (metis bounded_def subset_eq)
-lemma bounded_interior[intro]: "bounded S ==> bounded(interior S)"
+lemma bounded_interior[intro]: "bounded S \<Longrightarrow> bounded(interior S)"
by (metis bounded_subset interior_subset)
lemma bounded_closure[intro]:
@@ -2583,7 +2585,7 @@
lemma bounded_Int[intro]: "bounded S \<or> bounded T \<Longrightarrow> bounded (S \<inter> T)"
by (metis Int_lower1 Int_lower2 bounded_subset)
-lemma bounded_diff[intro]: "bounded S ==> bounded (S - T)"
+lemma bounded_diff[intro]: "bounded S \<Longrightarrow> bounded (S - T)"
by (metis Diff_subset bounded_subset)
lemma not_bounded_UNIV[simp, intro]:
@@ -2599,8 +2601,9 @@
qed
lemma bounded_linear_image:
- assumes "bounded S" "bounded_linear f"
- shows "bounded(f ` S)"
+ assumes "bounded S"
+ and "bounded_linear f"
+ shows "bounded (f ` S)"
proof -
from assms(1) obtain b where b:"b>0" "\<forall>x\<in>S. norm x \<le> b"
unfolding bounded_pos by auto
@@ -2626,7 +2629,8 @@
lemma bounded_scaling:
fixes S :: "'a::real_normed_vector set"
shows "bounded S \<Longrightarrow> bounded ((\<lambda>x. c *\<^sub>R x) ` S)"
- apply (rule bounded_linear_image, assumption)
+ apply (rule bounded_linear_image)
+ apply assumption
apply (rule bounded_linear_scaleR_right)
done
@@ -2654,7 +2658,7 @@
lemma bounded_real:
fixes S :: "real set"
- shows "bounded S \<longleftrightarrow> (\<exists>a. \<forall>x\<in>S. abs x <= a)"
+ shows "bounded S \<longleftrightarrow> (\<exists>a. \<forall>x\<in>S. abs x \<le> a)"
by (simp add: bounded_iff)
lemma bounded_has_Sup:
@@ -2674,7 +2678,7 @@
lemma Sup_insert:
fixes S :: "real set"
- shows "bounded S ==> Sup(insert x S) = (if S = {} then x else max x (Sup S))"
+ shows "bounded S \<Longrightarrow> Sup (insert x S) = (if S = {} then x else max x (Sup S))"
apply (subst cSup_insert_If)
apply (rule bounded_has_Sup(1)[of S, rule_format])
apply (auto simp: sup_max)
@@ -2682,7 +2686,7 @@
lemma Sup_insert_finite:
fixes S :: "real set"
- shows "finite S \<Longrightarrow> Sup(insert x S) = (if S = {} then x else max x (Sup S))"
+ shows "finite S \<Longrightarrow> Sup (insert x S) = (if S = {} then x else max x (Sup S))"
apply (rule Sup_insert)
apply (rule finite_imp_bounded)
apply simp
@@ -2707,7 +2711,7 @@
lemma Inf_insert:
fixes S :: "real set"
- shows "bounded S ==> Inf(insert x S) = (if S = {} then x else min x (Inf S))"
+ shows "bounded S \<Longrightarrow> Inf (insert x S) = (if S = {} then x else min x (Inf S))"
apply (subst cInf_insert_if)
apply (rule bounded_has_Inf(1)[of S, rule_format])
apply (auto simp: inf_min)
@@ -2715,7 +2719,7 @@
lemma Inf_insert_finite:
fixes S :: "real set"
- shows "finite S \<Longrightarrow> Inf(insert x S) = (if S = {} then x else min x (Inf S))"
+ shows "finite S \<Longrightarrow> Inf (insert x S) = (if S = {} then x else min x (Inf S))"
apply (rule Inf_insert)
apply (rule finite_imp_bounded)
apply simp
@@ -2726,9 +2730,9 @@
subsubsection {* Bolzano-Weierstrass property *}
lemma heine_borel_imp_bolzano_weierstrass:
- assumes "compact s" "infinite t" "t \<subseteq> s"
+ assumes "compact s" and "infinite t" and "t \<subseteq> s"
shows "\<exists>x \<in> s. x islimpt t"
-proof(rule ccontr)
+proof (rule ccontr)
assume "\<not> (\<exists>x \<in> s. x islimpt t)"
then obtain f where f:"\<forall>x\<in>s. x \<in> f x \<and> open (f x) \<and> (\<forall>y\<in>t. y \<in> f x \<longrightarrow> y = x)"
unfolding islimpt_def
@@ -2981,7 +2985,8 @@
text{* In particular, some common special cases. *}
lemma compact_union [intro]:
- assumes "compact s" "compact t"
+ assumes "compact s"
+ and "compact t"
shows " compact (s \<union> t)"
proof (rule compactI)
fix f
@@ -3411,7 +3416,10 @@
using assms unfolding seq_compact_def by fast
lemma countably_compact_imp_acc_point:
- assumes "countably_compact s" "countable t" "infinite t" "t \<subseteq> s"
+ assumes "countably_compact s"
+ and "countable t"
+ and "infinite t"
+ and "t \<subseteq> s"
shows "\<exists>x\<in>s. \<forall>U. x\<in>U \<and> open U \<longrightarrow> infinite (U \<inter> t)"
proof (rule ccontr)
def C \<equiv> "(\<lambda>F. interior (F \<union> (- t))) ` {F. finite F \<and> F \<subseteq> t }"
@@ -3445,7 +3453,8 @@
lemma countable_acc_point_imp_seq_compact:
fixes s :: "'a::first_countable_topology set"
- assumes "\<forall>t. infinite t \<and> countable t \<and> t \<subseteq> s \<longrightarrow> (\<exists>x\<in>s. \<forall>U. x\<in>U \<and> open U \<longrightarrow> infinite (U \<inter> t))"
+ assumes "\<forall>t. infinite t \<and> countable t \<and> t \<subseteq> s \<longrightarrow>
+ (\<exists>x\<in>s. \<forall>U. x\<in>U \<and> open U \<longrightarrow> infinite (U \<inter> t))"
shows "seq_compact s"
proof -
{
@@ -3487,7 +3496,8 @@
lemma seq_compact_eq_acc_point:
fixes s :: "'a :: first_countable_topology set"
- shows "seq_compact s \<longleftrightarrow> (\<forall>t. infinite t \<and> countable t \<and> t \<subseteq> s --> (\<exists>x\<in>s. \<forall>U. x\<in>U \<and> open U \<longrightarrow> infinite (U \<inter> t)))"
+ shows "seq_compact s \<longleftrightarrow>
+ (\<forall>t. infinite t \<and> countable t \<and> t \<subseteq> s --> (\<exists>x\<in>s. \<forall>U. x\<in>U \<and> open U \<longrightarrow> infinite (U \<inter> t)))"
using
countable_acc_point_imp_seq_compact[of s]
countably_compact_imp_acc_point[of s]
@@ -3670,7 +3680,8 @@
lemma compact_eq_bounded_closed:
fixes s :: "'a::heine_borel set"
- shows "compact s \<longleftrightarrow> bounded s \<and> closed s" (is "?lhs = ?rhs")
+ shows "compact s \<longleftrightarrow> bounded s \<and> closed s"
+ (is "?lhs = ?rhs")
proof
assume ?lhs
then show ?rhs
@@ -3707,8 +3718,8 @@
lemma compact_lemma:
fixes f :: "nat \<Rightarrow> 'a::euclidean_space"
assumes "bounded (range f)"
- shows "\<forall>d\<subseteq>Basis. \<exists>l::'a. \<exists> r. subseq r \<and>
- (\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r n) \<bullet> i) (l \<bullet> i) < e) sequentially)"
+ shows "\<forall>d\<subseteq>Basis. \<exists>l::'a. \<exists> r.
+ subseq r \<and> (\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r n) \<bullet> i) (l \<bullet> i) < e) sequentially)"
proof safe
fix d :: "'a set"
assume d: "d \<subseteq> Basis"
@@ -4133,28 +4144,30 @@
lemma compact_frontier_bounded[intro]:
fixes s :: "'a::heine_borel set"
- shows "bounded s ==> compact(frontier s)"
+ shows "bounded s \<Longrightarrow> compact(frontier s)"
unfolding frontier_def
using compact_eq_bounded_closed
by blast
lemma compact_frontier[intro]:
fixes s :: "'a::heine_borel set"
- shows "compact s ==> compact (frontier s)"
+ shows "compact s \<Longrightarrow> compact (frontier s)"
using compact_eq_bounded_closed compact_frontier_bounded
by blast
lemma frontier_subset_compact:
fixes s :: "'a::heine_borel set"
- shows "compact s ==> frontier s \<subseteq> s"
+ shows "compact s \<Longrightarrow> frontier s \<subseteq> s"
using frontier_subset_closed compact_eq_bounded_closed
by blast
subsection {* Bounded closed nest property (proof does not use Heine-Borel) *}
lemma bounded_closed_nest:
- assumes "\<forall>n. closed(s n)" "\<forall>n. (s n \<noteq> {})"
- "(\<forall>m n. m \<le> n --> s n \<subseteq> s m)" "bounded(s 0)"
+ assumes "\<forall>n. closed(s n)"
+ and "\<forall>n. (s n \<noteq> {})"
+ and "(\<forall>m n. m \<le> n --> s n \<subseteq> s m)"
+ and "bounded(s 0)"
shows "\<exists>a::'a::heine_borel. \<forall>n::nat. a \<in> s(n)"
proof -
from assms(2) obtain x where x:"\<forall>n::nat. x n \<in> s n"
@@ -4296,8 +4309,8 @@
lemma uniformly_convergent_eq_cauchy:
fixes s::"nat \<Rightarrow> 'b \<Rightarrow> 'a::complete_space"
shows
- "(\<exists>l. \<forall>e>0. \<exists>N. \<forall>n x. N \<le> n \<and> P x --> dist(s n x)(l x) < e) \<longleftrightarrow>
- (\<forall>e>0. \<exists>N. \<forall>m n x. N \<le> m \<and> N \<le> n \<and> P x --> dist (s m x) (s n x) < e)"
+ "(\<exists>l. \<forall>e>0. \<exists>N. \<forall>n x. N \<le> n \<and> P x \<longrightarrow> dist(s n x)(l x) < e) \<longleftrightarrow>
+ (\<forall>e>0. \<exists>N. \<forall>m n x. N \<le> m \<and> N \<le> n \<and> P x \<longrightarrow> dist (s m x) (s n x) < e)"
(is "?lhs = ?rhs")
proof
assume ?lhs
@@ -4328,7 +4341,7 @@
apply auto
done
then obtain l where l: "\<forall>x. P x \<longrightarrow> ((\<lambda>n. s n x) ---> l x) sequentially"
- unfolding convergent_eq_cauchy[THEN sym]
+ unfolding convergent_eq_cauchy[symmetric]
using choice[of "\<lambda>x l. P x \<longrightarrow> ((\<lambda>n. s n x) ---> l) sequentially"]
by auto
{
@@ -4358,11 +4371,11 @@
lemma uniformly_cauchy_imp_uniformly_convergent:
fixes s :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::complete_space"
assumes "\<forall>e>0.\<exists>N. \<forall>m (n::nat) x. N \<le> m \<and> N \<le> n \<and> P x --> dist(s m x)(s n x) < e"
- "\<forall>x. P x --> (\<forall>e>0. \<exists>N. \<forall>n. N \<le> n --> dist(s n x)(l x) < e)"
- shows "\<forall>e>0. \<exists>N. \<forall>n x. N \<le> n \<and> P x --> dist(s n x)(l x) < e"
+ and "\<forall>x. P x --> (\<forall>e>0. \<exists>N. \<forall>n. N \<le> n \<longrightarrow> dist(s n x)(l x) < e)"
+ shows "\<forall>e>0. \<exists>N. \<forall>n x. N \<le> n \<and> P x \<longrightarrow> dist(s n x)(l x) < e"
proof -
obtain l' where l:"\<forall>e>0. \<exists>N. \<forall>n x. N \<le> n \<and> P x \<longrightarrow> dist (s n x) (l' x) < e"
- using assms(1) unfolding uniformly_convergent_eq_cauchy[THEN sym] by auto
+ using assms(1) unfolding uniformly_convergent_eq_cauchy[symmetric] by auto
moreover
{
fix x
@@ -4383,7 +4396,7 @@
"continuous (at x within s) f \<longleftrightarrow> (\<forall>e>0. \<exists>d>0. \<forall>x'\<in> s. dist x' x < d --> dist (f x') (f x) < e)"
unfolding continuous_within and Lim_within
apply auto
- unfolding dist_nz[THEN sym]
+ unfolding dist_nz[symmetric]
apply (auto del: allE elim!:allE)
apply(rule_tac x=d in exI)
apply auto
@@ -4411,7 +4424,7 @@
assume "y \<in> f ` (ball x d \<inter> s)"
then have "y \<in> ball (f x) e"
using d(2)
- unfolding dist_nz[THEN sym]
+ unfolding dist_nz[symmetric]
apply (auto simp add: dist_commute)
apply (erule_tac x=xa in ballE)
apply auto
@@ -4447,7 +4460,7 @@
apply auto
apply (erule_tac x=xa in allE)
apply (auto simp add: dist_commute dist_nz)
- unfolding dist_nz[THEN sym]
+ unfolding dist_nz[symmetric]
apply auto
done
next
@@ -4534,7 +4547,7 @@
proof eventually_elim
case (elim n)
then show ?case
- using d x(1) `f a \<in> T` unfolding dist_nz[THEN sym] by auto
+ using d x(1) `f a \<in> T` unfolding dist_nz[symmetric] by auto
qed
}
then show ?rhs
@@ -4548,15 +4561,16 @@
lemma continuous_at_sequentially:
fixes f :: "'a::metric_space \<Rightarrow> 'b::topological_space"
- shows "continuous (at a) f \<longleftrightarrow> (\<forall>x. (x ---> a) sequentially
- --> ((f o x) ---> f a) sequentially)"
+ shows "continuous (at a) f \<longleftrightarrow>
+ (\<forall>x. (x ---> a) sequentially --> ((f o x) ---> f a) sequentially)"
using continuous_within_sequentially[of a UNIV f] by simp
lemma continuous_on_sequentially:
fixes f :: "'a::metric_space \<Rightarrow> 'b::topological_space"
shows "continuous_on s f \<longleftrightarrow>
(\<forall>x. \<forall>a \<in> s. (\<forall>n. x(n) \<in> s) \<and> (x ---> a) sequentially
- --> ((f o x) ---> f(a)) sequentially)" (is "?lhs = ?rhs")
+ --> ((f o x) ---> f(a)) sequentially)"
+ (is "?lhs = ?rhs")
proof
assume ?rhs
then show ?lhs
@@ -4878,7 +4892,7 @@
qed
lemma continuous_closed_in_preimage:
- assumes "continuous_on s f" "closed t"
+ assumes "continuous_on s f" and "closed t"
shows "closedin (subtopology euclidean s) {x \<in> s. f x \<in> t}"
proof -
have *: "\<forall>x. x \<in> s \<and> f x \<in> t \<longleftrightarrow> x \<in> s \<and> f x \<in> (t \<inter> f ` s)"
@@ -4892,7 +4906,9 @@
qed
lemma continuous_open_preimage:
- assumes "continuous_on s f" "open s" "open t"
+ assumes "continuous_on s f"
+ and "open s"
+ and "open t"
shows "open {x \<in> s. f x \<in> t}"
proof-
obtain T where T: "open T" "{x \<in> s. f x \<in> t} = s \<inter> T"
@@ -4902,7 +4918,9 @@
qed
lemma continuous_closed_preimage:
- assumes "continuous_on s f" "closed s" "closed t"
+ assumes "continuous_on s f"
+ and "closed s"
+ and "closed t"
shows "closed {x \<in> s. f x \<in> t}"
proof-
obtain T where "closed T" "{x \<in> s. f x \<in> t} = s \<inter> T"
@@ -4916,7 +4934,7 @@
using continuous_open_preimage[of UNIV f s] open_UNIV continuous_at_imp_continuous_on by auto
lemma continuous_closed_preimage_univ:
- "(\<forall>x. continuous (at x) f) \<Longrightarrow> closed s ==> closed {x. f x \<in> s}"
+ "(\<forall>x. continuous (at x) f) \<Longrightarrow> closed s \<Longrightarrow> closed {x. f x \<in> s}"
using continuous_closed_preimage[of UNIV f s] closed_UNIV continuous_at_imp_continuous_on by auto
lemma continuous_open_vimage: "\<forall>x. continuous (at x) f \<Longrightarrow> open s \<Longrightarrow> open (f -` s)"
@@ -4926,7 +4944,8 @@
unfolding vimage_def by (rule continuous_closed_preimage_univ)
lemma interior_image_subset:
- assumes "\<forall>x. continuous (at x) f" "inj f"
+ assumes "\<forall>x. continuous (at x) f"
+ and "inj f"
shows "interior (f ` s) \<subseteq> f ` (interior s)"
proof
fix x assume "x \<in> interior (f ` s)"
@@ -4947,12 +4966,12 @@
lemma continuous_closed_in_preimage_constant:
fixes f :: "_ \<Rightarrow> 'b::t1_space"
- shows "continuous_on s f ==> closedin (subtopology euclidean s) {x \<in> s. f x = a}"
+ shows "continuous_on s f \<Longrightarrow> closedin (subtopology euclidean s) {x \<in> s. f x = a}"
using continuous_closed_in_preimage[of s f "{a}"] by auto
lemma continuous_closed_preimage_constant:
fixes f :: "_ \<Rightarrow> 'b::t1_space"
- shows "continuous_on s f \<Longrightarrow> closed s ==> closed {x \<in> s. f x = a}"
+ shows "continuous_on s f \<Longrightarrow> closed s \<Longrightarrow> closed {x \<in> s. f x = a}"
using continuous_closed_preimage[of s f "{a}"] by auto
lemma continuous_constant_on_closure:
@@ -4966,7 +4985,9 @@
by auto
lemma image_closure_subset:
- assumes "continuous_on (closure s) f" "closed t" "(f ` s) \<subseteq> t"
+ assumes "continuous_on (closure s) f"
+ and "closed t"
+ and "(f ` s) \<subseteq> t"
shows "f ` (closure s) \<subseteq> t"
proof -
have "s \<subseteq> {x \<in> closure s. f x \<in> t}"
@@ -4983,10 +5004,10 @@
assumes "continuous_on (closure s) f"
and "\<forall>y \<in> s. norm(f y) \<le> b"
and "x \<in> (closure s)"
- shows "norm(f x) \<le> b"
+ shows "norm (f x) \<le> b"
proof -
have *: "f ` s \<subseteq> cball 0 b"
- using assms(2)[unfolded mem_cball_0[THEN sym]] by auto
+ using assms(2)[unfolded mem_cball_0[symmetric]] by auto
show ?thesis
using image_closure_subset[OF assms(1) closed_cball[of 0 b] *] assms(3)
unfolding subset_eq
@@ -5002,7 +5023,7 @@
assumes "continuous (at x within s) f"
and "f x \<noteq> a"
shows "\<exists>e>0. \<forall>y \<in> s. dist x y < e --> f y \<noteq> a"
-proof-
+proof -
obtain U where "open U" and "f x \<in> U" and "a \<notin> U"
using t1_space [OF `f x \<noteq> a`] by fast
have "(f ---> f x) (at x within s)"
@@ -5036,7 +5057,10 @@
lemma continuous_on_open_avoid:
fixes f :: "'a::metric_space \<Rightarrow> 'b::t1_space"
- assumes "continuous_on s f" "open s" "x \<in> s" "f x \<noteq> a"
+ assumes "continuous_on s f"
+ and "open s"
+ and "x \<in> s"
+ and "f x \<noteq> a"
shows "\<exists>e>0. \<forall>y. dist x y < e \<longrightarrow> f y \<noteq> a"
using assms(1)[unfolded continuous_on_eq_continuous_at[OF assms(2)], THEN bspec[where x=x], OF assms(3)]
using continuous_at_avoid[of x f a] assms(4)
@@ -5056,7 +5080,7 @@
fixes f :: "_ \<Rightarrow> 'b::t1_space"
shows "connected s \<Longrightarrow> continuous_on s f \<Longrightarrow>
openin (subtopology euclidean s) {x \<in> s. f x = a} \<Longrightarrow>
- (\<exists>x \<in> s. f x = a) ==> (\<forall>x \<in> s. f x = a)"
+ (\<exists>x \<in> s. f x = a) \<Longrightarrow> (\<forall>x \<in> s. f x = a)"
using continuous_levelset_open_in_cases[of s f ]
by meson
@@ -5075,7 +5099,8 @@
lemma open_scaling[intro]:
fixes s :: "'a::real_normed_vector set"
- assumes "c \<noteq> 0" "open s"
+ assumes "c \<noteq> 0"
+ and "open s"
shows "open((\<lambda>x. c *\<^sub>R x) ` s)"
proof -
{
@@ -5085,7 +5110,7 @@
and e:"\<forall>x'. dist x' x < e \<longrightarrow> x' \<in> s" using assms(2)[unfolded open_dist, THEN bspec[where x=x]]
by auto
have "e * abs c > 0"
- using assms(1)[unfolded zero_less_abs_iff[THEN sym]]
+ using assms(1)[unfolded zero_less_abs_iff[symmetric]]
using mult_pos_pos[OF `e>0`]
by auto
moreover
@@ -5095,7 +5120,7 @@
then have "norm ((1 / c) *\<^sub>R y - x) < e"
unfolding dist_norm
using norm_scaleR[of c "(1 / c) *\<^sub>R y - x", unfolded scaleR_right_diff_distrib, unfolded scaleR_scaleR] assms(1)
- assms(1)[unfolded zero_less_abs_iff[THEN sym]] by (simp del:zero_less_abs_iff)
+ assms(1)[unfolded zero_less_abs_iff[symmetric]] by (simp del:zero_less_abs_iff)
then have "y \<in> op *\<^sub>R c ` s"
using rev_image_eqI[of "(1 / c) *\<^sub>R y" s y "op *\<^sub>R c"]
using e[THEN spec[where x="(1 / c) *\<^sub>R y"]]
@@ -5118,13 +5143,14 @@
lemma open_negations:
fixes s :: "'a::real_normed_vector set"
- shows "open s ==> open ((\<lambda> x. -x) ` s)"
+ shows "open s \<Longrightarrow> open ((\<lambda> x. -x) ` s)"
unfolding scaleR_minus1_left [symmetric]
by (rule open_scaling, auto)
lemma open_translation:
fixes s :: "'a::real_normed_vector set"
- assumes "open s" shows "open((\<lambda>x. a + x) ` s)"
+ assumes "open s"
+ shows "open((\<lambda>x. a + x) ` s)"
proof -
{
fix x
@@ -5164,7 +5190,7 @@
unfolding subset_eq Ball_def mem_ball dist_norm
apply auto
apply (erule_tac x="a + xa" in allE)
- unfolding ab_group_add_class.diff_diff_eq[THEN sym]
+ unfolding ab_group_add_class.diff_diff_eq[symmetric]
apply auto
done
then show "x \<in> op + a ` interior s"
@@ -5217,11 +5243,11 @@
done
lemma linear_continuous_within:
- "bounded_linear f ==> continuous (at x within s) f"
+ "bounded_linear f \<Longrightarrow> continuous (at x within s) f"
using continuous_at_imp_continuous_within[of x f s] using linear_continuous_at[of f] by auto
lemma linear_continuous_on:
- "bounded_linear f ==> continuous_on s f"
+ "bounded_linear f \<Longrightarrow> continuous_on s f"
using continuous_at_imp_continuous_on[of s f] using linear_continuous_at[of f] by auto
text {* Also bilinear functions, in composition form. *}
@@ -5293,12 +5319,17 @@
qed
lemma connected_continuous_image:
- assumes "continuous_on s f" "connected s"
+ assumes "continuous_on s f"
+ and "connected s"
shows "connected(f ` s)"
proof -
{
fix T
- assume as: "T \<noteq> {}" "T \<noteq> f ` s" "openin (subtopology euclidean (f ` s)) T" "closedin (subtopology euclidean (f ` s)) T"
+ assume as:
+ "T \<noteq> {}"
+ "T \<noteq> f ` s"
+ "openin (subtopology euclidean (f ` s)) T"
+ "closedin (subtopology euclidean (f ` s)) T"
have "{x \<in> s. f x \<in> T} = {} \<or> {x \<in> s. f x \<in> T} = s"
using assms(1)[unfolded continuous_on_open, THEN spec[where x=T]]
using assms(1)[unfolded continuous_on_closed, THEN spec[where x=T]]
@@ -5313,7 +5344,8 @@
text {* Continuity implies uniform continuity on a compact domain. *}
lemma compact_uniformly_continuous:
- assumes f: "continuous_on s f" and s: "compact s"
+ assumes f: "continuous_on s f"
+ and s: "compact s"
shows "uniformly_continuous_on s f"
unfolding uniformly_continuous_on_def
proof (cases, safe)
@@ -5415,7 +5447,7 @@
shows "continuous (at x) f \<longleftrightarrow> (\<forall>e>0. \<exists>d>0. \<forall>x'. norm(x' - x) < d --> abs(f x' - f x) < e)"
unfolding continuous_at
unfolding Lim_at
- unfolding dist_nz[THEN sym]
+ unfolding dist_nz[symmetric]
unfolding dist_norm
apply auto
apply (erule_tac x=e in allE)
@@ -5454,7 +5486,8 @@
lemma distance_attains_inf:
fixes a :: "'a::heine_borel"
- assumes "closed s" "s \<noteq> {}"
+ assumes "closed s"
+ and "s \<noteq> {}"
shows "\<exists>x\<in>s. \<forall>y\<in>s. dist a x \<le> dist a y"
proof -
from assms(2) obtain b where "b \<in> s" by auto
@@ -5569,12 +5602,13 @@
lemma compact_negations:
fixes s :: "'a::real_normed_vector set"
assumes "compact s"
- shows "compact ((\<lambda>x. -x) ` s)"
+ shows "compact ((\<lambda>x. - x) ` s)"
using compact_scaling [OF assms, of "- 1"] by auto
lemma compact_sums:
fixes s t :: "'a::real_normed_vector set"
- assumes "compact s" and "compact t"
+ assumes "compact s"
+ and "compact t"
shows "compact {x + y | x y. x \<in> s \<and> y \<in> t}"
proof -
have *: "{x + y | x y. x \<in> s \<and> y \<in> t} = (\<lambda>z. fst z + snd z) ` (s \<times> t)"
@@ -5591,7 +5625,9 @@
lemma compact_differences:
fixes s t :: "'a::real_normed_vector set"
- assumes "compact s" "compact t" shows "compact {x - y | x y. x \<in> s \<and> y \<in> t}"
+ assumes "compact s"
+ and "compact t"
+ shows "compact {x - y | x y. x \<in> s \<and> y \<in> t}"
proof-
have "{x - y | x y. x\<in>s \<and> y \<in> t} = {x + y | x y. x \<in> s \<and> y \<in> (uminus ` t)}"
apply auto
@@ -5630,7 +5666,8 @@
lemma compact_sup_maxdistance:
fixes s :: "'a::metric_space set"
- assumes "compact s" "s \<noteq> {}"
+ assumes "compact s"
+ and "s \<noteq> {}"
shows "\<exists>x\<in>s. \<exists>y\<in>s. \<forall>u\<in>s. \<forall>v\<in>s. dist u v \<le> dist x y"
proof -
have "compact (s \<times> s)"
@@ -5688,17 +5725,19 @@
lemma diameter_bounded:
assumes "bounded s"
shows "\<forall>x\<in>s. \<forall>y\<in>s. dist x y \<le> diameter s"
- "\<forall>d>0. d < diameter s \<longrightarrow> (\<exists>x\<in>s. \<exists>y\<in>s. dist x y > d)"
+ and "\<forall>d>0. d < diameter s \<longrightarrow> (\<exists>x\<in>s. \<exists>y\<in>s. dist x y > d)"
using diameter_bounded_bound[of s] diameter_lower_bounded[of s] assms
by auto
lemma diameter_compact_attained:
- assumes "compact s" "s \<noteq> {}"
+ assumes "compact s"
+ and "s \<noteq> {}"
shows "\<exists>x\<in>s. \<exists>y\<in>s. dist x y = diameter s"
proof -
have b: "bounded s" using assms(1)
by (rule compact_imp_bounded)
- then obtain x y where xys: "x\<in>s" "y\<in>s" and xy: "\<forall>u\<in>s. \<forall>v\<in>s. dist u v \<le> dist x y"
+ then obtain x y where xys: "x\<in>s" "y\<in>s"
+ and xy: "\<forall>u\<in>s. \<forall>v\<in>s. dist u v \<le> dist x y"
using compact_sup_maxdistance[OF assms] by auto
then have "diameter s \<le> dist x y"
unfolding diameter_def
@@ -5752,7 +5791,7 @@
using as(2)[unfolded LIMSEQ_def, THEN spec[where x="e * abs c"]] by auto
then have "\<exists>N. \<forall>n\<ge>N. dist (scaleR (1 / c) (x n)) (scaleR (1 / c) l) < e"
unfolding dist_norm
- unfolding scaleR_right_diff_distrib[THEN sym]
+ unfolding scaleR_right_diff_distrib[symmetric]
using mult_imp_div_pos_less[of "abs c" _ e] `c\<noteq>0` by auto
}
then have "((\<lambda>n. scaleR (1 / c) (x n)) ---> scaleR (1 / c) l) sequentially"
@@ -5795,7 +5834,9 @@
unfolding o_def
by auto
then have "l - l' \<in> t"
- using assms(2)[unfolded closed_sequential_limits, THEN spec[where x="\<lambda> n. snd (f (r n))"], THEN spec[where x="l - l'"]]
+ using assms(2)[unfolded closed_sequential_limits,
+ THEN spec[where x="\<lambda> n. snd (f (r n))"],
+ THEN spec[where x="l - l'"]]
using f(3)
by auto
then have "l \<in> ?S"
@@ -5812,7 +5853,8 @@
lemma closed_compact_sums:
fixes s t :: "'a::real_normed_vector set"
- assumes "closed s" "compact t"
+ assumes "closed s"
+ and "compact t"
shows "closed {x + y | x y. x \<in> s \<and> y \<in> t}"
proof -
have "{x + y |x y. x \<in> t \<and> y \<in> s} = {x + y |x y. x \<in> s \<and> y \<in> t}"
@@ -5828,7 +5870,8 @@
lemma compact_closed_differences:
fixes s t :: "'a::real_normed_vector set"
- assumes "compact s" and "closed t"
+ assumes "compact s"
+ and "closed t"
shows "closed {x - y | x y. x \<in> s \<and> y \<in> t}"
proof -
have "{x + y |x y. x \<in> s \<and> y \<in> uminus ` t} = {x - y |x y. x \<in> s \<and> y \<in> t}"
@@ -5844,7 +5887,8 @@
lemma closed_compact_differences:
fixes s t :: "'a::real_normed_vector set"
- assumes "closed s" "compact t"
+ assumes "closed s"
+ and "compact t"
shows "closed {x - y | x y. x \<in> s \<and> y \<in> t}"
proof -
have "{x + y |x y. x \<in> s \<and> y \<in> uminus ` t} = {x - y |x y. x \<in> s \<and> y \<in> t}"
@@ -5917,7 +5961,8 @@
lemma separate_point_closed:
fixes s :: "'a::heine_borel set"
- assumes "closed s" and "a \<notin> s"
+ assumes "closed s"
+ and "a \<notin> s"
shows "\<exists>d>0. \<forall>x\<in>s. d \<le> dist a x"
proof (cases "s = {}")
case True
@@ -6049,7 +6094,8 @@
lemma interval_sing:
fixes a :: "'a::ordered_euclidean_space"
- shows "{a .. a} = {a}" and "{a<..<a} = {}"
+ shows "{a .. a} = {a}"
+ and "{a<..<a} = {}"
unfolding set_eq_iff mem_interval eq_iff [symmetric]
by (auto intro: euclidean_eqI simp: ex_in_conv)
@@ -6173,7 +6219,8 @@
lemma inter_interval:
fixes a :: "'a::ordered_euclidean_space"
- shows "{a .. b} \<inter> {c .. d} = {(\<Sum>i\<in>Basis. max (a\<bullet>i) (c\<bullet>i) *\<^sub>R i) .. (\<Sum>i\<in>Basis. min (b\<bullet>i) (d\<bullet>i) *\<^sub>R i)}"
+ shows "{a .. b} \<inter> {c .. d} =
+ {(\<Sum>i\<in>Basis. max (a\<bullet>i) (c\<bullet>i) *\<^sub>R i) .. (\<Sum>i\<in>Basis. min (b\<bullet>i) (d\<bullet>i) *\<^sub>R i)}"
unfolding set_eq_iff and Int_iff and mem_interval
by auto
@@ -6225,7 +6272,8 @@
fixes a b :: "'a::ordered_euclidean_space"
shows "interior {a..b} = {a<..<b}" (is "?L = ?R")
proof(rule subset_antisym)
- show "?R \<subseteq> ?L" using interval_open_subset_closed open_interval
+ show "?R \<subseteq> ?L"
+ using interval_open_subset_closed open_interval
by (rule interior_maximal)
{
fix x
@@ -6296,7 +6344,7 @@
lemma not_interval_univ:
fixes a :: "'a::ordered_euclidean_space"
- shows "({a .. b} \<noteq> UNIV) \<and> ({a<..<b} \<noteq> UNIV)"
+ shows "{a .. b} \<noteq> UNIV \<and> {a<..<b} \<noteq> UNIV"
using bounded_interval[of a b] by auto
lemma compact_interval:
@@ -6462,12 +6510,13 @@
lemma bounded_subset_open_interval:
fixes s :: "('a::ordered_euclidean_space) set"
- shows "bounded s ==> (\<exists>a b. s \<subseteq> {a<..<b})"
+ shows "bounded s \<Longrightarrow> (\<exists>a b. s \<subseteq> {a<..<b})"
by (auto dest!: bounded_subset_open_interval_symmetric)
lemma bounded_subset_closed_interval_symmetric:
fixes s :: "('a::ordered_euclidean_space) set"
- assumes "bounded s" shows "\<exists>a. s \<subseteq> {-a .. a}"
+ assumes "bounded s"
+ shows "\<exists>a. s \<subseteq> {-a .. a}"
proof -
obtain a where "s \<subseteq> {- a<..<a}"
using bounded_subset_open_interval_symmetric[OF assms] by auto
@@ -6477,7 +6526,7 @@
lemma bounded_subset_closed_interval:
fixes s :: "('a::ordered_euclidean_space) set"
- shows "bounded s \<Longrightarrow> (\<exists>a b. s \<subseteq> {a .. b})"
+ shows "bounded s \<Longrightarrow> \<exists>a b. s \<subseteq> {a .. b}"
using bounded_subset_closed_interval_symmetric[of s] by auto
lemma frontier_closed_interval:
@@ -6503,7 +6552,7 @@
fixes a :: "'a::ordered_euclidean_space"
assumes "{c<..<d} \<noteq> {}"
shows "{a<..<b} \<inter> {c .. d} = {} \<longleftrightarrow> {a<..<b} \<inter> {c<..<d} = {}"
- unfolding closure_open_interval[OF assms, THEN sym]
+ unfolding closure_open_interval[OF assms, symmetric]
unfolding open_inter_closure_eq_empty[OF open_interval] ..
@@ -6815,7 +6864,11 @@
text{* Some more convenient intermediate-value theorem formulations. *}
lemma connected_ivt_hyperplane:
- assumes "connected s" "x \<in> s" "y \<in> s" "inner a x \<le> b" "b \<le> inner a y"
+ assumes "connected s"
+ and "x \<in> s"
+ and "y \<in> s"
+ and "inner a x \<le> b"
+ and "b \<le> inner a y"
shows "\<exists>z \<in> s. inner a z = b"
proof (rule ccontr)
assume as:"\<not> (\<exists>z\<in>s. inner a z = b)"
@@ -6823,9 +6876,12 @@
let ?B = "{x. inner a x > b}"
have "open ?A" "open ?B"
using open_halfspace_lt and open_halfspace_gt by auto
- moreover have "?A \<inter> ?B = {}" by auto
- moreover have "s \<subseteq> ?A \<union> ?B" using as by auto
- ultimately show False
+ moreover
+ have "?A \<inter> ?B = {}" by auto
+ moreover
+ have "s \<subseteq> ?A \<union> ?B" using as by auto
+ ultimately
+ show False
using assms(1)[unfolded connected_def not_ex,
THEN spec[where x="?A"], THEN spec[where x="?B"]]
using assms(2-5)
@@ -6951,7 +7007,7 @@
then obtain x where x:"f x = y" "x\<in>s"
using assms(3) by auto
then have "g (f x) = x" using g by auto
- then have "f (g y) = y" unfolding x(1)[THEN sym] by auto
+ then have "f (g y) = y" unfolding x(1)[symmetric] by auto
}
then have g':"\<forall>x\<in>t. f (g x) = x" by auto
moreover
@@ -6971,7 +7027,7 @@
then have "x \<in> s"
unfolding g_def
using someI2[of "\<lambda>b. b\<in>s \<and> f b = y" x' "\<lambda>x. x\<in>s"]
- unfolding y(2)[THEN sym] and g_def
+ unfolding y(2)[symmetric] and g_def
by auto
}
ultimately have "x\<in>s \<longleftrightarrow> x \<in> g ` t" ..
@@ -7069,9 +7125,11 @@
proof -
interpret f: bounded_linear f by fact
{
- fix d::real assume "d>0"
+ fix d :: real
+ assume "d > 0"
then obtain N where N:"\<forall>n\<ge>N. norm (f (x n) - f (x N)) < e * d"
- using cf[unfolded cauchy o_def dist_norm, THEN spec[where x="e*d"]] and e and mult_pos_pos[of e d]
+ using cf[unfolded cauchy o_def dist_norm, THEN spec[where x="e*d"]]
+ and e and mult_pos_pos[of e d]
by auto
{
fix n
@@ -7082,7 +7140,7 @@
using normf[THEN bspec[where x="x n - x N"]]
by auto
also have "norm (f (x n - x N)) < e * d"
- using `N \<le> n` N unfolding f.diff[THEN sym] by auto
+ using `N \<le> n` N unfolding f.diff[symmetric] by auto
finally have "norm (x n - x N) < d" using `e>0` by simp
}
then have "\<exists>N. \<forall>n\<ge>N. norm (x n - x N) < d" by auto
@@ -7091,13 +7149,13 @@
qed
lemma complete_isometric_image:
- fixes f :: "'a::euclidean_space => 'b::euclidean_space"
+ fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
assumes "0 < e"
and s: "subspace s"
and f: "bounded_linear f"
and normf: "\<forall>x\<in>s. norm(f x) \<ge> e * norm(x)"
and cs: "complete s"
- shows "complete(f ` s)"
+ shows "complete (f ` s)"
proof -
{
fix g
@@ -7156,7 +7214,7 @@
then obtain b where "b\<in>s"
and ba: "norm b = norm a"
and b: "\<forall>x\<in>{x \<in> s. norm x = norm a}. norm (f b) \<le> norm (f x)"
- unfolding *[THEN sym] unfolding image_iff by auto
+ unfolding *[symmetric] unfolding image_iff by auto
let ?e = "norm (f b) / norm b"
have "norm b > 0" using ba and a and norm_ge_zero by auto
@@ -7179,7 +7237,7 @@
case False
then have *: "0 < norm a / norm x"
using `a\<noteq>0`
- unfolding zero_less_norm_iff[THEN sym]
+ unfolding zero_less_norm_iff[symmetric]
by (simp only: divide_pos_pos)
have "\<forall>c. \<forall>x\<in>s. c *\<^sub>R x \<in> s"
using s[unfolded subspace_def] by auto
@@ -7203,7 +7261,7 @@
using injective_imp_isometric[OF assms(4,1,2,3)] by auto
show ?thesis
using complete_isometric_image[OF `e>0` assms(1,2) e] and assms(4)
- unfolding complete_eq_closed[THEN sym] by auto
+ unfolding complete_eq_closed[symmetric] by auto
qed
@@ -7299,7 +7357,7 @@
qed
lemma closed_subspace:
- fixes s::"('a::euclidean_space) set"
+ fixes s :: "'a::euclidean_space set"
assumes "subspace s"
shows "closed s"
proof -
@@ -7349,36 +7407,37 @@
subsection {* Affine transformations of intervals *}
lemma real_affinity_le:
- "0 < (m::'a::linordered_field) ==> (m * x + c \<le> y \<longleftrightarrow> x \<le> inverse(m) * y + -(c / m))"
+ "0 < (m::'a::linordered_field) \<Longrightarrow> (m * x + c \<le> y \<longleftrightarrow> x \<le> inverse(m) * y + -(c / m))"
by (simp add: field_simps inverse_eq_divide)
lemma real_le_affinity:
- "0 < (m::'a::linordered_field) ==> (y \<le> m * x + c \<longleftrightarrow> inverse(m) * y + -(c / m) \<le> x)"
+ "0 < (m::'a::linordered_field) \<Longrightarrow> (y \<le> m * x + c \<longleftrightarrow> inverse(m) * y + -(c / m) \<le> x)"
by (simp add: field_simps inverse_eq_divide)
lemma real_affinity_lt:
- "0 < (m::'a::linordered_field) ==> (m * x + c < y \<longleftrightarrow> x < inverse(m) * y + -(c / m))"
+ "0 < (m::'a::linordered_field) \<Longrightarrow> (m * x + c < y \<longleftrightarrow> x < inverse(m) * y + -(c / m))"
by (simp add: field_simps inverse_eq_divide)
lemma real_lt_affinity:
- "0 < (m::'a::linordered_field) ==> (y < m * x + c \<longleftrightarrow> inverse(m) * y + -(c / m) < x)"
+ "0 < (m::'a::linordered_field) \<Longrightarrow> (y < m * x + c \<longleftrightarrow> inverse(m) * y + -(c / m) < x)"
by (simp add: field_simps inverse_eq_divide)
lemma real_affinity_eq:
- "(m::'a::linordered_field) \<noteq> 0 ==> (m * x + c = y \<longleftrightarrow> x = inverse(m) * y + -(c / m))"
+ "(m::'a::linordered_field) \<noteq> 0 \<Longrightarrow> (m * x + c = y \<longleftrightarrow> x = inverse(m) * y + -(c / m))"
by (simp add: field_simps inverse_eq_divide)
lemma real_eq_affinity:
- "(m::'a::linordered_field) \<noteq> 0 ==> (y = m * x + c \<longleftrightarrow> inverse(m) * y + -(c / m) = x)"
+ "(m::'a::linordered_field) \<noteq> 0 \<Longrightarrow> (y = m * x + c \<longleftrightarrow> inverse(m) * y + -(c / m) = x)"
by (simp add: field_simps inverse_eq_divide)
lemma image_affinity_interval: fixes m::real
fixes a b c :: "'a::ordered_euclidean_space"
shows "(\<lambda>x. m *\<^sub>R x + c) ` {a .. b} =
- (if {a .. b} = {} then {}
- else (if 0 \<le> m then {m *\<^sub>R a + c .. m *\<^sub>R b + c}
- else {m *\<^sub>R b + c .. m *\<^sub>R a + c}))"
+ (if {a .. b} = {} then {}
+ else (if 0 \<le> m then {m *\<^sub>R a + c .. m *\<^sub>R b + c}
+ else {m *\<^sub>R b + c .. m *\<^sub>R a + c}))"
proof (cases "m = 0")
+ case True
{
fix x
assume "x \<le> c" "c \<le> x"
@@ -7389,9 +7448,9 @@
apply (auto intro: order_antisym)
done
}
- moreover case True
- moreover have "c \<in> {m *\<^sub>R a + c..m *\<^sub>R b + c}" unfolding True by(auto simp add: eucl_le[where 'a='a])
- ultimately show ?thesis by auto
+ moreover have "c \<in> {m *\<^sub>R a + c..m *\<^sub>R b + c}"
+ unfolding True by (auto simp add: eucl_le[where 'a='a])
+ ultimately show ?thesis using True by auto
next
case False
{
@@ -7441,8 +7500,8 @@
assumes s: "complete s" "s \<noteq> {}"
and c: "0 \<le> c" "c < 1"
and f: "(f ` s) \<subseteq> s"
- and lipschitz:"\<forall>x\<in>s. \<forall>y\<in>s. dist (f x) (f y) \<le> c * dist x y"
- shows "\<exists>! x\<in>s. (f x = x)"
+ and lipschitz: "\<forall>x\<in>s. \<forall>y\<in>s. dist (f x) (f y) \<le> c * dist x y"
+ shows "\<exists>!x\<in>s. f x = x"
proof -
have "1 - c > 0" using c by auto