merged
authornipkow
Mon, 13 Sep 2010 11:13:25 +0200
changeset 39303 f9371c0751f5
parent 39300 ad79b89b4351 (current diff)
parent 39302 d7728f65b353 (diff)
child 39304 2f38fa28e124
merged
--- a/NEWS	Mon Sep 13 09:29:43 2010 +0200
+++ b/NEWS	Mon Sep 13 11:13:25 2010 +0200
@@ -73,7 +73,10 @@
 
 * String.literal is a type, but not a datatype. INCOMPATIBILITY.
  
-* Renamed lemmas: expand_fun_eq -> ext_iff, expand_set_eq -> set_ext_iff
+* Renamed lemmas:
+  expand_fun_eq -> fun_eq_iff
+  expand_set_eq -> set_eq_iff
+  set_ext -> set_eqI
 
 * Renamed class eq and constant eq (for code generation) to class equal
 and constant equal, plus renaming of related facts and various tuning.
@@ -182,6 +185,8 @@
 * List.thy: use various operations from the Haskell prelude when
 generating Haskell code.
 
+* Multiset.thy: renamed empty_idemp -> empty_neutral
+
 * code_simp.ML and method code_simp: simplification with rules determined
 by code generator.
 
--- a/src/HOL/Algebra/Divisibility.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Algebra/Divisibility.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -2193,7 +2193,7 @@
 
   from csmset msubset
       have "fmset G bs = fmset G as + fmset G cs"
-      by (simp add: multiset_ext_iff mset_le_def)
+      by (simp add: multiset_eq_iff mset_le_def)
   hence basc: "b \<sim> a \<otimes> c"
       by (rule fmset_wfactors_mult) fact+
 
--- a/src/HOL/Bali/Example.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Bali/Example.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -792,7 +792,7 @@
 lemma Base_fields_accessible[simp]:
  "accfield tprg S Base 
   = table_of((map (\<lambda>((n,d),f).(n,(d,f)))) (DeclConcepts.fields tprg Base))"
-apply (auto simp add: accfield_def ext_iff Let_def 
+apply (auto simp add: accfield_def fun_eq_iff Let_def 
                       accessible_in_RefT_simp
                       is_public_def
                       BaseCl_def
@@ -837,7 +837,7 @@
 lemma Ext_fields_accessible[simp]:
 "accfield tprg S Ext 
   = table_of((map (\<lambda>((n,d),f).(n,(d,f)))) (DeclConcepts.fields tprg Ext))"
-apply (auto simp add: accfield_def ext_iff Let_def 
+apply (auto simp add: accfield_def fun_eq_iff Let_def 
                       accessible_in_RefT_simp
                       is_public_def
                       BaseCl_def
--- a/src/HOL/Bali/Table.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Bali/Table.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -65,10 +65,10 @@
                                          else Some old_val))))"
 
 lemma cond_override_empty1[simp]: "cond_override c empty t = t"
-by (simp add: cond_override_def ext_iff)
+by (simp add: cond_override_def fun_eq_iff)
 
 lemma cond_override_empty2[simp]: "cond_override c t empty = t"
-by (simp add: cond_override_def ext_iff)
+by (simp add: cond_override_def fun_eq_iff)
 
 lemma cond_override_None[simp]:
  "old k = None \<Longrightarrow> (cond_override c old new) k = new k"
@@ -105,10 +105,10 @@
 by (simp add: filter_tab_def empty_def)
 
 lemma filter_tab_True[simp]: "filter_tab (\<lambda>x y. True) t = t"
-by (simp add: ext_iff filter_tab_def)
+by (simp add: fun_eq_iff filter_tab_def)
 
 lemma filter_tab_False[simp]: "filter_tab (\<lambda>x y. False) t = empty"
-by (simp add: ext_iff filter_tab_def empty_def)
+by (simp add: fun_eq_iff filter_tab_def empty_def)
 
 lemma filter_tab_ran_subset: "ran (filter_tab c t) \<subseteq> ran t"
 by (auto simp add: filter_tab_def ran_def)
@@ -134,26 +134,26 @@
 
 lemma filter_tab_all_True: 
  "\<forall> k y. t k = Some y \<longrightarrow> p k y \<Longrightarrow>filter_tab p t = t"
-apply (auto simp add: filter_tab_def ext_iff)
+apply (auto simp add: filter_tab_def fun_eq_iff)
 done
 
 lemma filter_tab_all_True_Some:
  "\<lbrakk>\<forall> k y. t k = Some y \<longrightarrow> p k y; t k = Some v\<rbrakk> \<Longrightarrow> filter_tab p t k = Some v"
-by (auto simp add: filter_tab_def ext_iff)
+by (auto simp add: filter_tab_def fun_eq_iff)
 
 lemma filter_tab_all_False: 
  "\<forall> k y. t k = Some y \<longrightarrow> \<not> p k y \<Longrightarrow>filter_tab p t = empty"
-by (auto simp add: filter_tab_def ext_iff)
+by (auto simp add: filter_tab_def fun_eq_iff)
 
 lemma filter_tab_None: "t k = None \<Longrightarrow> filter_tab p t k = None"
-apply (simp add: filter_tab_def ext_iff)
+apply (simp add: filter_tab_def fun_eq_iff)
 done
 
 lemma filter_tab_dom_subset: "dom (filter_tab C t) \<subseteq> dom t"
 by (auto simp add: filter_tab_def dom_def)
 
 lemma filter_tab_eq: "\<lbrakk>a=b\<rbrakk> \<Longrightarrow> filter_tab C a = filter_tab C b"
-by (auto simp add: ext_iff filter_tab_def)
+by (auto simp add: fun_eq_iff filter_tab_def)
 
 lemma finite_dom_filter_tab:
 "finite (dom t) \<Longrightarrow> finite (dom (filter_tab C t))"
@@ -175,7 +175,7 @@
    \<rbrakk> \<Longrightarrow>
     cond_override overC (filter_tab filterC t) (filter_tab filterC s) 
     = filter_tab filterC (cond_override overC t s)"
-by (auto simp add: ext_iff cond_override_def filter_tab_def )
+by (auto simp add: fun_eq_iff cond_override_def filter_tab_def )
 
 
 section {* Misc. *}
--- a/src/HOL/Big_Operators.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Big_Operators.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -1504,11 +1504,11 @@
 
 lemma dual_max:
   "ord.max (op \<ge>) = min"
-  by (auto simp add: ord.max_def_raw min_def ext_iff)
+  by (auto simp add: ord.max_def_raw min_def fun_eq_iff)
 
 lemma dual_min:
   "ord.min (op \<ge>) = max"
-  by (auto simp add: ord.min_def_raw max_def ext_iff)
+  by (auto simp add: ord.min_def_raw max_def fun_eq_iff)
 
 lemma strict_below_fold1_iff:
   assumes "finite A" and "A \<noteq> {}"
--- a/src/HOL/Complete_Lattice.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Complete_Lattice.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -272,7 +272,7 @@
 
 lemma Union_eq:
   "\<Union>A = {x. \<exists>B \<in> A. x \<in> B}"
-proof (rule set_ext)
+proof (rule set_eqI)
   fix x
   have "(\<exists>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<exists>B\<in>A. x \<in> B)"
     by auto
@@ -508,7 +508,7 @@
 
 lemma Inter_eq:
   "\<Inter>A = {x. \<forall>B \<in> A. x \<in> B}"
-proof (rule set_ext)
+proof (rule set_eqI)
   fix x
   have "(\<forall>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<forall>B\<in>A. x \<in> B)"
     by auto
--- a/src/HOL/Datatype.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Datatype.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -109,12 +109,12 @@
 (** Push -- an injection, analogous to Cons on lists **)
 
 lemma Push_inject1: "Push i f = Push j g  ==> i=j"
-apply (simp add: Push_def ext_iff) 
+apply (simp add: Push_def fun_eq_iff) 
 apply (drule_tac x=0 in spec, simp) 
 done
 
 lemma Push_inject2: "Push i f = Push j g  ==> f=g"
-apply (auto simp add: Push_def ext_iff) 
+apply (auto simp add: Push_def fun_eq_iff) 
 apply (drule_tac x="Suc x" in spec, simp) 
 done
 
@@ -123,7 +123,7 @@
 by (blast dest: Push_inject1 Push_inject2) 
 
 lemma Push_neq_K0: "Push (Inr (Suc k)) f = (%z. Inr 0) ==> P"
-by (auto simp add: Push_def ext_iff split: nat.split_asm)
+by (auto simp add: Push_def fun_eq_iff split: nat.split_asm)
 
 lemmas Abs_Node_inj = Abs_Node_inject [THEN [2] rev_iffD1, standard]
 
@@ -399,7 +399,7 @@
 lemma ntrunc_o_equality: 
     "[| !!k. (ntrunc(k) o h1) = (ntrunc(k) o h2) |] ==> h1=h2"
 apply (rule ntrunc_equality [THEN ext])
-apply (simp add: ext_iff) 
+apply (simp add: fun_eq_iff) 
 done
 
 
--- a/src/HOL/Decision_Procs/Polynomial_List.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Decision_Procs/Polynomial_List.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -334,7 +334,7 @@
 
 lemma UNIV_nat_infinite: "\<not> finite (UNIV :: nat set)"
   unfolding finite_conv_nat_seg_image
-proof(auto simp add: set_ext_iff image_iff)
+proof(auto simp add: set_eq_iff image_iff)
   fix n::nat and f:: "nat \<Rightarrow> nat"
   let ?N = "{i. i < n}"
   let ?fN = "f ` ?N"
--- a/src/HOL/Finite_Set.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Finite_Set.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -541,7 +541,7 @@
 qed (simp add: UNIV_option_conv)
 
 lemma inj_graph: "inj (%f. {(x, y). y = f x})"
-  by (rule inj_onI, auto simp add: set_ext_iff ext_iff)
+  by (rule inj_onI, auto simp add: set_eq_iff fun_eq_iff)
 
 instance "fun" :: (finite, finite) finite
 proof
@@ -576,7 +576,7 @@
 text{* On a functional level it looks much nicer: *}
 
 lemma fun_comp_comm:  "f x \<circ> f y = f y \<circ> f x"
-by (simp add: fun_left_comm ext_iff)
+by (simp add: fun_left_comm fun_eq_iff)
 
 end
 
@@ -720,7 +720,7 @@
 
 text{* The nice version: *}
 lemma fun_comp_idem : "f x o f x = f x"
-by (simp add: fun_left_idem ext_iff)
+by (simp add: fun_left_idem fun_eq_iff)
 
 lemma fold_insert_idem:
   assumes fin: "finite A"
@@ -1363,17 +1363,17 @@
 
 lemma empty [simp]:
   "F {} = id"
-  by (simp add: eq_fold ext_iff)
+  by (simp add: eq_fold fun_eq_iff)
 
 lemma insert [simp]:
   assumes "finite A" and "x \<notin> A"
   shows "F (insert x A) = F A \<circ> f x"
 proof -
   interpret fun_left_comm f proof
-  qed (insert commute_comp, simp add: ext_iff)
+  qed (insert commute_comp, simp add: fun_eq_iff)
   from fold_insert2 assms
   have "\<And>s. fold f s (insert x A) = fold f (f x s) A" .
-  with `finite A` show ?thesis by (simp add: eq_fold ext_iff)
+  with `finite A` show ?thesis by (simp add: eq_fold fun_eq_iff)
 qed
 
 lemma remove:
@@ -1736,14 +1736,14 @@
   then obtain B where *: "A = insert b B" "b \<notin> B" by (blast dest: mk_disjoint_insert)
   with `finite A` have "finite B" by simp
   interpret fold: folding "op *" "\<lambda>a b. fold (op *) b a" proof
-  qed (simp_all add: ext_iff ac_simps)
-  thm fold.commute_comp' [of B b, simplified ext_iff, simplified]
+  qed (simp_all add: fun_eq_iff ac_simps)
+  thm fold.commute_comp' [of B b, simplified fun_eq_iff, simplified]
   from `finite B` fold.commute_comp' [of B x]
     have "op * x \<circ> (\<lambda>b. fold op * b B) = (\<lambda>b. fold op * b B) \<circ> op * x" by simp
-  then have A: "x * fold op * b B = fold op * (b * x) B" by (simp add: ext_iff commute)
+  then have A: "x * fold op * b B = fold op * (b * x) B" by (simp add: fun_eq_iff commute)
   from `finite B` * fold.insert [of B b]
     have "(\<lambda>x. fold op * x (insert b B)) = (\<lambda>x. fold op * x B) \<circ> op * b" by simp
-  then have B: "fold op * x (insert b B) = fold op * (b * x) B" by (simp add: ext_iff)
+  then have B: "fold op * x (insert b B) = fold op * (b * x) B" by (simp add: fun_eq_iff)
   from A B assms * show ?thesis by (simp add: eq_fold' del: fold.insert)
 qed
 
--- a/src/HOL/Fun.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Fun.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -11,15 +11,13 @@
 
 text{*As a simplification rule, it replaces all function equalities by
   first-order equalities.*}
-lemma ext_iff: "f = g \<longleftrightarrow> (\<forall>x. f x = g x)"
+lemma fun_eq_iff: "f = g \<longleftrightarrow> (\<forall>x. f x = g x)"
 apply (rule iffI)
 apply (simp (no_asm_simp))
 apply (rule ext)
 apply (simp (no_asm_simp))
 done
 
-lemmas expand_fun_eq = ext_iff
-
 lemma apply_inverse:
   "f x = u \<Longrightarrow> (\<And>x. P x \<Longrightarrow> g (f x) = x) \<Longrightarrow> P x \<Longrightarrow> x = g u"
   by auto
@@ -165,7 +163,7 @@
   by (simp add: inj_on_def)
 
 lemma inj_fun: "inj f \<Longrightarrow> inj (\<lambda>x y. f x)"
-  by (simp add: inj_on_def ext_iff)
+  by (simp add: inj_on_def fun_eq_iff)
 
 lemma inj_eq: "inj f ==> (f(x) = f(y)) = (x=y)"
 by (simp add: inj_on_eq_iff)
@@ -465,7 +463,7 @@
 by simp
 
 lemma fun_upd_upd [simp]: "f(x:=y,x:=z) = f(x:=z)"
-by (simp add: ext_iff)
+by (simp add: fun_eq_iff)
 
 lemma fun_upd_twist: "a ~= c ==> (m(a:=b))(c:=d) = (m(c:=d))(a:=b)"
 by (rule ext, auto)
@@ -517,7 +515,7 @@
 lemma swap_triple:
   assumes "a \<noteq> c" and "b \<noteq> c"
   shows "swap a b (swap b c (swap a b f)) = swap a c f"
-  using assms by (simp add: ext_iff swap_def)
+  using assms by (simp add: fun_eq_iff swap_def)
 
 lemma comp_swap: "f \<circ> swap a b g = swap a b (f \<circ> g)"
 by (rule ext, simp add: fun_upd_def swap_def)
--- a/src/HOL/Hilbert_Choice.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Hilbert_Choice.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -138,7 +138,7 @@
 qed
 
 lemma inj_iff: "(inj f) = (inv f o f = id)"
-apply (simp add: o_def ext_iff)
+apply (simp add: o_def fun_eq_iff)
 apply (blast intro: inj_on_inverseI inv_into_f_f)
 done
 
@@ -178,7 +178,7 @@
 by (simp add: inj_on_inv_into surj_range)
 
 lemma surj_iff: "(surj f) = (f o inv f = id)"
-apply (simp add: o_def ext_iff)
+apply (simp add: o_def fun_eq_iff)
 apply (blast intro: surjI surj_f_inv_f)
 done
 
--- a/src/HOL/Hoare/SchorrWaite.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Hoare/SchorrWaite.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -239,7 +239,7 @@
     from inv have i1: "?I1" and i4: "?I4" and i5: "?I5" and i6: "?I6" by simp+
     from pNull i1 have stackEmpty: "stack = []" by simp
     from tDisj i4 have RisMarked[rule_format]: "\<forall>x.  x \<in> R \<longrightarrow> m x"  by(auto simp: reachable_def addrs_def stackEmpty)
-    from i5 i6 show "(\<forall>x.(x \<in> R) = m x) \<and> r = iR \<and> l = iL"  by(auto simp: stackEmpty ext_iff intro:RisMarked)
+    from i5 i6 show "(\<forall>x.(x \<in> R) = m x) \<and> r = iR \<and> l = iL"  by(auto simp: stackEmpty fun_eq_iff intro:RisMarked)
 
   next   
       fix c m l r t p q root
--- a/src/HOL/IMP/Live.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/IMP/Live.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -8,7 +8,7 @@
 consts Dep :: "((loc \<Rightarrow> 'a) \<Rightarrow> 'b) \<Rightarrow> loc set"
 specification (Dep)
 dep_on: "(\<forall>x\<in>Dep e. s x = t x) \<Longrightarrow> e s = e t"
-by(rule_tac x="%x. UNIV" in exI)(simp add: ext_iff[symmetric])
+by(rule_tac x="%x. UNIV" in exI)(simp add: fun_eq_iff[symmetric])
 
 text{* The following definition of @{const Dep} looks very tempting
 @{prop"Dep e = {a. EX s t. (ALL x. x\<noteq>a \<longrightarrow> s x = t x) \<and> e s \<noteq> e t}"}
--- a/src/HOL/Imperative_HOL/Array.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Imperative_HOL/Array.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -99,7 +99,7 @@
 
 lemma set_set_swap:
   "r =!!= r' \<Longrightarrow> set r x (set r' x' h) = set r' x' (set r x h)"
-  by (simp add: Let_def ext_iff noteq_def set_def)
+  by (simp add: Let_def fun_eq_iff noteq_def set_def)
 
 lemma get_update_eq [simp]:
   "get (update a i v h) a = (get h a) [i := v]"
@@ -115,7 +115,7 @@
 
 lemma length_update [simp]: 
   "length (update b i v h) = length h"
-  by (simp add: update_def length_def set_def get_def ext_iff)
+  by (simp add: update_def length_def set_def get_def fun_eq_iff)
 
 lemma update_swap_neq:
   "a =!!= a' \<Longrightarrow> 
@@ -145,7 +145,7 @@
 
 lemma present_update [simp]: 
   "present (update b i v h) = present h"
-  by (simp add: update_def present_def set_def get_def ext_iff)
+  by (simp add: update_def present_def set_def get_def fun_eq_iff)
 
 lemma present_alloc [simp]:
   "present (snd (alloc xs h)) (fst (alloc xs h))"
--- a/src/HOL/Imperative_HOL/Heap_Monad.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Imperative_HOL/Heap_Monad.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -31,7 +31,7 @@
 
 lemma Heap_eqI:
   "(\<And>h. execute f h = execute g h) \<Longrightarrow> f = g"
-    by (cases f, cases g) (auto simp: ext_iff)
+    by (cases f, cases g) (auto simp: fun_eq_iff)
 
 ML {* structure Execute_Simps = Named_Thms(
   val name = "execute_simps"
--- a/src/HOL/Imperative_HOL/Ref.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Imperative_HOL/Ref.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -98,7 +98,7 @@
 
 lemma set_set_swap:
   "r =!= r' \<Longrightarrow> set r x (set r' x' h) = set r' x' (set r x h)"
-  by (simp add: noteq_def set_def ext_iff)
+  by (simp add: noteq_def set_def fun_eq_iff)
 
 lemma alloc_set:
   "fst (alloc x (set r x' h)) = fst (alloc x h)"
@@ -126,7 +126,7 @@
 
 lemma present_set [simp]:
   "present (set r v h) = present h"
-  by (simp add: present_def ext_iff)
+  by (simp add: present_def fun_eq_iff)
 
 lemma noteq_I:
   "present h r \<Longrightarrow> \<not> present h r' \<Longrightarrow> r =!= r'"
@@ -220,7 +220,7 @@
 
 lemma array_get_set [simp]:
   "Array.get (set r v h) = Array.get h"
-  by (simp add: Array.get_def set_def ext_iff)
+  by (simp add: Array.get_def set_def fun_eq_iff)
 
 lemma get_update [simp]:
   "get (Array.update a i v h) r = get h r"
@@ -240,15 +240,15 @@
 
 lemma array_get_alloc [simp]: 
   "Array.get (snd (alloc v h)) = Array.get h"
-  by (simp add: Array.get_def alloc_def set_def Let_def ext_iff)
+  by (simp add: Array.get_def alloc_def set_def Let_def fun_eq_iff)
 
 lemma present_update [simp]: 
   "present (Array.update a i v h) = present h"
-  by (simp add: Array.update_def Array.set_def ext_iff present_def)
+  by (simp add: Array.update_def Array.set_def fun_eq_iff present_def)
 
 lemma array_present_set [simp]:
   "Array.present (set r v h) = Array.present h"
-  by (simp add: Array.present_def set_def ext_iff)
+  by (simp add: Array.present_def set_def fun_eq_iff)
 
 lemma array_present_alloc [simp]:
   "Array.present h a \<Longrightarrow> Array.present (snd (alloc v h)) a"
--- a/src/HOL/Imperative_HOL/ex/Linked_Lists.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Imperative_HOL/ex/Linked_Lists.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -550,7 +550,7 @@
   }"
   unfolding rev'_def MREC_rule[of _ _ "(q, p)"] unfolding rev'_def[symmetric]
 thm arg_cong2
-  by (auto simp add: ext_iff intro: arg_cong2[where f = bind] split: node.split)
+  by (auto simp add: fun_eq_iff intro: arg_cong2[where f = bind] split: node.split)
 
 primrec rev :: "('a:: heap) node \<Rightarrow> 'a node Heap" 
 where
--- a/src/HOL/Import/HOL/bool.imp	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Import/HOL/bool.imp	Mon Sep 13 11:13:25 2010 +0200
@@ -124,7 +124,7 @@
   "IMP_ANTISYM_AX" > "HOL4Setup.light_imp_as"
   "F_IMP" > "HOL4Base.bool.F_IMP"
   "F_DEF" > "HOL.False_def"
-  "FUN_EQ_THM" > "Fun.ext_iff"
+  "FUN_EQ_THM" > "Fun.fun_eq_iff"
   "FORALL_THM" > "HOL4Base.bool.FORALL_THM"
   "FORALL_SIMP" > "HOL.simp_thms_35"
   "FORALL_DEF" > "HOL.All_def"
--- a/src/HOL/Import/HOL/prob_extra.imp	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Import/HOL/prob_extra.imp	Mon Sep 13 11:13:25 2010 +0200
@@ -73,7 +73,7 @@
   "EVEN_ODD_EXISTS_EQ" > "HOL4Prob.prob_extra.EVEN_ODD_EXISTS_EQ"
   "EVEN_ODD_BASIC" > "HOL4Prob.prob_extra.EVEN_ODD_BASIC"
   "EVEN_EXP_TWO" > "HOL4Prob.prob_extra.EVEN_EXP_TWO"
-  "EQ_EXT_EQ" > "Fun.ext_iff"
+  "EQ_EXT_EQ" > "Fun.fun_eq_iff"
   "DIV_TWO_UNIQUE" > "HOL4Prob.prob_extra.DIV_TWO_UNIQUE"
   "DIV_TWO_MONO_EVEN" > "HOL4Prob.prob_extra.DIV_TWO_MONO_EVEN"
   "DIV_TWO_MONO" > "HOL4Prob.prob_extra.DIV_TWO_MONO"
--- a/src/HOL/Import/HOLLight/hollight.imp	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Import/HOLLight/hollight.imp	Mon Sep 13 11:13:25 2010 +0200
@@ -1394,7 +1394,7 @@
   "GSPEC_def" > "HOLLight.hollight.GSPEC_def"
   "GEQ_def" > "HOLLight.hollight.GEQ_def"
   "GABS_def" > "HOLLight.hollight.GABS_def"
-  "FUN_EQ_THM" > "Fun.ext_iff"
+  "FUN_EQ_THM" > "Fun.fun_eq_iff"
   "FUNCTION_FACTORS_RIGHT" > "HOLLight.hollight.FUNCTION_FACTORS_RIGHT"
   "FUNCTION_FACTORS_LEFT" > "HOLLight.hollight.FUNCTION_FACTORS_LEFT"
   "FSTCART_PASTECART" > "HOLLight.hollight.FSTCART_PASTECART"
--- a/src/HOL/Library/AssocList.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/AssocList.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -22,7 +22,7 @@
   | "update k v (p#ps) = (if fst p = k then (k, v) # ps else p # update k v ps)"
 
 lemma update_conv': "map_of (update k v al)  = (map_of al)(k\<mapsto>v)"
-  by (induct al) (auto simp add: ext_iff)
+  by (induct al) (auto simp add: fun_eq_iff)
 
 corollary update_conv: "map_of (update k v al) k' = ((map_of al)(k\<mapsto>v)) k'"
   by (simp add: update_conv')
@@ -67,7 +67,7 @@
         @{term "update k' v' (update k v []) = [(k, v), (k', v')]"}.*}
 lemma update_swap: "k\<noteq>k' 
   \<Longrightarrow> map_of (update k v (update k' v' al)) = map_of (update k' v' (update k v al))"
-  by (simp add: update_conv' ext_iff)
+  by (simp add: update_conv' fun_eq_iff)
 
 lemma update_Some_unfold: 
   "map_of (update k v al) x = Some y \<longleftrightarrow>
@@ -96,8 +96,8 @@
 proof -
   have "map_of \<circ> More_List.fold (prod_case update) (zip ks vs) =
     More_List.fold (\<lambda>(k, v) f. f(k \<mapsto> v)) (zip ks vs) \<circ> map_of"
-    by (rule fold_apply) (auto simp add: ext_iff update_conv')
-  then show ?thesis by (auto simp add: updates_def ext_iff map_upds_fold_map_upd foldl_fold split_def)
+    by (rule fold_apply) (auto simp add: fun_eq_iff update_conv')
+  then show ?thesis by (auto simp add: updates_def fun_eq_iff map_upds_fold_map_upd foldl_fold split_def)
 qed
 
 lemma updates_conv: "map_of (updates ks vs al) k = ((map_of al)(ks[\<mapsto>]vs)) k"
@@ -114,7 +114,7 @@
   moreover have "map fst \<circ> More_List.fold (prod_case update) (zip ks vs) =
     More_List.fold (\<lambda>(k, v) al. if k \<in> set al then al else al @ [k]) (zip ks vs) \<circ> map fst"
     by (rule fold_apply) (simp add: update_keys split_def prod_case_beta comp_def)
-  ultimately show ?thesis by (simp add: updates_def ext_iff)
+  ultimately show ?thesis by (simp add: updates_def fun_eq_iff)
 qed
 
 lemma updates_append1[simp]: "size ks < size vs \<Longrightarrow>
@@ -161,7 +161,7 @@
   by (auto simp add: delete_eq)
 
 lemma delete_conv': "map_of (delete k al) = (map_of al)(k := None)"
-  by (induct al) (auto simp add: ext_iff)
+  by (induct al) (auto simp add: fun_eq_iff)
 
 corollary delete_conv: "map_of (delete k al) k' = ((map_of al)(k := None)) k'"
   by (simp add: delete_conv')
@@ -301,7 +301,7 @@
 lemma map_of_clearjunk:
   "map_of (clearjunk al) = map_of al"
   by (induct al rule: clearjunk.induct)
-    (simp_all add: ext_iff)
+    (simp_all add: fun_eq_iff)
 
 lemma clearjunk_keys_set:
   "set (map fst (clearjunk al)) = set (map fst al)"
@@ -342,7 +342,7 @@
   have "clearjunk \<circ> More_List.fold (prod_case update) (zip ks vs) =
     More_List.fold (prod_case update) (zip ks vs) \<circ> clearjunk"
     by (rule fold_apply) (simp add: clearjunk_update prod_case_beta o_def)
-  then show ?thesis by (simp add: updates_def ext_iff)
+  then show ?thesis by (simp add: updates_def fun_eq_iff)
 qed
 
 lemma clearjunk_delete:
@@ -446,9 +446,9 @@
 proof -
   have "map_of \<circ> More_List.fold (prod_case update) (rev ys) =
     More_List.fold (\<lambda>(k, v) m. m(k \<mapsto> v)) (rev ys) \<circ> map_of"
-    by (rule fold_apply) (simp add: update_conv' prod_case_beta split_def ext_iff)
+    by (rule fold_apply) (simp add: update_conv' prod_case_beta split_def fun_eq_iff)
   then show ?thesis
-    by (simp add: merge_def map_add_map_of_foldr foldr_fold_rev ext_iff)
+    by (simp add: merge_def map_add_map_of_foldr foldr_fold_rev fun_eq_iff)
 qed
 
 corollary merge_conv:
@@ -699,7 +699,7 @@
 
 lemma bulkload_Mapping [code]:
   "Mapping.bulkload vs = Mapping (map (\<lambda>n. (n, vs ! n)) [0..<length vs])"
-  by (rule mapping_eqI) (simp add: map_of_map_restrict ext_iff)
+  by (rule mapping_eqI) (simp add: map_of_map_restrict fun_eq_iff)
 
 lemma map_of_eqI: (*FIXME move to Map.thy*)
   assumes set_eq: "set (map fst xs) = set (map fst ys)"
--- a/src/HOL/Library/Binomial.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/Binomial.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -236,7 +236,7 @@
     have th1: "(\<Prod>n\<in>{1\<Colon>nat..n}. a + of_nat n) =
       (\<Prod>n\<in>{0\<Colon>nat..n - 1}. a + 1 + of_nat n)"
       apply (rule setprod_reindex_cong [where f = Suc])
-      using n0 by (auto simp add: ext_iff field_simps)
+      using n0 by (auto simp add: fun_eq_iff field_simps)
     have ?thesis apply (simp add: pochhammer_def)
     unfolding setprod_insert[OF th0, unfolded eq]
     using th1 by (simp add: field_simps)}
@@ -248,7 +248,7 @@
   
   apply (cases n, simp_all add: of_nat_setprod pochhammer_Suc_setprod)
   apply (rule setprod_reindex_cong[where f=Suc])
-  by (auto simp add: ext_iff)
+  by (auto simp add: fun_eq_iff)
 
 lemma pochhammer_of_nat_eq_0_lemma: assumes kn: "k > n"
   shows "pochhammer (- (of_nat n :: 'a:: idom)) k = 0"
@@ -315,7 +315,7 @@
       apply (rule strong_setprod_reindex_cong[where f = "%i. h - i"])
       apply (auto simp add: inj_on_def image_def h )
       apply (rule_tac x="h - x" in bexI)
-      by (auto simp add: ext_iff h of_nat_diff)}
+      by (auto simp add: fun_eq_iff h of_nat_diff)}
   ultimately show ?thesis by (cases k, auto)
 qed
 
@@ -410,11 +410,11 @@
     have eq': "(\<Prod>i\<in>{0..h}. of_nat n + - (of_nat i :: 'a)) = (\<Prod>i\<in>{n - h..n}. of_nat i)"
       apply (rule strong_setprod_reindex_cong[where f="op - n"])
       using h kn 
-      apply (simp_all add: inj_on_def image_iff Bex_def set_ext_iff)
+      apply (simp_all add: inj_on_def image_iff Bex_def set_eq_iff)
       apply clarsimp
       apply (presburger)
       apply presburger
-      by (simp add: ext_iff field_simps of_nat_add[symmetric] del: of_nat_add)
+      by (simp add: fun_eq_iff field_simps of_nat_add[symmetric] del: of_nat_add)
     have th0: "finite {1..n - Suc h}" "finite {n - h .. n}" 
 "{1..n - Suc h} \<inter> {n - h .. n} = {}" and eq3: "{1..n - Suc h} \<union> {n - h .. n} = {1..n}" using h kn by auto
     from eq[symmetric]
--- a/src/HOL/Library/Code_Char_chr.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/Code_Char_chr.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -13,14 +13,14 @@
 
 lemma [code]:
   "nat_of_char = nat o int_of_char"
-  unfolding int_of_char_def by (simp add: ext_iff)
+  unfolding int_of_char_def by (simp add: fun_eq_iff)
 
 definition
   "char_of_int = char_of_nat o nat"
 
 lemma [code]:
   "char_of_nat = char_of_int o int"
-  unfolding char_of_int_def by (simp add: ext_iff)
+  unfolding char_of_int_def by (simp add: fun_eq_iff)
 
 code_const int_of_char and char_of_int
   (SML "!(IntInf.fromInt o Char.ord)" and "!(Char.chr o IntInf.toInt)")
--- a/src/HOL/Library/Countable.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/Countable.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -139,7 +139,7 @@
   show "\<exists>to_nat::('a \<Rightarrow> 'b) \<Rightarrow> nat. inj to_nat"
   proof
     show "inj (\<lambda>f. to_nat (map f xs))"
-      by (rule injI, simp add: xs ext_iff)
+      by (rule injI, simp add: xs fun_eq_iff)
   qed
 qed
 
--- a/src/HOL/Library/Efficient_Nat.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/Efficient_Nat.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -79,7 +79,7 @@
 
 lemma [code, code_unfold]:
   "nat_case = (\<lambda>f g n. if n = 0 then f else g (n - 1))"
-  by (auto simp add: ext_iff dest!: gr0_implies_Suc)
+  by (auto simp add: fun_eq_iff dest!: gr0_implies_Suc)
 
 
 subsection {* Preprocessors *}
--- a/src/HOL/Library/Enum.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/Enum.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -42,7 +42,7 @@
   "HOL.equal f g \<longleftrightarrow> (\<forall>x \<in> set enum. f x = g x)"
 
 instance proof
-qed (simp_all add: equal_fun_def enum_all ext_iff)
+qed (simp_all add: equal_fun_def enum_all fun_eq_iff)
 
 end
 
@@ -54,7 +54,7 @@
   fixes f g :: "'a\<Colon>enum \<Rightarrow> 'b\<Colon>order"
   shows "f \<le> g \<longleftrightarrow> list_all (\<lambda>x. f x \<le> g x) enum"
     and "f < g \<longleftrightarrow> f \<le> g \<and> list_ex (\<lambda>x. f x \<noteq> g x) enum"
-  by (simp_all add: list_all_iff list_ex_iff enum_all ext_iff le_fun_def order_less_le)
+  by (simp_all add: list_all_iff list_ex_iff enum_all fun_eq_iff le_fun_def order_less_le)
 
 
 subsection {* Quantifiers *}
@@ -82,7 +82,7 @@
   by (induct n arbitrary: ys) auto
 
 lemma set_n_lists: "set (n_lists n xs) = {ys. length ys = n \<and> set ys \<subseteq> set xs}"
-proof (rule set_ext)
+proof (rule set_eqI)
   fix ys :: "'a list"
   show "ys \<in> set (n_lists n xs) \<longleftrightarrow> ys \<in> {ys. length ys = n \<and> set ys \<subseteq> set xs}"
   proof -
@@ -160,7 +160,7 @@
   proof (rule UNIV_eq_I)
     fix f :: "'a \<Rightarrow> 'b"
     have "f = the \<circ> map_of (zip (enum \<Colon> 'a\<Colon>enum list) (map f enum))"
-      by (auto simp add: map_of_zip_map ext_iff)
+      by (auto simp add: map_of_zip_map fun_eq_iff)
     then show "f \<in> set enum"
       by (auto simp add: enum_fun_def set_n_lists)
   qed
--- a/src/HOL/Library/Formal_Power_Series.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/Formal_Power_Series.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -18,7 +18,7 @@
 notation fps_nth (infixl "$" 75)
 
 lemma expand_fps_eq: "p = q \<longleftrightarrow> (\<forall>n. p $ n = q $ n)"
-  by (simp add: fps_nth_inject [symmetric] ext_iff)
+  by (simp add: fps_nth_inject [symmetric] fun_eq_iff)
 
 lemma fps_ext: "(\<And>n. p $ n = q $ n) \<Longrightarrow> p = q"
   by (simp add: expand_fps_eq)
@@ -791,14 +791,14 @@
       apply (rule setsum_reindex_cong[where f="\<lambda>i. n + 1 - i"])
       apply (simp add: inj_on_def Ball_def)
       apply presburger
-      apply (rule set_ext)
+      apply (rule set_eqI)
       apply (presburger add: image_iff)
       by simp
     have s1: "setsum (\<lambda>i. f $ i * g $ (n + 1 - i)) ?Zn1 = setsum (\<lambda>i. f $ (n + 1 - i) * g $ i) ?Zn1"
       apply (rule setsum_reindex_cong[where f="\<lambda>i. n + 1 - i"])
       apply (simp add: inj_on_def Ball_def)
       apply presburger
-      apply (rule set_ext)
+      apply (rule set_eqI)
       apply (presburger add: image_iff)
       by simp
     have "(f * ?D g + ?D f * g)$n = (?D g * f + ?D f * g)$n" by (simp only: mult_commute)
@@ -1244,7 +1244,7 @@
     {assume n0: "n \<noteq> 0"
       then have u: "{0} \<union> ({1} \<union> {2..n}) = {0..n}" "{1}\<union>{2..n} = {1..n}"
         "{0..n - 1}\<union>{n} = {0..n}"
-        by (auto simp: set_ext_iff)
+        by (auto simp: set_eq_iff)
       have d: "{0} \<inter> ({1} \<union> {2..n}) = {}" "{1} \<inter> {2..n} = {}"
         "{0..n - 1}\<inter>{n} ={}" using n0 by simp_all
       have f: "finite {0}" "finite {1}" "finite {2 .. n}"
@@ -1455,7 +1455,7 @@
   moreover
   {fix k assume k: "m = Suc k"
     have km: "k < m" using k by arith
-    have u0: "{0 .. k} \<union> {m} = {0..m}" using k apply (simp add: set_ext_iff) by presburger
+    have u0: "{0 .. k} \<union> {m} = {0..m}" using k apply (simp add: set_eq_iff) by presburger
     have f0: "finite {0 .. k}" "finite {m}" by auto
     have d0: "{0 .. k} \<inter> {m} = {}" using k by auto
     have "(setprod a {0 .. m}) $ n = (setprod a {0 .. k} * a m) $ n"
@@ -1472,7 +1472,7 @@
       apply clarsimp
       apply (rule finite_imageI)
       apply (rule natpermute_finite)
-      apply (clarsimp simp add: set_ext_iff)
+      apply (clarsimp simp add: set_eq_iff)
       apply auto
       apply (rule setsum_cong2)
       unfolding setsum_left_distrib
@@ -2153,7 +2153,7 @@
 qed
 
 lemma fps_inv_ginv: "fps_inv = fps_ginv X"
-  apply (auto simp add: ext_iff fps_eq_iff fps_inv_def fps_ginv_def)
+  apply (auto simp add: fun_eq_iff fps_eq_iff fps_inv_def fps_ginv_def)
   apply (induct_tac n rule: nat_less_induct, auto)
   apply (case_tac na)
   apply simp
@@ -2192,7 +2192,7 @@
   "setsum (%i. a (i :: nat) * b (n - i)) {0 .. n} = setsum (%(i,j). a i * b j) {(i,j). i <= n \<and> j \<le> n \<and> i + j = n}"
   apply (rule setsum_reindex_cong[where f=fst])
   apply (clarsimp simp add: inj_on_def)
-  apply (auto simp add: set_ext_iff image_iff)
+  apply (auto simp add: set_eq_iff image_iff)
   apply (rule_tac x= "x" in exI)
   apply clarsimp
   apply (rule_tac x="n - x" in exI)
@@ -2264,7 +2264,7 @@
   let ?KM=  "{(k,m). k + m \<le> n}"
   let ?f = "%s. UNION {(0::nat)..s} (%i. {(i,s - i)})"
   have th0: "?KM = UNION {0..n} ?f"
-    apply (simp add: set_ext_iff)
+    apply (simp add: set_eq_iff)
     apply arith (* FIXME: VERY slow! *)
     done
   show "?l = ?r "
@@ -3312,10 +3312,10 @@
 
 lemma XDp_commute:
   shows "XDp b o XDp (c::'a::comm_ring_1) = XDp c o XDp b"
-  by (auto simp add: XDp_def ext_iff fps_eq_iff algebra_simps)
+  by (auto simp add: XDp_def fun_eq_iff fps_eq_iff algebra_simps)
 
 lemma XDp0[simp]: "XDp 0 = XD"
-  by (simp add: ext_iff fps_eq_iff)
+  by (simp add: fun_eq_iff fps_eq_iff)
 
 lemma XDp_fps_integral[simp]:"XDp 0 (fps_integral a c) = X * a"
   by (simp add: fps_eq_iff fps_integral_def)
--- a/src/HOL/Library/FrechetDeriv.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/FrechetDeriv.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -177,7 +177,7 @@
   hence "(\<lambda>h. F h - F' h) = (\<lambda>h. 0)"
     by (rule FDERIV_zero_unique)
   thus "F = F'"
-    unfolding ext_iff right_minus_eq .
+    unfolding fun_eq_iff right_minus_eq .
 qed
 
 subsection {* Continuity *}
--- a/src/HOL/Library/Fset.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/Fset.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -51,7 +51,7 @@
 lemma member_code [code]:
   "member (Set xs) = List.member xs"
   "member (Coset xs) = Not \<circ> List.member xs"
-  by (simp_all add: ext_iff member_def fun_Compl_def bool_Compl_def)
+  by (simp_all add: fun_eq_iff member_def fun_Compl_def bool_Compl_def)
 
 lemma member_image_UNIV [simp]:
   "member ` UNIV = UNIV"
@@ -252,13 +252,13 @@
   show "inf A (Set xs) = Set (List.filter (member A) xs)"
     by (simp add: inter project_def Set_def)
   have *: "\<And>x::'a. remove = (\<lambda>x. Fset \<circ> More_Set.remove x \<circ> member)"
-    by (simp add: ext_iff)
+    by (simp add: fun_eq_iff)
   have "member \<circ> fold (\<lambda>x. Fset \<circ> More_Set.remove x \<circ> member) xs =
     fold More_Set.remove xs \<circ> member"
-    by (rule fold_apply) (simp add: ext_iff)
+    by (rule fold_apply) (simp add: fun_eq_iff)
   then have "fold More_Set.remove xs (member A) = 
     member (fold (\<lambda>x. Fset \<circ> More_Set.remove x \<circ> member) xs A)"
-    by (simp add: ext_iff)
+    by (simp add: fun_eq_iff)
   then have "inf A (Coset xs) = fold remove xs A"
     by (simp add: Diff_eq [symmetric] minus_set *)
   moreover have "\<And>x y :: 'a. Fset.remove y \<circ> Fset.remove x = Fset.remove x \<circ> Fset.remove y"
@@ -277,13 +277,13 @@
   "sup (Coset xs) A = Coset (List.filter (Not \<circ> member A) xs)"
 proof -
   have *: "\<And>x::'a. insert = (\<lambda>x. Fset \<circ> Set.insert x \<circ> member)"
-    by (simp add: ext_iff)
+    by (simp add: fun_eq_iff)
   have "member \<circ> fold (\<lambda>x. Fset \<circ> Set.insert x \<circ> member) xs =
     fold Set.insert xs \<circ> member"
-    by (rule fold_apply) (simp add: ext_iff)
+    by (rule fold_apply) (simp add: fun_eq_iff)
   then have "fold Set.insert xs (member A) =
     member (fold (\<lambda>x. Fset \<circ> Set.insert x \<circ> member) xs A)"
-    by (simp add: ext_iff)
+    by (simp add: fun_eq_iff)
   then have "sup (Set xs) A = fold insert xs A"
     by (simp add: union_set *)
   moreover have "\<And>x y :: 'a. Fset.insert y \<circ> Fset.insert x = Fset.insert x \<circ> Fset.insert y"
--- a/src/HOL/Library/FuncSet.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/FuncSet.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -128,7 +128,7 @@
 lemma compose_assoc:
     "[| f \<in> A -> B; g \<in> B -> C; h \<in> C -> D |]
       ==> compose A h (compose A g f) = compose A (compose B h g) f"
-by (simp add: ext_iff Pi_def compose_def restrict_def)
+by (simp add: fun_eq_iff Pi_def compose_def restrict_def)
 
 lemma compose_eq: "x \<in> A ==> compose A g f x = g(f(x))"
 by (simp add: compose_def restrict_def)
@@ -151,18 +151,18 @@
 
 lemma restrict_ext:
     "(!!x. x \<in> A ==> f x = g x) ==> (\<lambda>x\<in>A. f x) = (\<lambda>x\<in>A. g x)"
-  by (simp add: ext_iff Pi_def restrict_def)
+  by (simp add: fun_eq_iff Pi_def restrict_def)
 
 lemma inj_on_restrict_eq [simp]: "inj_on (restrict f A) A = inj_on f A"
   by (simp add: inj_on_def restrict_def)
 
 lemma Id_compose:
     "[|f \<in> A -> B;  f \<in> extensional A|] ==> compose A (\<lambda>y\<in>B. y) f = f"
-  by (auto simp add: ext_iff compose_def extensional_def Pi_def)
+  by (auto simp add: fun_eq_iff compose_def extensional_def Pi_def)
 
 lemma compose_Id:
     "[|g \<in> A -> B;  g \<in> extensional A|] ==> compose A g (\<lambda>x\<in>A. x) = g"
-  by (auto simp add: ext_iff compose_def extensional_def Pi_def)
+  by (auto simp add: fun_eq_iff compose_def extensional_def Pi_def)
 
 lemma image_restrict_eq [simp]: "(restrict f A) ` A = f ` A"
   by (auto simp add: restrict_def)
@@ -205,7 +205,7 @@
 lemma extensionalityI:
   "[| f \<in> extensional A; g \<in> extensional A;
       !!x. x\<in>A ==> f x = g x |] ==> f = g"
-by (force simp add: ext_iff extensional_def)
+by (force simp add: fun_eq_iff extensional_def)
 
 lemma inv_into_funcset: "f ` A = B ==> (\<lambda>x\<in>B. inv_into A f x) : B -> A"
 by (unfold inv_into_def) (fast intro: someI2)
--- a/src/HOL/Library/Function_Algebras.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/Function_Algebras.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -57,7 +57,7 @@
 qed (simp add: plus_fun_def add.assoc)
 
 instance "fun" :: (type, cancel_semigroup_add) cancel_semigroup_add proof
-qed (simp_all add: plus_fun_def ext_iff)
+qed (simp_all add: plus_fun_def fun_eq_iff)
 
 instance "fun" :: (type, ab_semigroup_add) ab_semigroup_add proof
 qed (simp add: plus_fun_def add.commute)
@@ -106,7 +106,7 @@
 qed (simp_all add: zero_fun_def times_fun_def)
 
 instance "fun" :: (type, zero_neq_one) zero_neq_one proof
-qed (simp add: zero_fun_def one_fun_def ext_iff)
+qed (simp add: zero_fun_def one_fun_def fun_eq_iff)
 
 
 text {* Ring structures *}
--- a/src/HOL/Library/Inner_Product.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/Inner_Product.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -307,7 +307,7 @@
   have 1: "FDERIV (\<lambda>x. inner x x) x :> (\<lambda>h. inner x h + inner h x)"
     by (intro inner.FDERIV FDERIV_ident)
   have 2: "(\<lambda>h. inner x h + inner h x) = (\<lambda>h. inner h (scaleR 2 x))"
-    by (simp add: ext_iff inner_commute)
+    by (simp add: fun_eq_iff inner_commute)
   have "0 < inner x x" using `x \<noteq> 0` by simp
   then have 3: "DERIV sqrt (inner x x) :> (inverse (sqrt (inner x x)) / 2)"
     by (rule DERIV_real_sqrt)
--- a/src/HOL/Library/Mapping.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/Mapping.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -94,11 +94,11 @@
 
 lemma lookup_map_entry [simp]:
   "lookup (map_entry k f m) = (lookup m) (k := Option.map f (lookup m k))"
-  by (cases "lookup m k") (simp_all add: map_entry_def ext_iff)
+  by (cases "lookup m k") (simp_all add: map_entry_def fun_eq_iff)
 
 lemma lookup_tabulate [simp]:
   "lookup (tabulate ks f) = (Some o f) |` set ks"
-  by (induct ks) (auto simp add: tabulate_def restrict_map_def ext_iff)
+  by (induct ks) (auto simp add: tabulate_def restrict_map_def fun_eq_iff)
 
 lemma lookup_bulkload [simp]:
   "lookup (bulkload xs) = (\<lambda>k. if k < length xs then Some (xs ! k) else None)"
@@ -146,7 +146,7 @@
 
 lemma bulkload_tabulate:
   "bulkload xs = tabulate [0..<length xs] (nth xs)"
-  by (rule mapping_eqI) (simp add: ext_iff)
+  by (rule mapping_eqI) (simp add: fun_eq_iff)
 
 lemma is_empty_empty: (*FIXME*)
   "is_empty m \<longleftrightarrow> m = Mapping Map.empty"
--- a/src/HOL/Library/More_List.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/More_List.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -30,7 +30,7 @@
 
 lemma foldr_fold_rev:
   "foldr f xs = fold f (rev xs)"
-  by (simp add: foldr_foldl foldl_fold ext_iff)
+  by (simp add: foldr_foldl foldl_fold fun_eq_iff)
 
 lemma fold_rev_conv [code_unfold]:
   "fold f (rev xs) = foldr f xs"
@@ -49,7 +49,7 @@
 lemma fold_apply:
   assumes "\<And>x. x \<in> set xs \<Longrightarrow> h \<circ> g x = f x \<circ> h"
   shows "h \<circ> fold g xs = fold f xs \<circ> h"
-  using assms by (induct xs) (simp_all add: ext_iff)
+  using assms by (induct xs) (simp_all add: fun_eq_iff)
 
 lemma fold_invariant: 
   assumes "\<And>x. x \<in> set xs \<Longrightarrow> Q x" and "P s"
@@ -164,7 +164,7 @@
 
 lemma (in lattice) Inf_fin_set_foldr [code_unfold]:
   "Inf_fin (set (x # xs)) = foldr inf xs x"
-  by (simp add: Inf_fin_set_fold ac_simps foldr_fold ext_iff del: set.simps)
+  by (simp add: Inf_fin_set_fold ac_simps foldr_fold fun_eq_iff del: set.simps)
 
 lemma (in lattice) Sup_fin_set_fold:
   "Sup_fin (set (x # xs)) = fold sup xs x"
@@ -177,7 +177,7 @@
 
 lemma (in lattice) Sup_fin_set_foldr [code_unfold]:
   "Sup_fin (set (x # xs)) = foldr sup xs x"
-  by (simp add: Sup_fin_set_fold ac_simps foldr_fold ext_iff del: set.simps)
+  by (simp add: Sup_fin_set_fold ac_simps foldr_fold fun_eq_iff del: set.simps)
 
 lemma (in linorder) Min_fin_set_fold:
   "Min (set (x # xs)) = fold min xs x"
@@ -190,7 +190,7 @@
 
 lemma (in linorder) Min_fin_set_foldr [code_unfold]:
   "Min (set (x # xs)) = foldr min xs x"
-  by (simp add: Min_fin_set_fold ac_simps foldr_fold ext_iff del: set.simps)
+  by (simp add: Min_fin_set_fold ac_simps foldr_fold fun_eq_iff del: set.simps)
 
 lemma (in linorder) Max_fin_set_fold:
   "Max (set (x # xs)) = fold max xs x"
@@ -203,7 +203,7 @@
 
 lemma (in linorder) Max_fin_set_foldr [code_unfold]:
   "Max (set (x # xs)) = foldr max xs x"
-  by (simp add: Max_fin_set_fold ac_simps foldr_fold ext_iff del: set.simps)
+  by (simp add: Max_fin_set_fold ac_simps foldr_fold fun_eq_iff del: set.simps)
 
 lemma (in complete_lattice) Inf_set_fold:
   "Inf (set xs) = fold inf xs top"
@@ -215,7 +215,7 @@
 
 lemma (in complete_lattice) Inf_set_foldr [code_unfold]:
   "Inf (set xs) = foldr inf xs top"
-  by (simp add: Inf_set_fold ac_simps foldr_fold ext_iff)
+  by (simp add: Inf_set_fold ac_simps foldr_fold fun_eq_iff)
 
 lemma (in complete_lattice) Sup_set_fold:
   "Sup (set xs) = fold sup xs bot"
@@ -227,7 +227,7 @@
 
 lemma (in complete_lattice) Sup_set_foldr [code_unfold]:
   "Sup (set xs) = foldr sup xs bot"
-  by (simp add: Sup_set_fold ac_simps foldr_fold ext_iff)
+  by (simp add: Sup_set_fold ac_simps foldr_fold fun_eq_iff)
 
 lemma (in complete_lattice) INFI_set_fold:
   "INFI (set xs) f = fold (inf \<circ> f) xs top"
--- a/src/HOL/Library/More_Set.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/More_Set.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -18,7 +18,7 @@
 lemma fun_left_comm_idem_remove:
   "fun_left_comm_idem remove"
 proof -
-  have rem: "remove = (\<lambda>x A. A - {x})" by (simp add: ext_iff remove_def)
+  have rem: "remove = (\<lambda>x A. A - {x})" by (simp add: fun_eq_iff remove_def)
   show ?thesis by (simp only: fun_left_comm_idem_remove rem)
 qed
 
@@ -26,7 +26,7 @@
   assumes "finite A"
   shows "B - A = Finite_Set.fold remove B A"
 proof -
-  have rem: "remove = (\<lambda>x A. A - {x})" by (simp add: ext_iff remove_def)
+  have rem: "remove = (\<lambda>x A. A - {x})" by (simp add: fun_eq_iff remove_def)
   show ?thesis by (simp only: rem assms minus_fold_remove)
 qed
 
@@ -124,6 +124,6 @@
 
 lemma not_set_compl:
   "Not \<circ> set xs = - set xs"
-  by (simp add: fun_Compl_def bool_Compl_def comp_def ext_iff)
+  by (simp add: fun_Compl_def bool_Compl_def comp_def fun_eq_iff)
 
 end
--- a/src/HOL/Library/Multiset.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/Multiset.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -24,13 +24,13 @@
 notation (xsymbols)
   Melem (infix "\<in>#" 50)
 
-lemma multiset_ext_iff:
+lemma multiset_eq_iff:
   "M = N \<longleftrightarrow> (\<forall>a. count M a = count N a)"
-  by (simp only: count_inject [symmetric] ext_iff)
+  by (simp only: count_inject [symmetric] fun_eq_iff)
 
-lemma multiset_ext:
+lemma multiset_eqI:
   "(\<And>x. count A x = count B x) \<Longrightarrow> A = B"
-  using multiset_ext_iff by auto
+  using multiset_eq_iff by auto
 
 text {*
  \medskip Preservation of the representing set @{term multiset}.
@@ -127,7 +127,7 @@
   by (simp add: union_def in_multiset multiset_typedef)
 
 instance multiset :: (type) cancel_comm_monoid_add proof
-qed (simp_all add: multiset_ext_iff)
+qed (simp_all add: multiset_eq_iff)
 
 
 subsubsection {* Difference *}
@@ -146,62 +146,62 @@
   by (simp add: diff_def in_multiset multiset_typedef)
 
 lemma diff_empty [simp]: "M - {#} = M \<and> {#} - M = {#}"
-by(simp add: multiset_ext_iff)
+by(simp add: multiset_eq_iff)
 
 lemma diff_cancel[simp]: "A - A = {#}"
-by (rule multiset_ext) simp
+by (rule multiset_eqI) simp
 
 lemma diff_union_cancelR [simp]: "M + N - N = (M::'a multiset)"
-by(simp add: multiset_ext_iff)
+by(simp add: multiset_eq_iff)
 
 lemma diff_union_cancelL [simp]: "N + M - N = (M::'a multiset)"
-by(simp add: multiset_ext_iff)
+by(simp add: multiset_eq_iff)
 
 lemma insert_DiffM:
   "x \<in># M \<Longrightarrow> {#x#} + (M - {#x#}) = M"
-  by (clarsimp simp: multiset_ext_iff)
+  by (clarsimp simp: multiset_eq_iff)
 
 lemma insert_DiffM2 [simp]:
   "x \<in># M \<Longrightarrow> M - {#x#} + {#x#} = M"
-  by (clarsimp simp: multiset_ext_iff)
+  by (clarsimp simp: multiset_eq_iff)
 
 lemma diff_right_commute:
   "(M::'a multiset) - N - Q = M - Q - N"
-  by (auto simp add: multiset_ext_iff)
+  by (auto simp add: multiset_eq_iff)
 
 lemma diff_add:
   "(M::'a multiset) - (N + Q) = M - N - Q"
-by (simp add: multiset_ext_iff)
+by (simp add: multiset_eq_iff)
 
 lemma diff_union_swap:
   "a \<noteq> b \<Longrightarrow> M - {#a#} + {#b#} = M + {#b#} - {#a#}"
-  by (auto simp add: multiset_ext_iff)
+  by (auto simp add: multiset_eq_iff)
 
 lemma diff_union_single_conv:
   "a \<in># J \<Longrightarrow> I + J - {#a#} = I + (J - {#a#})"
-  by (simp add: multiset_ext_iff)
+  by (simp add: multiset_eq_iff)
 
 
 subsubsection {* Equality of multisets *}
 
 lemma single_not_empty [simp]: "{#a#} \<noteq> {#} \<and> {#} \<noteq> {#a#}"
-  by (simp add: multiset_ext_iff)
+  by (simp add: multiset_eq_iff)
 
 lemma single_eq_single [simp]: "{#a#} = {#b#} \<longleftrightarrow> a = b"
-  by (auto simp add: multiset_ext_iff)
+  by (auto simp add: multiset_eq_iff)
 
 lemma union_eq_empty [iff]: "M + N = {#} \<longleftrightarrow> M = {#} \<and> N = {#}"
-  by (auto simp add: multiset_ext_iff)
+  by (auto simp add: multiset_eq_iff)
 
 lemma empty_eq_union [iff]: "{#} = M + N \<longleftrightarrow> M = {#} \<and> N = {#}"
-  by (auto simp add: multiset_ext_iff)
+  by (auto simp add: multiset_eq_iff)
 
 lemma multi_self_add_other_not_self [simp]: "M = M + {#x#} \<longleftrightarrow> False"
-  by (auto simp add: multiset_ext_iff)
+  by (auto simp add: multiset_eq_iff)
 
 lemma diff_single_trivial:
   "\<not> x \<in># M \<Longrightarrow> M - {#x#} = M"
-  by (auto simp add: multiset_ext_iff)
+  by (auto simp add: multiset_eq_iff)
 
 lemma diff_single_eq_union:
   "x \<in># M \<Longrightarrow> M - {#x#} = N \<longleftrightarrow> M = N + {#x#}"
@@ -220,7 +220,7 @@
   assume ?rhs then show ?lhs by auto
 next
   assume ?lhs thus ?rhs
-    by(simp add: multiset_ext_iff split:if_splits) (metis add_is_1)
+    by(simp add: multiset_eq_iff split:if_splits) (metis add_is_1)
 qed
 
 lemma single_is_union:
@@ -229,7 +229,7 @@
 
 lemma add_eq_conv_diff:
   "M + {#a#} = N + {#b#} \<longleftrightarrow> M = N \<and> a = b \<or> M = N - {#a#} + {#b#} \<and> N = M - {#b#} + {#a#}"  (is "?lhs = ?rhs")
-(* shorter: by (simp add: multiset_ext_iff) fastsimp *)
+(* shorter: by (simp add: multiset_eq_iff) fastsimp *)
 proof
   assume ?rhs then show ?lhs
   by (auto simp add: add_assoc add_commute [of "{#b#}"])
@@ -278,7 +278,7 @@
   mset_less_def: "(A::'a multiset) < B \<longleftrightarrow> A \<le> B \<and> A \<noteq> B"
 
 instance proof
-qed (auto simp add: mset_le_def mset_less_def multiset_ext_iff intro: order_trans antisym)
+qed (auto simp add: mset_le_def mset_less_def multiset_eq_iff intro: order_trans antisym)
 
 end
 
@@ -289,7 +289,7 @@
 lemma mset_le_exists_conv:
   "(A::'a multiset) \<le> B \<longleftrightarrow> (\<exists>C. B = A + C)"
 apply (unfold mset_le_def, rule iffI, rule_tac x = "B - A" in exI)
-apply (auto intro: multiset_ext_iff [THEN iffD2])
+apply (auto intro: multiset_eq_iff [THEN iffD2])
 done
 
 lemma mset_le_mono_add_right_cancel [simp]:
@@ -318,11 +318,14 @@
 
 lemma multiset_diff_union_assoc:
   "C \<le> B \<Longrightarrow> (A::'a multiset) + B - C = A + (B - C)"
-  by (simp add: multiset_ext_iff mset_le_def)
+  by (simp add: multiset_eq_iff mset_le_def)
 
 lemma mset_le_multiset_union_diff_commute:
   "B \<le> A \<Longrightarrow> (A::'a multiset) - B + C = A + C - B"
-by (simp add: multiset_ext_iff mset_le_def)
+by (simp add: multiset_eq_iff mset_le_def)
+
+lemma diff_le_self[simp]: "(M::'a multiset) - N \<le> M"
+by(simp add: mset_le_def)
 
 lemma mset_lessD: "A < B \<Longrightarrow> x \<in># A \<Longrightarrow> x \<in># B"
 apply (clarsimp simp: mset_le_def mset_less_def)
@@ -352,7 +355,7 @@
 done
 
 lemma mset_less_of_empty[simp]: "A < {#} \<longleftrightarrow> False"
-  by (auto simp add: mset_less_def mset_le_def multiset_ext_iff)
+  by (auto simp add: mset_less_def mset_le_def multiset_eq_iff)
 
 lemma multi_psub_of_add_self[simp]: "A < A + {#x#}"
   by (auto simp: mset_le_def mset_less_def)
@@ -370,7 +373,7 @@
 
 lemma mset_less_diff_self:
   "c \<in># B \<Longrightarrow> B - {#c#} < B"
-  by (auto simp: mset_le_def mset_less_def multiset_ext_iff)
+  by (auto simp: mset_le_def mset_less_def multiset_eq_iff)
 
 
 subsubsection {* Intersection *}
@@ -397,15 +400,15 @@
   by (simp add: multiset_inter_def multiset_typedef)
 
 lemma multiset_inter_single: "a \<noteq> b \<Longrightarrow> {#a#} #\<inter> {#b#} = {#}"
-  by (rule multiset_ext) (auto simp add: multiset_inter_count)
+  by (rule multiset_eqI) (auto simp add: multiset_inter_count)
 
 lemma multiset_union_diff_commute:
   assumes "B #\<inter> C = {#}"
   shows "A + B - C = A - C + B"
-proof (rule multiset_ext)
+proof (rule multiset_eqI)
   fix x
   from assms have "min (count B x) (count C x) = 0"
-    by (auto simp add: multiset_inter_count multiset_ext_iff)
+    by (auto simp add: multiset_inter_count multiset_eq_iff)
   then have "count B x = 0 \<or> count C x = 0"
     by auto
   then show "count (A + B - C) x = count (A - C + B) x"
@@ -420,15 +423,15 @@
   by (simp add: MCollect_def in_multiset multiset_typedef)
 
 lemma MCollect_empty [simp]: "MCollect {#} P = {#}"
-  by (rule multiset_ext) simp
+  by (rule multiset_eqI) simp
 
 lemma MCollect_single [simp]:
   "MCollect {#x#} P = (if P x then {#x#} else {#})"
-  by (rule multiset_ext) simp
+  by (rule multiset_eqI) simp
 
 lemma MCollect_union [simp]:
   "MCollect (M + N) f = MCollect M f + MCollect N f"
-  by (rule multiset_ext) simp
+  by (rule multiset_eqI) simp
 
 
 subsubsection {* Set of elements *}
@@ -446,7 +449,7 @@
 by (auto simp add: set_of_def)
 
 lemma set_of_eq_empty_iff [simp]: "(set_of M = {}) = (M = {#})"
-by (auto simp add: set_of_def multiset_ext_iff)
+by (auto simp add: set_of_def multiset_eq_iff)
 
 lemma mem_set_of_iff [simp]: "(x \<in> set_of M) = (x :# M)"
 by (auto simp add: set_of_def)
@@ -494,7 +497,7 @@
 done
 
 lemma size_eq_0_iff_empty [iff]: "(size M = 0) = (M = {#})"
-by (auto simp add: size_def multiset_ext_iff)
+by (auto simp add: size_def multiset_eq_iff)
 
 lemma nonempty_has_size: "(S \<noteq> {#}) = (0 < size S)"
 by (metis gr0I gr_implies_not0 size_empty size_eq_0_iff_empty)
@@ -581,7 +584,7 @@
      apply (rule empty [unfolded defns])
     apply (subgoal_tac "f(b := f b + 1) = (\<lambda>a. f a + (if a=b then 1 else 0))")
      prefer 2
-     apply (simp add: ext_iff)
+     apply (simp add: fun_eq_iff)
     apply (erule ssubst)
     apply (erule Abs_multiset_inverse [THEN subst])
     apply (drule add')
@@ -615,7 +618,7 @@
 by (cases "B = {#}") (auto dest: multi_member_split)
 
 lemma multiset_partition: "M = {# x:#M. P x #} + {# x:#M. \<not> P x #}"
-apply (subst multiset_ext_iff)
+apply (subst multiset_eq_iff)
 apply auto
 done
 
@@ -755,12 +758,12 @@
 
 lemma multiset_of_eq_setD:
   "multiset_of xs = multiset_of ys \<Longrightarrow> set xs = set ys"
-by (rule) (auto simp add:multiset_ext_iff set_count_greater_0)
+by (rule) (auto simp add:multiset_eq_iff set_count_greater_0)
 
 lemma set_eq_iff_multiset_of_eq_distinct:
   "distinct x \<Longrightarrow> distinct y \<Longrightarrow>
     (set x = set y) = (multiset_of x = multiset_of y)"
-by (auto simp: multiset_ext_iff distinct_count_atmost_1)
+by (auto simp: multiset_eq_iff distinct_count_atmost_1)
 
 lemma set_eq_iff_multiset_of_remdups_eq:
    "(set x = set y) = (multiset_of (remdups x) = multiset_of (remdups y))"
@@ -788,7 +791,7 @@
 
 lemma multiset_of_remove1[simp]:
   "multiset_of (remove1 a xs) = multiset_of xs - {#a#}"
-by (induct xs) (auto simp add: multiset_ext_iff)
+by (induct xs) (auto simp add: multiset_eq_iff)
 
 lemma multiset_of_eq_length:
   assumes "multiset_of xs = multiset_of ys"
@@ -883,13 +886,13 @@
   with finite_dom_map_of [of xs] have "finite ?A"
     by (auto intro: finite_subset)
   then show ?thesis
-    by (simp add: count_of_def ext_iff multiset_def)
+    by (simp add: count_of_def fun_eq_iff multiset_def)
 qed
 
 lemma count_simps [simp]:
   "count_of [] = (\<lambda>_. 0)"
   "count_of ((x, n) # xs) = (\<lambda>y. if x = y then n else count_of xs y)"
-  by (simp_all add: count_of_def ext_iff)
+  by (simp_all add: count_of_def fun_eq_iff)
 
 lemma count_of_empty:
   "x \<notin> fst ` set xs \<Longrightarrow> count_of xs x = 0"
@@ -910,15 +913,15 @@
 
 lemma Mempty_Bag [code]:
   "{#} = Bag []"
-  by (simp add: multiset_ext_iff)
+  by (simp add: multiset_eq_iff)
   
 lemma single_Bag [code]:
   "{#x#} = Bag [(x, 1)]"
-  by (simp add: multiset_ext_iff)
+  by (simp add: multiset_eq_iff)
 
 lemma MCollect_Bag [code]:
   "MCollect (Bag xs) P = Bag (filter (P \<circ> fst) xs)"
-  by (simp add: multiset_ext_iff count_of_filter)
+  by (simp add: multiset_eq_iff count_of_filter)
 
 lemma mset_less_eq_Bag [code]:
   "Bag xs \<le> A \<longleftrightarrow> (\<forall>(x, n) \<in> set xs. count_of xs x \<le> count A x)"
@@ -1129,10 +1132,10 @@
  apply (rule_tac x = "J + {#a#}" in exI)
  apply (rule_tac x = "K + Ka" in exI)
  apply (rule conjI)
-  apply (simp add: multiset_ext_iff split: nat_diff_split)
+  apply (simp add: multiset_eq_iff split: nat_diff_split)
  apply (rule conjI)
   apply (drule_tac f = "\<lambda>M. M - {#a#}" in arg_cong, simp)
-  apply (simp add: multiset_ext_iff split: nat_diff_split)
+  apply (simp add: multiset_eq_iff split: nat_diff_split)
  apply (simp (no_asm_use) add: trans_def)
  apply blast
 apply (subgoal_tac "a :# (M0 + {#a#})")
@@ -1597,7 +1600,7 @@
   thus "(Z + {#}, Z' + {#}) \<in> ms_weak" by (simp add:add_ac)
 qed
 
-lemma empty_idemp: "{#} + x = x" "x + {#} = x"
+lemma empty_neutral: "{#} + x = x" "x + {#} = x"
 and nonempty_plus: "{# x #} + rs \<noteq> {#}"
 and nonempty_single: "{# x #} \<noteq> {#}"
 by auto
@@ -1623,7 +1626,7 @@
 
   val regroup_munion_conv =
       Function_Lib.regroup_conv @{const_abbrev Mempty} @{const_name plus}
-        (map (fn t => t RS eq_reflection) (@{thms add_ac} @ @{thms empty_idemp}))
+        (map (fn t => t RS eq_reflection) (@{thms add_ac} @ @{thms empty_neutral}))
 
   fun unfold_pwleq_tac i =
     (rtac @{thm pw_leq_step} i THEN (fn st => unfold_pwleq_tac (i + 1) st))
@@ -1647,7 +1650,7 @@
 
 subsection {* Legacy theorem bindings *}
 
-lemmas multi_count_eq = multiset_ext_iff [symmetric]
+lemmas multi_count_eq = multiset_eq_iff [symmetric]
 
 lemma union_commute: "M + N = N + (M::'a multiset)"
   by (fact add_commute)
--- a/src/HOL/Library/Nat_Bijection.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/Nat_Bijection.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -333,8 +333,8 @@
 lemma set_decode_plus_power_2:
   "n \<notin> set_decode z \<Longrightarrow> set_decode (2 ^ n + z) = insert n (set_decode z)"
  apply (induct n arbitrary: z, simp_all)
-  apply (rule set_ext, induct_tac x, simp, simp add: even_nat_Suc_div_2)
- apply (rule set_ext, induct_tac x, simp, simp add: add_commute)
+  apply (rule set_eqI, induct_tac x, simp, simp add: even_nat_Suc_div_2)
+ apply (rule set_eqI, induct_tac x, simp, simp add: add_commute)
 done
 
 lemma finite_set_decode [simp]: "finite (set_decode n)"
--- a/src/HOL/Library/Order_Relation.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/Order_Relation.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -81,7 +81,7 @@
 
 lemma Refl_antisym_eq_Image1_Image1_iff:
   "\<lbrakk>Refl r; antisym r; a:Field r; b:Field r\<rbrakk> \<Longrightarrow> r `` {a} = r `` {b} \<longleftrightarrow> a=b"
-by(simp add: set_ext_iff antisym_def refl_on_def) metis
+by(simp add: set_eq_iff antisym_def refl_on_def) metis
 
 lemma Partial_order_eq_Image1_Image1_iff:
   "\<lbrakk>Partial_order r; a:Field r; b:Field r\<rbrakk> \<Longrightarrow> r `` {a} = r `` {b} \<longleftrightarrow> a=b"
--- a/src/HOL/Library/Permutations.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/Permutations.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -16,7 +16,7 @@
 (* ------------------------------------------------------------------------- *)
 
 lemma swapid_sym: "Fun.swap a b id = Fun.swap b a id"
-  by (auto simp add: ext_iff swap_def fun_upd_def)
+  by (auto simp add: fun_eq_iff swap_def fun_upd_def)
 lemma swap_id_refl: "Fun.swap a a id = id" by simp
 lemma swap_id_sym: "Fun.swap a b id = Fun.swap b a id"
   by (rule ext, simp add: swap_def)
@@ -25,7 +25,7 @@
 
 lemma inv_unique_comp: assumes fg: "f o g = id" and gf: "g o f = id"
   shows "inv f = g"
-  using fg gf inv_equality[of g f] by (auto simp add: ext_iff)
+  using fg gf inv_equality[of g f] by (auto simp add: fun_eq_iff)
 
 lemma inverse_swap_id: "inv (Fun.swap a b id) = Fun.swap a b id"
   by (rule inv_unique_comp, simp_all)
@@ -44,7 +44,7 @@
   using pS
   unfolding permutes_def
   apply -
-  apply (rule set_ext)
+  apply (rule set_eqI)
   apply (simp add: image_iff)
   apply metis
   done
@@ -67,16 +67,16 @@
   assumes pS: "p permutes S"
   shows "p (inv p x) = x"
   and "inv p (p x) = x"
-  using permutes_inv_o[OF pS, unfolded ext_iff o_def] by auto
+  using permutes_inv_o[OF pS, unfolded fun_eq_iff o_def] by auto
 
 lemma permutes_subset: "p permutes S \<Longrightarrow> S \<subseteq> T ==> p permutes T"
   unfolding permutes_def by blast
 
 lemma permutes_empty[simp]: "p permutes {} \<longleftrightarrow> p = id"
-  unfolding ext_iff permutes_def apply simp by metis
+  unfolding fun_eq_iff permutes_def apply simp by metis
 
 lemma permutes_sing[simp]: "p permutes {a} \<longleftrightarrow> p = id"
-  unfolding ext_iff permutes_def apply simp by metis
+  unfolding fun_eq_iff permutes_def apply simp by metis
 
 lemma permutes_univ: "p permutes UNIV \<longleftrightarrow> (\<forall>y. \<exists>!x. p x = y)"
   unfolding permutes_def by simp
@@ -111,7 +111,7 @@
   using pS unfolding permutes_def permutes_inv_eq[OF pS] by metis
 
 lemma permutes_inv_inv: assumes pS: "p permutes S" shows "inv (inv p) = p"
-  unfolding ext_iff permutes_inv_eq[OF pS] permutes_inv_eq[OF permutes_inv[OF pS]]
+  unfolding fun_eq_iff permutes_inv_eq[OF pS] permutes_inv_eq[OF permutes_inv[OF pS]]
   by blast
 
 (* ------------------------------------------------------------------------- *)
@@ -136,7 +136,7 @@
     {assume pS: "p permutes insert a S"
       let ?b = "p a"
       let ?q = "Fun.swap a (p a) id o p"
-      have th0: "p = Fun.swap a ?b id o ?q" unfolding ext_iff o_assoc by simp
+      have th0: "p = Fun.swap a ?b id o ?q" unfolding fun_eq_iff o_assoc by simp
       have th1: "?b \<in> insert a S " unfolding permutes_in_image[OF pS] by simp
       from permutes_insert_lemma[OF pS] th0 th1
       have "\<exists> b q. p = Fun.swap a b id o q \<and> b \<in> insert a S \<and> q permutes S" by blast}
@@ -180,11 +180,11 @@
           and eq: "?g (b,p) = ?g (c,q)"
         from bp cq have ths: "b \<in> insert x F" "c \<in> insert x F" "x \<in> insert x F" "p permutes F" "q permutes F" by auto
         from ths(4) `x \<notin> F` eq have "b = ?g (b,p) x" unfolding permutes_def
-          by (auto simp add: swap_def fun_upd_def ext_iff)
+          by (auto simp add: swap_def fun_upd_def fun_eq_iff)
         also have "\<dots> = ?g (c,q) x" using ths(5) `x \<notin> F` eq
-          by (auto simp add: swap_def fun_upd_def ext_iff)
+          by (auto simp add: swap_def fun_upd_def fun_eq_iff)
         also have "\<dots> = c"using ths(5) `x \<notin> F` unfolding permutes_def
-          by (auto simp add: swap_def fun_upd_def ext_iff)
+          by (auto simp add: swap_def fun_upd_def fun_eq_iff)
         finally have bc: "b = c" .
         hence "Fun.swap x b id = Fun.swap x c id" by simp
         with eq have "Fun.swap x b id o p = Fun.swap x b id o q" by simp
@@ -251,12 +251,12 @@
 (* Various combinations of transpositions with 2, 1 and 0 common elements.   *)
 (* ------------------------------------------------------------------------- *)
 
-lemma swap_id_common:" a \<noteq> c \<Longrightarrow> b \<noteq> c \<Longrightarrow>  Fun.swap a b id o Fun.swap a c id = Fun.swap b c id o Fun.swap a b id" by (simp add: ext_iff swap_def)
+lemma swap_id_common:" a \<noteq> c \<Longrightarrow> b \<noteq> c \<Longrightarrow>  Fun.swap a b id o Fun.swap a c id = Fun.swap b c id o Fun.swap a b id" by (simp add: fun_eq_iff swap_def)
 
-lemma swap_id_common': "~(a = b) \<Longrightarrow> ~(a = c) \<Longrightarrow> Fun.swap a c id o Fun.swap b c id = Fun.swap b c id o Fun.swap a b id" by (simp add: ext_iff swap_def)
+lemma swap_id_common': "~(a = b) \<Longrightarrow> ~(a = c) \<Longrightarrow> Fun.swap a c id o Fun.swap b c id = Fun.swap b c id o Fun.swap a b id" by (simp add: fun_eq_iff swap_def)
 
 lemma swap_id_independent: "~(a = c) \<Longrightarrow> ~(a = d) \<Longrightarrow> ~(b = c) \<Longrightarrow> ~(b = d) ==> Fun.swap a b id o Fun.swap c d id = Fun.swap c d id o Fun.swap a b id"
-  by (simp add: swap_def ext_iff)
+  by (simp add: swap_def fun_eq_iff)
 
 (* ------------------------------------------------------------------------- *)
 (* Permutations as transposition sequences.                                  *)
@@ -352,18 +352,18 @@
   apply (rule_tac x="b" in exI)
   apply (rule_tac x="d" in exI)
   apply (rule_tac x="b" in exI)
-  apply (clarsimp simp add: ext_iff swap_def)
+  apply (clarsimp simp add: fun_eq_iff swap_def)
   apply (case_tac "a \<noteq> c \<and> b = d")
   apply (rule disjI2)
   apply (rule_tac x="c" in exI)
   apply (rule_tac x="d" in exI)
   apply (rule_tac x="c" in exI)
-  apply (clarsimp simp add: ext_iff swap_def)
+  apply (clarsimp simp add: fun_eq_iff swap_def)
   apply (rule disjI2)
   apply (rule_tac x="c" in exI)
   apply (rule_tac x="d" in exI)
   apply (rule_tac x="b" in exI)
-  apply (clarsimp simp add: ext_iff swap_def)
+  apply (clarsimp simp add: fun_eq_iff swap_def)
   done
 with H show ?thesis by metis
 qed
@@ -518,7 +518,7 @@
   from p obtain n where n: "swapidseq n p" unfolding permutation_def by blast
   from swapidseq_inverse_exists[OF n] obtain q where
     q: "swapidseq n q" "p \<circ> q = id" "q \<circ> p = id" by blast
-  thus ?thesis unfolding bij_iff  apply (auto simp add: ext_iff) apply metis done
+  thus ?thesis unfolding bij_iff  apply (auto simp add: fun_eq_iff) apply metis done
 qed
 
 lemma permutation_finite_support: assumes p: "permutation p"
@@ -544,7 +544,7 @@
 lemma bij_swap_comp:
   assumes bp: "bij p" shows "Fun.swap a b id o p = Fun.swap (inv p a) (inv p b) p"
   using surj_f_inv_f[OF bij_is_surj[OF bp]]
-  by (simp add: ext_iff swap_def bij_inv_eq_iff[OF bp])
+  by (simp add: fun_eq_iff swap_def bij_inv_eq_iff[OF bp])
 
 lemma bij_swap_ompose_bij: "bij p \<Longrightarrow> bij (Fun.swap a b id o p)"
 proof-
@@ -688,7 +688,7 @@
         ultimately have "p n = n" by blast }
       ultimately show "p n = n"  by blast
     qed}
-  thus ?thesis by (auto simp add: ext_iff)
+  thus ?thesis by (auto simp add: fun_eq_iff)
 qed
 
 lemma permutes_natset_ge:
@@ -709,7 +709,7 @@
 qed
 
 lemma image_inverse_permutations: "{inv p |p. p permutes S} = {p. p permutes S}"
-apply (rule set_ext)
+apply (rule set_eqI)
 apply auto
   using permutes_inv_inv permutes_inv apply auto
   apply (rule_tac x="inv x" in exI)
@@ -718,7 +718,7 @@
 
 lemma image_compose_permutations_left:
   assumes q: "q permutes S" shows "{q o p | p. p permutes S} = {p . p permutes S}"
-apply (rule set_ext)
+apply (rule set_eqI)
 apply auto
 apply (rule permutes_compose)
 using q apply auto
@@ -728,7 +728,7 @@
 lemma image_compose_permutations_right:
   assumes q: "q permutes S"
   shows "{p o q | p. p permutes S} = {p . p permutes S}"
-apply (rule set_ext)
+apply (rule set_eqI)
 apply auto
 apply (rule permutes_compose)
 using q apply auto
@@ -811,7 +811,7 @@
   shows "setsum f {p. p permutes (insert a S)} = setsum (\<lambda>b. setsum (\<lambda>q. f (Fun.swap a b id o q)) {p. p permutes S}) (insert a S)"
 proof-
   have th0: "\<And>f a b. (\<lambda>(b,p). f (Fun.swap a b id o p)) = f o (\<lambda>(b,p). Fun.swap a b id o p)"
-    by (simp add: ext_iff)
+    by (simp add: fun_eq_iff)
   have th1: "\<And>P Q. P \<times> Q = {(a,b). a \<in> P \<and> b \<in> Q}" by blast
   have th2: "\<And>P Q. P \<Longrightarrow> (P \<Longrightarrow> Q) \<Longrightarrow> P \<and> Q" by blast
   show ?thesis
--- a/src/HOL/Library/Polynomial.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/Polynomial.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -16,7 +16,7 @@
   by auto
 
 lemma expand_poly_eq: "p = q \<longleftrightarrow> (\<forall>n. coeff p n = coeff q n)"
-by (simp add: coeff_inject [symmetric] ext_iff)
+by (simp add: coeff_inject [symmetric] fun_eq_iff)
 
 lemma poly_ext: "(\<And>n. coeff p n = coeff q n) \<Longrightarrow> p = q"
 by (simp add: expand_poly_eq)
@@ -1403,7 +1403,7 @@
   fixes p q :: "'a::{idom,ring_char_0} poly"
   shows "poly p = poly q \<longleftrightarrow> p = q"
   using poly_zero [of "p - q"]
-  by (simp add: ext_iff)
+  by (simp add: fun_eq_iff)
 
 
 subsection {* Composition of polynomials *}
--- a/src/HOL/Library/Predicate_Compile_Alternative_Defs.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/Predicate_Compile_Alternative_Defs.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -12,7 +12,7 @@
 declare le_bool_def_raw[code_pred_inline]
 
 lemma min_bool_eq [code_pred_inline]: "(min :: bool => bool => bool) == (op &)"
-by (rule eq_reflection) (auto simp add: ext_iff min_def le_bool_def)
+by (rule eq_reflection) (auto simp add: fun_eq_iff min_def le_bool_def)
 
 setup {* Predicate_Compile_Data.ignore_consts [@{const_name Let}] *}
 
--- a/src/HOL/Library/Quotient_List.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/Quotient_List.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -19,7 +19,7 @@
 
 lemma map_id[id_simps]:
   shows "map id = id"
-  apply(simp add: ext_iff)
+  apply(simp add: fun_eq_iff)
   apply(rule allI)
   apply(induct_tac x)
   apply(simp_all)
@@ -92,7 +92,7 @@
 lemma cons_prs[quot_preserve]:
   assumes q: "Quotient R Abs Rep"
   shows "(Rep ---> (map Rep) ---> (map Abs)) (op #) = (op #)"
-  by (simp only: ext_iff fun_map_def cons_prs_aux[OF q])
+  by (simp only: fun_eq_iff fun_map_def cons_prs_aux[OF q])
      (simp)
 
 lemma cons_rsp[quot_respect]:
@@ -122,7 +122,7 @@
   and     b: "Quotient R2 abs2 rep2"
   shows "((abs1 ---> rep2) ---> (map rep1) ---> (map abs2)) map = map"
   and   "((abs1 ---> id) ---> map rep1 ---> id) map = map"
-  by (simp_all only: ext_iff fun_map_def map_prs_aux[OF a b])
+  by (simp_all only: fun_eq_iff fun_map_def map_prs_aux[OF a b])
      (simp_all add: Quotient_abs_rep[OF a])
 
 lemma map_rsp[quot_respect]:
@@ -148,7 +148,7 @@
   assumes a: "Quotient R1 abs1 rep1"
   and     b: "Quotient R2 abs2 rep2"
   shows "((abs1 ---> abs2 ---> rep2) ---> (map rep1) ---> rep2 ---> abs2) foldr = foldr"
-  by (simp only: ext_iff fun_map_def foldr_prs_aux[OF a b])
+  by (simp only: fun_eq_iff fun_map_def foldr_prs_aux[OF a b])
      (simp)
 
 lemma foldl_prs_aux:
@@ -162,7 +162,7 @@
   assumes a: "Quotient R1 abs1 rep1"
   and     b: "Quotient R2 abs2 rep2"
   shows "((abs1 ---> abs2 ---> rep1) ---> rep1 ---> (map rep2) ---> abs1) foldl = foldl"
-  by (simp only: ext_iff fun_map_def foldl_prs_aux[OF a b])
+  by (simp only: fun_eq_iff fun_map_def foldl_prs_aux[OF a b])
      (simp)
 
 lemma list_all2_empty:
@@ -231,7 +231,7 @@
 lemma[quot_preserve]:
   assumes a: "Quotient R abs1 rep1"
   shows "((abs1 ---> abs1 ---> id) ---> map rep1 ---> map rep1 ---> id) list_all2 = list_all2"
-  apply (simp add: ext_iff)
+  apply (simp add: fun_eq_iff)
   apply clarify
   apply (induct_tac xa xb rule: list_induct2')
   apply (simp_all add: Quotient_abs_rep[OF a])
@@ -244,7 +244,7 @@
 
 lemma list_all2_eq[id_simps]:
   shows "(list_all2 (op =)) = (op =)"
-  unfolding ext_iff
+  unfolding fun_eq_iff
   apply(rule allI)+
   apply(induct_tac x xa rule: list_induct2')
   apply(simp_all)
--- a/src/HOL/Library/Quotient_Option.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/Quotient_Option.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -66,16 +66,16 @@
 lemma option_Some_prs[quot_preserve]:
   assumes q: "Quotient R Abs Rep"
   shows "(Rep ---> Option.map Abs) Some = Some"
-  apply(simp add: ext_iff)
+  apply(simp add: fun_eq_iff)
   apply(simp add: Quotient_abs_rep[OF q])
   done
 
 lemma option_map_id[id_simps]:
   shows "Option.map id = id"
-  by (simp add: ext_iff split_option_all)
+  by (simp add: fun_eq_iff split_option_all)
 
 lemma option_rel_eq[id_simps]:
   shows "option_rel (op =) = (op =)"
-  by (simp add: ext_iff split_option_all)
+  by (simp add: fun_eq_iff split_option_all)
 
 end
--- a/src/HOL/Library/Quotient_Product.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/Quotient_Product.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -51,7 +51,7 @@
   assumes q1: "Quotient R1 Abs1 Rep1"
   assumes q2: "Quotient R2 Abs2 Rep2"
   shows "(Rep1 ---> Rep2 ---> (prod_fun Abs1 Abs2)) Pair = Pair"
-  apply(simp add: ext_iff)
+  apply(simp add: fun_eq_iff)
   apply(simp add: Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
   done
 
@@ -65,7 +65,7 @@
   assumes q1: "Quotient R1 Abs1 Rep1"
   assumes q2: "Quotient R2 Abs2 Rep2"
   shows "(prod_fun Rep1 Rep2 ---> Abs1) fst = fst"
-  apply(simp add: ext_iff)
+  apply(simp add: fun_eq_iff)
   apply(simp add: Quotient_abs_rep[OF q1])
   done
 
@@ -79,7 +79,7 @@
   assumes q1: "Quotient R1 Abs1 Rep1"
   assumes q2: "Quotient R2 Abs2 Rep2"
   shows "(prod_fun Rep1 Rep2 ---> Abs2) snd = snd"
-  apply(simp add: ext_iff)
+  apply(simp add: fun_eq_iff)
   apply(simp add: Quotient_abs_rep[OF q2])
   done
 
@@ -91,7 +91,7 @@
   assumes q1: "Quotient R1 Abs1 Rep1"
   and     q2: "Quotient R2 Abs2 Rep2"
   shows "(((Abs1 ---> Abs2 ---> id) ---> prod_fun Rep1 Rep2 ---> id) split) = split"
-  by (simp add: ext_iff Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
+  by (simp add: fun_eq_iff Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
 
 lemma [quot_respect]:
   shows "((R2 ===> R2 ===> op =) ===> (R1 ===> R1 ===> op =) ===>
@@ -103,7 +103,7 @@
   and     q2: "Quotient R2 abs2 rep2"
   shows "((abs1 ---> abs1 ---> id) ---> (abs2 ---> abs2 ---> id) --->
   prod_fun rep1 rep2 ---> prod_fun rep1 rep2 ---> id) prod_rel = prod_rel"
-  by (simp add: ext_iff Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
+  by (simp add: fun_eq_iff Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
 
 lemma [quot_preserve]:
   shows"(prod_rel ((rep1 ---> rep1 ---> id) R1) ((rep2 ---> rep2 ---> id) R2)
@@ -118,6 +118,6 @@
 
 lemma prod_rel_eq[id_simps]:
   shows "prod_rel (op =) (op =) = (op =)"
-  by (simp add: ext_iff)
+  by (simp add: fun_eq_iff)
 
 end
--- a/src/HOL/Library/Quotient_Sum.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/Quotient_Sum.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -74,7 +74,7 @@
   assumes q1: "Quotient R1 Abs1 Rep1"
   assumes q2: "Quotient R2 Abs2 Rep2"
   shows "(Rep1 ---> sum_map Abs1 Abs2) Inl = Inl"
-  apply(simp add: ext_iff)
+  apply(simp add: fun_eq_iff)
   apply(simp add: Quotient_abs_rep[OF q1])
   done
 
@@ -82,16 +82,16 @@
   assumes q1: "Quotient R1 Abs1 Rep1"
   assumes q2: "Quotient R2 Abs2 Rep2"
   shows "(Rep2 ---> sum_map Abs1 Abs2) Inr = Inr"
-  apply(simp add: ext_iff)
+  apply(simp add: fun_eq_iff)
   apply(simp add: Quotient_abs_rep[OF q2])
   done
 
 lemma sum_map_id[id_simps]:
   shows "sum_map id id = id"
-  by (simp add: ext_iff split_sum_all)
+  by (simp add: fun_eq_iff split_sum_all)
 
 lemma sum_rel_eq[id_simps]:
   shows "sum_rel (op =) (op =) = (op =)"
-  by (simp add: ext_iff split_sum_all)
+  by (simp add: fun_eq_iff split_sum_all)
 
 end
--- a/src/HOL/Library/RBT.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/RBT.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -112,7 +112,7 @@
 
 lemma lookup_empty [simp]:
   "lookup empty = Map.empty"
-  by (simp add: empty_def lookup_RBT ext_iff)
+  by (simp add: empty_def lookup_RBT fun_eq_iff)
 
 lemma lookup_insert [simp]:
   "lookup (insert k v t) = (lookup t)(k \<mapsto> v)"
@@ -144,7 +144,7 @@
 
 lemma fold_fold:
   "fold f t = More_List.fold (prod_case f) (entries t)"
-  by (simp add: fold_def ext_iff RBT_Impl.fold_def entries_impl_of)
+  by (simp add: fold_def fun_eq_iff RBT_Impl.fold_def entries_impl_of)
 
 lemma is_empty_empty [simp]:
   "is_empty t \<longleftrightarrow> t = empty"
@@ -152,7 +152,7 @@
 
 lemma RBT_lookup_empty [simp]: (*FIXME*)
   "RBT_Impl.lookup t = Map.empty \<longleftrightarrow> t = RBT_Impl.Empty"
-  by (cases t) (auto simp add: ext_iff)
+  by (cases t) (auto simp add: fun_eq_iff)
 
 lemma lookup_empty_empty [simp]:
   "lookup t = Map.empty \<longleftrightarrow> t = empty"
@@ -220,7 +220,7 @@
 
 lemma bulkload_Mapping [code]:
   "Mapping.bulkload vs = Mapping (bulkload (List.map (\<lambda>n. (n, vs ! n)) [0..<length vs]))"
-  by (rule mapping_eqI) (simp add: map_of_map_restrict ext_iff)
+  by (rule mapping_eqI) (simp add: map_of_map_restrict fun_eq_iff)
 
 lemma equal_Mapping [code]:
   "HOL.equal (Mapping t1) (Mapping t2) \<longleftrightarrow> entries t1 = entries t2"
--- a/src/HOL/Library/RBT_Impl.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/RBT_Impl.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -1019,7 +1019,7 @@
 
 theorem lookup_map_entry:
   "lookup (map_entry k f t) = (lookup t)(k := Option.map f (lookup t k))"
-  by (induct t) (auto split: option.splits simp add: ext_iff)
+  by (induct t) (auto split: option.splits simp add: fun_eq_iff)
 
 
 subsection {* Mapping all entries *}
@@ -1054,7 +1054,7 @@
 lemma fold_simps [simp, code]:
   "fold f Empty = id"
   "fold f (Branch c lt k v rt) = fold f rt \<circ> f k v \<circ> fold f lt"
-  by (simp_all add: fold_def ext_iff)
+  by (simp_all add: fold_def fun_eq_iff)
 
 
 subsection {* Bulkloading a tree *}
--- a/src/HOL/Library/Set_Algebras.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/Set_Algebras.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -72,7 +72,7 @@
   show "monoid_add.listsum set_plus {0::'a} = listsum_set"
     by (simp only: listsum_set_def)
   show "comm_monoid_add.setsum set_plus {0::'a} = setsum_set"
-    by (simp add: set_add.setsum_def setsum_set_def ext_iff)
+    by (simp add: set_add.setsum_def setsum_set_def fun_eq_iff)
 qed
 
 interpretation set_mult!: semigroup "set_times :: 'a::semigroup_mult set \<Rightarrow> 'a set \<Rightarrow> 'a set" proof
@@ -117,7 +117,7 @@
   show "power.power {1} set_times = (\<lambda>A n. power_set n A)"
     by (simp add: power_set_def)
   show "comm_monoid_mult.setprod set_times {1::'a} = setprod_set"
-    by (simp add: set_mult.setprod_def setprod_set_def ext_iff)
+    by (simp add: set_mult.setprod_def setprod_set_def fun_eq_iff)
 qed
 
 lemma set_plus_intro [intro]: "a : C ==> b : D ==> a + b : C \<oplus> D"
--- a/src/HOL/Library/Univ_Poly.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Library/Univ_Poly.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -382,7 +382,7 @@
 lemma (in idom_char_0) poly_entire:
   "poly (p *** q) = poly [] \<longleftrightarrow> poly p = poly [] \<or> poly q = poly []"
 using poly_entire_lemma2[of p q]
-by (auto simp add: ext_iff poly_mult)
+by (auto simp add: fun_eq_iff poly_mult)
 
 lemma (in idom_char_0) poly_entire_neg: "(poly (p *** q) \<noteq> poly []) = ((poly p \<noteq> poly []) & (poly q \<noteq> poly []))"
 by (simp add: poly_entire)
@@ -847,14 +847,14 @@
   assume eq: ?lhs
   hence "\<And>x. poly ((c#cs) +++ -- (d#ds)) x = 0"
     by (simp only: poly_minus poly_add algebra_simps) simp
-  hence "poly ((c#cs) +++ -- (d#ds)) = poly []" by(simp add: ext_iff)
+  hence "poly ((c#cs) +++ -- (d#ds)) = poly []" by(simp add: fun_eq_iff)
   hence "c = d \<and> list_all (\<lambda>x. x=0) ((cs +++ -- ds))"
     unfolding poly_zero by (simp add: poly_minus_def algebra_simps)
   hence "c = d \<and> (\<forall>x. poly (cs +++ -- ds) x = 0)"
     unfolding poly_zero[symmetric] by simp
-  thus ?rhs  by (simp add: poly_minus poly_add algebra_simps ext_iff)
+  thus ?rhs  by (simp add: poly_minus poly_add algebra_simps fun_eq_iff)
 next
-  assume ?rhs then show ?lhs by(simp add:ext_iff)
+  assume ?rhs then show ?lhs by(simp add:fun_eq_iff)
 qed
 
 lemma (in idom_char_0) pnormalize_unique: "poly p = poly q \<Longrightarrow> pnormalize p = pnormalize q"
--- a/src/HOL/Limits.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Limits.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -46,7 +46,7 @@
 
 lemma expand_net_eq:
   shows "net = net' \<longleftrightarrow> (\<forall>P. eventually P net = eventually P net')"
-unfolding Rep_net_inject [symmetric] ext_iff eventually_def ..
+unfolding Rep_net_inject [symmetric] fun_eq_iff eventually_def ..
 
 lemma eventually_True [simp]: "eventually (\<lambda>x. True) net"
 unfolding eventually_def
--- a/src/HOL/List.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/List.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -2317,7 +2317,7 @@
 lemma foldl_apply:
   assumes "\<And>x. x \<in> set xs \<Longrightarrow> f x \<circ> h = h \<circ> g x"
   shows "foldl (\<lambda>s x. f x s) (h s) xs = h (foldl (\<lambda>s x. g x s) s xs)"
-  by (rule sym, insert assms, induct xs arbitrary: s) (simp_all add: ext_iff)
+  by (rule sym, insert assms, induct xs arbitrary: s) (simp_all add: fun_eq_iff)
 
 lemma foldl_cong [fundef_cong, recdef_cong]:
   "[| a = b; l = k; !!a x. x : set l ==> f a x = g a x |] 
@@ -4564,7 +4564,7 @@
 
 lemma member_set:
   "member = set"
-  by (simp add: ext_iff member_def mem_def)
+  by (simp add: fun_eq_iff member_def mem_def)
 
 lemma member_rec [code]:
   "member (x # xs) y \<longleftrightarrow> x = y \<or> member xs y"
--- a/src/HOL/Map.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Map.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -218,7 +218,7 @@
 
 lemma map_of_zip_map:
   "map_of (zip xs (map f xs)) = (\<lambda>x. if x \<in> set xs then Some (f x) else None)"
-  by (induct xs) (simp_all add: ext_iff)
+  by (induct xs) (simp_all add: fun_eq_iff)
 
 lemma finite_range_map_of: "finite (range (map_of xys))"
 apply (induct xys)
@@ -245,7 +245,7 @@
 
 lemma map_of_map:
   "map_of (map (\<lambda>(k, v). (k, f v)) xs) = Option.map f \<circ> map_of xs"
-  by (induct xs) (auto simp add: ext_iff)
+  by (induct xs) (auto simp add: fun_eq_iff)
 
 lemma dom_option_map:
   "dom (\<lambda>k. Option.map (f k) (m k)) = dom m"
@@ -347,7 +347,7 @@
 
 lemma map_add_map_of_foldr:
   "m ++ map_of ps = foldr (\<lambda>(k, v) m. m(k \<mapsto> v)) ps m"
-  by (induct ps) (auto simp add: ext_iff map_add_def)
+  by (induct ps) (auto simp add: fun_eq_iff map_add_def)
 
 
 subsection {* @{term [source] restrict_map} *}
@@ -381,26 +381,26 @@
 
 lemma restrict_fun_upd [simp]:
   "m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)"
-by (simp add: restrict_map_def ext_iff)
+by (simp add: restrict_map_def fun_eq_iff)
 
 lemma fun_upd_None_restrict [simp]:
   "(m|`D)(x := None) = (if x:D then m|`(D - {x}) else m|`D)"
-by (simp add: restrict_map_def ext_iff)
+by (simp add: restrict_map_def fun_eq_iff)
 
 lemma fun_upd_restrict: "(m|`D)(x := y) = (m|`(D-{x}))(x := y)"
-by (simp add: restrict_map_def ext_iff)
+by (simp add: restrict_map_def fun_eq_iff)
 
 lemma fun_upd_restrict_conv [simp]:
   "x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)"
-by (simp add: restrict_map_def ext_iff)
+by (simp add: restrict_map_def fun_eq_iff)
 
 lemma map_of_map_restrict:
   "map_of (map (\<lambda>k. (k, f k)) ks) = (Some \<circ> f) |` set ks"
-  by (induct ks) (simp_all add: ext_iff restrict_map_insert)
+  by (induct ks) (simp_all add: fun_eq_iff restrict_map_insert)
 
 lemma restrict_complement_singleton_eq:
   "f |` (- {x}) = f(x := None)"
-  by (simp add: restrict_map_def ext_iff)
+  by (simp add: restrict_map_def fun_eq_iff)
 
 
 subsection {* @{term [source] map_upds} *}
@@ -641,7 +641,7 @@
 by (fastsimp simp add: map_le_def)
 
 lemma map_le_iff_map_add_commute: "(f \<subseteq>\<^sub>m f ++ g) = (f++g = g++f)"
-by(fastsimp simp: map_add_def map_le_def ext_iff split: option.splits)
+by(fastsimp simp: map_add_def map_le_def fun_eq_iff split: option.splits)
 
 lemma map_add_le_mapE: "f++g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h"
 by (fastsimp simp add: map_le_def map_add_def dom_def)
--- a/src/HOL/Matrix/Matrix.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Matrix/Matrix.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -74,7 +74,7 @@
   let ?B = "{pos. Rep_matrix x (fst pos) (snd pos) \<noteq> 0}"
   have swap_image: "?swap`?A = ?B"
     apply (simp add: image_def)
-    apply (rule set_ext)
+    apply (rule set_eqI)
     apply (simp)
     proof
       fix y
@@ -208,7 +208,7 @@
 apply (simp)
 proof -
   fix n
-  have "{x. x < Suc n} = insert n {x. x < n}"  by (rule set_ext, simp, arith)
+  have "{x. x < Suc n} = insert n {x. x < n}"  by (rule set_eqI, simp, arith)
   moreover assume "finite {x. x < n}"
   ultimately show "finite {x. x < Suc n}" by (simp)
 qed
@@ -225,11 +225,11 @@
     have f1: "finite ?sd"
     proof -
       let ?f = "% x. (m, x)"
-      have "{pos. fst pos = m & snd pos < n} = ?f ` {x. x < n}" by (rule set_ext, simp add: image_def, auto)
+      have "{pos. fst pos = m & snd pos < n} = ?f ` {x. x < n}" by (rule set_eqI, simp add: image_def, auto)
       moreover have "finite {x. x < n}" by (simp add: finite_natarray1)
       ultimately show "finite {pos. fst pos = m & snd pos < n}" by (simp)
     qed
-    have su: "?s0 \<union> ?sd = ?s1" by (rule set_ext, simp, arith)
+    have su: "?s0 \<union> ?sd = ?s1" by (rule set_eqI, simp, arith)
     from f0 f1 have "finite (?s0 \<union> ?sd)" by (rule finite_UnI)
     with su show "finite ?s1" by (simp)
 qed
@@ -247,7 +247,7 @@
   have c: "!! (m::nat) a. ~(m <= a) \<Longrightarrow> a < m" by (arith)
   from a b have "(?u \<inter> (-?v)) = {}"
     apply (simp)
-    apply (rule set_ext)
+    apply (rule set_eqI)
     apply (simp)
     apply auto
     by (rule c, auto)+
--- a/src/HOL/MicroJava/Comp/AuxLemmas.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/MicroJava/Comp/AuxLemmas.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -68,7 +68,7 @@
 (**********************************************************************)
 
 lemma the_map_upd: "(the \<circ> f(x\<mapsto>v)) = (the \<circ> f)(x:=v)"
-by (simp add: ext_iff)
+by (simp add: fun_eq_iff)
 
 lemma map_of_in_set: 
   "(map_of xs x = None) = (x \<notin> set (map fst xs))"
--- a/src/HOL/MicroJava/Comp/LemmasComp.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/MicroJava/Comp/LemmasComp.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -113,7 +113,7 @@
 by (auto simp add: subcls1_def2 comp_classname comp_is_class)
 
 lemma comp_widen: "widen (comp G) = widen G"
-  apply (simp add: ext_iff)
+  apply (simp add: fun_eq_iff)
   apply (intro allI iffI)
   apply (erule widen.cases) 
   apply (simp_all add: comp_subcls1 widen.null)
@@ -122,7 +122,7 @@
   done
 
 lemma comp_cast: "cast (comp G) = cast G"
-  apply (simp add: ext_iff)
+  apply (simp add: fun_eq_iff)
   apply (intro allI iffI)
   apply (erule cast.cases) 
   apply (simp_all add: comp_subcls1 cast.widen cast.subcls)
@@ -133,7 +133,7 @@
   done
 
 lemma comp_cast_ok: "cast_ok (comp G) = cast_ok G"
-  by (simp add: ext_iff cast_ok_def comp_widen)
+  by (simp add: fun_eq_iff cast_ok_def comp_widen)
 
 
 lemma compClass_fst [simp]: "(fst (compClass G C)) = (fst C)"
@@ -171,7 +171,7 @@
 apply (subgoal_tac "(Fun.comp fst (\<lambda>(C, cno::cname, fdls::fdecl list, jmdls).
   (C, cno, fdls, map (compMethod G C) jmdls))) = fst")
 apply (simp del: image_compose)
-apply (simp add: ext_iff split_beta)
+apply (simp add: fun_eq_iff split_beta)
 done
 
 
@@ -322,7 +322,7 @@
   = (\<lambda>x. (fst x, Object, fst (snd x),
                         snd (snd (compMethod G Object (S, snd x)))))")
 apply (simp only:)
-apply (simp add: ext_iff)
+apply (simp add: fun_eq_iff)
 apply (intro strip)
 apply (subgoal_tac "(inv (\<lambda>(s, m). (s, Object, m)) (S, Object, snd x)) = (S, snd x)")
 apply (simp only:)
--- a/src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -101,7 +101,7 @@
 lemma card_1_exists: "card s = 1 \<longleftrightarrow> (\<exists>!x. x \<in> s)" unfolding One_nat_def
   apply rule apply(drule card_eq_SucD) defer apply(erule ex1E) proof-
   fix x assume as:"x \<in> s" "\<forall>y. y \<in> s \<longrightarrow> y = x"
-  have *:"s = insert x {}" apply- apply(rule set_ext,rule) unfolding singleton_iff
+  have *:"s = insert x {}" apply- apply(rule set_eqI,rule) unfolding singleton_iff
     apply(rule as(2)[rule_format]) using as(1) by auto
   show "card s = Suc 0" unfolding * using card_insert by auto qed auto
 
@@ -122,7 +122,7 @@
   shows "card {s'. \<exists>a\<in>s. s' = s - {a} \<and>  f ` s' = t - {b}} = 1" proof-
   obtain a where a:"b = f a" "a\<in>s" using assms(4-5) by auto
   have inj:"inj_on f s" apply(rule eq_card_imp_inj_on) using assms(1-4) by auto
-  have *:"{a \<in> s. f ` (s - {a}) = t - {b}} = {a}" apply(rule set_ext) unfolding singleton_iff
+  have *:"{a \<in> s. f ` (s - {a}) = t - {b}} = {a}" apply(rule set_eqI) unfolding singleton_iff
     apply(rule,rule inj[unfolded inj_on_def,rule_format]) unfolding a using a(2) and assms and inj[unfolded inj_on_def] by auto
   show ?thesis apply(rule image_lemma_0) unfolding *  by auto qed
 
@@ -135,7 +135,7 @@
   have "f a \<in> t - {b}" using a and assms by auto
   hence "\<exists>c \<in> s - {a}. f a = f c" unfolding image_iff[symmetric] and a by auto
   then obtain c where c:"c \<in> s" "a \<noteq> c" "f a = f c" by auto
-  hence *:"f ` (s - {c}) = f ` (s - {a})" apply-apply(rule set_ext,rule) proof-
+  hence *:"f ` (s - {c}) = f ` (s - {a})" apply-apply(rule set_eqI,rule) proof-
     fix x assume "x \<in> f ` (s - {a})" then obtain y where y:"f y = x" "y\<in>s- {a}" by auto
     thus "x \<in> f ` (s - {c})" unfolding image_iff apply(rule_tac x="if y = c then a else y" in bexI) using c a by auto qed auto
   have "c\<in>?M" unfolding mem_Collect_eq and * using a and c(1) by auto
@@ -165,7 +165,7 @@
     (\<exists>a\<in>s. (f = s - {a})) \<and> P f \<longleftrightarrow> (\<exists>a\<in>s. (f = s - {a}) \<and> P f)" by auto
   fix s assume s:"s\<in>simplices" let ?S = "{f \<in> {f. \<exists>s\<in>simplices. face f s}. face f s \<and> rl ` f = {0..n}}"
     have "{0..n + 1} - {n + 1} = {0..n}" by auto
-    hence S:"?S = {s'. \<exists>a\<in>s. s' = s - {a} \<and> rl ` s' = {0..n + 1} - {n + 1}}" apply- apply(rule set_ext)
+    hence S:"?S = {s'. \<exists>a\<in>s. s' = s - {a} \<and> rl ` s' = {0..n + 1} - {n + 1}}" apply- apply(rule set_eqI)
       unfolding assms(2)[rule_format] mem_Collect_eq and *[OF s, unfolded mem_Collect_eq, where P="\<lambda>x. rl ` x = {0..n}"] by auto
     show "rl ` s = {0..n+1} \<Longrightarrow> card ?S = 1" "rl ` s \<noteq> {0..n+1} \<Longrightarrow> card ?S = 0 \<or> card ?S = 2" unfolding S
       apply(rule_tac[!] image_lemma_1 image_lemma_2) using ** assms(4) and s by auto qed
@@ -493,13 +493,13 @@
 lemma card_funspace': assumes "finite s" "finite t" "card s = m" "card t = n"
   shows "card {f. (\<forall>x\<in>s. f x \<in> t) \<and> (\<forall>x\<in>UNIV - s. f x = d)} = n ^ m" (is "card (?M s) = _")
   using assms apply - proof(induct m arbitrary: s)
-  have *:"{f. \<forall>x. f x = d} = {\<lambda>x. d}" apply(rule set_ext,rule)unfolding mem_Collect_eq apply(rule,rule ext) by auto
+  have *:"{f. \<forall>x. f x = d} = {\<lambda>x. d}" apply(rule set_eqI,rule)unfolding mem_Collect_eq apply(rule,rule ext) by auto
   case 0 thus ?case by(auto simp add: *) next
   case (Suc m) guess a using card_eq_SucD[OF Suc(4)] .. then guess s0
     apply(erule_tac exE) apply(erule conjE)+ . note as0 = this
   have **:"card s0 = m" using as0 using Suc(2) Suc(4) by auto
   let ?l = "(\<lambda>(b,g) x. if x = a then b else g x)" have *:"?M (insert a s0) = ?l ` {(b,g). b\<in>t \<and> g\<in>?M s0}"
-    apply(rule set_ext,rule) unfolding mem_Collect_eq image_iff apply(erule conjE)
+    apply(rule set_eqI,rule) unfolding mem_Collect_eq image_iff apply(erule conjE)
     apply(rule_tac x="(x a, \<lambda>y. if y\<in>s0 then x y else d)" in bexI) apply(rule ext) prefer 3 apply rule defer
     apply(erule bexE,rule) unfolding mem_Collect_eq apply(erule splitE)+ apply(erule conjE)+ proof-
     fix x xa xb xc y assume as:"x = (\<lambda>(b, g) x. if x = a then b else g x) xa" "xb \<in> UNIV - insert a s0" "xa = (xc, y)" "xc \<in> t"
@@ -725,7 +725,7 @@
 	    hence "a_max = a'" using a' min_max by auto
 	    thus False unfolding True using min_max by auto qed qed
 	hence "\<forall>i. a_max i = a1 i" by auto
-	hence "a' = a" unfolding True `a=a0` apply-apply(subst ext_iff,rule)
+	hence "a' = a" unfolding True `a=a0` apply-apply(subst fun_eq_iff,rule)
 	  apply(erule_tac x=x in allE) unfolding a0a1(5)[rule_format] min_max(5)[rule_format]
 	proof- case goal1 thus ?case apply(cases "x\<in>{1..n}") by auto qed
 	hence "s' = s" apply-apply(rule lem1[OF a'(2)]) using `a\<in>s` `a'\<in>s'` by auto
@@ -738,7 +738,7 @@
 	  have "a2 \<noteq> a" unfolding `a=a0` using k(2)[rule_format,of k] by auto
 	  hence "a2 \<in> s - {a}" using a2 by auto thus "a2 \<in> s'" unfolding a'(2)[THEN sym] by auto qed
 	hence "\<forall>i. a_min i = a2 i" by auto
-	hence "a' = a3" unfolding as `a=a0` apply-apply(subst ext_iff,rule)
+	hence "a' = a3" unfolding as `a=a0` apply-apply(subst fun_eq_iff,rule)
 	  apply(erule_tac x=x in allE) unfolding a0a1(5)[rule_format] min_max(5)[rule_format]
 	  unfolding a3_def k(2)[rule_format] unfolding a0a1(5)[rule_format] proof- case goal1
 	  show ?case unfolding goal1 apply(cases "x\<in>{1..n}") defer apply(cases "x=k")
@@ -834,7 +834,7 @@
 	proof- case goal1 thus ?case apply(cases "j\<in>{1..n}",case_tac[!] "j=k") by auto qed
 	have "\<forall>i. a_min i = a3 i" using a_max apply-apply(rule,erule_tac x=i in allE)
 	  unfolding min_max(5)[rule_format] *[rule_format] proof- case goal1
-	  thus ?case apply(cases "i\<in>{1..n}") by auto qed hence "a_min = a3" unfolding ext_iff .
+	  thus ?case apply(cases "i\<in>{1..n}") by auto qed hence "a_min = a3" unfolding fun_eq_iff .
 	hence "s' = insert a3 (s - {a1})" using a' unfolding `a=a1` True by auto thus ?thesis by auto next
 	case False hence as:"a'=a_max" using ** by auto
 	have "a_min = a0" unfolding kle_antisym[THEN sym,of _ _ n] apply(rule)
@@ -843,7 +843,7 @@
 	  thus "a_min \<in> s" by auto have "a0 \<in> s - {a1}" using a0a1(1-3) by auto thus "a0 \<in> s'"
 	    unfolding a'(2)[THEN sym,unfolded `a=a1`] by auto qed
 	hence "\<forall>i. a_max i = a1 i" unfolding a0a1(5)[rule_format] min_max(5)[rule_format] by auto
-	hence "s' = s" apply-apply(rule lem1[OF a'(2)]) using `a\<in>s` `a'\<in>s'` unfolding as `a=a1` unfolding ext_iff by auto
+	hence "s' = s" apply-apply(rule lem1[OF a'(2)]) using `a\<in>s` `a'\<in>s'` unfolding as `a=a1` unfolding fun_eq_iff by auto
 	thus ?thesis by auto qed qed 
     ultimately have *:"?A = {s, insert a3 (s - {a1})}" by blast
     have "s \<noteq> insert a3 (s - {a1})" using `a3\<notin>s` by auto
@@ -863,7 +863,7 @@
       thus False using ksimplexD(6)[OF assms(1),rule_format,OF u v] unfolding kle_def
 	unfolding l(2) k(2) `k=l` apply-apply(erule disjE)apply(erule_tac[!] exE conjE)+
 	apply(erule_tac[!] x=l in allE)+ by(auto simp add: *) qed
-    hence aa':"a'\<noteq>a" apply-apply rule unfolding ext_iff unfolding a'_def k(2)
+    hence aa':"a'\<noteq>a" apply-apply rule unfolding fun_eq_iff unfolding a'_def k(2)
       apply(erule_tac x=l in allE) by auto
     have "a' \<notin> s" apply(rule) apply(drule ksimplexD(6)[OF assms(1),rule_format,OF `a\<in>s`]) proof(cases "kle n a a'")
       case goal2 hence "kle n a' a" by auto thus False apply(drule_tac kle_imp_pointwise)
@@ -877,22 +877,22 @@
     have uxv:"\<And>x. kle n u x \<Longrightarrow> kle n x v \<Longrightarrow> (x = u) \<or> (x = a) \<or> (x = a') \<or> (x = v)"
     proof- case goal1 thus ?case proof(cases "x k = u k", case_tac[!] "x l = u l")
       assume as:"x l = u l" "x k = u k"
-      have "x = u" unfolding ext_iff
+      have "x = u" unfolding fun_eq_iff
 	using goal1(2)[THEN kle_imp_pointwise,unfolded l(2)] unfolding k(2) apply-
 	using goal1(1)[THEN kle_imp_pointwise] apply-apply rule apply(erule_tac x=xa in allE)+ proof- case goal1
 	thus ?case apply(cases "x=l") apply(case_tac[!] "x=k") using as by auto qed thus ?case by auto next
       assume as:"x l \<noteq> u l" "x k = u k"
-      have "x = a'" unfolding ext_iff unfolding a'_def
+      have "x = a'" unfolding fun_eq_iff unfolding a'_def
 	using goal1(2)[THEN kle_imp_pointwise] unfolding l(2) k(2) apply-
 	using goal1(1)[THEN kle_imp_pointwise] apply-apply rule apply(erule_tac x=xa in allE)+ proof- case goal1
 	thus ?case apply(cases "x=l") apply(case_tac[!] "x=k") using as by auto qed thus ?case by auto next
       assume as:"x l = u l" "x k \<noteq> u k"
-      have "x = a" unfolding ext_iff
+      have "x = a" unfolding fun_eq_iff
 	using goal1(2)[THEN kle_imp_pointwise] unfolding l(2) k(2) apply-
 	using goal1(1)[THEN kle_imp_pointwise] apply-apply rule apply(erule_tac x=xa in allE)+ proof- case goal1
 	thus ?case apply(cases "x=l") apply(case_tac[!] "x=k") using as by auto qed thus ?case by auto next
       assume as:"x l \<noteq> u l" "x k \<noteq> u k"
-      have "x = v" unfolding ext_iff
+      have "x = v" unfolding fun_eq_iff
 	using goal1(2)[THEN kle_imp_pointwise] unfolding l(2) k(2) apply-
 	using goal1(1)[THEN kle_imp_pointwise] apply-apply rule apply(erule_tac x=xa in allE)+ proof- case goal1
 	thus ?case apply(cases "x=l") apply(case_tac[!] "x=k") using as `k\<noteq>l` by auto qed thus ?case by auto qed qed
@@ -935,9 +935,9 @@
     moreover have "?A \<subseteq> {s, insert a' (s - {a})}" apply(rule) unfolding mem_Collect_eq proof(erule conjE)
       fix s' assume as:"ksimplex p n s'" and "\<exists>b\<in>s'. s' - {b} = s - {a}"
       from this(2) guess a'' .. note a''=this
-      have "u\<noteq>v" unfolding ext_iff unfolding l(2) k(2) by auto
+      have "u\<noteq>v" unfolding fun_eq_iff unfolding l(2) k(2) by auto
       hence uv':"\<not> kle n v u" using uv using kle_antisym by auto
-      have "u\<noteq>a" "v\<noteq>a" unfolding ext_iff k(2) l(2) by auto 
+      have "u\<noteq>a" "v\<noteq>a" unfolding fun_eq_iff k(2) l(2) by auto 
       hence uvs':"u\<in>s'" "v\<in>s'" using `u\<in>s` `v\<in>s` using a'' by auto
       have lem6:"a \<in> s' \<or> a' \<in> s'" proof(cases "\<forall>x\<in>s'. kle n x u \<or> kle n v x")
 	case False then guess w unfolding ball_simps .. note w=this
@@ -1052,7 +1052,7 @@
   shows "odd (card {s. ksimplex p (n+1) s \<and>((reduced lab (n+1)) `  s = {0..n+1})})" proof-
   have *:"\<And>s t. odd (card s) \<Longrightarrow> s = t \<Longrightarrow> odd (card t)" "\<And>s f. (\<And>x. f x \<le> n +1 ) \<Longrightarrow> f ` s \<subseteq> {0..n+1}" by auto
   show ?thesis apply(rule kuhn_simplex_lemma[unfolded mem_Collect_eq]) apply(rule,rule,rule *,rule reduced_labelling)
-    apply(rule *(1)[OF assms(4)]) apply(rule set_ext) unfolding mem_Collect_eq apply(rule,erule conjE) defer apply(rule) proof-(*(rule,rule)*)
+    apply(rule *(1)[OF assms(4)]) apply(rule set_eqI) unfolding mem_Collect_eq apply(rule,erule conjE) defer apply(rule) proof-(*(rule,rule)*)
     fix f assume as:"ksimplex p n f" "reduced lab n ` f = {0..n}"
     have *:"\<forall>x\<in>f. \<forall>j\<in>{1..n + 1}. x j = 0 \<longrightarrow> lab x j = 0" "\<forall>x\<in>f. \<forall>j\<in>{1..n + 1}. x j = p \<longrightarrow> lab x j = 1"
       using assms(2-3) using as(1)[unfolded ksimplex_def] by auto
@@ -1060,7 +1060,7 @@
     { fix x assume "x\<in>f" hence "reduced lab (n + 1) x < n + 1" apply-apply(rule reduced_labelling_1)
 	defer using assms(3) using as(1)[unfolded ksimplex_def] by auto
       hence "reduced lab (n + 1) x = reduced lab n x" apply-apply(rule reduced_labelling_Suc) using reduced_labelling(1) by auto }
-    hence "reduced lab (n + 1) ` f = {0..n}" unfolding as(2)[THEN sym] apply- apply(rule set_ext) unfolding image_iff by auto
+    hence "reduced lab (n + 1) ` f = {0..n}" unfolding as(2)[THEN sym] apply- apply(rule set_eqI) unfolding image_iff by auto
     moreover guess s using as(1)[unfolded simplex_top_face[OF assms(1) allp,THEN sym]] .. then guess a ..
     ultimately show "\<exists>s a. ksimplex p (n + 1) s \<and>
       a \<in> s \<and> f = s - {a} \<and> reduced lab (n + 1) ` f = {0..n} \<and> ((\<exists>j\<in>{1..n + 1}. \<forall>x\<in>f. x j = 0) \<or> (\<exists>j\<in>{1..n + 1}. \<forall>x\<in>f. x j = p))" (is ?ex)
@@ -1072,7 +1072,7 @@
       hence "reduced lab (n + 1) x < n + 1" using sa(4) by auto 
       hence "reduced lab (n + 1) x = reduced lab n x" apply-apply(rule reduced_labelling_Suc)
 	using reduced_labelling(1) by auto }
-    thus part1:"reduced lab n ` f = {0..n}" unfolding sa(4)[THEN sym] apply-apply(rule set_ext) unfolding image_iff by auto
+    thus part1:"reduced lab n ` f = {0..n}" unfolding sa(4)[THEN sym] apply-apply(rule set_eqI) unfolding image_iff by auto
     have *:"\<forall>x\<in>f. x (n + 1) = p" proof(cases "\<exists>j\<in>{1..n + 1}. \<forall>x\<in>f. x j = 0")
       case True then guess j .. hence "\<And>x. x\<in>f \<Longrightarrow> reduced lab (n + 1) x \<noteq> j - 1" apply-apply(rule reduced_labelling_0) apply assumption
 	apply(rule assms(2)[rule_format]) using sa(1)[unfolded ksimplex_def] unfolding sa by auto moreover
--- a/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -880,7 +880,7 @@
   by (simp add: row_def column_def transpose_def Cart_eq)
 
 lemma rows_transpose: "rows(transpose (A::'a::semiring_1^_^_)) = columns A"
-by (auto simp add: rows_def columns_def row_transpose intro: set_ext)
+by (auto simp add: rows_def columns_def row_transpose intro: set_eqI)
 
 lemma columns_transpose: "columns(transpose (A::'a::semiring_1^_^_)) = rows A" by (metis transpose_transpose rows_transpose)
 
@@ -986,7 +986,7 @@
 subsection {* Standard bases are a spanning set, and obviously finite. *}
 
 lemma span_stdbasis:"span {cart_basis i :: real^'n | i. i \<in> (UNIV :: 'n set)} = UNIV"
-apply (rule set_ext)
+apply (rule set_eqI)
 apply auto
 apply (subst basis_expansion'[symmetric])
 apply (rule span_setsum)
@@ -1440,12 +1440,12 @@
 lemma interval_cart: fixes a :: "'a::ord^'n" shows
   "{a <..< b} = {x::'a^'n. \<forall>i. a$i < x$i \<and> x$i < b$i}" and
   "{a .. b} = {x::'a^'n. \<forall>i. a$i \<le> x$i \<and> x$i \<le> b$i}"
-  by (auto simp add: set_ext_iff vector_less_def vector_le_def)
+  by (auto simp add: set_eq_iff vector_less_def vector_le_def)
 
 lemma mem_interval_cart: fixes a :: "'a::ord^'n" shows
   "x \<in> {a<..<b} \<longleftrightarrow> (\<forall>i. a$i < x$i \<and> x$i < b$i)"
   "x \<in> {a .. b} \<longleftrightarrow> (\<forall>i. a$i \<le> x$i \<and> x$i \<le> b$i)"
-  using interval_cart[of a b] by(auto simp add: set_ext_iff vector_less_def vector_le_def)
+  using interval_cart[of a b] by(auto simp add: set_eq_iff vector_less_def vector_le_def)
 
 lemma interval_eq_empty_cart: fixes a :: "real^'n" shows
  "({a <..< b} = {} \<longleftrightarrow> (\<exists>i. b$i \<le> a$i))" (is ?th1) and
@@ -1498,7 +1498,7 @@
 
 lemma interval_sing: fixes a :: "'a::linorder^'n" shows
  "{a .. a} = {a} \<and> {a<..<a} = {}"
-apply(auto simp add: set_ext_iff vector_less_def vector_le_def Cart_eq)
+apply(auto simp add: set_eq_iff vector_less_def vector_le_def Cart_eq)
 apply (simp add: order_eq_iff)
 apply (auto simp add: not_less less_imp_le)
 done
@@ -1511,17 +1511,17 @@
   { fix i
     have "a $ i \<le> x $ i"
       using x order_less_imp_le[of "a$i" "x$i"]
-      by(simp add: set_ext_iff vector_less_def vector_le_def Cart_eq)
+      by(simp add: set_eq_iff vector_less_def vector_le_def Cart_eq)
   }
   moreover
   { fix i
     have "x $ i \<le> b $ i"
       using x order_less_imp_le[of "x$i" "b$i"]
-      by(simp add: set_ext_iff vector_less_def vector_le_def Cart_eq)
+      by(simp add: set_eq_iff vector_less_def vector_le_def Cart_eq)
   }
   ultimately
   show "a \<le> x \<and> x \<le> b"
-    by(simp add: set_ext_iff vector_less_def vector_le_def Cart_eq)
+    by(simp add: set_eq_iff vector_less_def vector_le_def Cart_eq)
 qed
 
 lemma subset_interval_cart: fixes a :: "real^'n" shows
@@ -1540,7 +1540,7 @@
 
 lemma inter_interval_cart: fixes a :: "'a::linorder^'n" shows
  "{a .. b} \<inter> {c .. d} =  {(\<chi> i. max (a$i) (c$i)) .. (\<chi> i. min (b$i) (d$i))}"
-  unfolding set_ext_iff and Int_iff and mem_interval_cart
+  unfolding set_eq_iff and Int_iff and mem_interval_cart
   by auto
 
 lemma closed_interval_left_cart: fixes b::"real^'n"
@@ -1656,7 +1656,7 @@
   shows "(\<lambda>x. m *s x + c) o (\<lambda>x. inverse(m) *s x + (-(inverse(m) *s c))) = id"
   "(\<lambda>x. inverse(m) *s x + (-(inverse(m) *s c))) o (\<lambda>x. m *s x + c) = id"
   using m0
-apply (auto simp add: ext_iff vector_add_ldistrib)
+apply (auto simp add: fun_eq_iff vector_add_ldistrib)
 by (simp_all add: vector_smult_lneg[symmetric] vector_smult_assoc vector_sneg_minus1[symmetric])
 
 lemma vector_affinity_eq:
@@ -1712,7 +1712,7 @@
 lemma unit_interval_convex_hull_cart:
   "{0::real^'n .. 1} = convex hull {x. \<forall>i. (x$i = 0) \<or> (x$i = 1)}" (is "?int = convex hull ?points")
   unfolding Cart_1 unit_interval_convex_hull[where 'a="real^'n"]
-  apply(rule arg_cong[where f="\<lambda>x. convex hull x"]) apply(rule set_ext) unfolding mem_Collect_eq
+  apply(rule arg_cong[where f="\<lambda>x. convex hull x"]) apply(rule set_eqI) unfolding mem_Collect_eq
   apply safe apply(erule_tac x="\<pi>' i" in allE) unfolding nth_conv_component defer
   apply(erule_tac x="\<pi> i" in allE) by auto
 
@@ -1974,7 +1974,7 @@
   apply (simp add: forall_3)
   done
 
-lemma range_vec1[simp]:"range vec1 = UNIV" apply(rule set_ext,rule) unfolding image_iff defer
+lemma range_vec1[simp]:"range vec1 = UNIV" apply(rule set_eqI,rule) unfolding image_iff defer
   apply(rule_tac x="dest_vec1 x" in bexI) by auto
 
 lemma dest_vec1_lambda: "dest_vec1(\<chi> i. x i) = x 1"
@@ -2069,7 +2069,7 @@
 lemma vec1_interval:fixes a::"real" shows
   "vec1 ` {a .. b} = {vec1 a .. vec1 b}"
   "vec1 ` {a<..<b} = {vec1 a<..<vec1 b}"
-  apply(rule_tac[!] set_ext) unfolding image_iff vector_less_def unfolding mem_interval_cart
+  apply(rule_tac[!] set_eqI) unfolding image_iff vector_less_def unfolding mem_interval_cart
   unfolding forall_1 unfolding vec1_dest_vec1_simps
   apply rule defer apply(rule_tac x="dest_vec1 x" in bexI) prefer 3 apply rule defer
   apply(rule_tac x="dest_vec1 x" in bexI) by auto
@@ -2119,10 +2119,10 @@
 
 lemma open_closed_interval_1: fixes a :: "real^1" shows
  "{a<..<b} = {a .. b} - {a, b}"
-  unfolding set_ext_iff apply simp unfolding vector_less_def and vector_le_def and forall_1 and dest_vec1_eq[THEN sym] by(auto simp del:dest_vec1_eq)
+  unfolding set_eq_iff apply simp unfolding vector_less_def and vector_le_def and forall_1 and dest_vec1_eq[THEN sym] by(auto simp del:dest_vec1_eq)
 
 lemma closed_open_interval_1: "dest_vec1 (a::real^1) \<le> dest_vec1 b ==> {a .. b} = {a<..<b} \<union> {a,b}"
-  unfolding set_ext_iff apply simp unfolding vector_less_def and vector_le_def and forall_1 and dest_vec1_eq[THEN sym] by(auto simp del:dest_vec1_eq)
+  unfolding set_eq_iff apply simp unfolding vector_less_def and vector_le_def and forall_1 and dest_vec1_eq[THEN sym] by(auto simp del:dest_vec1_eq)
 
 lemma Lim_drop_le: fixes f :: "'a \<Rightarrow> real^1" shows
   "(f ---> l) net \<Longrightarrow> ~(trivial_limit net) \<Longrightarrow> eventually (\<lambda>x. dest_vec1 (f x) \<le> b) net ==> dest_vec1 l \<le> b"
@@ -2284,7 +2284,7 @@
 lemma interval_split_cart:
   "{a..b::real^'n} \<inter> {x. x$k \<le> c} = {a .. (\<chi> i. if i = k then min (b$k) c else b$i)}"
   "{a..b} \<inter> {x. x$k \<ge> c} = {(\<chi> i. if i = k then max (a$k) c else a$i) .. b}"
-  apply(rule_tac[!] set_ext) unfolding Int_iff mem_interval_cart mem_Collect_eq
+  apply(rule_tac[!] set_eqI) unfolding Int_iff mem_interval_cart mem_Collect_eq
   unfolding Cart_lambda_beta by auto
 
 (*lemma content_split_cart:
--- a/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -191,7 +191,7 @@
 lemma affine_hull_finite:
   assumes "finite s"
   shows "affine hull s = {y. \<exists>u. setsum u s = 1 \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = y}"
-  unfolding affine_hull_explicit and set_ext_iff and mem_Collect_eq apply (rule,rule)
+  unfolding affine_hull_explicit and set_eq_iff and mem_Collect_eq apply (rule,rule)
   apply(erule exE)+ apply(erule conjE)+ defer apply(erule exE) apply(erule conjE) proof-
   fix x u assume "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x"
   thus "\<exists>sa u. finite sa \<and> \<not> (\<forall>x. (x \<in> sa) = (x \<in> {})) \<and> sa \<subseteq> s \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = x"
@@ -709,7 +709,7 @@
     ultimately have "\<exists>k u x. (\<forall>i\<in>{1..k}. 0 \<le> u i \<and> x i \<in> p) \<and> setsum u {1..k} = 1 \<and> (\<Sum>i::nat = 1..k. u i *\<^sub>R x i) = y"
       apply(rule_tac x="card s" in exI) apply(rule_tac x="u \<circ> f" in exI) apply(rule_tac x=f in exI) by fastsimp
     hence "y \<in> ?lhs" unfolding convex_hull_indexed by auto  }
-  ultimately show ?thesis unfolding set_ext_iff by blast
+  ultimately show ?thesis unfolding set_eq_iff by blast
 qed
 
 subsection {* A stepping theorem for that expansion. *}
@@ -882,7 +882,7 @@
 lemma convex_hull_caratheodory: fixes p::"('a::euclidean_space) set"
   shows "convex hull p = {y. \<exists>s u. finite s \<and> s \<subseteq> p \<and> card s \<le> DIM('a) + 1 \<and>
   (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = y}"
-  unfolding convex_hull_explicit set_ext_iff mem_Collect_eq
+  unfolding convex_hull_explicit set_eq_iff mem_Collect_eq
 proof(rule,rule)
   fix y let ?P = "\<lambda>n. \<exists>s u. finite s \<and> card s = n \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y"
   assume "\<exists>s u. finite s \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y"
@@ -939,7 +939,7 @@
 lemma caratheodory:
  "convex hull p = {x::'a::euclidean_space. \<exists>s. finite s \<and> s \<subseteq> p \<and>
       card s \<le> DIM('a) + 1 \<and> x \<in> convex hull s}"
-  unfolding set_ext_iff apply(rule, rule) unfolding mem_Collect_eq proof-
+  unfolding set_eq_iff apply(rule, rule) unfolding mem_Collect_eq proof-
   fix x assume "x \<in> convex hull p"
   then obtain s u where "finite s" "s \<subseteq> p" "card s \<le> DIM('a) + 1"
      "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x"unfolding convex_hull_caratheodory by auto
@@ -1000,7 +1000,7 @@
   let ?X = "{0..1} \<times> s \<times> t"
   let ?h = "(\<lambda>z. (1 - fst z) *\<^sub>R fst (snd z) + fst z *\<^sub>R snd (snd z))"
   have *:"{ (1 - u) *\<^sub>R x + u *\<^sub>R y | x y u. 0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> t} = ?h ` ?X"
-    apply(rule set_ext) unfolding image_iff mem_Collect_eq
+    apply(rule set_eqI) unfolding image_iff mem_Collect_eq
     apply rule apply auto
     apply (rule_tac x=u in rev_bexI, simp)
     apply (erule rev_bexI, erule rev_bexI, simp)
@@ -1029,7 +1029,7 @@
     case (Suc n)
     show ?case proof(cases "n=0")
       case True have "{x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t} = s"
-        unfolding set_ext_iff and mem_Collect_eq proof(rule, rule)
+        unfolding set_eq_iff and mem_Collect_eq proof(rule, rule)
         fix x assume "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t"
         then obtain t where t:"finite t" "t \<subseteq> s" "card t \<le> Suc n" "x \<in> convex hull t" by auto
         show "x\<in>s" proof(cases "card t = 0")
@@ -1048,7 +1048,7 @@
       case False have "{x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t} =
         { (1 - u) *\<^sub>R x + u *\<^sub>R y | x y u. 
         0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> {x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> x \<in> convex hull t}}"
-        unfolding set_ext_iff and mem_Collect_eq proof(rule,rule)
+        unfolding set_eq_iff and mem_Collect_eq proof(rule,rule)
         fix x assume "\<exists>u v c. x = (1 - c) *\<^sub>R u + c *\<^sub>R v \<and>
           0 \<le> c \<and> c \<le> 1 \<and> u \<in> s \<and> (\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> v \<in> convex hull t)"
         then obtain u v c t where obt:"x = (1 - c) *\<^sub>R u + c *\<^sub>R v"
@@ -1531,7 +1531,7 @@
   fixes s :: "('a::euclidean_space) set"
   assumes "closed s" "convex s"
   shows "s = \<Inter> {h. s \<subseteq> h \<and> (\<exists>a b. h = {x. inner a x \<le> b})}"
-  apply(rule set_ext, rule) unfolding Inter_iff Ball_def mem_Collect_eq apply(rule,rule,erule conjE) proof- 
+  apply(rule set_eqI, rule) unfolding Inter_iff Ball_def mem_Collect_eq apply(rule,rule,erule conjE) proof- 
   fix x  assume "\<forall>xa. s \<subseteq> xa \<and> (\<exists>a b. xa = {x. inner a x \<le> b}) \<longrightarrow> x \<in> xa"
   hence "\<forall>a b. s \<subseteq> {x. inner a x \<le> b} \<longrightarrow> x \<in> {x. inner a x \<le> b}" by blast
   thus "x\<in>s" apply(rule_tac ccontr) apply(drule separating_hyperplane_closed_point[OF assms(2,1)])
@@ -1752,7 +1752,7 @@
 
   have "\<exists>surf. homeomorphism (frontier s) sphere pi surf"
     apply(rule homeomorphism_compact) apply(rule compact_frontier[OF assms(1)])
-    apply(rule continuous_on_subset[OF contpi]) defer apply(rule set_ext,rule) 
+    apply(rule continuous_on_subset[OF contpi]) defer apply(rule set_eqI,rule) 
     unfolding inj_on_def prefer 3 apply(rule,rule,rule)
   proof- fix x assume "x\<in>pi ` frontier s" then obtain y where "y\<in>frontier s" "x = pi y" by auto
     thus "x \<in> sphere" using pi(1)[of y] and `0 \<notin> frontier s` by auto
@@ -1813,7 +1813,7 @@
     qed } note hom2 = this
 
   show ?thesis apply(subst homeomorphic_sym) apply(rule homeomorphic_compact[where f="\<lambda>x. norm x *\<^sub>R surf (pi x)"])
-    apply(rule compact_cball) defer apply(rule set_ext, rule, erule imageE, drule hom)
+    apply(rule compact_cball) defer apply(rule set_eqI, rule, erule imageE, drule hom)
     prefer 4 apply(rule continuous_at_imp_continuous_on, rule) apply(rule_tac [3] hom2) proof-
     fix x::"'a" assume as:"x \<in> cball 0 1"
     thus "continuous (at x) (\<lambda>x. norm x *\<^sub>R surf (pi x))" proof(cases "x=0")
@@ -2119,7 +2119,7 @@
   assumes "0 < d" obtains s::"('a::ordered_euclidean_space) set" where
   "finite s" "{x - (\<chi>\<chi> i. d) .. x + (\<chi>\<chi> i. d)} = convex hull s" proof-
   let ?d = "(\<chi>\<chi> i. d)::'a"
-  have *:"{x - ?d .. x + ?d} = (\<lambda>y. x - ?d + (2 * d) *\<^sub>R y) ` {0 .. \<chi>\<chi> i. 1}" apply(rule set_ext, rule)
+  have *:"{x - ?d .. x + ?d} = (\<lambda>y. x - ?d + (2 * d) *\<^sub>R y) ` {0 .. \<chi>\<chi> i. 1}" apply(rule set_eqI, rule)
     unfolding image_iff defer apply(erule bexE) proof-
     fix y assume as:"y\<in>{x - ?d .. x + ?d}"
     { fix i assume i:"i<DIM('a)" have "x $$ i \<le> d + y $$ i" "y $$ i \<le> d + x $$ i"
@@ -2329,7 +2329,7 @@
  "closed_segment a b = convex hull {a,b}" proof-
   have *:"\<And>x. {x} \<noteq> {}" by auto
   have **:"\<And>u v. u + v = 1 \<longleftrightarrow> u = 1 - (v::real)" by auto
-  show ?thesis unfolding segment convex_hull_insert[OF *] convex_hull_singleton apply(rule set_ext)
+  show ?thesis unfolding segment convex_hull_insert[OF *] convex_hull_singleton apply(rule set_eqI)
     unfolding mem_Collect_eq apply(rule,erule exE) 
     apply(rule_tac x="1 - u" in exI) apply rule defer apply(rule_tac x=u in exI) defer
     apply(erule exE, (erule conjE)?)+ apply(rule_tac x="1 - u" in exI) unfolding ** by auto qed
@@ -2454,7 +2454,7 @@
 lemma simplex:
   assumes "finite s" "0 \<notin> s"
   shows "convex hull (insert 0 s) =  { y. (\<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s \<le> 1 \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y)}"
-  unfolding convex_hull_finite[OF finite.insertI[OF assms(1)]] apply(rule set_ext, rule) unfolding mem_Collect_eq
+  unfolding convex_hull_finite[OF finite.insertI[OF assms(1)]] apply(rule set_eqI, rule) unfolding mem_Collect_eq
   apply(erule_tac[!] exE) apply(erule_tac[!] conjE)+ unfolding setsum_clauses(2)[OF assms(1)]
   apply(rule_tac x=u in exI) defer apply(rule_tac x="\<lambda>x. if x = 0 then 1 - setsum u s else u x" in exI) using assms(2)
   unfolding if_smult and setsum_delta_notmem[OF assms(2)] by auto
@@ -2467,7 +2467,7 @@
   have *:"finite ?p" "0\<notin>?p" by auto
   have "{(basis i)::'a |i. i<DIM('a)} = basis ` ?D" by auto
   note sumbas = this  setsum_reindex[OF basis_inj, unfolded o_def]
-  show ?thesis unfolding simplex[OF *] apply(rule set_ext) unfolding mem_Collect_eq apply rule
+  show ?thesis unfolding simplex[OF *] apply(rule set_eqI) unfolding mem_Collect_eq apply rule
     apply(erule exE, (erule conjE)+) apply(erule_tac[2] conjE)+ proof-
     fix x::"'a" and u assume as: "\<forall>x\<in>{basis i |i. i<DIM('a)}. 0 \<le> u x"
       "setsum u {basis i |i. i<DIM('a)} \<le> 1" "(\<Sum>x\<in>{basis i |i. i<DIM('a)}. u x *\<^sub>R x) = x"
@@ -2500,7 +2500,7 @@
 lemma interior_std_simplex:
   "interior (convex hull (insert 0 { basis i| i. i<DIM('a)})) =
   {x::'a::euclidean_space. (\<forall>i<DIM('a). 0 < x$$i) \<and> setsum (\<lambda>i. x$$i) {..<DIM('a)} < 1 }"
-  apply(rule set_ext) unfolding mem_interior std_simplex unfolding subset_eq mem_Collect_eq Ball_def mem_ball
+  apply(rule set_eqI) unfolding mem_interior std_simplex unfolding subset_eq mem_Collect_eq Ball_def mem_ball
   unfolding Ball_def[symmetric] apply rule apply(erule exE, (erule conjE)+) defer apply(erule conjE) proof-
   fix x::"'a" and e assume "0<e" and as:"\<forall>xa. dist x xa < e \<longrightarrow> (\<forall>x<DIM('a). 0 \<le> xa $$ x) \<and> setsum (op $$ xa) {..<DIM('a)} \<le> 1"
   show "(\<forall>xa<DIM('a). 0 < x $$ xa) \<and> setsum (op $$ x) {..<DIM('a)} < 1" apply(safe) proof-
--- a/src/HOL/Multivariate_Analysis/Derivative.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Multivariate_Analysis/Derivative.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -665,7 +665,7 @@
   have "\<forall>i<DIM('a). f' (basis i) = 0"
     by (simp add: euclidean_eq[of _ "0::'a"])
   with derivative_is_linear[OF deriv, THEN linear_componentwise, of _ 0]
-  show ?thesis by (simp add: ext_iff)
+  show ?thesis by (simp add: fun_eq_iff)
 qed
 
 lemma rolle: fixes f::"real\<Rightarrow>real"
@@ -948,13 +948,13 @@
    assumes lf: "linear f" and gf: "f o g = id"
    shows "linear g"
  proof-
-   from gf have fi: "surj f" apply (auto simp add: surj_def o_def id_def ext_iff)
+   from gf have fi: "surj f" apply (auto simp add: surj_def o_def id_def fun_eq_iff)
      by metis 
    from linear_surjective_isomorphism[OF lf fi]
    obtain h:: "'a => 'a" where
      h: "linear h" "\<forall>x. h (f x) = x" "\<forall>x. f (h x) = x" by blast
    have "h = g" apply (rule ext) using gf h(2,3)
-     apply (simp add: o_def id_def ext_iff)
+     apply (simp add: o_def id_def fun_eq_iff)
      by metis
    with h(1) show ?thesis by blast
  qed
@@ -1268,7 +1268,7 @@
   have "(\<lambda>x. x *\<^sub>R f') = (\<lambda>x. x *\<^sub>R f'')"
     using assms [unfolded has_vector_derivative_def]
     by (rule frechet_derivative_unique_at)
-  thus ?thesis unfolding ext_iff by auto
+  thus ?thesis unfolding fun_eq_iff by auto
 qed
 
 lemma vector_derivative_unique_within_closed_interval: fixes f::"real \<Rightarrow> 'n::ordered_euclidean_space"
@@ -1279,7 +1279,7 @@
     apply(rule frechet_derivative_unique_within_closed_interval[of "a" "b"])
     using assms(3-)[unfolded has_vector_derivative_def] using assms(1-2) by auto
   show ?thesis proof(rule ccontr) assume "f' \<noteq> f''" moreover
-    hence "(\<lambda>x. x *\<^sub>R f') 1 = (\<lambda>x. x *\<^sub>R f'') 1" using * by (auto simp: ext_iff)
+    hence "(\<lambda>x. x *\<^sub>R f') 1 = (\<lambda>x. x *\<^sub>R f'') 1" using * by (auto simp: fun_eq_iff)
     ultimately show False unfolding o_def by auto qed qed
 
 lemma vector_derivative_at:
--- a/src/HOL/Multivariate_Analysis/Determinants.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Multivariate_Analysis/Determinants.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -141,7 +141,7 @@
       {fix i assume i: "i \<in> ?U"
         from i permutes_inv_o[OF pU] permutes_in_image[OF pU]
         have "((\<lambda>i. ?di (transpose A) i (inv p i)) o p) i = ?di A i (p i)"
-          unfolding transpose_def by (simp add: ext_iff)}
+          unfolding transpose_def by (simp add: fun_eq_iff)}
       then show "setprod ((\<lambda>i. ?di (transpose A) i (inv p i)) o p) ?U = setprod (\<lambda>i. ?di A i (p i)) ?U" by (auto intro: setprod_cong)
     qed
     finally have "of_int (sign (inv p)) * (setprod (\<lambda>i. ?di (transpose A) i (inv p i)) ?U) = of_int (sign p) * (setprod (\<lambda>i. ?di A i (p i)) ?U)" using sth
@@ -207,7 +207,7 @@
   have id0: "{id} \<subseteq> ?PU" by (auto simp add: permutes_id)
   {fix p assume p: "p \<in> ?PU - {id}"
     then have "p \<noteq> id" by simp
-    then obtain i where i: "p i \<noteq> i" unfolding ext_iff by auto
+    then obtain i where i: "p i \<noteq> i" unfolding fun_eq_iff by auto
     from ld [OF i [symmetric]] have ex:"\<exists>i \<in> ?U. A$i$p i = 0" by blast
     from setprod_zero [OF fU ex] have "?pp p = 0" by simp}
   then have p0: "\<forall>p \<in> ?PU - {id}. ?pp p = 0"  by blast
--- a/src/HOL/Multivariate_Analysis/Euclidean_Space.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Multivariate_Analysis/Euclidean_Space.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -1112,7 +1112,7 @@
       done}
   moreover
   {fix x assume x: "x \<in> span S"
-    have th0:"(\<lambda>a. f a \<in> span (f ` S)) = {x. f x \<in> span (f ` S)}" apply (rule set_ext)
+    have th0:"(\<lambda>a. f a \<in> span (f ` S)) = {x. f x \<in> span (f ` S)}" apply (rule set_eqI)
       unfolding mem_def Collect_def ..
     have "f x \<in> span (f ` S)"
       apply (rule span_induct[where S=S])
@@ -2363,7 +2363,7 @@
       apply (rule span_mul)
       by (rule span_superset)}
   then have SC: "span ?C = span (insert a B)"
-    unfolding set_ext_iff span_breakdown_eq C(3)[symmetric] by auto
+    unfolding set_eq_iff span_breakdown_eq C(3)[symmetric] by auto
   thm pairwise_def
   {fix x y assume xC: "x \<in> ?C" and yC: "y \<in> ?C" and xy: "x \<noteq> y"
     {assume xa: "x = ?a" and ya: "y = ?a"
@@ -2826,7 +2826,7 @@
     " \<forall>x \<in> f ` basis ` {..<DIM('a)}. h x = inv f x" by blast
   from h(2)
   have th: "\<forall>i<DIM('a). (h \<circ> f) (basis i) = id (basis i)"
-    using inv_o_cancel[OF fi, unfolded ext_iff id_def o_def]
+    using inv_o_cancel[OF fi, unfolded fun_eq_iff id_def o_def]
     by auto
 
   from linear_eq_stdbasis[OF linear_compose[OF lf h(1)] linear_id th]
@@ -2843,7 +2843,7 @@
     h: "linear h" "\<forall> x\<in> basis ` {..<DIM('b)}. h x = inv f x" by blast
   from h(2)
   have th: "\<forall>i<DIM('b). (f o h) (basis i) = id (basis i)"
-    using sf by(auto simp add: surj_iff o_def ext_iff)
+    using sf by(auto simp add: surj_iff o_def fun_eq_iff)
   from linear_eq_stdbasis[OF linear_compose[OF h(1) lf] linear_id th]
   have "f o h = id" .
   then show ?thesis using h(1) by blast
@@ -2970,7 +2970,7 @@
 
 lemma isomorphism_expand:
   "f o g = id \<and> g o f = id \<longleftrightarrow> (\<forall>x. f(g x) = x) \<and> (\<forall>x. g(f x) = x)"
-  by (simp add: ext_iff o_def id_def)
+  by (simp add: fun_eq_iff o_def id_def)
 
 lemma linear_injective_isomorphism: fixes f::"'a::euclidean_space => 'a::euclidean_space"
   assumes lf: "linear f" and fi: "inj f"
@@ -2995,10 +2995,10 @@
   {fix f f':: "'a => 'a"
     assume lf: "linear f" "linear f'" and f: "f o f' = id"
     from f have sf: "surj f"
-      apply (auto simp add: o_def ext_iff id_def surj_def)
+      apply (auto simp add: o_def fun_eq_iff id_def surj_def)
       by metis
     from linear_surjective_isomorphism[OF lf(1) sf] lf f
-    have "f' o f = id" unfolding ext_iff o_def id_def
+    have "f' o f = id" unfolding fun_eq_iff o_def id_def
       by metis}
   then show ?thesis using lf lf' by metis
 qed
@@ -3009,13 +3009,13 @@
   assumes lf: "linear f" and gf: "g o f = id"
   shows "linear g"
 proof-
-  from gf have fi: "inj f" apply (auto simp add: inj_on_def o_def id_def ext_iff)
+  from gf have fi: "inj f" apply (auto simp add: inj_on_def o_def id_def fun_eq_iff)
     by metis
   from linear_injective_isomorphism[OF lf fi]
   obtain h:: "'a \<Rightarrow> 'a" where
     h: "linear h" "\<forall>x. h (f x) = x" "\<forall>x. f (h x) = x" by blast
   have "h = g" apply (rule ext) using gf h(2,3)
-    apply (simp add: o_def id_def ext_iff)
+    apply (simp add: o_def id_def fun_eq_iff)
     by metis
   with h(1) show ?thesis by blast
 qed
--- a/src/HOL/Multivariate_Analysis/Fashoda.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Multivariate_Analysis/Fashoda.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -34,7 +34,7 @@
     apply(subst infnorm_eq_0[THEN sym]) by auto
   let ?F = "(\<lambda>w::real^2. (f \<circ> (\<lambda>x. x$1)) w - (g \<circ> (\<lambda>x. x$2)) w)"
   have *:"\<And>i. (\<lambda>x::real^2. x $ i) ` {- 1..1} = {- 1..1::real}"
-    apply(rule set_ext) unfolding image_iff Bex_def mem_interval_cart apply rule defer 
+    apply(rule set_eqI) unfolding image_iff Bex_def mem_interval_cart apply rule defer 
     apply(rule_tac x="vec x" in exI) by auto
   { fix x assume "x \<in> (\<lambda>w. (f \<circ> (\<lambda>x. x $ 1)) w - (g \<circ> (\<lambda>x. x $ 2)) w) ` {- 1..1::real^2}"
     then guess w unfolding image_iff .. note w = this
--- a/src/HOL/Multivariate_Analysis/Finite_Cartesian_Product.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Multivariate_Analysis/Finite_Cartesian_Product.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -42,7 +42,7 @@
   by (auto intro: ext)
 
 lemma Cart_eq: "(x = y) \<longleftrightarrow> (\<forall>i. x$i = y$i)"
-  by (simp add: Cart_nth_inject [symmetric] ext_iff)
+  by (simp add: Cart_nth_inject [symmetric] fun_eq_iff)
 
 lemma Cart_lambda_beta [simp]: "Cart_lambda g $ i = g i"
   by (simp add: Cart_lambda_inverse)
--- a/src/HOL/Multivariate_Analysis/Integration.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Multivariate_Analysis/Integration.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -102,7 +102,7 @@
 abbreviation One  where "One \<equiv> ((\<chi>\<chi> i. 1)::_::ordered_euclidean_space)"
 
 lemma empty_as_interval: "{} = {One..0}"
-  apply(rule set_ext,rule) defer unfolding mem_interval
+  apply(rule set_eqI,rule) defer unfolding mem_interval
   using UNIV_witness[where 'a='n] apply(erule_tac exE,rule_tac x=x in allE) by auto
 
 lemma interior_subset_union_intervals: 
@@ -367,7 +367,7 @@
 let ?A = "{s. s \<in>  (\<lambda>(k1,k2). k1 \<inter> k2) ` (p1 \<times> p2) \<and> s \<noteq> {}}" have *:"?A' = ?A" by auto
 show ?thesis unfolding * proof(rule division_ofI) have "?A \<subseteq> (\<lambda>(x, y). x \<inter> y) ` (p1 \<times> p2)" by auto
   moreover have "finite (p1 \<times> p2)" using assms unfolding division_of_def by auto ultimately show "finite ?A" by auto
-  have *:"\<And>s. \<Union>{x\<in>s. x \<noteq> {}} = \<Union>s" by auto show "\<Union>?A = s1 \<inter> s2" apply(rule set_ext) unfolding * and Union_image_eq UN_iff
+  have *:"\<And>s. \<Union>{x\<in>s. x \<noteq> {}} = \<Union>s" by auto show "\<Union>?A = s1 \<inter> s2" apply(rule set_eqI) unfolding * and Union_image_eq UN_iff
     using division_ofD(6)[OF assms(1)] and division_ofD(6)[OF assms(2)] by auto
   { fix k assume "k\<in>?A" then obtain k1 k2 where k:"k = k1 \<inter> k2" "k1\<in>p1" "k2\<in>p2" "k\<noteq>{}" by auto thus "k \<noteq> {}" by auto
   show "k \<subseteq> s1 \<inter> s2" using division_ofD(2)[OF assms(1) k(2)] and division_ofD(2)[OF assms(2) k(3)] unfolding k by auto
@@ -1035,7 +1035,7 @@
       next assume as:"c $$ i = (a $$ i + b $$ i) / 2" "d $$ i = b $$ i"
         show False using e_f(2)[of i] and i x unfolding as by(fastsimp simp add:field_simps)
       qed qed qed
-  also have "\<Union> ?A = {a..b}" proof(rule set_ext,rule)
+  also have "\<Union> ?A = {a..b}" proof(rule set_eqI,rule)
     fix x assume "x\<in>\<Union>?A" then guess Y unfolding Union_iff ..
     from this(1) guess c unfolding mem_Collect_eq .. then guess d ..
     note c_d = this[THEN conjunct2,rule_format] `x\<in>Y`[unfolded this[THEN conjunct1]]
@@ -1402,7 +1402,7 @@
   apply(rule integral_unique) using has_integral_empty .
 
 lemma has_integral_refl[intro]: shows "(f has_integral 0) {a..a}" "(f has_integral 0) {a::'a::ordered_euclidean_space}"
-proof- have *:"{a} = {a..a}" apply(rule set_ext) unfolding mem_interval singleton_iff euclidean_eq[where 'a='a]
+proof- have *:"{a} = {a..a}" apply(rule set_eqI) unfolding mem_interval singleton_iff euclidean_eq[where 'a='a]
     apply safe prefer 3 apply(erule_tac x=i in allE) by(auto simp add: field_simps)
   show "(f has_integral 0) {a..a}" "(f has_integral 0) {a}" unfolding *
     apply(rule_tac[!] has_integral_null) unfolding content_eq_0_interior
@@ -1466,7 +1466,7 @@
 lemma interval_split: fixes a::"'a::ordered_euclidean_space" assumes "k<DIM('a)" shows
   "{a..b} \<inter> {x. x$$k \<le> c} = {a .. (\<chi>\<chi> i. if i = k then min (b$$k) c else b$$i)}"
   "{a..b} \<inter> {x. x$$k \<ge> c} = {(\<chi>\<chi> i. if i = k then max (a$$k) c else a$$i) .. b}"
-  apply(rule_tac[!] set_ext) unfolding Int_iff mem_interval mem_Collect_eq using assms by auto
+  apply(rule_tac[!] set_eqI) unfolding Int_iff mem_interval mem_Collect_eq using assms by auto
 
 lemma content_split: fixes a::"'a::ordered_euclidean_space" assumes "k<DIM('a)" shows
   "content {a..b} = content({a..b} \<inter> {x. x$$k \<le> c}) + content({a..b} \<inter> {x. x$$k >= c})"
@@ -2494,7 +2494,7 @@
   note division_split(1)[OF assms, where c="c+e",unfolded interval_split[OF k]]
   note division_split(2)[OF this, where c="c-e" and k=k,OF k] 
   thus ?thesis apply(rule **) using k apply- unfolding interval_doublesplit unfolding * unfolding interval_split interval_doublesplit
-    apply(rule set_ext) unfolding mem_Collect_eq apply rule apply(erule conjE exE)+ apply(rule_tac x=la in exI) defer
+    apply(rule set_eqI) unfolding mem_Collect_eq apply rule apply(erule conjE exE)+ apply(rule_tac x=la in exI) defer
     apply(erule conjE exE)+ apply(rule_tac x="l \<inter> {x. c + e \<ge> x $$ k}" in exI) apply rule defer apply rule
     apply(rule_tac x=l in exI) by blast+ qed
 
@@ -2538,7 +2538,7 @@
       apply(cases,rule disjI1,assumption,rule disjI2)
     proof- fix x l assume as:"(x,l)\<in>p" "?i x \<noteq> 0" hence xk:"x$$k = c" unfolding indicator_def apply-by(rule ccontr,auto)
       show "content l = content (l \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d})" apply(rule arg_cong[where f=content])
-        apply(rule set_ext,rule,rule) unfolding mem_Collect_eq
+        apply(rule set_eqI,rule,rule) unfolding mem_Collect_eq
       proof- fix y assume y:"y\<in>l" note p[THEN conjunct2,unfolded fine_def,rule_format,OF as(1),unfolded split_conv]
         note this[unfolded subset_eq mem_ball dist_norm,rule_format,OF y] note le_less_trans[OF component_le_norm[of _ k] this]
         thus "\<bar>y $$ k - c\<bar> \<le> d" unfolding euclidean_simps xk by auto
@@ -3280,7 +3280,7 @@
 proof(cases "{a..b}={}") case True thus ?thesis unfolding True by auto
 next have *:"\<And>P Q. (\<forall>i<DIM('a). P i) \<and> (\<forall>i<DIM('a). Q i) \<longleftrightarrow> (\<forall>i<DIM('a). P i \<and> Q i)" by auto
   case False note ab = this[unfolded interval_ne_empty]
-  show ?thesis apply-apply(rule set_ext)
+  show ?thesis apply-apply(rule set_eqI)
   proof- fix x::"'a" have **:"\<And>P Q. (\<forall>i<DIM('a). P i = Q i) \<Longrightarrow> (\<forall>i<DIM('a). P i) = (\<forall>i<DIM('a). Q i)" by auto
     show "x \<in> ?l \<longleftrightarrow> x \<in> ?r" unfolding if_not_P[OF False] 
       unfolding image_iff mem_interval Bex_def euclidean_simps euclidean_eq[where 'a='a] *
@@ -3334,7 +3334,7 @@
 subsection {* even more special cases. *}
 
 lemma uminus_interval_vector[simp]:"uminus ` {a..b} = {-b .. -a::'a::ordered_euclidean_space}"
-  apply(rule set_ext,rule) defer unfolding image_iff
+  apply(rule set_eqI,rule) defer unfolding image_iff
   apply(rule_tac x="-x" in bexI) by(auto simp add:minus_le_iff le_minus_iff eucl_le[where 'a='a])
 
 lemma has_integral_reflect_lemma[intro]: assumes "(f has_integral i) {a..b}"
@@ -3694,7 +3694,7 @@
   let ?thesis = "\<exists>d>0. \<forall>x'\<in>{a..b}. dist x' x < d \<longrightarrow> dist (integral {a..x'} f) (integral {a..x} f) < e"
   { presume *:"a<b \<Longrightarrow> ?thesis"
     show ?thesis apply(cases,rule *,assumption)
-    proof- case goal1 hence "{a..b} = {x}" using as(1) apply-apply(rule set_ext)
+    proof- case goal1 hence "{a..b} = {x}" using as(1) apply-apply(rule set_eqI)
         unfolding atLeastAtMost_iff by(auto simp only:field_simps not_less DIM_real)
       thus ?case using `e>0` by auto
     qed } assume "a<b"
--- a/src/HOL/Multivariate_Analysis/Path_Connected.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Multivariate_Analysis/Path_Connected.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -123,7 +123,7 @@
     qed (auto simp add:le_less joinpaths_def) qed
 next assume as:"continuous_on {0..1} g1" "continuous_on {0..1} g2"
   have *:"{0 .. 1::real} = {0.. (1/2)*\<^sub>R 1} \<union> {(1/2) *\<^sub>R 1 .. 1}" by auto
-  have **:"op *\<^sub>R 2 ` {0..(1 / 2) *\<^sub>R 1} = {0..1::real}" apply(rule set_ext, rule) unfolding image_iff 
+  have **:"op *\<^sub>R 2 ` {0..(1 / 2) *\<^sub>R 1} = {0..1::real}" apply(rule set_eqI, rule) unfolding image_iff 
     defer apply(rule_tac x="(1/2)*\<^sub>R x" in bexI) by auto
   have ***:"(\<lambda>x. 2 *\<^sub>R x - 1) ` {(1 / 2) *\<^sub>R 1..1} = {0..1::real}"
     apply (auto simp add: image_def)
@@ -322,7 +322,7 @@
   unfolding path_def by(rule continuous_on_linepath)
 
 lemma path_image_linepath[simp]: "path_image(linepath a b) = (closed_segment a b)"
-  unfolding path_image_def segment linepath_def apply (rule set_ext, rule) defer
+  unfolding path_image_def segment linepath_def apply (rule set_eqI, rule) defer
   unfolding mem_Collect_eq image_iff apply(erule exE) apply(rule_tac x="u *\<^sub>R 1" in bexI)
   by auto
 
@@ -388,7 +388,7 @@
 subsection {* Can also consider it as a set, as the name suggests. *}
 
 lemma path_component_set: "path_component s x = { y. (\<exists>g. path g \<and> path_image g \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y )}"
-  apply(rule set_ext) unfolding mem_Collect_eq unfolding mem_def path_component_def by auto
+  apply(rule set_eqI) unfolding mem_Collect_eq unfolding mem_def path_component_def by auto
 
 lemma mem_path_component_set:"x \<in> path_component s y \<longleftrightarrow> path_component s y x" unfolding mem_def by auto
 
@@ -564,9 +564,9 @@
   thus ?thesis using path_connected_singleton by simp
 next
   assume r: "0 < r"
-  hence *:"{x::'a. norm(x - a) = r} = (\<lambda>x. a + r *\<^sub>R x) ` {x. norm x = 1}" apply -apply(rule set_ext,rule)
+  hence *:"{x::'a. norm(x - a) = r} = (\<lambda>x. a + r *\<^sub>R x) ` {x. norm x = 1}" apply -apply(rule set_eqI,rule)
     unfolding image_iff apply(rule_tac x="(1/r) *\<^sub>R (x - a)" in bexI) unfolding mem_Collect_eq norm_scaleR by (auto simp add: scaleR_right_diff_distrib)
-  have **:"{x::'a. norm x = 1} = (\<lambda>x. (1/norm x) *\<^sub>R x) ` (UNIV - {0})" apply(rule set_ext,rule)
+  have **:"{x::'a. norm x = 1} = (\<lambda>x. (1/norm x) *\<^sub>R x) ` (UNIV - {0})" apply(rule set_eqI,rule)
     unfolding image_iff apply(rule_tac x=x in bexI) unfolding mem_Collect_eq by(auto split:split_if_asm)
   have "continuous_on (UNIV - {0}) (\<lambda>x::'a. 1 / norm x)" unfolding o_def continuous_on_eq_continuous_within
     apply(rule, rule continuous_at_within_inv[unfolded o_def inverse_eq_divide]) apply(rule continuous_at_within)
--- a/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -40,7 +40,7 @@
   {assume "T1=T2" hence "\<forall>S. openin T1 S \<longleftrightarrow> openin T2 S" by simp}
   moreover
   {assume H: "\<forall>S. openin T1 S \<longleftrightarrow> openin T2 S"
-    hence "openin T1 = openin T2" by (metis mem_def set_ext)
+    hence "openin T1 = openin T2" by (metis mem_def set_eqI)
     hence "topology (openin T1) = topology (openin T2)" by simp
     hence "T1 = T2" unfolding openin_inverse .}
   ultimately show ?thesis by blast
@@ -141,7 +141,7 @@
   moreover
   {fix K assume K: "K \<subseteq> ?L"
     have th0: "?L = (\<lambda>S. S \<inter> V) ` openin U "
-      apply (rule set_ext)
+      apply (rule set_eqI)
       apply (simp add: Ball_def image_iff)
       by (metis mem_def)
     from K[unfolded th0 subset_image_iff]
@@ -213,7 +213,7 @@
 
 lemma topspace_euclidean: "topspace euclidean = UNIV"
   apply (simp add: topspace_def)
-  apply (rule set_ext)
+  apply (rule set_eqI)
   by (auto simp add: open_openin[symmetric])
 
 lemma topspace_euclidean_subtopology[simp]: "topspace (subtopology euclidean S) = S"
@@ -253,10 +253,10 @@
 lemma subset_ball[intro]: "d <= e ==> ball x d \<subseteq> ball x e" by (simp add: subset_eq)
 lemma subset_cball[intro]: "d <= e ==> cball x d \<subseteq> cball x e" by (simp add: subset_eq)
 lemma ball_max_Un: "ball a (max r s) = ball a r \<union> ball a s"
-  by (simp add: set_ext_iff) arith
+  by (simp add: set_eq_iff) arith
 
 lemma ball_min_Int: "ball a (min r s) = ball a r \<inter> ball a s"
-  by (simp add: set_ext_iff)
+  by (simp add: set_eq_iff)
 
 lemma diff_less_iff: "(a::real) - b > 0 \<longleftrightarrow> a > b"
   "(a::real) - b < 0 \<longleftrightarrow> a < b"
@@ -289,7 +289,7 @@
   by (metis open_contains_ball subset_eq centre_in_ball)
 
 lemma ball_eq_empty[simp]: "ball x e = {} \<longleftrightarrow> e \<le> 0"
-  unfolding mem_ball set_ext_iff
+  unfolding mem_ball set_eq_iff
   apply (simp add: not_less)
   by (metis zero_le_dist order_trans dist_self)
 
@@ -447,7 +447,7 @@
   let ?T = "\<Union>{S. open S \<and> a \<notin> S}"
   have "open ?T" by (simp add: open_Union)
   also have "?T = - {a}"
-    by (simp add: set_ext_iff separation_t1, auto)
+    by (simp add: set_eq_iff separation_t1, auto)
   finally show "closed {a}" unfolding closed_def .
 qed
 
@@ -483,7 +483,7 @@
                ==> ~(d x y * 2 < d x z \<and> d z y * 2 < d x z)" by arith
   have "open ?U \<and> open ?V \<and> x \<in> ?U \<and> y \<in> ?V \<and> ?U \<inter> ?V = {}"
     using dist_pos_lt[OF xy] th0[of dist,OF dist_triangle dist_commute]
-    by (auto simp add: set_ext_iff)
+    by (auto simp add: set_eq_iff)
   then show "\<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
     by blast
 qed
@@ -641,7 +641,7 @@
 definition "interior S = {x. \<exists>T. open T \<and> x \<in> T \<and> T \<subseteq> S}"
 
 lemma interior_eq: "interior S = S \<longleftrightarrow> open S"
-  apply (simp add: set_ext_iff interior_def)
+  apply (simp add: set_eq_iff interior_def)
   apply (subst (2) open_subopen) by (safe, blast+)
 
 lemma interior_open: "open S ==> (interior S = S)" by (metis interior_eq)
@@ -706,7 +706,7 @@
     proof (rule ccontr)
       assume "x \<notin> interior S"
       with `x \<in> R` `open R` obtain y where "y \<in> R - S"
-        unfolding interior_def set_ext_iff by fast
+        unfolding interior_def set_eq_iff by fast
       from `open R` `closed S` have "open (R - S)" by (rule open_Diff)
       from `R \<subseteq> S \<union> T` have "R - S \<subseteq> T" by fast
       from `y \<in> R - S` `open (R - S)` `R - S \<subseteq> T` `interior T = {}`
@@ -1006,7 +1006,7 @@
     unfolding trivial_limit_def
     unfolding eventually_within eventually_at_topological
     unfolding islimpt_def
-    apply (clarsimp simp add: set_ext_iff)
+    apply (clarsimp simp add: set_eq_iff)
     apply (rename_tac T, rule_tac x=T in exI)
     apply (clarsimp, drule_tac x=y in bspec, simp_all)
     done
@@ -1904,18 +1904,18 @@
   fixes a :: "'a::real_normed_vector"
   shows "0 < e ==> frontier(ball a e) = {x. dist a x = e}"
   apply (simp add: frontier_def closure_ball interior_open order_less_imp_le)
-  apply (simp add: set_ext_iff)
+  apply (simp add: set_eq_iff)
   by arith
 
 lemma frontier_cball:
   fixes a :: "'a::{real_normed_vector, perfect_space}"
   shows "frontier(cball a e) = {x. dist a x = e}"
   apply (simp add: frontier_def interior_cball closed_cball order_less_imp_le)
-  apply (simp add: set_ext_iff)
+  apply (simp add: set_eq_iff)
   by arith
 
 lemma cball_eq_empty: "(cball x e = {}) \<longleftrightarrow> e < 0"
-  apply (simp add: set_ext_iff not_le)
+  apply (simp add: set_eq_iff not_le)
   by (metis zero_le_dist dist_self order_less_le_trans)
 lemma cball_empty: "e < 0 ==> cball x e = {}" by (simp add: cball_eq_empty)
 
@@ -1927,13 +1927,13 @@
   obtain a where "a \<noteq> x" "dist a x < e"
     using perfect_choose_dist [OF e] by auto
   hence "a \<noteq> x" "dist x a \<le> e" by (auto simp add: dist_commute)
-  with e show ?thesis by (auto simp add: set_ext_iff)
+  with e show ?thesis by (auto simp add: set_eq_iff)
 qed auto
 
 lemma cball_sing:
   fixes x :: "'a::metric_space"
   shows "e = 0 ==> cball x e = {x}"
-  by (auto simp add: set_ext_iff)
+  by (auto simp add: set_eq_iff)
 
 text{* For points in the interior, localization of limits makes no difference.   *}
 
@@ -3904,7 +3904,7 @@
 lemma interior_translation:
   fixes s :: "'a::real_normed_vector set"
   shows "interior ((\<lambda>x. a + x) ` s) = (\<lambda>x. a + x) ` (interior s)"
-proof (rule set_ext, rule)
+proof (rule set_eqI, rule)
   fix x assume "x \<in> interior (op + a ` s)"
   then obtain e where "e>0" and e:"ball x e \<subseteq> op + a ` s" unfolding mem_interior by auto
   hence "ball (x - a) e \<subseteq> s" unfolding subset_eq Ball_def mem_ball dist_norm apply auto apply(erule_tac x="a + xa" in allE) unfolding ab_group_add_class.diff_diff_eq[THEN sym] by auto
@@ -4615,12 +4615,12 @@
 lemma interval: fixes a :: "'a::ordered_euclidean_space" shows
   "{a <..< b} = {x::'a. \<forall>i<DIM('a). a$$i < x$$i \<and> x$$i < b$$i}" and
   "{a .. b} = {x::'a. \<forall>i<DIM('a). a$$i \<le> x$$i \<and> x$$i \<le> b$$i}"
-  by(auto simp add:set_ext_iff eucl_le[where 'a='a] eucl_less[where 'a='a])
+  by(auto simp add:set_eq_iff eucl_le[where 'a='a] eucl_less[where 'a='a])
 
 lemma mem_interval: fixes a :: "'a::ordered_euclidean_space" shows
   "x \<in> {a<..<b} \<longleftrightarrow> (\<forall>i<DIM('a). a$$i < x$$i \<and> x$$i < b$$i)"
   "x \<in> {a .. b} \<longleftrightarrow> (\<forall>i<DIM('a). a$$i \<le> x$$i \<and> x$$i \<le> b$$i)"
-  using interval[of a b] by(auto simp add: set_ext_iff eucl_le[where 'a='a] eucl_less[where 'a='a])
+  using interval[of a b] by(auto simp add: set_eq_iff eucl_le[where 'a='a] eucl_less[where 'a='a])
 
 lemma interval_eq_empty: fixes a :: "'a::ordered_euclidean_space" shows
  "({a <..< b} = {} \<longleftrightarrow> (\<exists>i<DIM('a). b$$i \<le> a$$i))" (is ?th1) and
@@ -4662,7 +4662,7 @@
 
 lemma interval_sing: fixes a :: "'a::ordered_euclidean_space" shows
  "{a .. a} = {a}" "{a<..<a} = {}"
-  apply(auto simp add: set_ext_iff euclidean_eq[where 'a='a] eucl_less[where 'a='a] eucl_le[where 'a='a])
+  apply(auto simp add: set_eq_iff euclidean_eq[where 'a='a] eucl_less[where 'a='a] eucl_le[where 'a='a])
   apply (simp add: order_eq_iff) apply(rule_tac x=0 in exI) by (auto simp add: not_less less_imp_le)
 
 lemma subset_interval_imp: fixes a :: "'a::ordered_euclidean_space" shows
@@ -4681,17 +4681,17 @@
   { fix i assume "i<DIM('a)"
     hence "a $$ i \<le> x $$ i"
       using x order_less_imp_le[of "a$$i" "x$$i"] 
-      by(simp add: set_ext_iff eucl_less[where 'a='a] eucl_le[where 'a='a] euclidean_eq)
+      by(simp add: set_eq_iff eucl_less[where 'a='a] eucl_le[where 'a='a] euclidean_eq)
   }
   moreover
   { fix i assume "i<DIM('a)"
     hence "x $$ i \<le> b $$ i"
       using x order_less_imp_le[of "x$$i" "b$$i"]
-      by(simp add: set_ext_iff eucl_less[where 'a='a] eucl_le[where 'a='a] euclidean_eq)
+      by(simp add: set_eq_iff eucl_less[where 'a='a] eucl_le[where 'a='a] euclidean_eq)
   }
   ultimately
   show "a \<le> x \<and> x \<le> b"
-    by(simp add: set_ext_iff eucl_less[where 'a='a] eucl_le[where 'a='a] euclidean_eq)
+    by(simp add: set_eq_iff eucl_less[where 'a='a] eucl_le[where 'a='a] euclidean_eq)
 qed
 
 lemma subset_interval: fixes a :: "'a::ordered_euclidean_space" shows
@@ -4757,7 +4757,7 @@
   "{a<..<b} \<inter> {c<..<d} = {} \<longleftrightarrow> (\<exists>i<DIM('a). (b$$i \<le> a$$i \<or> d$$i \<le> c$$i \<or> b$$i \<le> c$$i \<or> d$$i \<le> a$$i))" (is ?th4)
 proof-
   let ?z = "(\<chi>\<chi> i. ((max (a$$i) (c$$i)) + (min (b$$i) (d$$i))) / 2)::'a"
-  note * = set_ext_iff Int_iff empty_iff mem_interval all_conj_distrib[THEN sym] eq_False
+  note * = set_eq_iff Int_iff empty_iff mem_interval all_conj_distrib[THEN sym] eq_False
   show ?th1 unfolding * apply safe apply(erule_tac x="?z" in allE)
     unfolding not_all apply(erule exE,rule_tac x=x in exI) apply(erule_tac[2-] x=i in allE) by auto
   show ?th2 unfolding * apply safe apply(erule_tac x="?z" in allE)
@@ -4770,7 +4770,7 @@
 
 lemma inter_interval: fixes a :: "'a::ordered_euclidean_space" shows
  "{a .. b} \<inter> {c .. d} =  {(\<chi>\<chi> i. max (a$$i) (c$$i)) .. (\<chi>\<chi> i. min (b$$i) (d$$i))}"
-  unfolding set_ext_iff and Int_iff and mem_interval
+  unfolding set_eq_iff and Int_iff and mem_interval
   by auto
 
 (* Moved interval_open_subset_closed a bit upwards *)
@@ -5440,7 +5440,7 @@
     then obtain x where "\<forall>n. x n \<in> s \<and> g n = f (x n)" 
       using choice[of "\<lambda> n xa. xa \<in> s \<and> g n = f xa"] by auto
     hence x:"\<forall>n. x n \<in> s"  "\<forall>n. g n = f (x n)" by auto
-    hence "f \<circ> x = g" unfolding ext_iff by auto
+    hence "f \<circ> x = g" unfolding fun_eq_iff by auto
     then obtain l where "l\<in>s" and l:"(x ---> l) sequentially"
       using cs[unfolded complete_def, THEN spec[where x="x"]]
       using cauchy_isometric[OF `0<e` s f normf] and cfg and x(1) by auto
--- a/src/HOL/NSA/NatStar.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/NSA/NatStar.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -115,7 +115,7 @@
   @{term real_of_nat} *}
 
 lemma starfunNat_real_of_nat: "( *f* real) = hypreal_of_hypnat"
-by transfer (simp add: ext_iff real_of_nat_def)
+by transfer (simp add: fun_eq_iff real_of_nat_def)
 
 lemma starfun_inverse_real_of_nat_eq:
      "N \<in> HNatInfinite
--- a/src/HOL/NSA/Star.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/NSA/Star.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -87,7 +87,7 @@
    sequence) as a special case of an internal set*}
 
 lemma starset_n_starset: "\<forall>n. (As n = A) ==> *sn* As = *s* A"
-apply (drule ext_iff [THEN iffD2])
+apply (drule fun_eq_iff [THEN iffD2])
 apply (simp add: starset_n_def starset_def star_of_def)
 done
 
@@ -102,7 +102,7 @@
 (*----------------------------------------------------------------*)
 
 lemma starfun_n_starfun: "\<forall>n. (F n = f) ==> *fn* F = *f* f"
-apply (drule ext_iff [THEN iffD2])
+apply (drule fun_eq_iff [THEN iffD2])
 apply (simp add: starfun_n_def starfun_def star_of_def)
 done
 
--- a/src/HOL/NSA/StarDef.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/NSA/StarDef.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -145,7 +145,7 @@
   "\<lbrakk>\<And>X. f (star_n X) = g (star_n X) 
     \<equiv> {n. F n (X n) = G n (X n)} \<in> \<U>\<rbrakk>
       \<Longrightarrow> f = g \<equiv> {n. F n = G n} \<in> \<U>"
-by (simp only: ext_iff transfer_all)
+by (simp only: fun_eq_iff transfer_all)
 
 lemma transfer_star_n [transfer_intro]: "star_n X \<equiv> star_n (\<lambda>n. X n)"
 by (rule reflexive)
@@ -351,12 +351,12 @@
 lemma transfer_Collect [transfer_intro]:
   "\<lbrakk>\<And>X. p (star_n X) \<equiv> {n. P n (X n)} \<in> \<U>\<rbrakk>
     \<Longrightarrow> Collect p \<equiv> Iset (star_n (\<lambda>n. Collect (P n)))"
-by (simp add: atomize_eq set_ext_iff all_star_eq Iset_star_n)
+by (simp add: atomize_eq set_eq_iff all_star_eq Iset_star_n)
 
 lemma transfer_set_eq [transfer_intro]:
   "\<lbrakk>a \<equiv> Iset (star_n A); b \<equiv> Iset (star_n B)\<rbrakk>
     \<Longrightarrow> a = b \<equiv> {n. A n = B n} \<in> \<U>"
-by (simp only: set_ext_iff transfer_all transfer_iff transfer_mem)
+by (simp only: set_eq_iff transfer_all transfer_iff transfer_mem)
 
 lemma transfer_ball [transfer_intro]:
   "\<lbrakk>a \<equiv> Iset (star_n A); \<And>X. p (star_n X) \<equiv> {n. P n (X n)} \<in> \<U>\<rbrakk>
--- a/src/HOL/Nat.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Nat.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -1360,7 +1360,7 @@
   by (induct n) simp_all
 
 lemma of_nat_eq_id [simp]: "of_nat = id"
-  by (auto simp add: ext_iff)
+  by (auto simp add: fun_eq_iff)
 
 
 subsection {* The Set of Natural Numbers *}
--- a/src/HOL/Nat_Transfer.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Nat_Transfer.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -170,7 +170,7 @@
   apply (rule iffI)
   apply (erule finite_imageI)
   apply (erule finite_imageD)
-  apply (auto simp add: image_def set_ext_iff inj_on_def)
+  apply (auto simp add: image_def set_eq_iff inj_on_def)
   apply (drule_tac x = "int x" in spec, auto)
   apply (drule_tac x = "int x" in spec, auto)
   apply (drule_tac x = "int x" in spec, auto)
--- a/src/HOL/Nitpick.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Nitpick.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -58,7 +58,7 @@
 lemma Ex1_def [nitpick_def, no_atp]:
 "Ex1 P \<equiv> \<exists>x. P = {x}"
 apply (rule eq_reflection)
-apply (simp add: Ex1_def set_ext_iff)
+apply (simp add: Ex1_def set_eq_iff)
 apply (rule iffI)
  apply (erule exE)
  apply (erule conjE)
--- a/src/HOL/Nitpick_Examples/Manual_Nits.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Nitpick_Examples/Manual_Nits.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -110,7 +110,7 @@
 "my_int_rel (x, y) (u, v) = (x + v = u + y)"
 
 quotient_type my_int = "nat \<times> nat" / my_int_rel
-by (auto simp add: equivp_def ext_iff)
+by (auto simp add: equivp_def fun_eq_iff)
 
 definition add_raw where
 "add_raw \<equiv> \<lambda>(x, y) (u, v). (x + (u\<Colon>nat), y + (v\<Colon>nat))"
--- a/src/HOL/Nominal/Examples/Class1.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Nominal/Examples/Class1.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -2167,7 +2167,7 @@
 apply(auto simp add: fresh_left calc_atm forget)
 apply(generate_fresh "coname")
 apply(rule_tac f="fresh_fun" in arg_cong)
-apply(simp add:  ext_iff)
+apply(simp add:  fun_eq_iff)
 apply(rule allI)
 apply(simp add: trm.inject alpha fresh_prod fresh_atm)
 apply(perm_simp add: trm.inject alpha fresh_prod fresh_atm fresh_left, auto)
@@ -2183,7 +2183,7 @@
 apply(auto simp add: fresh_left calc_atm forget)
 apply(generate_fresh "name")
 apply(rule_tac f="fresh_fun" in arg_cong)
-apply(simp add:  ext_iff)
+apply(simp add:  fun_eq_iff)
 apply(rule allI)
 apply(simp add: trm.inject alpha fresh_prod fresh_atm)
 apply(perm_simp add: trm.inject alpha fresh_prod fresh_atm fresh_left, auto)
@@ -2199,13 +2199,13 @@
 apply(auto simp add: fresh_left calc_atm forget abs_fresh)[1]
 apply(generate_fresh "name")
 apply(rule_tac f="fresh_fun" in arg_cong)
-apply(simp add:  ext_iff)
+apply(simp add:  fun_eq_iff)
 apply(rule allI)
 apply(simp add: trm.inject alpha fresh_prod fresh_atm)
 apply(rule forget)
 apply(simp add: fresh_left calc_atm)
 apply(rule_tac f="fresh_fun" in arg_cong)
-apply(simp add:  ext_iff)
+apply(simp add:  fun_eq_iff)
 apply(rule allI)
 apply(simp add: trm.inject alpha fresh_prod fresh_atm)
 apply(rule forget)
@@ -2224,13 +2224,13 @@
 apply(auto simp add: fresh_left calc_atm forget abs_fresh)[1]
 apply(generate_fresh "name")
 apply(rule_tac f="fresh_fun" in arg_cong)
-apply(simp add:  ext_iff)
+apply(simp add:  fun_eq_iff)
 apply(rule allI)
 apply(simp add: trm.inject alpha fresh_prod fresh_atm)
 apply(rule forget)
 apply(simp add: fresh_left calc_atm)
 apply(rule_tac f="fresh_fun" in arg_cong)
-apply(simp add:  ext_iff)
+apply(simp add:  fun_eq_iff)
 apply(rule allI)
 apply(simp add: trm.inject alpha fresh_prod fresh_atm)
 apply(rule forget)
@@ -2255,7 +2255,7 @@
 apply(auto simp add: fresh_prod fresh_atm)[1]
 apply(simp)
 apply(rule_tac f="fresh_fun" in arg_cong)
-apply(simp add:  ext_iff)
+apply(simp add:  fun_eq_iff)
 apply(rule allI)
 apply(simp add: trm.inject alpha fresh_prod fresh_atm)
 apply(rule conjI)
@@ -2283,7 +2283,7 @@
 apply(auto simp add: fresh_prod fresh_atm)[1]
 apply(simp)
 apply(rule_tac f="fresh_fun" in arg_cong)
-apply(simp add:  ext_iff)
+apply(simp add:  fun_eq_iff)
 apply(rule allI)
 apply(simp add: trm.inject alpha fresh_prod fresh_atm)
 apply(rule conjI)
@@ -2304,13 +2304,13 @@
 apply(subgoal_tac "OrR1 <a>.M d = OrR1 <c>.([(c,a)]\<bullet>M) d")
 apply(auto simp add: fresh_left calc_atm forget abs_fresh)[1]
 apply(rule_tac f="fresh_fun" in arg_cong)
-apply(simp add:  ext_iff)
+apply(simp add:  fun_eq_iff)
 apply(rule allI)
 apply(simp add: trm.inject alpha fresh_prod fresh_atm)
 apply(rule forget)
 apply(simp add: fresh_left calc_atm)
 apply(rule_tac f="fresh_fun" in arg_cong)
-apply(simp add:  ext_iff)
+apply(simp add:  fun_eq_iff)
 apply(rule allI)
 apply(simp add: trm.inject alpha fresh_prod fresh_atm)
 apply(rule forget)
@@ -2328,13 +2328,13 @@
 apply(subgoal_tac "OrR2 <a>.M d = OrR2 <c>.([(c,a)]\<bullet>M) d")
 apply(auto simp add: fresh_left calc_atm forget abs_fresh)[1]
 apply(rule_tac f="fresh_fun" in arg_cong)
-apply(simp add:  ext_iff)
+apply(simp add:  fun_eq_iff)
 apply(rule allI)
 apply(simp add: trm.inject alpha fresh_prod fresh_atm)
 apply(rule forget)
 apply(simp add: fresh_left calc_atm)
 apply(rule_tac f="fresh_fun" in arg_cong)
-apply(simp add:  ext_iff)
+apply(simp add:  fun_eq_iff)
 apply(rule allI)
 apply(simp add: trm.inject alpha fresh_prod fresh_atm)
 apply(rule forget)
@@ -2353,13 +2353,13 @@
 apply(subgoal_tac "ImpR (x).<a>.M d = ImpR (ca).<c>.([(c,a)]\<bullet>[(ca,x)]\<bullet>M) d")
 apply(auto simp add: fresh_left calc_atm forget abs_fresh)[1]
 apply(rule_tac f="fresh_fun" in arg_cong)
-apply(simp add:  ext_iff)
+apply(simp add:  fun_eq_iff)
 apply(rule allI)
 apply(simp add: trm.inject alpha fresh_prod fresh_atm abs_perm abs_fresh fresh_left calc_atm)
 apply(rule forget)
 apply(simp add: fresh_left calc_atm)
 apply(rule_tac f="fresh_fun" in arg_cong)
-apply(simp add:  ext_iff)
+apply(simp add:  fun_eq_iff)
 apply(rule allI)
 apply(simp add: trm.inject alpha fresh_prod fresh_atm abs_perm fresh_left calc_atm abs_fresh)
 apply(rule forget)
@@ -2378,7 +2378,7 @@
 apply(subgoal_tac "ImpL <a>.M (x).N y = ImpL <ca>.([(ca,a)]\<bullet>M) (caa).([(caa,x)]\<bullet>N) y")
 apply(auto simp add: fresh_left calc_atm forget abs_fresh)[1]
 apply(rule_tac f="fresh_fun" in arg_cong)
-apply(simp add:  ext_iff)
+apply(simp add:  fun_eq_iff)
 apply(rule allI)
 apply(simp add: trm.inject alpha fresh_prod fresh_atm abs_perm abs_fresh fresh_left calc_atm)
 apply(rule forget)
--- a/src/HOL/Nominal/Nominal.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Nominal/Nominal.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -148,11 +148,11 @@
 (* permutation on sets *)
 lemma empty_eqvt:
   shows "pi\<bullet>{} = {}"
-  by (simp add: perm_fun_def perm_bool empty_iff [unfolded mem_def] ext_iff)
+  by (simp add: perm_fun_def perm_bool empty_iff [unfolded mem_def] fun_eq_iff)
 
 lemma union_eqvt:
   shows "(pi\<bullet>(X\<union>Y)) = (pi\<bullet>X) \<union> (pi\<bullet>Y)"
-  by (simp add: perm_fun_def perm_bool Un_iff [unfolded mem_def] ext_iff)
+  by (simp add: perm_fun_def perm_bool Un_iff [unfolded mem_def] fun_eq_iff)
 
 (* permutations on products *)
 lemma fst_eqvt:
@@ -2069,7 +2069,7 @@
   show "?LHS"
   proof (rule ccontr)
     assume "(pi\<bullet>f) \<noteq> f"
-    hence "\<exists>x. (pi\<bullet>f) x \<noteq> f x" by (simp add: ext_iff)
+    hence "\<exists>x. (pi\<bullet>f) x \<noteq> f x" by (simp add: fun_eq_iff)
     then obtain x where b1: "(pi\<bullet>f) x \<noteq> f x" by force
     from b have "pi\<bullet>(f ((rev pi)\<bullet>x)) = f (pi\<bullet>((rev pi)\<bullet>x))" by force
     hence "(pi\<bullet>f)(pi\<bullet>((rev pi)\<bullet>x)) = f (pi\<bullet>((rev pi)\<bullet>x))" 
@@ -2763,7 +2763,7 @@
   and     at: "at TYPE ('x)"
   shows "cp TYPE ('a\<Rightarrow>'b) TYPE('x) TYPE('y)"
 using c1 c2
-apply(auto simp add: cp_def perm_fun_def ext_iff)
+apply(auto simp add: cp_def perm_fun_def fun_eq_iff)
 apply(simp add: rev_eqvt[symmetric])
 apply(simp add: pt_rev_pi[OF pt_list_inst[OF pt_prod_inst[OF pt, OF pt]], OF at])
 done
@@ -2988,7 +2988,7 @@
   and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
   shows "pi\<bullet>([a].x) = [(pi\<bullet>a)].(pi\<bullet>x)"
   apply(simp add: abs_fun_def perm_fun_def abs_fun_if)
-  apply(simp only: ext_iff)
+  apply(simp only: fun_eq_iff)
   apply(rule allI)
   apply(subgoal_tac "(((rev pi)\<bullet>(xa::'y)) = (a::'y)) = (xa = pi\<bullet>a)")(*A*)
   apply(subgoal_tac "(((rev pi)\<bullet>xa)\<sharp>x) = (xa\<sharp>(pi\<bullet>x))")(*B*)
@@ -3029,7 +3029,7 @@
   and   a  :: "'x"
   shows "([a].x = [a].y) = (x = y)"
 apply(auto simp add: abs_fun_def)
-apply(auto simp add: ext_iff)
+apply(auto simp add: fun_eq_iff)
 apply(drule_tac x="a" in spec)
 apply(simp)
 done
@@ -3045,7 +3045,7 @@
       and a2: "[a].x = [b].y" 
   shows "x=[(a,b)]\<bullet>y \<and> a\<sharp>y"
 proof -
-  from a2 have "\<forall>c::'x. ([a].x) c = ([b].y) c" by (force simp add: ext_iff)
+  from a2 have "\<forall>c::'x. ([a].x) c = ([b].y) c" by (force simp add: fun_eq_iff)
   hence "([a].x) a = ([b].y) a" by simp
   hence a3: "nSome(x) = ([b].y) a" by (simp add: abs_fun_def)
   show "x=[(a,b)]\<bullet>y \<and> a\<sharp>y"
@@ -3076,7 +3076,7 @@
   shows "[a].x =[b].y"
 proof -
   show ?thesis 
-  proof (simp only: abs_fun_def ext_iff, intro strip)
+  proof (simp only: abs_fun_def fun_eq_iff, intro strip)
     fix c::"'x"
     let ?LHS = "if c=a then nSome(x) else if c\<sharp>x then nSome([(a,c)]\<bullet>x) else nNone"
     and ?RHS = "if c=b then nSome(y) else if c\<sharp>y then nSome([(b,c)]\<bullet>y) else nNone"
--- a/src/HOL/Number_Theory/UniqueFactorization.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Number_Theory/UniqueFactorization.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -213,7 +213,7 @@
     ultimately have "count M a = count N a"
       by auto
   }
-  thus ?thesis by (simp add:multiset_ext_iff)
+  thus ?thesis by (simp add:multiset_eq_iff)
 qed
 
 definition multiset_prime_factorization :: "nat => nat multiset" where
--- a/src/HOL/Predicate.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Predicate.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -72,7 +72,7 @@
   by (simp add: mem_def)
 
 lemma pred_equals_eq2 [pred_set_conv]: "((\<lambda>x y. (x, y) \<in> R) = (\<lambda>x y. (x, y) \<in> S)) = (R = S)"
-  by (simp add: ext_iff mem_def)
+  by (simp add: fun_eq_iff mem_def)
 
 
 subsubsection {* Order relation *}
@@ -99,10 +99,10 @@
   by (simp add: bot_fun_eq bot_bool_eq)
 
 lemma bot_empty_eq: "bot = (\<lambda>x. x \<in> {})"
-  by (auto simp add: ext_iff)
+  by (auto simp add: fun_eq_iff)
 
 lemma bot_empty_eq2: "bot = (\<lambda>x y. (x, y) \<in> {})"
-  by (auto simp add: ext_iff)
+  by (auto simp add: fun_eq_iff)
 
 
 subsubsection {* Binary union *}
@@ -197,10 +197,10 @@
   by (auto simp add: SUP2_iff)
 
 lemma SUP_UN_eq: "(SUP i. (\<lambda>x. x \<in> r i)) = (\<lambda>x. x \<in> (UN i. r i))"
-  by (simp add: SUP1_iff ext_iff)
+  by (simp add: SUP1_iff fun_eq_iff)
 
 lemma SUP_UN_eq2: "(SUP i. (\<lambda>x y. (x, y) \<in> r i)) = (\<lambda>x y. (x, y) \<in> (UN i. r i))"
-  by (simp add: SUP2_iff ext_iff)
+  by (simp add: SUP2_iff fun_eq_iff)
 
 
 subsubsection {* Intersections of families *}
@@ -230,10 +230,10 @@
   by (auto simp add: INF2_iff)
 
 lemma INF_INT_eq: "(INF i. (\<lambda>x. x \<in> r i)) = (\<lambda>x. x \<in> (INT i. r i))"
-  by (simp add: INF1_iff ext_iff)
+  by (simp add: INF1_iff fun_eq_iff)
 
 lemma INF_INT_eq2: "(INF i. (\<lambda>x y. (x, y) \<in> r i)) = (\<lambda>x y. (x, y) \<in> (INT i. r i))"
-  by (simp add: INF2_iff ext_iff)
+  by (simp add: INF2_iff fun_eq_iff)
 
 
 subsection {* Predicates as relations *}
@@ -251,7 +251,7 @@
 
 lemma pred_comp_rel_comp_eq [pred_set_conv]:
   "((\<lambda>x y. (x, y) \<in> r) OO (\<lambda>x y. (x, y) \<in> s)) = (\<lambda>x y. (x, y) \<in> r O s)"
-  by (auto simp add: ext_iff elim: pred_compE)
+  by (auto simp add: fun_eq_iff elim: pred_compE)
 
 
 subsubsection {* Converse *}
@@ -276,7 +276,7 @@
 
 lemma conversep_converse_eq [pred_set_conv]:
   "(\<lambda>x y. (x, y) \<in> r)^--1 = (\<lambda>x y. (x, y) \<in> r^-1)"
-  by (auto simp add: ext_iff)
+  by (auto simp add: fun_eq_iff)
 
 lemma conversep_conversep [simp]: "(r^--1)^--1 = r"
   by (iprover intro: order_antisym conversepI dest: conversepD)
@@ -294,10 +294,10 @@
     (iprover intro: conversepI ext dest: conversepD)
 
 lemma conversep_noteq [simp]: "(op ~=)^--1 = op ~="
-  by (auto simp add: ext_iff)
+  by (auto simp add: fun_eq_iff)
 
 lemma conversep_eq [simp]: "(op =)^--1 = op ="
-  by (auto simp add: ext_iff)
+  by (auto simp add: fun_eq_iff)
 
 
 subsubsection {* Domain *}
@@ -347,7 +347,7 @@
   "Powp A == \<lambda>B. \<forall>x \<in> B. A x"
 
 lemma Powp_Pow_eq [pred_set_conv]: "Powp (\<lambda>x. x \<in> A) = (\<lambda>x. x \<in> Pow A)"
-  by (auto simp add: Powp_def ext_iff)
+  by (auto simp add: Powp_def fun_eq_iff)
 
 lemmas Powp_mono [mono] = Pow_mono [to_pred pred_subset_eq]
 
@@ -430,7 +430,7 @@
 
 lemma bind_bind:
   "(P \<guillemotright>= Q) \<guillemotright>= R = P \<guillemotright>= (\<lambda>x. Q x \<guillemotright>= R)"
-  by (auto simp add: bind_def ext_iff)
+  by (auto simp add: bind_def fun_eq_iff)
 
 lemma bind_single:
   "P \<guillemotright>= single = P"
@@ -442,14 +442,14 @@
 
 lemma bottom_bind:
   "\<bottom> \<guillemotright>= P = \<bottom>"
-  by (auto simp add: bot_pred_def bind_def ext_iff)
+  by (auto simp add: bot_pred_def bind_def fun_eq_iff)
 
 lemma sup_bind:
   "(P \<squnion> Q) \<guillemotright>= R = P \<guillemotright>= R \<squnion> Q \<guillemotright>= R"
-  by (auto simp add: bind_def sup_pred_def ext_iff)
+  by (auto simp add: bind_def sup_pred_def fun_eq_iff)
 
 lemma Sup_bind: "(\<Squnion>A \<guillemotright>= f) = \<Squnion>((\<lambda>x. x \<guillemotright>= f) ` A)"
-  by (auto simp add: bind_def Sup_pred_def SUP1_iff ext_iff)
+  by (auto simp add: bind_def Sup_pred_def SUP1_iff fun_eq_iff)
 
 lemma pred_iffI:
   assumes "\<And>x. eval A x \<Longrightarrow> eval B x"
@@ -457,7 +457,7 @@
   shows "A = B"
 proof -
   from assms have "\<And>x. eval A x \<longleftrightarrow> eval B x" by blast
-  then show ?thesis by (cases A, cases B) (simp add: ext_iff)
+  then show ?thesis by (cases A, cases B) (simp add: fun_eq_iff)
 qed
   
 lemma singleI: "eval (single x) x"
@@ -492,7 +492,7 @@
 
 lemma single_not_bot [simp]:
   "single x \<noteq> \<bottom>"
-  by (auto simp add: single_def bot_pred_def ext_iff)
+  by (auto simp add: single_def bot_pred_def fun_eq_iff)
 
 lemma not_bot:
   assumes "A \<noteq> \<bottom>"
@@ -512,7 +512,7 @@
 
 lemma not_is_empty_single:
   "\<not> is_empty (single x)"
-  by (auto simp add: is_empty_def single_def bot_pred_def ext_iff)
+  by (auto simp add: is_empty_def single_def bot_pred_def fun_eq_iff)
 
 lemma is_empty_sup:
   "is_empty (A \<squnion> B) \<longleftrightarrow> is_empty A \<and> is_empty B"
@@ -543,7 +543,7 @@
   moreover from assm have "\<And>x. eval A x \<Longrightarrow> singleton dfault A = x"
     by (rule singleton_eqI)
   ultimately have "eval (single (singleton dfault A)) = eval A"
-    by (simp (no_asm_use) add: single_def ext_iff) blast
+    by (simp (no_asm_use) add: single_def fun_eq_iff) blast
   then show ?thesis by (simp add: eval_inject)
 qed
 
@@ -714,13 +714,13 @@
   "member xq = eval (pred_of_seq xq)"
 proof (induct xq)
   case Empty show ?case
-  by (auto simp add: ext_iff elim: botE)
+  by (auto simp add: fun_eq_iff elim: botE)
 next
   case Insert show ?case
-  by (auto simp add: ext_iff elim: supE singleE intro: supI1 supI2 singleI)
+  by (auto simp add: fun_eq_iff elim: supE singleE intro: supI1 supI2 singleI)
 next
   case Join then show ?case
-  by (auto simp add: ext_iff elim: supE intro: supI1 supI2)
+  by (auto simp add: fun_eq_iff elim: supE intro: supI1 supI2)
 qed
 
 lemma eval_code [code]: "eval (Seq f) = member (f ())"
--- a/src/HOL/Predicate_Compile_Examples/Hotel_Example.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Predicate_Compile_Examples/Hotel_Example.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -79,10 +79,10 @@
 declare Let_def[code_pred_inline]
 
 lemma [code_pred_inline]: "insert == (%y A x. y = x | A x)"
-by (auto simp add: insert_iff[unfolded mem_def] ext_iff intro!: eq_reflection)
+by (auto simp add: insert_iff[unfolded mem_def] fun_eq_iff intro!: eq_reflection)
 
 lemma [code_pred_inline]: "(op -) == (%A B x. A x \<and> \<not> B x)"
-by (auto simp add: Diff_iff[unfolded mem_def] ext_iff intro!: eq_reflection)
+by (auto simp add: Diff_iff[unfolded mem_def] fun_eq_iff intro!: eq_reflection)
 
 setup {* Code_Prolog.map_code_options (K
   {ensure_groundness = true,
--- a/src/HOL/Predicate_Compile_Examples/Specialisation_Examples.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Predicate_Compile_Examples/Specialisation_Examples.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -31,7 +31,7 @@
 
 lemma [code_pred_inline]:
   "max = max_nat"
-by (simp add: ext_iff max_def max_nat_def)
+by (simp add: fun_eq_iff max_def max_nat_def)
 
 definition
   "max_of_my_Suc x = max x (Suc x)"
--- a/src/HOL/Probability/Borel.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Probability/Borel.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -1031,7 +1031,7 @@
   have "f -` {\<omega>} \<inter> space M = {x\<in>space M. f x = \<omega>}" by auto
   with * have **: "{x\<in>space M. f x = \<omega>} \<in> sets M" by simp
   have f: "f = (\<lambda>x. if f x = \<omega> then \<omega> else Real (real (f x)))"
-    by (simp add: ext_iff Real_real)
+    by (simp add: fun_eq_iff Real_real)
   show "f \<in> borel_measurable M"
     apply (subst f)
     apply (rule measurable_If)
@@ -1264,7 +1264,7 @@
 proof -
   have *: "(\<lambda>x. f x + g x) =
      (\<lambda>x. if f x = \<omega> then \<omega> else if g x = \<omega> then \<omega> else Real (real (f x) + real (g x)))"
-     by (auto simp: ext_iff pinfreal_noteq_omega_Ex)
+     by (auto simp: fun_eq_iff pinfreal_noteq_omega_Ex)
   show ?thesis using assms unfolding *
     by (auto intro!: measurable_If)
 qed
@@ -1276,7 +1276,7 @@
   have *: "(\<lambda>x. f x * g x) =
      (\<lambda>x. if f x = 0 then 0 else if g x = 0 then 0 else if f x = \<omega> then \<omega> else if g x = \<omega> then \<omega> else
       Real (real (f x) * real (g x)))"
-     by (auto simp: ext_iff pinfreal_noteq_omega_Ex)
+     by (auto simp: fun_eq_iff pinfreal_noteq_omega_Ex)
   show ?thesis using assms unfolding *
     by (auto intro!: measurable_If)
 qed
--- a/src/HOL/Probability/Euclidean_Lebesgue.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Probability/Euclidean_Lebesgue.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -104,7 +104,7 @@
   from positive_integral_isoton[unfolded isoton_fun_expand isoton_iff_Lim_mono, of f u]
   show ?ilim using mono lim i by auto
   have "(SUP i. f i) = u" using mono lim SUP_Lim_pinfreal
-    unfolding ext_iff SUPR_fun_expand mono_def by auto
+    unfolding fun_eq_iff SUPR_fun_expand mono_def by auto
   moreover have "(SUP i. f i) \<in> borel_measurable M"
     using i by (rule borel_measurable_SUP)
   ultimately show "u \<in> borel_measurable M" by simp
--- a/src/HOL/Probability/Information.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Probability/Information.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -505,7 +505,7 @@
     by auto
   also have "\<dots> = log b (\<Sum>x\<in>X`space M. if ?d x \<noteq> 0 then 1 else 0)"
     apply (rule arg_cong[where f="\<lambda>f. log b (\<Sum>x\<in>X`space M. f x)"])
-    using distribution_finite[of X] by (auto simp: ext_iff real_of_pinfreal_eq_0)
+    using distribution_finite[of X] by (auto simp: fun_eq_iff real_of_pinfreal_eq_0)
   finally show ?thesis
     using finite_space by (auto simp: setsum_cases real_eq_of_nat)
 qed
@@ -645,7 +645,7 @@
   let "?dZ A" = "real (distribution Z A)"
   let ?M = "X ` space M \<times> Y ` space M \<times> Z ` space M"
 
-  have split_beta: "\<And>f. split f = (\<lambda>x. f (fst x) (snd x))" by (simp add: ext_iff)
+  have split_beta: "\<And>f. split f = (\<lambda>x. f (fst x) (snd x))" by (simp add: fun_eq_iff)
 
   have "- (\<Sum>(x, y, z) \<in> ?M. ?dXYZ {(x, y, z)} *
     log b (?dXYZ {(x, y, z)} / (?dXZ {(x, z)} * ?dYZ {(y,z)} / ?dZ {z})))
--- a/src/HOL/Probability/Lebesgue_Integration.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Probability/Lebesgue_Integration.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -1106,7 +1106,7 @@
     by (rule positive_integral_isoton)
        (auto intro!: borel_measurable_pinfreal_setsum assms positive_integral_mono
                      arg_cong[where f=Sup]
-             simp: isoton_def le_fun_def psuminf_def ext_iff SUPR_def Sup_fun_def)
+             simp: isoton_def le_fun_def psuminf_def fun_eq_iff SUPR_def Sup_fun_def)
   thus ?thesis
     by (auto simp: isoton_def psuminf_def positive_integral_setsum[OF assms])
 qed
@@ -1365,7 +1365,7 @@
     then have *: "(\<lambda>x. g x * indicator A x) = g"
       "\<And>x. g x * indicator A x = g x"
       "\<And>x. g x \<le> f x"
-      by (auto simp: le_fun_def ext_iff indicator_def split: split_if_asm)
+      by (auto simp: le_fun_def fun_eq_iff indicator_def split: split_if_asm)
     from g show "\<exists>x. simple_function (\<lambda>xa. x xa * indicator A xa) \<and> x \<le> f \<and> (\<forall>xa\<in>A. \<omega> \<noteq> x xa) \<and>
       simple_integral g = simple_integral (\<lambda>xa. x xa * indicator A xa)"
       using `A \<in> sets M`[THEN sets_into_space]
--- a/src/HOL/Probability/Positive_Infinite_Real.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Probability/Positive_Infinite_Real.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -1036,7 +1036,7 @@
   qed
   from choice[OF this] obtain r where f: "f = (\<lambda>i. Real (r i))"
     and pos: "\<forall>i. 0 \<le> r i"
-    by (auto simp: ext_iff)
+    by (auto simp: fun_eq_iff)
   hence [simp]: "\<And>i. real (f i) = r i" by auto
 
   have "mono (\<lambda>n. setsum r {..<n})" (is "mono ?S")
@@ -1156,7 +1156,7 @@
 lemma psuminf_0: "psuminf f = 0 \<longleftrightarrow> (\<forall>i. f i = 0)"
 proof safe
   assume "\<forall>i. f i = 0"
-  hence "f = (\<lambda>i. 0)" by (simp add: ext_iff)
+  hence "f = (\<lambda>i. 0)" by (simp add: fun_eq_iff)
   thus "psuminf f = 0" using psuminf_const by simp
 next
   fix i assume "psuminf f = 0"
--- a/src/HOL/Probability/Probability_Space.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Probability/Probability_Space.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -34,14 +34,14 @@
 lemma (in prob_space) distribution_cong:
   assumes "\<And>x. x \<in> space M \<Longrightarrow> X x = Y x"
   shows "distribution X = distribution Y"
-  unfolding distribution_def ext_iff
+  unfolding distribution_def fun_eq_iff
   using assms by (auto intro!: arg_cong[where f="\<mu>"])
 
 lemma (in prob_space) joint_distribution_cong:
   assumes "\<And>x. x \<in> space M \<Longrightarrow> X x = X' x"
   assumes "\<And>x. x \<in> space M \<Longrightarrow> Y x = Y' x"
   shows "joint_distribution X Y = joint_distribution X' Y'"
-  unfolding distribution_def ext_iff
+  unfolding distribution_def fun_eq_iff
   using assms by (auto intro!: arg_cong[where f="\<mu>"])
 
 lemma prob_space: "prob (space M) = 1"
--- a/src/HOL/Probability/Sigma_Algebra.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Probability/Sigma_Algebra.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -716,7 +716,7 @@
 
 lemma range_binaryset_eq: "range(binaryset A B) = {A,B,{}}"
   apply (simp add: binaryset_def)
-  apply (rule set_ext)
+  apply (rule set_eqI)
   apply (auto simp add: image_iff)
   done
 
--- a/src/HOL/Product_Type.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Product_Type.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -151,7 +151,7 @@
 next
   fix a c :: 'a and b d :: 'b
   have "Pair_Rep a b = Pair_Rep c d \<longleftrightarrow> a = c \<and> b = d"
-    by (auto simp add: Pair_Rep_def ext_iff)
+    by (auto simp add: Pair_Rep_def fun_eq_iff)
   moreover have "Pair_Rep a b \<in> prod" and "Pair_Rep c d \<in> prod"
     by (auto simp add: prod_def)
   ultimately show "Pair a b = Pair c d \<longleftrightarrow> a = c \<and> b = d"
@@ -394,7 +394,7 @@
   (Haskell "fst" and "snd")
 
 lemma prod_case_unfold [nitpick_def]: "prod_case = (%c p. c (fst p) (snd p))"
-  by (simp add: ext_iff split: prod.split)
+  by (simp add: fun_eq_iff split: prod.split)
 
 lemma fst_eqD: "fst (x, y) = a ==> x = a"
   by simp
@@ -423,11 +423,11 @@
   by (rule split_conv [THEN iffD1])
 
 lemma split_Pair [simp]: "(\<lambda>(x, y). (x, y)) = id"
-  by (simp add: ext_iff split: prod.split)
+  by (simp add: fun_eq_iff split: prod.split)
 
 lemma split_eta: "(\<lambda>(x, y). f (x, y)) = f"
   -- {* Subsumes the old @{text split_Pair} when @{term f} is the identity function. *}
-  by (simp add: ext_iff split: prod.split)
+  by (simp add: fun_eq_iff split: prod.split)
 
 lemma split_comp: "split (f \<circ> g) x = f (g (fst x)) (snd x)"
   by (cases x) simp
@@ -797,25 +797,25 @@
   "f \<circ>\<rightarrow> g = (\<lambda>x. prod_case g (f x))"
 
 lemma scomp_unfold: "scomp = (\<lambda>f g x. g (fst (f x)) (snd (f x)))"
-  by (simp add: ext_iff scomp_def prod_case_unfold)
+  by (simp add: fun_eq_iff scomp_def prod_case_unfold)
 
 lemma scomp_apply [simp]: "(f \<circ>\<rightarrow> g) x = prod_case g (f x)"
   by (simp add: scomp_unfold prod_case_unfold)
 
 lemma Pair_scomp: "Pair x \<circ>\<rightarrow> f = f x"
-  by (simp add: ext_iff scomp_apply)
+  by (simp add: fun_eq_iff scomp_apply)
 
 lemma scomp_Pair: "x \<circ>\<rightarrow> Pair = x"
-  by (simp add: ext_iff scomp_apply)
+  by (simp add: fun_eq_iff scomp_apply)
 
 lemma scomp_scomp: "(f \<circ>\<rightarrow> g) \<circ>\<rightarrow> h = f \<circ>\<rightarrow> (\<lambda>x. g x \<circ>\<rightarrow> h)"
-  by (simp add: ext_iff scomp_unfold)
+  by (simp add: fun_eq_iff scomp_unfold)
 
 lemma scomp_fcomp: "(f \<circ>\<rightarrow> g) \<circ>> h = f \<circ>\<rightarrow> (\<lambda>x. g x \<circ>> h)"
-  by (simp add: ext_iff scomp_unfold fcomp_def)
+  by (simp add: fun_eq_iff scomp_unfold fcomp_def)
 
 lemma fcomp_scomp: "(f \<circ>> g) \<circ>\<rightarrow> h = f \<circ>> (g \<circ>\<rightarrow> h)"
-  by (simp add: ext_iff scomp_unfold fcomp_apply)
+  by (simp add: fun_eq_iff scomp_unfold fcomp_apply)
 
 code_const scomp
   (Eval infixl 3 "#->")
@@ -919,11 +919,11 @@
 
 lemma apfst_id [simp] :
   "apfst id = id"
-  by (simp add: ext_iff)
+  by (simp add: fun_eq_iff)
 
 lemma apsnd_id [simp] :
   "apsnd id = id"
-  by (simp add: ext_iff)
+  by (simp add: fun_eq_iff)
 
 lemma apfst_eq_conv [simp]:
   "apfst f x = apfst g x \<longleftrightarrow> f (fst x) = g (fst x)"
@@ -1130,7 +1130,7 @@
   assumes "f ` A = A'" and "g ` B = B'"
   shows "prod_fun f g ` (A \<times> B) = A' \<times> B'"
 unfolding image_def
-proof(rule set_ext,rule iffI)
+proof(rule set_eqI,rule iffI)
   fix x :: "'a \<times> 'c"
   assume "x \<in> {y\<Colon>'a \<times> 'c. \<exists>x\<Colon>'b \<times> 'd\<in>A \<times> B. y = prod_fun f g x}"
   then obtain y where "y \<in> A \<times> B" and "x = prod_fun f g y" by blast
--- a/src/HOL/Quotient.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Quotient.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -34,7 +34,7 @@
 
 lemma equivp_reflp_symp_transp:
   shows "equivp E = (reflp E \<and> symp E \<and> transp E)"
-  unfolding equivp_def reflp_def symp_def transp_def ext_iff
+  unfolding equivp_def reflp_def symp_def transp_def fun_eq_iff
   by blast
 
 lemma equivp_reflp:
@@ -97,7 +97,7 @@
 
 lemma eq_comp_r:
   shows "((op =) OOO R) = R"
-  by (auto simp add: ext_iff)
+  by (auto simp add: fun_eq_iff)
 
 subsection {* Respects predicate *}
 
@@ -130,11 +130,11 @@
 
 lemma fun_map_id:
   shows "(id ---> id) = id"
-  by (simp add: ext_iff id_def)
+  by (simp add: fun_eq_iff id_def)
 
 lemma fun_rel_eq:
   shows "((op =) ===> (op =)) = (op =)"
-  by (simp add: ext_iff)
+  by (simp add: fun_eq_iff)
 
 
 subsection {* Quotient Predicate *}
@@ -209,7 +209,7 @@
   have "\<forall>a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a"
     using q1 q2
     unfolding Quotient_def
-    unfolding ext_iff
+    unfolding fun_eq_iff
     by simp
   moreover
   have "\<forall>a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)"
@@ -219,7 +219,7 @@
   moreover
   have "\<forall>r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and>
         (rep1 ---> abs2) r  = (rep1 ---> abs2) s)"
-    unfolding ext_iff
+    unfolding fun_eq_iff
     apply(auto)
     using q1 q2 unfolding Quotient_def
     apply(metis)
@@ -238,7 +238,7 @@
 lemma abs_o_rep:
   assumes a: "Quotient R Abs Rep"
   shows "Abs o Rep = id"
-  unfolding ext_iff
+  unfolding fun_eq_iff
   by (simp add: Quotient_abs_rep[OF a])
 
 lemma equals_rsp:
@@ -253,7 +253,7 @@
   assumes q1: "Quotient R1 Abs1 Rep1"
   and     q2: "Quotient R2 Abs2 Rep2"
   shows "(Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x))) = (\<lambda>x. f x)"
-  unfolding ext_iff
+  unfolding fun_eq_iff
   using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
   by simp
 
@@ -261,7 +261,7 @@
   assumes q1: "Quotient R1 Abs1 Rep1"
   and     q2: "Quotient R2 Abs2 Rep2"
   shows "(Rep1 ---> Abs2) (\<lambda>x. (Abs1 ---> Rep2) f x) = (\<lambda>x. f x)"
-  unfolding ext_iff
+  unfolding fun_eq_iff
   using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
   by simp
 
@@ -445,7 +445,7 @@
    is an equivalence this may be useful in regularising *)
 lemma babs_reg_eqv:
   shows "equivp R \<Longrightarrow> Babs (Respects R) P = P"
-  by (simp add: ext_iff Babs_def in_respects equivp_reflp)
+  by (simp add: fun_eq_iff Babs_def in_respects equivp_reflp)
 
 
 (* 3 lemmas needed for proving repabs_inj *)
@@ -617,12 +617,12 @@
   shows "((Abs2 ---> Rep3) ---> (Abs1 ---> Rep2) ---> (Rep1 ---> Abs3)) op \<circ> = op \<circ>"
   and   "(id ---> (Abs1 ---> id) ---> Rep1 ---> id) op \<circ> = op \<circ>"
   using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] Quotient_abs_rep[OF q3]
-  unfolding o_def ext_iff by simp_all
+  unfolding o_def fun_eq_iff by simp_all
 
 lemma o_rsp:
   "((R2 ===> R3) ===> (R1 ===> R2) ===> (R1 ===> R3)) op \<circ> op \<circ>"
   "(op = ===> (R1 ===> op =) ===> R1 ===> op =) op \<circ> op \<circ>"
-  unfolding fun_rel_def o_def ext_iff by auto
+  unfolding fun_rel_def o_def fun_eq_iff by auto
 
 lemma cond_prs:
   assumes a: "Quotient R absf repf"
@@ -633,7 +633,7 @@
   assumes q: "Quotient R Abs Rep"
   shows "(id ---> Rep ---> Rep ---> Abs) If = If"
   using Quotient_abs_rep[OF q]
-  by (auto simp add: ext_iff)
+  by (auto simp add: fun_eq_iff)
 
 lemma if_rsp:
   assumes q: "Quotient R Abs Rep"
@@ -645,7 +645,7 @@
   and     q2: "Quotient R2 Abs2 Rep2"
   shows "(Rep2 ---> (Abs2 ---> Rep1) ---> Abs1) Let = Let"
   using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
-  by (auto simp add: ext_iff)
+  by (auto simp add: fun_eq_iff)
 
 lemma let_rsp:
   shows "(R1 ===> (R1 ===> R2) ===> R2) Let Let"
@@ -659,7 +659,7 @@
   assumes a1: "Quotient R1 Abs1 Rep1"
   and     a2: "Quotient R2 Abs2 Rep2"
   shows "(Rep1 ---> (Abs1 ---> Rep2) ---> Abs2) op \<in> = op \<in>"
-  by (simp add: ext_iff mem_def Quotient_abs_rep[OF a1] Quotient_abs_rep[OF a2])
+  by (simp add: fun_eq_iff mem_def Quotient_abs_rep[OF a1] Quotient_abs_rep[OF a2])
 
 locale quot_type =
   fixes R :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
--- a/src/HOL/Quotient_Examples/FSet.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Quotient_Examples/FSet.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -563,12 +563,12 @@
 
 lemma [quot_preserve]:
   "(rep_fset ---> (map rep_fset \<circ> rep_fset) ---> (abs_fset \<circ> map abs_fset)) op # = finsert"
-  by (simp add: ext_iff Quotient_abs_rep[OF Quotient_fset]
+  by (simp add: fun_eq_iff Quotient_abs_rep[OF Quotient_fset]
       abs_o_rep[OF Quotient_fset] map_id finsert_def)
 
 lemma [quot_preserve]:
   "((map rep_fset \<circ> rep_fset) ---> (map rep_fset \<circ> rep_fset) ---> (abs_fset \<circ> map abs_fset)) op @ = funion"
-  by (simp add: ext_iff Quotient_abs_rep[OF Quotient_fset]
+  by (simp add: fun_eq_iff Quotient_abs_rep[OF Quotient_fset]
       abs_o_rep[OF Quotient_fset] map_id sup_fset_def)
 
 lemma list_all2_app_l:
@@ -771,7 +771,7 @@
 
 lemma inj_map_eq_iff:
   "inj f \<Longrightarrow> (map f l \<approx> map f m) = (l \<approx> m)"
-  by (simp add: set_ext_iff[symmetric] inj_image_eq_iff)
+  by (simp add: set_eq_iff[symmetric] inj_image_eq_iff)
 
 text {* alternate formulation with a different decomposition principle
   and a proof of equivalence *}
--- a/src/HOL/Quotient_Examples/Quotient_Int.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Quotient_Examples/Quotient_Int.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -14,7 +14,7 @@
   "intrel (x, y) (u, v) = (x + v = u + y)"
 
 quotient_type int = "nat \<times> nat" / intrel
-  by (auto simp add: equivp_def ext_iff)
+  by (auto simp add: equivp_def fun_eq_iff)
 
 instantiation int :: "{zero, one, plus, uminus, minus, times, ord, abs, sgn}"
 begin
--- a/src/HOL/Random.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Random.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -85,7 +85,7 @@
 
 lemma pick_drop_zero:
   "pick (filter (\<lambda>(k, _). k > 0) xs) = pick xs"
-  by (induct xs) (auto simp add: ext_iff)
+  by (induct xs) (auto simp add: fun_eq_iff)
 
 lemma pick_same:
   "l < length xs \<Longrightarrow> Random.pick (map (Pair 1) xs) (Code_Numeral.of_nat l) = nth xs l"
@@ -132,7 +132,7 @@
     by (induct xs) simp_all
   ultimately show ?thesis
     by (auto simp add: select_weight_def select_def scomp_def split_def
-      ext_iff pick_same [symmetric])
+      fun_eq_iff pick_same [symmetric])
 qed
 
 
--- a/src/HOL/Recdef.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Recdef.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -45,7 +45,7 @@
 text{*cut*}
 
 lemma cuts_eq: "(cut f r x = cut g r x) = (ALL y. (y,x):r --> f(y)=g(y))"
-by (simp add: ext_iff cut_def)
+by (simp add: fun_eq_iff cut_def)
 
 lemma cut_apply: "(x,a):r ==> (cut f r a)(x) = f(x)"
 by (simp add: cut_def)
--- a/src/HOL/Set.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Set.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -489,20 +489,18 @@
 
 subsubsection {* Equality *}
 
-lemma set_ext: assumes prem: "(!!x. (x:A) = (x:B))" shows "A = B"
+lemma set_eqI: assumes prem: "(!!x. (x:A) = (x:B))" shows "A = B"
   apply (rule prem [THEN ext, THEN arg_cong, THEN box_equals])
    apply (rule Collect_mem_eq)
   apply (rule Collect_mem_eq)
   done
 
-lemma set_ext_iff [no_atp]: "(A = B) = (ALL x. (x:A) = (x:B))"
-by(auto intro:set_ext)
-
-lemmas expand_set_eq [no_atp] = set_ext_iff
+lemma set_eq_iff [no_atp]: "(A = B) = (ALL x. (x:A) = (x:B))"
+by(auto intro:set_eqI)
 
 lemma subset_antisym [intro!]: "A \<subseteq> B ==> B \<subseteq> A ==> A = B"
   -- {* Anti-symmetry of the subset relation. *}
-  by (iprover intro: set_ext subsetD)
+  by (iprover intro: set_eqI subsetD)
 
 text {*
   \medskip Equality rules from ZF set theory -- are they appropriate
--- a/src/HOL/SetInterval.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/SetInterval.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -241,7 +241,7 @@
 lemma atLeastatMost_psubset_iff:
   "{a..b} < {c..d} \<longleftrightarrow>
    ((~ a <= b) | c <= a & b <= d & (c < a | b < d))  &  c <= d"
-by(simp add: psubset_eq set_ext_iff less_le_not_le)(blast intro: order_trans)
+by(simp add: psubset_eq set_eq_iff less_le_not_le)(blast intro: order_trans)
 
 lemma atLeastAtMost_singleton_iff[simp]:
   "{a .. b} = {c} \<longleftrightarrow> a = b \<and> b = c"
--- a/src/HOL/String.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/String.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -60,12 +60,12 @@
 
 lemma char_case_nibble_pair [code, code_unfold]:
   "char_case f = split f o nibble_pair_of_char"
-  by (simp add: ext_iff split: char.split)
+  by (simp add: fun_eq_iff split: char.split)
 
 lemma char_rec_nibble_pair [code, code_unfold]:
   "char_rec f = split f o nibble_pair_of_char"
   unfolding char_case_nibble_pair [symmetric]
-  by (simp add: ext_iff split: char.split)
+  by (simp add: fun_eq_iff split: char.split)
 
 syntax
   "_Char" :: "xstr => char"    ("CHR _")
--- a/src/HOL/Sum_Type.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Sum_Type.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -32,17 +32,17 @@
 lemma Inl_Rep_inject: "inj_on Inl_Rep A"
 proof (rule inj_onI)
   show "\<And>a c. Inl_Rep a = Inl_Rep c \<Longrightarrow> a = c"
-    by (auto simp add: Inl_Rep_def ext_iff)
+    by (auto simp add: Inl_Rep_def fun_eq_iff)
 qed
 
 lemma Inr_Rep_inject: "inj_on Inr_Rep A"
 proof (rule inj_onI)
   show "\<And>b d. Inr_Rep b = Inr_Rep d \<Longrightarrow> b = d"
-    by (auto simp add: Inr_Rep_def ext_iff)
+    by (auto simp add: Inr_Rep_def fun_eq_iff)
 qed
 
 lemma Inl_Rep_not_Inr_Rep: "Inl_Rep a \<noteq> Inr_Rep b"
-  by (auto simp add: Inl_Rep_def Inr_Rep_def ext_iff)
+  by (auto simp add: Inl_Rep_def Inr_Rep_def fun_eq_iff)
 
 definition Inl :: "'a \<Rightarrow> 'a + 'b" where
   "Inl = Abs_sum \<circ> Inl_Rep"
@@ -178,7 +178,7 @@
 by auto
 
 lemma UNIV_Plus_UNIV [simp]: "UNIV <+> UNIV = UNIV"
-proof (rule set_ext)
+proof (rule set_eqI)
   fix u :: "'a + 'b"
   show "u \<in> UNIV <+> UNIV \<longleftrightarrow> u \<in> UNIV" by (cases u) auto
 qed
--- a/src/HOL/Tools/Datatype/datatype.ML	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Tools/Datatype/datatype.ML	Mon Sep 13 11:13:25 2010 +0200
@@ -483,7 +483,7 @@
            [(indtac rep_induct [] THEN_ALL_NEW Object_Logic.atomize_prems_tac) 1,
             REPEAT (rtac TrueI 1),
             rewrite_goals_tac (mk_meta_eq @{thm choice_eq} ::
-              Thm.symmetric (mk_meta_eq @{thm ext_iff}) :: range_eqs),
+              Thm.symmetric (mk_meta_eq @{thm fun_eq_iff}) :: range_eqs),
             rewrite_goals_tac (map Thm.symmetric range_eqs),
             REPEAT (EVERY
               [REPEAT (eresolve_tac ([rangeE, ex1_implies_ex RS exE] @
--- a/src/HOL/Tools/Sledgehammer/clausifier.ML	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Tools/Sledgehammer/clausifier.ML	Mon Sep 13 11:13:25 2010 +0200
@@ -78,7 +78,7 @@
 
 (**** REPLACING ABSTRACTIONS BY COMBINATORS ****)
 
-val fun_cong_all = @{thm ext_iff [THEN iffD1]}
+val fun_cong_all = @{thm fun_eq_iff [THEN iffD1]}
 
 (* Removes the lambdas from an equation of the form "t = (%x. u)".
    (Cf. "extensionalize_term" in "Sledgehammer_Translate".) *)
--- a/src/HOL/Transitive_Closure.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Transitive_Closure.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -82,7 +82,7 @@
 subsection {* Reflexive-transitive closure *}
 
 lemma reflcl_set_eq [pred_set_conv]: "(sup (\<lambda>x y. (x, y) \<in> r) op =) = (\<lambda>x y. (x, y) \<in> r \<union> Id)"
-  by (auto simp add: ext_iff)
+  by (auto simp add: fun_eq_iff)
 
 lemma r_into_rtrancl [intro]: "!!p. p \<in> r ==> p \<in> r^*"
   -- {* @{text rtrancl} of @{text r} contains @{text r} *}
@@ -186,7 +186,7 @@
 lemmas rtrancl_idemp [simp] = rtranclp_idemp [to_set]
 
 lemma rtrancl_idemp_self_comp [simp]: "R^* O R^* = R^*"
-  apply (rule set_ext)
+  apply (rule set_eqI)
   apply (simp only: split_tupled_all)
   apply (blast intro: rtrancl_trans)
   done
@@ -487,7 +487,7 @@
 lemmas trancl_converseD = tranclp_converseD [to_set]
 
 lemma tranclp_converse: "(r^--1)^++ = (r^++)^--1"
-  by (fastsimp simp add: ext_iff
+  by (fastsimp simp add: fun_eq_iff
     intro!: tranclp_converseI dest!: tranclp_converseD)
 
 lemmas trancl_converse = tranclp_converse [to_set]
--- a/src/HOL/UNITY/Comp/Alloc.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/UNITY/Comp/Alloc.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -358,7 +358,7 @@
   done
 
 lemma surj_sysOfAlloc [iff]: "surj sysOfAlloc"
-  apply (simp add: surj_iff ext_iff o_apply)
+  apply (simp add: surj_iff fun_eq_iff o_apply)
   apply record_auto
   done
 
@@ -386,7 +386,7 @@
   done
 
 lemma surj_sysOfClient [iff]: "surj sysOfClient"
-  apply (simp add: surj_iff ext_iff o_apply)
+  apply (simp add: surj_iff fun_eq_iff o_apply)
   apply record_auto
   done
 
@@ -410,7 +410,7 @@
   done
 
 lemma surj_client_map [iff]: "surj client_map"
-  apply (simp add: surj_iff ext_iff o_apply)
+  apply (simp add: surj_iff fun_eq_iff o_apply)
   apply record_auto
   done
 
--- a/src/HOL/UNITY/Lift_prog.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/UNITY/Lift_prog.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -337,10 +337,10 @@
 
 (*Lets us prove one version of a theorem and store others*)
 lemma o_equiv_assoc: "f o g = h ==> f' o f o g = f' o h"
-by (simp add: ext_iff o_def)
+by (simp add: fun_eq_iff o_def)
 
 lemma o_equiv_apply: "f o g = h ==> \<forall>x. f(g x) = h x"
-by (simp add: ext_iff o_def)
+by (simp add: fun_eq_iff o_def)
 
 lemma fst_o_lift_map: "sub i o fst o lift_map i = fst"
 apply (rule ext)
--- a/src/HOL/Wellfounded.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Wellfounded.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -781,7 +781,7 @@
 
           let ?N1 = "{ n \<in> N. (n, a) \<in> r }"
           let ?N2 = "{ n \<in> N. (n, a) \<notin> r }"
-          have N: "?N1 \<union> ?N2 = N" by (rule set_ext) auto
+          have N: "?N1 \<union> ?N2 = N" by (rule set_eqI) auto
           from Nless have "finite N" by (auto elim: max_ext.cases)
           then have finites: "finite ?N1" "finite ?N2" by auto
           
--- a/src/HOL/Word/Misc_Typedef.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Word/Misc_Typedef.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -53,14 +53,14 @@
 
 lemma set_Rep: 
   "A = range Rep"
-proof (rule set_ext)
+proof (rule set_eqI)
   fix x
   show "(x \<in> A) = (x \<in> range Rep)"
     by (auto dest: Abs_inverse [of x, symmetric])
 qed  
 
 lemma set_Rep_Abs: "A = range (Rep o Abs)"
-proof (rule set_ext)
+proof (rule set_eqI)
   fix x
   show "(x \<in> A) = (x \<in> range (Rep o Abs))"
     by (auto dest: Abs_inverse [of x, symmetric])
--- a/src/HOL/Word/Word.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/Word/Word.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -4695,7 +4695,7 @@
 apply simp
 apply (rule_tac t="\<lambda>a. x (1 + (n - m + a))" and s="\<lambda>a. x (1 + (n - m) + a)"
        in subst)
- apply (clarsimp simp add: ext_iff)
+ apply (clarsimp simp add: fun_eq_iff)
  apply (rule_tac t="(1 + (n - m + xb))" and s="1 + (n - m) + xb" in subst)
   apply simp
  apply (rule refl)
--- a/src/HOL/ZF/Games.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/ZF/Games.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -323,7 +323,7 @@
 lemma wf_option_of[recdef_wf, simp, intro]: "wf option_of"
 proof -
   have option_of: "option_of = inv_image is_option_of Rep_game"
-    apply (rule set_ext)
+    apply (rule set_eqI)
     apply (case_tac "x")
     by (simp add: option_to_is_option_of) 
   show ?thesis
--- a/src/HOL/ZF/HOLZF.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/ZF/HOLZF.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -155,7 +155,7 @@
   by (auto simp add: explode_def)
 
 lemma explode_CartProd_eq: "explode (CartProd a b) = (% (x,y). Opair x y) ` ((explode a) \<times> (explode b))"
-  by (simp add: explode_def set_ext_iff CartProd image_def)
+  by (simp add: explode_def set_eq_iff CartProd image_def)
 
 lemma explode_Repl_eq: "explode (Repl A f) = image f (explode A)"
   by (simp add: explode_def Repl image_def)
@@ -830,7 +830,7 @@
   apply (subst set_like_def)
   apply (auto simp add: image_def)
   apply (rule_tac x="Sep (Ext_ZF_hull R y) (\<lambda> z. z \<in> (Ext (R^+) y))" in exI)
-  apply (auto simp add: explode_def Sep set_ext 
+  apply (auto simp add: explode_def Sep set_eqI 
     in_Ext_RTrans_implies_Elem_Ext_ZF_hull)
   done
  
--- a/src/HOL/ZF/Zet.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/ZF/Zet.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -22,7 +22,7 @@
   "zimage f A == Abs_zet (image f (Rep_zet A))"
 
 lemma zet_def': "zet = {A :: 'a set | A f z. inj_on f A \<and> f ` A = explode z}"
-  apply (rule set_ext)
+  apply (rule set_eqI)
   apply (auto simp add: zet_def)
   apply (rule_tac x=f in exI)
   apply auto
@@ -118,7 +118,7 @@
   "zsubset a b \<equiv> ! x. zin x a \<longrightarrow> zin x b"
 
 lemma explode_union: "explode (union a b) = (explode a) \<union> (explode b)"
-  apply (rule set_ext)
+  apply (rule set_eqI)
   apply (simp add: explode_def union)
   done
 
@@ -163,7 +163,7 @@
   by (simp add: zet_ext_eq zin_zexplode_eq Repl zimage_iff)
 
 lemma range_explode_eq_zet: "range explode = zet"
-  apply (rule set_ext)
+  apply (rule set_eqI)
   apply (auto simp add: explode_mem_zet)
   apply (drule image_zet_rep)
   apply (simp add: image_def)
--- a/src/HOL/ex/Execute_Choice.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/ex/Execute_Choice.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -26,7 +26,7 @@
   case True then show ?thesis by (simp add: is_empty_def keys_def valuesum_def)
 next
   case False
-  then have l: "\<exists>l. l \<in> dom (Mapping.lookup m)" by (auto simp add: is_empty_def ext_iff mem_def keys_def)
+  then have l: "\<exists>l. l \<in> dom (Mapping.lookup m)" by (auto simp add: is_empty_def fun_eq_iff mem_def keys_def)
   then have "(let l = SOME l. l \<in> dom (Mapping.lookup m) in
      the (Mapping.lookup m l) + (\<Sum>k \<in> dom (Mapping.lookup m) - {l}. the (Mapping.lookup m k))) =
        (\<Sum>k \<in> dom (Mapping.lookup m). the (Mapping.lookup m k))"
--- a/src/HOL/ex/Landau.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/ex/Landau.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -189,7 +189,7 @@
   qed (simp_all add: less_fun_def less_eq_fun_refl, auto intro: less_eq_fun_trans)
   show "class.preorder_equiv less_eq_fun less_fun" using preorder_equiv_axioms .
   show "preorder_equiv.equiv less_eq_fun = equiv_fun"
-    by (simp add: ext_iff equiv_def equiv_fun_less_eq_fun)
+    by (simp add: fun_eq_iff equiv_def equiv_fun_less_eq_fun)
 qed
 
 
--- a/src/HOL/ex/Summation.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOL/ex/Summation.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -24,7 +24,7 @@
 
 lemma \<Delta>_shift:
   "\<Delta> (\<lambda>k. l + f k) = \<Delta> f"
-  by (simp add: \<Delta>_def ext_iff)
+  by (simp add: \<Delta>_def fun_eq_iff)
 
 lemma \<Delta>_same_shift:
   assumes "\<Delta> f = \<Delta> g"
@@ -100,7 +100,7 @@
 proof -
   from \<Delta>_\<Sigma> have "\<Delta> (\<Sigma> (\<Delta> f) j) = \<Delta> f" .
   then obtain k where "plus k \<circ> \<Sigma> (\<Delta> f) j = f" by (blast dest: \<Delta>_same_shift)
-  then have "\<And>q. f q = k + \<Sigma> (\<Delta> f) j q" by (simp add: ext_iff)
+  then have "\<And>q. f q = k + \<Sigma> (\<Delta> f) j q" by (simp add: fun_eq_iff)
   then show ?thesis by simp
 qed
 
--- a/src/HOLCF/Algebraic.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOLCF/Algebraic.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -446,7 +446,7 @@
 apply (clarify, simp add: fd_take_fixed_iff)
 apply (simp add: finite_fixes_approx)
 apply (rule inj_onI, clarify)
-apply (simp add: set_ext_iff fin_defl_eqI)
+apply (simp add: set_eq_iff fin_defl_eqI)
 done
 
 lemma fd_take_covers: "\<exists>n. fd_take n a = a"
--- a/src/HOLCF/Cfun.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOLCF/Cfun.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -178,7 +178,7 @@
 text {* Extensionality for continuous functions *}
 
 lemma expand_cfun_eq: "(f = g) = (\<forall>x. f\<cdot>x = g\<cdot>x)"
-by (simp add: Rep_CFun_inject [symmetric] ext_iff)
+by (simp add: Rep_CFun_inject [symmetric] fun_eq_iff)
 
 lemma ext_cfun: "(\<And>x. f\<cdot>x = g\<cdot>x) \<Longrightarrow> f = g"
 by (simp add: expand_cfun_eq)
--- a/src/HOLCF/Ffun.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOLCF/Ffun.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -27,7 +27,7 @@
 next
   fix f g :: "'a \<Rightarrow> 'b"
   assume "f \<sqsubseteq> g" and "g \<sqsubseteq> f" thus "f = g"
-    by (simp add: below_fun_def ext_iff below_antisym)
+    by (simp add: below_fun_def fun_eq_iff below_antisym)
 next
   fix f g h :: "'a \<Rightarrow> 'b"
   assume "f \<sqsubseteq> g" and "g \<sqsubseteq> h" thus "f \<sqsubseteq> h"
@@ -103,7 +103,7 @@
 proof
   fix f g :: "'a \<Rightarrow> 'b"
   show "f \<sqsubseteq> g \<longleftrightarrow> f = g" 
-    unfolding expand_fun_below ext_iff
+    unfolding expand_fun_below fun_eq_iff
     by simp
 qed
 
@@ -111,7 +111,7 @@
 
 lemma maxinch2maxinch_lambda:
   "(\<And>x. max_in_chain n (\<lambda>i. S i x)) \<Longrightarrow> max_in_chain n S"
-unfolding max_in_chain_def ext_iff by simp
+unfolding max_in_chain_def fun_eq_iff by simp
 
 lemma maxinch_mono:
   "\<lbrakk>max_in_chain i Y; i \<le> j\<rbrakk> \<Longrightarrow> max_in_chain j Y"
--- a/src/HOLCF/IOA/ABP/Correctness.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOLCF/IOA/ABP/Correctness.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -210,7 +210,7 @@
 
 lemma compat_single_ch: "compatible srch_ioa rsch_ioa"
 apply (simp add: compatible_def Int_def)
-apply (rule set_ext)
+apply (rule set_eqI)
 apply (induct_tac x)
 apply simp_all
 done
@@ -218,7 +218,7 @@
 text {* totally the same as before *}
 lemma compat_single_fin_ch: "compatible srch_fin_ioa rsch_fin_ioa"
 apply (simp add: compatible_def Int_def)
-apply (rule set_ext)
+apply (rule set_eqI)
 apply (induct_tac x)
 apply simp_all
 done
@@ -232,7 +232,7 @@
 apply (simp del: del_simps
   add: compatible_def asig_of_par asig_comp_def actions_def Int_def)
 apply simp
-apply (rule set_ext)
+apply (rule set_eqI)
 apply (induct_tac x)
 apply simp_all
 done
@@ -242,7 +242,7 @@
 apply (simp del: del_simps
   add: compatible_def asig_of_par asig_comp_def actions_def Int_def)
 apply simp
-apply (rule set_ext)
+apply (rule set_eqI)
 apply (induct_tac x)
 apply simp_all
 done
@@ -252,7 +252,7 @@
 apply (simp del: del_simps
   add: compatible_def asig_of_par asig_comp_def actions_def Int_def)
 apply simp
-apply (rule set_ext)
+apply (rule set_eqI)
 apply (induct_tac x)
 apply simp_all
 done
@@ -262,7 +262,7 @@
 apply (simp del: del_simps
   add: compatible_def asig_of_par asig_comp_def actions_def Int_def)
 apply simp
-apply (rule set_ext)
+apply (rule set_eqI)
 apply (induct_tac x)
 apply simp_all
 done
@@ -272,7 +272,7 @@
 apply (simp del: del_simps
   add: compatible_def asig_of_par asig_comp_def actions_def Int_def)
 apply simp
-apply (rule set_ext)
+apply (rule set_eqI)
 apply (induct_tac x)
 apply simp_all
 done
@@ -282,7 +282,7 @@
 apply (simp del: del_simps
   add: compatible_def asig_of_par asig_comp_def actions_def Int_def)
 apply simp
-apply (rule set_ext)
+apply (rule set_eqI)
 apply (induct_tac x)
 apply simp_all
 done
--- a/src/HOLCF/IOA/meta_theory/CompoExecs.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOLCF/IOA/meta_theory/CompoExecs.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -296,7 +296,7 @@
   "Execs (A||B) = par_execs (Execs A) (Execs B)"
 apply (unfold Execs_def par_execs_def)
 apply (simp add: asig_of_par)
-apply (rule set_ext)
+apply (rule set_eqI)
 apply (simp add: compositionality_ex actions_of_par)
 done
 
--- a/src/HOLCF/IOA/meta_theory/CompoScheds.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOLCF/IOA/meta_theory/CompoScheds.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -542,7 +542,7 @@
 
 apply (unfold Scheds_def par_scheds_def)
 apply (simp add: asig_of_par)
-apply (rule set_ext)
+apply (rule set_eqI)
 apply (simp add: compositionality_sch actions_of_par)
 done
 
--- a/src/HOLCF/IOA/meta_theory/CompoTraces.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOLCF/IOA/meta_theory/CompoTraces.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -962,7 +962,7 @@
 
 apply (unfold Traces_def par_traces_def)
 apply (simp add: asig_of_par)
-apply (rule set_ext)
+apply (rule set_eqI)
 apply (simp add: compositionality_tr externals_of_par)
 done
 
--- a/src/HOLCF/Library/List_Cpo.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOLCF/Library/List_Cpo.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -115,7 +115,7 @@
  apply (induct n arbitrary: S)
   apply (subgoal_tac "S = (\<lambda>i. [])")
   apply (fast intro: lub_const)
-  apply (simp add: ext_iff)
+  apply (simp add: fun_eq_iff)
  apply (drule_tac x="\<lambda>i. tl (S i)" in meta_spec, clarsimp)
  apply (rule_tac x="(\<Squnion>i. hd (S i)) # x" in exI)
  apply (subgoal_tac "range (\<lambda>i. hd (S i) # tl (S i)) = range S")
--- a/src/HOLCF/Pcpo.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOLCF/Pcpo.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -89,7 +89,7 @@
 lemma lub_equal:
   "\<lbrakk>chain X; chain Y; \<forall>k. X k = Y k\<rbrakk>
     \<Longrightarrow> (\<Squnion>i. X i) = (\<Squnion>i. Y i)"
-  by (simp only: ext_iff [symmetric])
+  by (simp only: fun_eq_iff [symmetric])
 
 lemma lub_eq:
   "(\<And>i. X i = Y i) \<Longrightarrow> (\<Squnion>i. X i) = (\<Squnion>i. Y i)"
--- a/src/HOLCF/Up.thy	Mon Sep 13 09:29:43 2010 +0200
+++ b/src/HOLCF/Up.thy	Mon Sep 13 11:13:25 2010 +0200
@@ -135,7 +135,7 @@
    (\<exists>A. chain A \<and> (\<Squnion>i. Y i) = Iup (\<Squnion>i. A i) \<and>
    (\<exists>j. \<forall>i. Y (i + j) = Iup (A i))) \<or> (Y = (\<lambda>i. Ibottom))"
 apply (rule disjCI)
-apply (simp add: ext_iff)
+apply (simp add: fun_eq_iff)
 apply (erule exE, rename_tac j)
 apply (rule_tac x="\<lambda>i. THE a. Iup a = Y (i + j)" in exI)
 apply (simp add: up_lemma4)