adding lemma about rel_pow in Transitive_Closure for executable equation of the (refl) transitive closure
--- a/src/HOL/Transitive_Closure.thy Mon Oct 03 14:43:12 2011 +0200
+++ b/src/HOL/Transitive_Closure.thy Mon Oct 03 14:43:13 2011 +0200
@@ -775,6 +775,10 @@
lemma rel_pow_commute: "R O R ^^ n = R ^^ n O R"
by (induct n) (simp, simp add: O_assoc [symmetric])
+lemma rel_pow_empty:
+ "0 < n ==> ({} :: 'a * 'a => bool) ^^ n = {}"
+by (cases n) auto
+
lemma rtrancl_imp_UN_rel_pow:
assumes "p \<in> R^*"
shows "p \<in> (\<Union>n. R ^^ n)"