simplified induction case in finite_psubset_induct; tuned the proof that uses this induction principle
--- a/src/HOL/Big_Operators.thy Tue Apr 06 11:00:57 2010 +0200
+++ b/src/HOL/Big_Operators.thy Wed Apr 07 11:05:11 2010 +0200
@@ -1676,27 +1676,31 @@
qed
lemma finite_linorder_max_induct[consumes 1, case_names empty insert]:
- "finite A \<Longrightarrow> P {} \<Longrightarrow>
- (!!b A. finite A \<Longrightarrow> ALL a:A. a < b \<Longrightarrow> P A \<Longrightarrow> P(insert b A))
- \<Longrightarrow> P A"
+ assumes fin: "finite A"
+ and empty: "P {}"
+ and insert: "(!!b A. finite A \<Longrightarrow> ALL a:A. a < b \<Longrightarrow> P A \<Longrightarrow> P(insert b A))"
+ shows "P A"
+using fin empty insert
proof (induct rule: finite_psubset_induct)
- fix A :: "'a set"
- assume IH: "!! B. finite B \<Longrightarrow> B < A \<Longrightarrow> P {} \<Longrightarrow>
- (!!b A. finite A \<Longrightarrow> (\<forall>a\<in>A. a<b) \<Longrightarrow> P A \<Longrightarrow> P (insert b A))
- \<Longrightarrow> P B"
- and "finite A" and "P {}"
- and step: "!!b A. \<lbrakk>finite A; \<forall>a\<in>A. a < b; P A\<rbrakk> \<Longrightarrow> P (insert b A)"
+ case (psubset A)
+ have IH: "\<And>B. \<lbrakk>B < A; P {}; (\<And>A b. \<lbrakk>finite A; \<forall>a\<in>A. a<b; P A\<rbrakk> \<Longrightarrow> P (insert b A))\<rbrakk> \<Longrightarrow> P B" by fact
+ have fin: "finite A" by fact
+ have empty: "P {}" by fact
+ have step: "\<And>b A. \<lbrakk>finite A; \<forall>a\<in>A. a < b; P A\<rbrakk> \<Longrightarrow> P (insert b A)" by fact
show "P A"
proof (cases "A = {}")
- assume "A = {}" thus "P A" using `P {}` by simp
+ assume "A = {}"
+ then show "P A" using `P {}` by simp
next
- let ?B = "A - {Max A}" let ?A = "insert (Max A) ?B"
+ let ?B = "A - {Max A}"
+ let ?A = "insert (Max A) ?B"
+ have "finite ?B" using `finite A` by simp
assume "A \<noteq> {}"
with `finite A` have "Max A : A" by auto
- hence A: "?A = A" using insert_Diff_single insert_absorb by auto
- moreover have "finite ?B" using `finite A` by simp
- ultimately have "P ?B" using `P {}` step IH[of ?B] by blast
- moreover have "\<forall>a\<in>?B. a < Max A" using Max_ge [OF `finite A`] by fastsimp
+ then have A: "?A = A" using insert_Diff_single insert_absorb by auto
+ then have "P ?B" using `P {}` step IH[of ?B] by blast
+ moreover
+ have "\<forall>a\<in>?B. a < Max A" using Max_ge [OF `finite A`] by fastsimp
ultimately show "P A" using A insert_Diff_single step[OF `finite ?B`] by fastsimp
qed
qed
--- a/src/HOL/Finite_Set.thy Tue Apr 06 11:00:57 2010 +0200
+++ b/src/HOL/Finite_Set.thy Wed Apr 07 11:05:11 2010 +0200
@@ -2045,15 +2045,24 @@
by auto
lemma finite_psubset_induct[consumes 1, case_names psubset]:
- assumes "finite A" and "!!A. finite A \<Longrightarrow> (!!B. finite B \<Longrightarrow> B \<subset> A \<Longrightarrow> P(B)) \<Longrightarrow> P(A)" shows "P A"
-using assms(1)
-proof (induct A rule: measure_induct_rule[where f=card])
+ assumes fin: "finite A"
+ and major: "\<And>A. finite A \<Longrightarrow> (\<And>B. B \<subset> A \<Longrightarrow> P B) \<Longrightarrow> P A"
+ shows "P A"
+using fin
+proof (induct A taking: card rule: measure_induct_rule)
case (less A)
- show ?case
- proof(rule assms(2)[OF less(2)])
- fix B assume "finite B" "B \<subset> A"
- show "P B" by(rule less(1)[OF psubset_card_mono[OF less(2) `B \<subset> A`] `finite B`])
- qed
+ have fin: "finite A" by fact
+ have ih: "\<And>B. \<lbrakk>card B < card A; finite B\<rbrakk> \<Longrightarrow> P B" by fact
+ { fix B
+ assume asm: "B \<subset> A"
+ from asm have "card B < card A" using psubset_card_mono fin by blast
+ moreover
+ from asm have "B \<subseteq> A" by auto
+ then have "finite B" using fin finite_subset by blast
+ ultimately
+ have "P B" using ih by simp
+ }
+ with fin show "P A" using major by blast
qed
text{* main cardinality theorem *}