merged
authornipkow
Mon, 20 Feb 2023 13:59:42 +0100
changeset 77309 cc292dafc527
parent 77304 aea11797247b (diff)
parent 77308 fa247805669d (current diff)
child 77321 cf6947717650
child 77323 930905819197
merged
NEWS
--- a/NEWS	Mon Feb 20 13:59:16 2023 +0100
+++ b/NEWS	Mon Feb 20 13:59:42 2023 +0100
@@ -214,6 +214,8 @@
 
 * Theory "HOL-Library.Multiset_Order":
   - Added lemmas.
+      asymp_multpHO
+      asymp_not_liftable_to_multpHO
       irreflp_on_multpHO[simp]
       multpHO_plus_plus[simp]
       totalp_multpDM
--- a/src/HOL/Analysis/Complex_Transcendental.thy	Mon Feb 20 13:59:16 2023 +0100
+++ b/src/HOL/Analysis/Complex_Transcendental.thy	Mon Feb 20 13:59:42 2023 +0100
@@ -102,12 +102,7 @@
   have "((\<lambda>w. w) has_field_derivative 1) (at z)"
     by (intro derivative_intros)
   also have "?this \<longleftrightarrow> ((\<lambda>w. exp (f w)) has_field_derivative 1) (at z)"
-  proof (rule DERIV_cong_ev)
-    have "eventually (\<lambda>w. w \<in> A) (nhds z)"
-      using assms by (intro eventually_nhds_in_open) auto
-    thus "eventually (\<lambda>w. w = exp (f w)) (nhds z)"
-      by eventually_elim (use assms in auto)
-  qed auto
+    by (smt (verit, best) assms has_field_derivative_transform_within_open)
   finally have "((\<lambda>w. exp (f w)) has_field_derivative 1) (at z)" .
   moreover have "((\<lambda>w. exp (f w)) has_field_derivative exp (f z) * deriv f z) (at z)"
     by (rule derivative_eq_intros refl)+
@@ -133,11 +128,7 @@
 theorem exp_Euler: "exp(\<i> * z) = cos(z) + \<i> * sin(z)"
 proof -
   have "(\<lambda>n. (cos_coeff n + \<i> * sin_coeff n) * z^n) = (\<lambda>n. (\<i> * z) ^ n /\<^sub>R (fact n))"
-  proof
-    fix n
-    show "(cos_coeff n + \<i> * sin_coeff n) * z^n = (\<i> * z) ^ n /\<^sub>R (fact n)"
-      by (auto simp: cos_coeff_def sin_coeff_def scaleR_conv_of_real field_simps elim!: evenE oddE)
-  qed
+    by (force simp: cos_coeff_def sin_coeff_def scaleR_conv_of_real field_simps elim!: evenE oddE)
   also have "\<dots> sums (exp (\<i> * z))"
     by (rule exp_converges)
   finally have "(\<lambda>n. (cos_coeff n + \<i> * sin_coeff n) * z^n) sums (exp (\<i> * z))" .
@@ -149,8 +140,7 @@
 qed
 
 corollary\<^marker>\<open>tag unimportant\<close> exp_minus_Euler: "exp(-(\<i> * z)) = cos(z) - \<i> * sin(z)"
-  using exp_Euler [of "-z"]
-  by simp
+  using exp_Euler [of "-z"] by simp
 
 lemma sin_exp_eq: "sin z = (exp(\<i> * z) - exp(-(\<i> * z))) / (2*\<i>)"
   by (simp add: exp_Euler exp_minus_Euler)
@@ -198,18 +188,7 @@
   by (metis exp_Euler [symmetric] exp_of_nat_mult mult.left_commute)
 
 lemma exp_cnj: "cnj (exp z) = exp (cnj z)"
-proof -
-  have "(\<lambda>n. cnj (z ^ n /\<^sub>R (fact n))) = (\<lambda>n. (cnj z)^n /\<^sub>R (fact n))"
-    by auto
-  also have "\<dots> sums (exp (cnj z))"
-    by (rule exp_converges)
-  finally have "(\<lambda>n. cnj (z ^ n /\<^sub>R (fact n))) sums (exp (cnj z))" .
-  moreover have "(\<lambda>n. cnj (z ^ n /\<^sub>R (fact n))) sums (cnj (exp z))"
-    by (metis exp_converges sums_cnj)
-  ultimately show ?thesis
-    using sums_unique2
-    by blast
-qed
+  by (simp add: cis_cnj exp_eq_polar)
 
 lemma cnj_sin: "cnj(sin z) = sin(cnj z)"
   by (simp add: sin_exp_eq exp_cnj field_simps)
@@ -264,7 +243,7 @@
 subsection\<^marker>\<open>tag unimportant\<close>\<open>More on the Polar Representation of Complex Numbers\<close>
 
 lemma exp_Complex: "exp(Complex r t) = of_real(exp r) * Complex (cos t) (sin t)"
-  by (simp add: Complex_eq exp_add exp_Euler exp_of_real sin_of_real cos_of_real)
+  using Complex_eq Euler complex.sel by presburger
 
 lemma exp_eq_1: "exp z = 1 \<longleftrightarrow> Re(z) = 0 \<and> (\<exists>n::int. Im(z) = of_int (2 * n) * pi)"
                  (is "?lhs = ?rhs")
@@ -273,7 +252,7 @@
   then have "Re z = 0"
     by (metis exp_eq_one_iff norm_exp_eq_Re norm_one)
   with \<open>?lhs\<close> show ?rhs
-    by (metis Re_exp complex_Re_of_int cos_one_2pi_int exp_zero mult.commute mult_numeral_1 numeral_One of_int_mult of_int_numeral)
+    by (metis Re_exp cos_one_2pi_int exp_zero mult.commute mult_1 of_int_mult of_int_numeral one_complex.simps(1))
 next
   assume ?rhs then show ?lhs
     using Im_exp Re_exp complex_eq_iff
@@ -298,13 +277,7 @@
 lemma exp_integer_2pi:
   assumes "n \<in> \<int>"
   shows "exp((2 * n * pi) * \<i>) = 1"
-proof -
-  have "exp((2 * n * pi) * \<i>) = exp 0"
-    using assms unfolding Ints_def exp_eq by auto
-  also have "\<dots> = 1"
-    by simp
-  finally show ?thesis .
-qed
+  by (metis assms cis_conv_exp cis_multiple_2pi mult.assoc mult.commute)
 
 lemma exp_plus_2pin [simp]: "exp (z + \<i> * (of_int n * (of_real pi * 2))) = exp z"
   by (simp add: exp_eq)
@@ -312,15 +285,8 @@
 lemma exp_integer_2pi_plus1:
   assumes "n \<in> \<int>"
   shows "exp(((2 * n + 1) * pi) * \<i>) = - 1"
-proof -
-  from assms obtain n' where [simp]: "n = of_int n'"
-    by (auto simp: Ints_def)
-  have "exp(((2 * n + 1) * pi) * \<i>) = exp (pi * \<i>)"
-    using assms by (subst exp_eq) (auto intro!: exI[of _ n'] simp: algebra_simps)
-  also have "\<dots> = - 1"
-    by simp
-  finally show ?thesis .
-qed
+  using exp_integer_2pi [OF assms]
+  by (metis cis_conv_exp cis_mult cis_pi distrib_left mult.commute mult.right_neutral)
 
 lemma inj_on_exp_pi:
   fixes z::complex shows "inj_on exp (ball z pi)"
@@ -338,7 +304,6 @@
 
 lemma cmod_add_squared:
   fixes r1 r2::real
-  assumes "r1 \<ge> 0" "r2 \<ge> 0"
   shows "(cmod (r1 * exp (\<i> * \<theta>1) + r2 * exp (\<i> * \<theta>2)))\<^sup>2 = r1\<^sup>2 + r2\<^sup>2 + 2 * r1 * r2 * cos (\<theta>1 - \<theta>2)" (is "(cmod (?z1 + ?z2))\<^sup>2 = ?rhs")
 proof -
   have "(cmod (?z1 + ?z2))\<^sup>2 = (?z1 + ?z2) * cnj (?z1 + ?z2)"
@@ -355,19 +320,8 @@
 
 lemma cmod_diff_squared:
   fixes r1 r2::real
-  assumes "r1 \<ge> 0" "r2 \<ge> 0"
-  shows "(cmod (r1 * exp (\<i> * \<theta>1) - r2 * exp (\<i> * \<theta>2)))\<^sup>2 = r1\<^sup>2 + r2\<^sup>2 - 2*r1*r2*cos (\<theta>1 - \<theta>2)" (is "(cmod (?z1 - ?z2))\<^sup>2 = ?rhs")
-proof -
-  have "exp (\<i> * (\<theta>2 + pi)) = - exp (\<i> * \<theta>2)"
-    by (simp add: exp_Euler cos_plus_pi sin_plus_pi)
-  then have "(cmod (?z1 - ?z2))\<^sup>2 = cmod (?z1 + r2 * exp (\<i> * (\<theta>2 + pi))) ^2"
-    by simp
-  also have "\<dots> = r1\<^sup>2 + r2\<^sup>2 + 2*r1*r2*cos (\<theta>1 - (\<theta>2 + pi))"
-    using assms cmod_add_squared by blast
-  also have "\<dots> = ?rhs"
-    by (simp add: add.commute diff_add_eq_diff_diff_swap)
-  finally show ?thesis .
-qed
+  shows "(cmod (r1 * exp (\<i> * \<theta>1) - r2 * exp (\<i> * \<theta>2)))\<^sup>2 = r1\<^sup>2 + r2\<^sup>2 - 2*r1*r2*cos (\<theta>1 - \<theta>2)" 
+  using cmod_add_squared [of r1 _ "-r2"] by simp
 
 lemma polar_convergence:
   fixes R::real
@@ -381,8 +335,7 @@
   moreover obtain k where "(\<lambda>j. \<theta> j - of_int (k j) * (2 * pi)) \<longlonglongrightarrow> \<Theta>"
   proof -
     have "cos (\<theta> j - \<Theta>) = ((r j)\<^sup>2 + R\<^sup>2 - (norm(?z j - ?Z))\<^sup>2) / (2 * R * r j)" for j
-      apply (subst cmod_diff_squared)
-      using assms by (auto simp: field_split_simps less_le)
+      using assms by (auto simp: cmod_diff_squared less_le)
     moreover have "(\<lambda>j. ((r j)\<^sup>2 + R\<^sup>2 - (norm(?z j - ?Z))\<^sup>2) / (2 * R * r j)) \<longlonglongrightarrow> ((R\<^sup>2 + R\<^sup>2 - (norm(?Z - ?Z))\<^sup>2) / (2 * R * R))"
       by (intro L rR tendsto_intros) (use \<open>R > 0\<close> in force)
     moreover have "((R\<^sup>2 + R\<^sup>2 - (norm(?Z - ?Z))\<^sup>2) / (2 * R * R)) = 1"
@@ -430,19 +383,7 @@
 lemma exp_i_ne_1:
   assumes "0 < x" "x < 2*pi"
   shows "exp(\<i> * of_real x) \<noteq> 1"
-proof
-  assume "exp (\<i> * of_real x) = 1"
-  then have "exp (\<i> * of_real x) = exp 0"
-    by simp
-  then obtain n where "\<i> * of_real x = (of_int (2 * n) * pi) * \<i>"
-    by (simp only: Ints_def exp_eq) auto
-  then have "of_real x = (of_int (2 * n) * pi)"
-    by (metis complex_i_not_zero mult.commute mult_cancel_left of_real_eq_iff real_scaleR_def scaleR_conv_of_real)
-  then have "x = (of_int (2 * n) * pi)"
-    by simp
-  then show False using assms
-    by (cases n) (auto simp: zero_less_mult_iff mult_less_0_iff)
-qed
+  by (smt (verit) Im_i_times Re_complex_of_real assms exp_complex_eqI exp_zero zero_complex.sel(2))
 
 lemma sin_eq_0:
   fixes z::complex
@@ -458,16 +399,7 @@
 lemma cos_eq_1:
   fixes z::complex
   shows "cos z = 1 \<longleftrightarrow> (\<exists>n::int. z = complex_of_real(2 * n * pi))"
-proof -
-  have "cos z = cos (2*(z/2))"
-    by simp
-  also have "\<dots> = 1 - 2 * sin (z/2) ^ 2"
-    by (simp only: cos_double_sin)
-  finally have [simp]: "cos z = 1 \<longleftrightarrow> sin (z/2) = 0"
-    by simp
-  show ?thesis
-    by (auto simp: sin_eq_0)
-qed
+  by (metis Re_complex_of_real cos_of_real cos_one_2pi_int cos_one_sin_zero mult.commute of_real_1 sin_eq_0)
 
 lemma csin_eq_1:
   fixes z::complex
@@ -482,10 +414,8 @@
 proof -
   have "sin z = -1 \<longleftrightarrow> sin (-z) = 1"
     by (simp add: equation_minus_iff)
-  also have "\<dots> \<longleftrightarrow> (\<exists>n::int. -z = of_real(2 * n * pi) + of_real pi/2)"
-    by (simp only: csin_eq_1)
   also have "\<dots> \<longleftrightarrow> (\<exists>n::int. z = - of_real(2 * n * pi) - of_real pi/2)"
-    by (rule iff_exI) (metis add.inverse_inverse add_uminus_conv_diff minus_add_distrib)
+    by (metis (mono_tags, lifting) add_uminus_conv_diff csin_eq_1 equation_minus_iff minus_add_distrib)
   also have "\<dots> = ?rhs"
     apply safe
     apply (rule_tac [2] x="-(x+1)" in exI)
@@ -506,10 +436,8 @@
 proof -
   have "sin x = 1 \<longleftrightarrow> sin (complex_of_real x) = 1"
     by (metis of_real_1 one_complex.simps(1) real_sin_eq sin_of_real)
-  also have "\<dots> \<longleftrightarrow> (\<exists>n::int. complex_of_real x = of_real(2 * n * pi) + of_real pi/2)"
-    by (simp only: csin_eq_1)
   also have "\<dots> \<longleftrightarrow> (\<exists>n::int. x = of_real(2 * n * pi) + of_real pi/2)"
-    by (rule iff_exI) (auto simp: algebra_simps intro: injD [OF inj_of_real [where 'a = complex]])
+    by (metis csin_eq_1 Re_complex_of_real id_apply of_real_add of_real_divide of_real_eq_id of_real_numeral)
   also have "\<dots> = ?rhs"
     by (auto simp: algebra_simps)
   finally show ?thesis .
@@ -519,10 +447,8 @@
 proof -
   have "sin x = -1 \<longleftrightarrow> sin (complex_of_real x) = -1"
     by (metis Re_complex_of_real of_real_def scaleR_minus1_left sin_of_real)
-  also have "\<dots> \<longleftrightarrow> (\<exists>n::int. complex_of_real x = of_real(2 * n * pi) + 3/2*pi)"
-    by (simp add: csin_eq_minus1)
   also have "\<dots> \<longleftrightarrow> (\<exists>n::int. x = of_real(2 * n * pi) + 3/2*pi)"
-    by (rule iff_exI) (auto simp: algebra_simps intro: injD [OF inj_of_real [where 'a = complex]])
+    by (metis Re_complex_of_real csin_eq_minus1 id_apply of_real_add of_real_eq_id)
   also have "\<dots> = ?rhs"
     by (auto simp: algebra_simps)
   finally show ?thesis .
@@ -533,10 +459,8 @@
 proof -
   have "cos x = -1 \<longleftrightarrow> cos (complex_of_real x) = -1"
     by (metis Re_complex_of_real of_real_def scaleR_minus1_left cos_of_real)
-  also have "\<dots> \<longleftrightarrow> (\<exists>n::int. complex_of_real x = of_real(2 * n * pi) + pi)"
-    by (simp add: ccos_eq_minus1)
   also have "\<dots> \<longleftrightarrow> (\<exists>n::int. x = of_real(2 * n * pi) + pi)"
-    by (rule iff_exI) (auto simp: algebra_simps intro: injD [OF inj_of_real [where 'a = complex]])
+    by (metis ccos_eq_minus1 id_apply of_real_add of_real_eq_id of_real_eq_iff)
   also have "\<dots> = ?rhs"
     by (auto simp: algebra_simps)
   finally show ?thesis .
@@ -568,12 +492,8 @@
         (is "?lhs = ?rhs")
 proof
   assume ?lhs
-  then have "sin w - sin z = 0"
-    by (auto simp: algebra_simps)
-  then have "sin ((w - z) / 2)*cos ((w + z) / 2) = 0"
-    by (auto simp: sin_diff_sin)
   then consider "sin ((w - z) / 2) = 0" | "cos ((w + z) / 2) = 0"
-    using mult_eq_0_iff by blast
+    by (metis divide_eq_0_iff nonzero_eq_divide_eq right_minus_eq sin_diff_sin zero_neq_numeral)
   then show ?rhs
   proof cases
     case 1
@@ -608,14 +528,10 @@
   fixes w :: complex
   shows "cos w = cos z \<longleftrightarrow> (\<exists>n \<in> \<int>. w = z + of_real(2*n*pi) \<or> w = -z + of_real(2*n*pi))"
         (is "?lhs = ?rhs")
-proof
+proof 
   assume ?lhs
-  then have "cos w - cos z = 0"
-    by (auto simp: algebra_simps)
-  then have "sin ((w + z) / 2) * sin ((z - w) / 2) = 0"
-    by (auto simp: cos_diff_cos)
   then consider "sin ((w + z) / 2) = 0" | "sin ((z - w) / 2) = 0"
-    using mult_eq_0_iff by blast
+    by (metis mult_eq_0_iff cos_diff_cos right_minus_eq zero_neq_numeral)
   then show ?rhs
   proof cases
     case 1
@@ -719,22 +635,7 @@
 lemma norm_cos_plus1_le:
   fixes z::complex
   shows "norm(1 + cos z) \<le> 2 * exp(norm z)"
-proof -
-  have mono: "\<And>u w z::real. (1 \<le> w | 1 \<le> z) \<Longrightarrow> (w \<le> u & z \<le> u) \<Longrightarrow> 2 + w + z \<le> 4 * u"
-      by arith
-  have *: "Im z \<le> cmod z"
-    using abs_Im_le_cmod abs_le_D1 by auto
-  have triangle3: "\<And>x y z. norm(x + y + z) \<le> norm(x) + norm(y) + norm(z)"
-    by (simp add: norm_add_rule_thm)
-  have "norm(1 + cos z) = cmod (1 + (exp (\<i> * z) + exp (- (\<i> * z))) / 2)"
-    by (simp add: cos_exp_eq)
-  also have "\<dots> = cmod ((2 + exp (\<i> * z) + exp (- (\<i> * z))) / 2)"
-    by (simp add: field_simps)
-  also have "\<dots> = cmod (2 + exp (\<i> * z) + exp (- (\<i> * z))) / 2"
-    by (simp add: norm_divide)
-  finally show ?thesis
-    by (metis exp_eq_one_iff exp_le_cancel_iff mult_2 norm_cos_le norm_ge_zero norm_one norm_triangle_mono)
-qed
+  by (smt (verit, best) exp_ge_add_one_self norm_cos_le norm_ge_zero norm_one norm_triangle_ineq)
 
 lemma sinh_conv_sin: "sinh z = -\<i> * sin (\<i>*z)"
   by (simp add: sinh_field_def sin_i_times exp_minus)
@@ -793,6 +694,7 @@
     by simp
 qed auto
 
+text \<open>For complex @{term z}, a tighter bound than in the previous result\<close>
 lemma Taylor_exp:
   "norm(exp z - (\<Sum>k\<le>n. z ^ k / (fact k))) \<le> exp\<bar>Re z\<bar> * (norm z) ^ (Suc n) / (fact n)"
 proof (rule complex_Taylor [of _ n "\<lambda>k. exp" "exp\<bar>Re z\<bar>" 0 z, simplified])
@@ -857,14 +759,12 @@
            \<le> exp \<bar>Im z\<bar> * cmod z ^ Suc n / (fact n)"
   proof (rule complex_Taylor [of "closed_segment 0 z" n
                                  "\<lambda>k x. (-1)^(k div 2) * (if even k then sin x else cos x)"
-                                 "exp\<bar>Im z\<bar>" 0 z,  simplified])
+                                 "exp\<bar>Im z\<bar>" 0 z, simplified])
     fix k x
     show "((\<lambda>x. (- 1) ^ (k div 2) * (if even k then sin x else cos x)) has_field_derivative
             (- 1) ^ (Suc k div 2) * (if odd k then sin x else cos x))
             (at x within closed_segment 0 z)"
-      apply (auto simp: power_Suc)
-      apply (intro derivative_eq_intros | simp)+
-      done
+      by (cases "even k") (intro derivative_eq_intros | simp add: power_Suc)+
   next
     fix x
     assume "x \<in> closed_segment 0 z"
@@ -887,16 +787,15 @@
   have *: "cmod (cos z -
                  (\<Sum>i\<le>n. (-1) ^ (Suc i div 2) * (if even i then cos 0 else sin 0) * z ^ i / (fact i)))
            \<le> exp \<bar>Im z\<bar> * cmod z ^ Suc n / (fact n)"
-  proof (rule complex_Taylor [of "closed_segment 0 z" n "\<lambda>k x. (-1)^(Suc k div 2) * (if even k then cos x else sin x)" "exp\<bar>Im z\<bar>" 0 z,
-simplified])
+  proof (rule complex_Taylor [of "closed_segment 0 z" n 
+                                 "\<lambda>k x. (-1)^(Suc k div 2) * (if even k then cos x else sin x)" 
+                                 "exp\<bar>Im z\<bar>" 0 z, simplified])
     fix k x
     assume "x \<in> closed_segment 0 z" "k \<le> n"
     show "((\<lambda>x. (- 1) ^ (Suc k div 2) * (if even k then cos x else sin x)) has_field_derivative
             (- 1) ^ Suc (k div 2) * (if odd k then cos x else sin x))
              (at x within closed_segment 0 z)"
-      apply (auto simp: power_Suc)
-      apply (intro derivative_eq_intros | simp)+
-      done
+      by (cases "even k") (intro derivative_eq_intros | simp add: power_Suc)+
   next
     fix x
     assume "x \<in> closed_segment 0 z"
@@ -942,18 +841,10 @@
   by (simp add: algebra_simps is_Arg_def)
 
 lemma is_Arg_eqI:
-  assumes r: "is_Arg z r" and s: "is_Arg z s" and rs: "abs (r-s) < 2*pi" and "z \<noteq> 0"
+  assumes "is_Arg z r" and "is_Arg z s" and "abs (r-s) < 2*pi" and "z \<noteq> 0"
   shows "r = s"
-proof -
-  have zr: "z = (cmod z) * exp (\<i> * r)" and zs: "z = (cmod z) * exp (\<i> * s)"
-    using r s by (auto simp: is_Arg_def)
-  with \<open>z \<noteq> 0\<close> have eq: "exp (\<i> * r) = exp (\<i> * s)"
-    by (metis mult_eq_0_iff mult_left_cancel)
-  have  "\<i> * r = \<i> * s"
-    by (rule exp_complex_eqI) (use rs in \<open>auto simp: eq exp_complex_eqI\<close>)
-  then show ?thesis
-    by simp
-qed
+  using assms unfolding is_Arg_def
+  by (metis Im_i_times Re_complex_of_real exp_complex_eqI mult_cancel_left mult_eq_0_iff)
 
 text\<open>This function returns the angle of a complex number from its representation in polar coordinates.
 Due to periodicity, its range is arbitrary. \<^term>\<open>Arg2pi\<close> follows HOL Light in adopting the interval \<open>[0,2\<pi>)\<close>.
@@ -965,28 +856,13 @@
   by (simp add: Arg2pi_def)
 
 lemma Arg2pi_unique_lemma:
-  assumes z:  "is_Arg z t"
-      and z': "is_Arg z t'"
-      and t:  "0 \<le> t"  "t < 2*pi"
-      and t': "0 \<le> t'" "t' < 2*pi"
-      and nz: "z \<noteq> 0"
+  assumes "is_Arg z t"
+      and "is_Arg z t'"
+      and "0 \<le> t"  "t < 2*pi"
+      and "0 \<le> t'" "t' < 2*pi"
+      and "z \<noteq> 0"
   shows "t' = t"
-proof -
-  have [dest]: "\<And>x y z::real. x\<ge>0 \<Longrightarrow> x+y < z \<Longrightarrow> y<z"
-    by arith
-  have "of_real (cmod z) * exp (\<i> * of_real t') = of_real (cmod z) * exp (\<i> * of_real t)"
-    by (metis z z' is_Arg_def)
-  then have "exp (\<i> * of_real t') = exp (\<i> * of_real t)"
-    by (metis nz mult_left_cancel mult_zero_left z is_Arg_def)
-  then have "sin t' = sin t \<and> cos t' = cos t"
-    by (metis cis.simps cis_conv_exp)
-  then obtain n::int where n: "t' = t + 2 * n * pi"
-    by (auto simp: sin_cos_eq_iff)
-  then have "n=0"
-    by (cases n) (use t t' in \<open>auto simp: mult_less_0_iff algebra_simps\<close>)
-  then show "t' = t"
-    by (simp add: n)
-qed
+  using is_Arg_eqI assms by force
 
 lemma Arg2pi: "0 \<le> Arg2pi z \<and> Arg2pi z < 2*pi \<and> is_Arg z (Arg2pi z)"
 proof (cases "z=0")
@@ -998,7 +874,7 @@
              and ReIm: "Re z / cmod z = cos t" "Im z / cmod z = sin t"
     using sincos_total_2pi [OF complex_unit_circle [OF False]]
     by blast
-  have z: "is_Arg z t"
+  then have z: "is_Arg z t"
     unfolding is_Arg_def
     using t False ReIm
     by (intro complex_eqI) (auto simp: exp_Euler sin_of_real cos_of_real field_split_simps)
@@ -1056,36 +932,20 @@
 qed auto
 
 lemma Arg2pi_lt_pi: "0 < Arg2pi z \<and> Arg2pi z < pi \<longleftrightarrow> 0 < Im z"
-proof (cases "z=0")
-  case False
-  have "0 < Im z \<longleftrightarrow> 0 < Im (of_real (cmod z) * exp (\<i> * complex_of_real (Arg2pi z)))"
-    by (metis Arg2pi_eq)
-  also have "\<dots> = (0 < Im (exp (\<i> * complex_of_real (Arg2pi z))))"
-    using False by (simp add: zero_less_mult_iff)
-  also have "\<dots> \<longleftrightarrow> 0 < Arg2pi z \<and> Arg2pi z < pi" (is "_ = ?rhs")
-  proof -
-    have "0 < sin (Arg2pi z) \<Longrightarrow> ?rhs"
-      by (meson Arg2pi_ge_0 Arg2pi_lt_2pi less_le_trans not_le sin_le_zero sin_x_le_x)
-    then show ?thesis
-      by (auto simp: Im_exp sin_gt_zero)
-  qed
-  finally show ?thesis
-    by blast
-qed auto
+  using Arg2pi_le_pi [of z]
+  by (smt (verit, del_insts) Arg2pi_0 Arg2pi_le_pi Arg2pi_minus uminus_complex.simps(2) zero_complex.simps(2))
 
 lemma Arg2pi_eq_0: "Arg2pi z = 0 \<longleftrightarrow> z \<in> \<real> \<and> 0 \<le> Re z"
 proof (cases "z=0")
   case False
-  have "z \<in> \<real> \<and> 0 \<le> Re z \<longleftrightarrow> z \<in> \<real> \<and> 0 \<le> Re (of_real (cmod z) * exp (\<i> * complex_of_real (Arg2pi z)))"
-    by (metis Arg2pi_eq)
-  also have "\<dots> \<longleftrightarrow> z \<in> \<real> \<and> 0 \<le> Re (exp (\<i> * complex_of_real (Arg2pi z)))"
-    using False  by (simp add: zero_le_mult_iff)
+  then have "z \<in> \<real> \<and> 0 \<le> Re z \<longleftrightarrow> z \<in> \<real> \<and> 0 \<le> Re (exp (\<i> * complex_of_real (Arg2pi z)))"
+    by (metis cis.sel(1) cis_conv_exp cos_Arg2pi norm_ge_zero norm_le_zero_iff zero_le_mult_iff)
   also have "\<dots> \<longleftrightarrow> Arg2pi z = 0"
   proof -
     have [simp]: "Arg2pi z = 0 \<Longrightarrow> z \<in> \<real>"
       using Arg2pi_eq [of z] by (auto simp: Reals_def)
     moreover have "\<lbrakk>z \<in> \<real>; 0 \<le> cos (Arg2pi z)\<rbrakk> \<Longrightarrow> Arg2pi z = 0"
-      by (metis Arg2pi_lt_pi Arg2pi_ge_0 Arg2pi_le_pi cos_pi complex_is_Real_iff leD less_linear less_minus_one_simps(2) minus_minus neg_less_eq_nonneg order_refl)
+      by (smt (verit, ccfv_SIG) Arg2pi_ge_0 Arg2pi_le_pi Arg2pi_lt_pi complex_is_Real_iff cos_pi)
     ultimately show ?thesis
       by (auto simp: Re_exp)
   qed
@@ -1123,7 +983,7 @@
 
 lemma Arg2pi_eq_iff:
   assumes "w \<noteq> 0" "z \<noteq> 0"
-  shows "Arg2pi w = Arg2pi z \<longleftrightarrow> (\<exists>x. 0 < x & w = of_real x * z)" (is "?lhs = ?rhs")
+  shows "Arg2pi w = Arg2pi z \<longleftrightarrow> (\<exists>x. 0 < x \<and> w = of_real x * z)" (is "?lhs = ?rhs")
 proof
   assume ?lhs
   then have "(cmod w) * (z / cmod z) = w"
@@ -1169,8 +1029,7 @@
   assumes "w \<noteq> 0" "z \<noteq> 0"
     shows "Arg2pi (w * z) = (if Arg2pi w + Arg2pi z < 2*pi then Arg2pi w + Arg2pi z
                             else (Arg2pi w + Arg2pi z) - 2*pi)"
-  using Arg2pi_add [OF assms]
-  by auto
+  using Arg2pi_add [OF assms] by auto
 
 lemma Arg2pi_cnj_eq_inverse:
   assumes "z \<noteq> 0" shows "Arg2pi (cnj z) = Arg2pi (inverse z)"
@@ -1264,14 +1123,7 @@
 lemma Ln_of_real:
   assumes "0 < z"
     shows "ln(of_real z::complex) = of_real(ln z)"
-proof -
-  have "ln(of_real (exp (ln z))::complex) = ln (exp (of_real (ln z)))"
-    by (simp add: exp_of_real)
-  also have "\<dots> = of_real(ln z)"
-    using assms by (subst Ln_exp) auto
-  finally show ?thesis
-    using assms by simp
-qed
+  by (smt (verit) Im_complex_of_real Ln_exp assms exp_ln of_real_exp pi_ge_two)
 
 corollary\<^marker>\<open>tag unimportant\<close> Ln_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> Re z > 0 \<Longrightarrow> ln z \<in> \<real>"
   by (auto simp: Ln_of_real elim: Reals_cases)
@@ -1286,16 +1138,10 @@
   using Ln_of_real by force
 
 lemma Ln_1 [simp]: "ln 1 = (0::complex)"
-proof -
-  have "ln (exp 0) = (0::complex)"
-    by (simp add: del: exp_zero)
-  then show ?thesis
-    by simp
-qed
-
+  by (smt (verit, best) Ln_of_real ln_one of_real_0 of_real_1)
 
 lemma Ln_eq_zero_iff [simp]: "x \<notin> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> ln x = 0 \<longleftrightarrow> x = 1" for x::complex
-  by auto (metis exp_Ln exp_zero nonpos_Reals_zero_I)
+  by (metis (mono_tags, lifting) Ln_1 exp_Ln exp_zero nonpos_Reals_zero_I)
 
 instance
   by intro_classes (rule ln_complex_def Ln_1)
@@ -1317,17 +1163,12 @@
 corollary\<^marker>\<open>tag unimportant\<close> ln_cmod_le:
   assumes z: "z \<noteq> 0"
     shows "ln (cmod z) \<le> cmod (Ln z)"
-  using norm_exp [of "Ln z", simplified exp_Ln [OF z]]
   by (metis Re_Ln complex_Re_le_cmod z)
 
 proposition\<^marker>\<open>tag unimportant\<close> exists_complex_root:
   fixes z :: complex
   assumes "n \<noteq> 0"  obtains w where "z = w ^ n"
-proof (cases "z=0")
-  case False
-  then show ?thesis
-    by (rule_tac w = "exp(Ln z / n)" in that) (simp add: assms exp_of_nat_mult [symmetric])
-qed (use assms in auto)
+  by (metis assms exp_Ln exp_of_nat_mult nonzero_mult_div_cancel_left of_nat_eq_0_iff power_0_left times_divide_eq_right)
 
 corollary\<^marker>\<open>tag unimportant\<close> exists_complex_root_nonzero:
   fixes z::complex
@@ -1337,17 +1178,23 @@
 
 subsection\<^marker>\<open>tag unimportant\<close>\<open>Derivative of Ln away from the branch cut\<close>
 
-lemma
+lemma Im_Ln_less_pi: 
+  assumes "z \<notin> \<real>\<^sub>\<le>\<^sub>0"shows "Im (Ln z) < pi"
+proof -
+  have znz [simp]: "z \<noteq> 0"
+    using assms by auto
+  with Im_Ln_le_pi [of z] show ?thesis
+    by (smt (verit, best) Arg2pi_eq_0_pi Arg2pi_exp Ln_in_Reals assms complex_is_Real_iff complex_nonpos_Reals_iff exp_Ln pi_ge_two)
+qed
+
+lemma has_field_derivative_Ln: 
   assumes "z \<notin> \<real>\<^sub>\<le>\<^sub>0"
-  shows has_field_derivative_Ln: "(Ln has_field_derivative inverse(z)) (at z)"
-    and Im_Ln_less_pi:           "Im (Ln z) < pi"
+  shows "(Ln has_field_derivative inverse(z)) (at z)"
 proof -
   have znz [simp]: "z \<noteq> 0"
     using assms by auto
   then have "Im (Ln z) \<noteq> pi"
-    by (metis (no_types) Im_exp Ln_in_Reals assms complex_nonpos_Reals_iff complex_is_Real_iff exp_Ln mult_zero_right not_less pi_neq_zero sin_pi znz)
-  then show *: "Im (Ln z) < pi" using assms Im_Ln_le_pi
-    by (simp add: le_neq_trans)
+    by (smt (verit, best) Arg2pi_eq_0_pi Arg2pi_exp Ln_in_Reals assms complex_is_Real_iff complex_nonpos_Reals_iff exp_Ln pi_ge_two)
   let ?U = "{w. -pi < Im(w) \<and> Im(w) < pi}"
   have 1: "open ?U"
     by (simp add: open_Collect_conj open_halfspace_Im_gt open_halfspace_Im_lt)
@@ -1356,7 +1203,7 @@
   have 3: "continuous_on ?U (\<lambda>x. Blinfun ((*) (exp x)))"
     unfolding blinfun_mult_right.abs_eq [symmetric] by (intro continuous_intros)
   have 4: "Ln z \<in> ?U"
-    by (auto simp: mpi_less_Im_Ln *)
+    by (simp add: Im_Ln_less_pi assms mpi_less_Im_Ln)
   have 5: "Blinfun ((*) (inverse z)) o\<^sub>L Blinfun ((*) (exp (Ln z))) = id_blinfun"
     by (rule blinfun_eqI) (simp add: bounded_linear_mult_right bounded_linear_Blinfun_apply)
   obtain U' V g g' where "open U'" and sub: "U' \<subseteq> ?U"
@@ -1371,21 +1218,15 @@
     unfolding has_field_derivative_def
   proof (rule has_derivative_transform_within_open)
     show g_eq_Ln: "g y = Ln y" if "y \<in> V" for y
-    proof -
-      obtain x where "y = exp x" "x \<in> U'"
-        using hom homeomorphism_image1 that \<open>y \<in> V\<close> by blast
-      then show ?thesis
-        using sub hom homeomorphism_apply1 by fastforce
-    qed
+      by (smt (verit, ccfv_threshold) Ln_exp hom homeomorphism_def imageI mem_Collect_eq sub subset_iff that)
     have "0 \<notin> V"
       by (meson exp_not_eq_zero hom homeomorphism_def)
     then have "\<And>y. y \<in> V \<Longrightarrow> g' y = inv ((*) y)"
       by (metis exp_Ln g' g_eq_Ln)
     then have g': "g' z = (\<lambda>x. x/z)"
-      by (metis (no_types, opaque_lifting) bij \<open>z \<in> V\<close> bij_inv_eq_iff exp_Ln g_eq_Ln nonzero_mult_div_cancel_left znz)
+      by (metis \<open>z \<in> V\<close> bij bij_inv_eq_iff exp_Ln g_eq_Ln nonzero_mult_div_cancel_left znz)
     show "(g has_derivative (*) (inverse z)) (at z)"
-      using g [OF \<open>z \<in> V\<close>] g'
-      by (simp add: \<open>z \<in> V\<close> field_class.field_divide_inverse has_derivative_imp_has_field_derivative has_field_derivative_imp_has_derivative)
+      using g [OF \<open>z \<in> V\<close>] g' by (simp add: divide_inverse_commute)
   qed (auto simp: \<open>z \<in> V\<close> \<open>open V\<close>)
 qed
 
@@ -1425,29 +1266,19 @@
   by (auto simp: o_def)
 
 lemma tendsto_Ln [tendsto_intros]:
-  fixes L F
   assumes "(f \<longlongrightarrow> L) F" "L \<notin> \<real>\<^sub>\<le>\<^sub>0"
   shows   "((\<lambda>x. Ln (f x)) \<longlongrightarrow> Ln L) F"
-proof -
-  have "nhds L \<ge> filtermap f F"
-    using assms(1) by (simp add: filterlim_def)
-  moreover have "\<forall>\<^sub>F y in nhds L. y \<in> - \<real>\<^sub>\<le>\<^sub>0"
-    using eventually_nhds_in_open[of "- \<real>\<^sub>\<le>\<^sub>0" L] assms by (auto simp: open_Compl)
-  ultimately have "\<forall>\<^sub>F y in filtermap f F. y \<in> - \<real>\<^sub>\<le>\<^sub>0" by (rule filter_leD)
-  moreover have "continuous_on (-\<real>\<^sub>\<le>\<^sub>0) Ln" by (rule continuous_on_Ln) auto
-  ultimately show ?thesis using continuous_on_tendsto_compose[of "- \<real>\<^sub>\<le>\<^sub>0" Ln f L F] assms
-    by (simp add: eventually_filtermap)
-qed
+  by (simp add: assms isCont_tendsto_compose)
 
 lemma divide_ln_mono:
   fixes x y::real
   assumes "3 \<le> x" "x \<le> y"
   shows "x / ln x \<le> y / ln y"
-proof (rule exE [OF complex_mvt_line [of x y "\<lambda>z. z / Ln z" "\<lambda>z. 1/(Ln z) - 1/(Ln z)^2"]];
-    clarsimp simp add: closed_segment_Reals closed_segment_eq_real_ivl assms)
-  show "\<And>u. \<lbrakk>x \<le> u; u \<le> y\<rbrakk> \<Longrightarrow> ((\<lambda>z. z / Ln z) has_field_derivative 1 / Ln u - 1 / (Ln u)\<^sup>2) (at u)"
+proof -
+  have "\<And>u. \<lbrakk>x \<le> u; u \<le> y\<rbrakk> \<Longrightarrow> ((\<lambda>z. z / Ln z) has_field_derivative 1 / Ln u - 1 / (Ln u)\<^sup>2) (at u)"
     using \<open>3 \<le> x\<close> by (force intro!: derivative_eq_intros simp: field_simps power_eq_if)
-  show "x / ln x \<le> y / ln y"
+  moreover
+  have "x / ln x \<le> y / ln y"
     if "Re (y / Ln y) - Re (x / Ln x) = (Re (1 / Ln u) - Re (1 / (Ln u)\<^sup>2)) * (y - x)"
     and x: "x \<le> u" "u \<le> y" for u
   proof -
@@ -1456,6 +1287,9 @@
     show ?thesis
       using exp_le \<open>3 \<le> x\<close> x by (simp add: eq) (simp add: power_eq_if divide_simps ln_ge_iff)
   qed
+  ultimately show ?thesis
+    using complex_mvt_line [of x y "\<lambda>z. z / Ln z" "\<lambda>z. 1/(Ln z) - 1/(Ln z)^2"] assms
+    by (force simp add: closed_segment_Reals closed_segment_eq_real_ivl)
 qed
 
 theorem Ln_series:
@@ -1505,7 +1339,8 @@
   by (drule Ln_series) (simp add: power_minus')
 
 lemma ln_series':
-  assumes "abs (x::real) < 1"
+  fixes x::real
+  assumes "\<bar>x\<bar> < 1"
   shows   "(\<lambda>n. - ((-x)^n) / of_nat n) sums ln (1 + x)"
 proof -
   from assms have "(\<lambda>n. - ((-of_real x)^n) / of_nat n) sums ln (1 + complex_of_real x)"
@@ -1513,7 +1348,7 @@
   also have "(\<lambda>n. - ((-of_real x)^n) / of_nat n) = (\<lambda>n. complex_of_real (- ((-x)^n) / of_nat n))"
     by (rule ext) simp
   also from assms have "ln (1 + complex_of_real x) = of_real (ln (1 + x))"
-    by (subst Ln_of_real [symmetric]) simp_all
+    by (smt (verit) Ln_of_real of_real_1 of_real_add)
   finally show ?thesis by (subst (asm) sums_of_real_iff)
 qed
 
@@ -1604,35 +1439,9 @@
   using cos_minus_pi cos_gt_zero_pi [of "x-pi"]
   by simp
 
-lemma Re_Ln_pos_lt:
-  assumes "z \<noteq> 0"
-    shows "\<bar>Im(Ln z)\<bar> < pi/2 \<longleftrightarrow> 0 < Re(z)"
-proof -
-  { fix w
-    assume "w = Ln z"
-    then have w: "Im w \<le> pi" "- pi < Im w"
-      using Im_Ln_le_pi [of z]  mpi_less_Im_Ln [of z]  assms
-      by auto
-    have "\<bar>Im w\<bar> < pi/2 \<longleftrightarrow> 0 < Re(exp w)"
-    proof
-      assume "\<bar>Im w\<bar> < pi/2" then show "0 < Re(exp w)"
-        by (auto simp: Re_exp cos_gt_zero_pi split: if_split_asm)
-    next
-      assume R: "0 < Re(exp w)" then
-      have "\<bar>Im w\<bar> \<noteq> pi/2"
-        by (metis cos_minus cos_pi_half mult_eq_0_iff Re_exp abs_if order_less_irrefl)
-      then show "\<bar>Im w\<bar> < pi/2"
-        using cos_lt_zero_pi [of "-(Im w)"] cos_lt_zero_pi [of "(Im w)"] w R
-        by (force simp: Re_exp zero_less_mult_iff abs_if not_less_iff_gr_or_eq)
-    qed
-  }
-  then show ?thesis using assms
-    by auto
-qed
-
 lemma Re_Ln_pos_le:
   assumes "z \<noteq> 0"
-    shows "\<bar>Im(Ln z)\<bar> \<le> pi/2 \<longleftrightarrow> 0 \<le> Re(z)"
+  shows "\<bar>Im(Ln z)\<bar> \<le> pi/2 \<longleftrightarrow> 0 \<le> Re(z)"
 proof -
   { fix w
     assume "w = Ln z"
@@ -1647,23 +1456,11 @@
     by auto
 qed
 
-lemma Im_Ln_pos_lt:
+lemma Re_Ln_pos_lt:
   assumes "z \<noteq> 0"
-    shows "0 < Im(Ln z) \<and> Im(Ln z) < pi \<longleftrightarrow> 0 < Im(z)"
-proof -
-  { fix w
-    assume "w = Ln z"
-    then have w: "Im w \<le> pi" "- pi < Im w"
-      using Im_Ln_le_pi [of z]  mpi_less_Im_Ln [of z]  assms
-      by auto
-    then have "0 < Im w \<and> Im w < pi \<longleftrightarrow> 0 < Im(exp w)"
-      using sin_gt_zero [of "- (Im w)"] sin_gt_zero [of "(Im w)"] less_linear
-      by (fastforce simp add: Im_exp zero_less_mult_iff)
-  }
-  then show ?thesis using assms
-    by auto
-qed
-
+  shows "\<bar>Im(Ln z)\<bar> < pi/2 \<longleftrightarrow> 0 < Re(z)"
+  using Re_Ln_pos_le assms
+  by (smt (verit) Re_exp arccos_cos cos_minus cos_pi_half exp_Ln exp_gt_zero field_sum_of_halves mult_eq_0_iff)
 
 lemma Im_Ln_pos_le:
   assumes "z \<noteq> 0"
@@ -1681,6 +1478,12 @@
     by auto
 qed
 
+lemma Im_Ln_pos_lt:
+  assumes "z \<noteq> 0"
+  shows "0 < Im(Ln z) \<and> Im(Ln z) < pi \<longleftrightarrow> 0 < Im(z)"
+  using Im_Ln_pos_le [OF assms] assms
+  by (smt (verit, best) Arg2pi_exp Arg2pi_lt_pi exp_Ln)
+
 lemma Re_Ln_pos_lt_imp: "0 < Re(z) \<Longrightarrow> \<bar>Im(Ln z)\<bar> < pi/2"
   by (metis Re_Ln_pos_lt less_irrefl zero_complex.simps(1))
 
@@ -1701,23 +1504,7 @@
 proof (cases "z=0")
   case False
   show ?thesis
-  proof (rule exp_complex_eqI)
-    have "\<bar>Im (cnj (Ln z)) - Im (Ln (cnj z))\<bar> \<le> \<bar>Im (cnj (Ln z))\<bar> + \<bar>Im (Ln (cnj z))\<bar>"
-      by (rule abs_triangle_ineq4)
-    also have "\<dots> < pi + pi"
-    proof -
-      have "\<bar>Im (cnj (Ln z))\<bar> < pi"
-        by (simp add: False Im_Ln_less_pi abs_if assms minus_less_iff mpi_less_Im_Ln)
-      moreover have "\<bar>Im (Ln (cnj z))\<bar> \<le> pi"
-        by (meson abs_le_iff complex_cnj_zero_iff less_eq_real_def minus_less_iff  False Im_Ln_le_pi mpi_less_Im_Ln)
-      ultimately show ?thesis
-        by simp
-    qed
-    finally show "\<bar>Im (cnj (Ln z)) - Im (Ln (cnj z))\<bar> < 2 * pi"
-      by simp
-    show "exp (cnj (Ln z)) = exp (Ln (cnj z))"
-      by (metis False complex_cnj_zero_iff exp_Ln exp_cnj)
-  qed
+    by (smt (verit) False Im_Ln_less_pi Ln_exp assms cnj.sel(2) exp_Ln exp_cnj mpi_less_Im_Ln)
 qed (use assms in auto)
 
 
@@ -1725,23 +1512,7 @@
 proof (cases "z=0")
   case False
   show ?thesis
-  proof (rule exp_complex_eqI)
-    have "\<bar>Im (Ln (inverse z)) - Im (- Ln z)\<bar> \<le> \<bar>Im (Ln (inverse z))\<bar> + \<bar>Im (- Ln z)\<bar>"
-      by (rule abs_triangle_ineq4)
-    also have "\<dots> < pi + pi"
-    proof -
-      have "\<bar>Im (Ln (inverse z))\<bar> < pi"
-        by (simp add: False Im_Ln_less_pi abs_if assms minus_less_iff mpi_less_Im_Ln)
-      moreover have "\<bar>Im (- Ln z)\<bar> \<le> pi"
-        using False Im_Ln_le_pi mpi_less_Im_Ln by fastforce
-      ultimately show ?thesis
-        by simp
-    qed
-    finally show "\<bar>Im (Ln (inverse z)) - Im (- Ln z)\<bar> < 2 * pi"
-      by simp
-    show "exp (Ln (inverse z)) = exp (- Ln z)"
-      by (simp add: False exp_minus)
-  qed
+    by (smt (verit) False Im_Ln_less_pi Ln_exp assms exp_Ln exp_minus mpi_less_Im_Ln uminus_complex.sel(2))
 qed (use assms in auto)
 
 lemma Ln_minus1 [simp]: "Ln(-1) = \<i> * pi"
@@ -1756,12 +1527,7 @@
   by simp
 
 lemma Ln_minus_ii [simp]: "Ln(-\<i>) = - (\<i> * pi/2)"
-proof -
-  have  "Ln(-\<i>) = Ln(inverse \<i>)"    by simp
-  also have "\<dots> = - (Ln \<i>)"         using Ln_inverse by blast
-  also have "\<dots> = - (\<i> * pi/2)"     by simp
-  finally show ?thesis .
-qed
+  using Ln_inverse by fastforce
 
 lemma Ln_times:
   assumes "w \<noteq> 0" "z \<noteq> 0"
@@ -1792,10 +1558,9 @@
   using Ln_Reals_eq Ln_times_of_real by fastforce
 
 corollary\<^marker>\<open>tag unimportant\<close> Ln_divide_of_real:
-    "\<lbrakk>r > 0; z \<noteq> 0\<rbrakk> \<Longrightarrow> Ln(z / of_real r) = Ln(z) - ln r"
-using Ln_times_of_real [of "inverse r" z]
-by (simp add: ln_inverse Ln_of_real mult.commute divide_inverse of_real_inverse [symmetric]
-         del: of_real_inverse)
+  "\<lbrakk>r > 0; z \<noteq> 0\<rbrakk> \<Longrightarrow> Ln(z / of_real r) = Ln(z) - ln r"
+  using Ln_times_of_real [of "inverse r" z]
+  by (simp add: ln_inverse Ln_of_real mult.commute divide_inverse flip: of_real_inverse)
 
 corollary\<^marker>\<open>tag unimportant\<close> Ln_prod:
   fixes f :: "'a \<Rightarrow> complex"
@@ -1818,10 +1583,10 @@
   assumes "z \<noteq> 0"
     shows "Ln(-z) = (if Im(z) \<le> 0 \<and> \<not>(Re(z) < 0 \<and> Im(z) = 0)
                      then Ln(z) + \<i> * pi
-                     else Ln(z) - \<i> * pi)" (is "_ = ?rhs")
+                     else Ln(z) - \<i> * pi)" 
   using Im_Ln_le_pi [of z] mpi_less_Im_Ln [of z] assms
         Im_Ln_eq_pi [of z] Im_Ln_pos_lt [of z]
-    by (fastforce simp: exp_add exp_diff exp_Euler intro!: Ln_unique)
+  by (intro Ln_unique) (auto simp: exp_add exp_diff)
 
 lemma Ln_inverse_if:
   assumes "z \<noteq> 0"
@@ -1854,7 +1619,7 @@
   by (simp add: Ln_times) auto
 
 lemma Ln_of_nat [simp]: "0 < n \<Longrightarrow> Ln (of_nat n) = of_real (ln (of_nat n))"
-  by (subst of_real_of_nat_eq[symmetric], subst Ln_of_real[symmetric]) simp_all
+  by (metis Ln_of_real of_nat_0_less_iff of_real_of_nat_eq)
 
 lemma Ln_of_nat_over_of_nat:
   assumes "m > 0" "n > 0"
@@ -1913,13 +1678,11 @@
     have "f n x + 1 \<notin> \<real>\<^sub>\<le>\<^sub>0" if "x \<in> A" for n x
     proof
       assume "f n x + 1 \<in> \<real>\<^sub>\<le>\<^sub>0"
-      then obtain t where t: "t \<le> 0" "f n x + 1 = of_real t"
-        by (auto elim!: nonpos_Reals_cases)
-      hence "f n x = of_real (t - 1)"
-        by (simp add: algebra_simps)
-      also have "norm \<dots> \<ge> 1"
+      then obtain t where t: "t \<le> 0" "f n x = of_real (t - 1)"
+        by (metis add_diff_cancel nonpos_Reals_cases of_real_1 of_real_diff)
+      moreover have "norm \<dots> \<ge> 1"
         using t by (subst norm_of_real) auto
-      finally show False
+      ultimately show False
         using norm_f[of x n] that by auto
     qed
     thus "\<forall>\<^sub>F n in sequentially. continuous_on A (\<lambda>x. \<Sum>n<n. Ln (1 + f n x))"
@@ -1961,19 +1724,14 @@
     have "exp (\<Sum>n<N. ln (1 + f n x)) = (\<Prod>n<N. exp (ln (1 + f n x)))"
       by (simp add: exp_sum)
     also have "\<dots> = (\<Prod>n<N. 1 + f n x)"
-    proof (rule prod.cong)
-      fix n assume "n \<in> {..<N}"
-      have "f n x \<noteq> -1"
-        using norm_f[of x n] x by auto
-      thus "exp (ln (1 + f n x)) = 1 + f n x"
-        by (simp add: add_eq_0_iff)
-    qed auto
+      using norm_f[of x] x
+      by (smt (verit, best) add.right_neutral add_diff_cancel exp_Ln norm_minus_commute norm_one prod.cong)
     finally show "exp (\<Sum>n<N. ln (1 + f n x)) = (\<Prod>n<N. 1 + f n x)" .
   qed
   finally show ?thesis .
 qed
 
-(* Theorem 17.6 by Bak & Newman, roughly *)
+text \<open>Theorem 17.6 by Bak and Newman, Complex Analysis [roughly]\<close>
 lemma uniformly_convergent_on_prod:
   fixes f :: "nat \<Rightarrow> complex \<Rightarrow> complex"
   assumes cont: "\<And>n. continuous_on A (f n)"
@@ -2146,15 +1904,13 @@
 lemma Arg_of_real [simp]: "Arg (of_real r) = (if r<0 then pi else 0)"
   by (simp add: Im_Ln_eq_pi Arg_def)
 
-lemma mpi_less_Arg: "-pi < Arg z"
-    and Arg_le_pi: "Arg z \<le> pi"
+lemma mpi_less_Arg: "-pi < Arg z" and Arg_le_pi: "Arg z \<le> pi"
   by (auto simp: Arg_def mpi_less_Im_Ln Im_Ln_le_pi)
 
-lemma
+lemma Arg_eq: 
   assumes "z \<noteq> 0"
-  shows Arg_eq: "z = of_real(norm z) * exp(\<i> * Arg z)"
-  using assms exp_Ln exp_eq_polar
-  by (auto simp:  Arg_def)
+  shows "z = of_real(norm z) * exp(\<i> * Arg z)"
+  using cis_conv_exp rcis_cmod_Arg rcis_def by force
 
 lemma is_Arg_Arg: "z \<noteq> 0 \<Longrightarrow> is_Arg z (Arg z)"
   by (simp add: Arg_eq is_Arg_def)
@@ -2196,35 +1952,15 @@
   by (auto simp: is_Arg_def norm_divide field_simps exp_diff Arg_of_real)
 
 lemma Arg_unique_lemma:
-  assumes z:  "is_Arg z t"
-      and z': "is_Arg z t'"
-      and t:  "- pi < t"  "t \<le> pi"
-      and t': "- pi < t'" "t' \<le> pi"
-      and nz: "z \<noteq> 0"
+  assumes "is_Arg z t" "is_Arg z t'"
+      and "- pi < t"  "t \<le> pi"
+      and "- pi < t'" "t' \<le> pi"
+      and "z \<noteq> 0"
     shows "t' = t"
-  using Arg2pi_unique_lemma [of "- (inverse z)"]
-proof -
-  have "pi - t' = pi - t"
-  proof (rule Arg2pi_unique_lemma [of "- (inverse z)"])
-    have "- (inverse z) = - (inverse (of_real(norm z) * exp(\<i> * t)))"
-      by (metis is_Arg_def z)
-    also have "\<dots> = (cmod (- inverse z)) * exp (\<i> * (pi - t))"
-      by (auto simp: field_simps exp_diff norm_divide)
-    finally show "is_Arg (- inverse z) (pi - t)"
-      unfolding is_Arg_def .
-    have "- (inverse z) = - (inverse (of_real(norm z) * exp(\<i> * t')))"
-      by (metis is_Arg_def z')
-    also have "\<dots> = (cmod (- inverse z)) * exp (\<i> * (pi - t'))"
-      by (auto simp: field_simps exp_diff norm_divide)
-    finally show "is_Arg (- inverse z) (pi - t')"
-      unfolding is_Arg_def .
-  qed (use assms in auto)
-  then show ?thesis
-    by simp
-qed
+  using is_Arg_eqI assms by force
 
 lemma complex_norm_eq_1_exp_eq: "norm z = 1 \<longleftrightarrow> exp(\<i> * (Arg z)) = z"
-  by (metis Arg_eq exp_not_eq_zero exp_zero mult.left_neutral norm_zero of_real_1 norm_exp_i_times)
+  by (metis Arg2pi_eq Arg_eq complex_norm_eq_1_exp norm_eq_zero norm_exp_i_times)
 
 lemma Arg_unique: "\<lbrakk>of_real r * exp(\<i> * a) = z; 0 < r; -pi < a; a \<le> pi\<rbrakk> \<Longrightarrow> Arg z = a"
   by (rule Arg_unique_lemma [unfolded is_Arg_def, OF _ Arg_eq])
@@ -2239,9 +1975,8 @@
   have [simp]: "cmod z * sin (Arg z) = Im z"
     using assms Arg_eq [of z] by (metis Im_exp exp_Ln norm_exp_eq_Re Arg_def)
   show ?thesis
-    apply (rule Arg_unique [of "norm z", OF complex_eqI])
     using mpi_less_Arg [of z] Arg_le_pi [of z] assms
-    by (auto simp: Re_exp Im_exp)
+    by (intro Arg_unique [of "norm z", OF complex_eqI]) (auto simp: Re_exp Im_exp)
 qed
 
 lemma Arg_1 [simp]: "Arg 1 = 0"
@@ -2292,14 +2027,10 @@
 
 lemma Arg_inverse: "Arg(inverse z) = (if z \<in> \<real> then Arg z else - Arg z)"
 proof (cases "z \<in> \<real>")
-  case True
-  then show ?thesis
-    by (metis Arg2pi_inverse Arg2pi_real Arg_real Reals_inverse)
-next
   case False
   then show ?thesis
     by (simp add: Arg_def Ln_inverse complex_is_Real_iff complex_nonpos_Reals_iff)
-qed
+qed (use Arg_real Re_inverse in auto)
 
 lemma Arg_eq_iff:
   assumes "w \<noteq> 0" "z \<noteq> 0"
@@ -2437,28 +2168,7 @@
 lemma Im_Ln_eq_pi_half:
     "z \<noteq> 0 \<Longrightarrow> (Im(Ln z) = pi/2 \<longleftrightarrow> 0 < Im(z) \<and> Re(z) = 0)"
     "z \<noteq> 0 \<Longrightarrow> (Im(Ln z) = -pi/2 \<longleftrightarrow> Im(z) < 0 \<and> Re(z) = 0)"
-proof -
-  show "z \<noteq> 0 \<Longrightarrow> (Im(Ln z) = pi/2 \<longleftrightarrow> 0 < Im(z) \<and> Re(z) = 0)"
-    by (metis Im_Ln_eq_pi Im_Ln_le_pi Im_Ln_pos_lt Re_Ln_pos_le Re_Ln_pos_lt
-      abs_of_nonneg less_eq_real_def order_less_irrefl pi_half_gt_zero)
-next
-  assume "z\<noteq>0"
-  have "Im (Ln z) = - pi / 2 \<Longrightarrow> Im z < 0 \<and> Re z = 0"
-    by (metis Im_Ln_pos_le Re_Ln_pos_le Re_Ln_pos_lt_imp \<open>z \<noteq> 0\<close> abs_if
-     add.inverse_inverse divide_minus_left less_eq_real_def linorder_not_le minus_pi_half_less_zero)
-  moreover have "Im (Ln z) = - pi / 2" when "Im z < 0" "Re z = 0"
-  proof -
-    obtain r::real where "r>0" "z=r * (-\<i>)"
-      by (smt (verit) \<open>Im z < 0\<close> \<open>Re z = 0\<close> add_0 complex_eq mult.commute mult_minus_right of_real_0 of_real_minus)
-    then have "Im (Ln z) = Im (Ln (r*(-\<i>)))" by auto
-    also have "... = Im (Ln (complex_of_real r) + Ln (- \<i>))"
-      by (metis Ln_times_of_real \<open>0 < r\<close> add.inverse_inverse add.inverse_neutral complex_i_not_zero)
-    also have "... = - pi/2"
-      using \<open>r>0\<close> by simp
-    finally show "Im (Ln z) = - pi / 2" .
-  qed
-  ultimately show "(Im(Ln z) = -pi/2 \<longleftrightarrow> Im(z) < 0 \<and> Re(z) = 0)" by auto
-qed
+  using Im_Ln_pos_lt Im_Ln_pos_le Re_Ln_pos_le Re_Ln_pos_lt pi_ge_two by fastforce+
 
 lemma Im_Ln_eq:
   assumes "z\<noteq>0"
@@ -2472,32 +2182,8 @@
                       else
                         if Im z>0 then pi/2 else -pi/2)"
 proof -
-  have eq_arctan_pos:"Im (Ln z) = arctan (Im z/Re z)" when "Re z>0" for z
-  proof -
-    define wR where "wR \<equiv> Re (Ln z)"
-    define \<theta> where "\<theta> \<equiv> arctan (Im z/Re z)"
-    have "z\<noteq>0" using that by auto
-    have "exp (Complex wR \<theta>) = z"
-    proof (rule complex_eqI)
-      have "Im (exp (Complex wR \<theta>)) =exp wR * sin \<theta> "
-        unfolding Im_exp by simp
-      also have "... = Im z"
-        unfolding wR_def Re_Ln[OF \<open>z\<noteq>0\<close>] \<theta>_def using \<open>z\<noteq>0\<close> \<open>Re z>0\<close>
-        by (auto simp add:sin_arctan divide_simps complex_neq_0 cmod_def real_sqrt_divide)
-      finally show "Im (exp (Complex wR \<theta>)) = Im z" .
-    next
-      have "Re (exp (Complex wR \<theta>)) = exp wR * cos \<theta> "
-        unfolding Re_exp by simp
-      also have "... = Re z"
-        by (metis Arg_eq_Im_Ln Re_exp \<open>z \<noteq> 0\<close> \<theta>_def arg_conv_arctan exp_Ln that wR_def)
-      finally show "Re (exp (Complex wR \<theta>)) = Re z" .
-    qed
-    moreover have "-pi<\<theta>" "\<theta>\<le>pi"
-      using arctan_lbound [of \<open>Im z / Re z\<close>] arctan_ubound [of \<open>Im z / Re z\<close>]
-      by (simp_all add: \<theta>_def)
-    ultimately have "Ln z = Complex wR \<theta>" using Ln_unique by auto
-    then show ?thesis using that unfolding \<theta>_def by auto
-  qed
+  have eq_arctan_pos: "Im (Ln z) = arctan (Im z/Re z)" when "Re z>0" for z
+    by (metis Arg_eq_Im_Ln arg_conv_arctan order_less_irrefl that zero_complex.simps(1))
   have ?thesis when "Re z=0"
     using Im_Ln_eq_pi_half[OF \<open>z\<noteq>0\<close>] that
     using assms complex_eq_iff by auto
@@ -2532,12 +2218,12 @@
   assumes "z \<notin> \<real>\<^sub>\<ge>\<^sub>0"
     shows "continuous (at z) Arg2pi"
 proof -
-  have *: "isCont (\<lambda>z. Im (Ln (- z)) + pi) z"
+  have "isCont (\<lambda>z. Im (Ln (- z)) + pi) z"
     by (rule Complex.isCont_Im isCont_Ln' continuous_intros | simp add: assms complex_is_Real_iff)+
-  consider "Re z < 0" | "Im z \<noteq> 0" using assms
+  moreover consider "Re z < 0" | "Im z \<noteq> 0" using assms
     using complex_nonneg_Reals_iff not_le by blast
-  then have "(\<lambda>z. Im (Ln (- z)) + pi) \<midarrow>z\<rightarrow> Arg2pi z"
-    using "*" by (simp add: Arg2pi_Ln Arg2pi_gt_0 assms continuous_within)
+  ultimately have "(\<lambda>z. Im (Ln (- z)) + pi) \<midarrow>z\<rightarrow> Arg2pi z"
+    by (simp add: Arg2pi_Ln Arg2pi_gt_0 assms continuous_within)
   then show ?thesis
     unfolding continuous_at
     by (metis (mono_tags, lifting) Arg2pi_Ln Arg2pi_gt_0 Compl_iff Lim_transform_within_open assms 
@@ -2658,7 +2344,7 @@
 
 lemma powr_complexpow [simp]:
   fixes x::complex shows "x \<noteq> 0 \<Longrightarrow> x powr (of_nat n) = x^n"
-  by (induct n) (auto simp: ac_simps powr_add)
+  by (simp add: powr_nat')
 
 lemma powr_complexnumeral [simp]:
   fixes x::complex shows "x powr (numeral n) = x ^ (numeral n)"
@@ -2715,18 +2401,19 @@
 
 lemma
   fixes w::complex
-  shows Reals_powr [simp]: "\<lbrakk>w \<in> \<real>\<^sub>\<ge>\<^sub>0; z \<in> \<real>\<rbrakk> \<Longrightarrow> w powr z \<in> \<real>"
-  and nonneg_Reals_powr [simp]: "\<lbrakk>w \<in> \<real>\<^sub>\<ge>\<^sub>0; z \<in> \<real>\<rbrakk> \<Longrightarrow> w powr z \<in> \<real>\<^sub>\<ge>\<^sub>0"
-  by (auto simp: nonneg_Reals_def Reals_def powr_of_real)
+  assumes "w \<in> \<real>\<^sub>\<ge>\<^sub>0" "z \<in> \<real>"
+  shows Reals_powr [simp]: "w powr z \<in> \<real>" and nonneg_Reals_powr [simp]: "w powr z \<in> \<real>\<^sub>\<ge>\<^sub>0"
+  using assms by (auto simp: nonneg_Reals_def Reals_def powr_of_real)
 
 lemma powr_neg_real_complex:
-  "(- of_real x) powr a = (-1) powr (of_real (sgn x) * a) * of_real x powr (a :: complex)"
+  fixes w::complex
+  shows "(- of_real x) powr w = (-1) powr (of_real (sgn x) * w) * of_real x powr w"
 proof (cases "x = 0")
   assume x: "x \<noteq> 0"
-  hence "(-x) powr a = exp (a * ln (-of_real x))" by (simp add: powr_def)
+  hence "(-x) powr w = exp (w * ln (-of_real x))" by (simp add: powr_def)
   also from x have "ln (-of_real x) = Ln (of_real x) + of_real (sgn x) * pi * \<i>"
     by (simp add: Ln_minus Ln_of_real)
-  also from x have "exp (a * \<dots>) = cis pi powr (of_real (sgn x) * a) * of_real x powr a"
+  also from x have "exp (w * \<dots>) = cis pi powr (of_real (sgn x) * w) * of_real x powr w"
     by (simp add: powr_def exp_add algebra_simps Ln_of_real cis_conv_exp)
   also note cis_pi
   finally show ?thesis by simp
@@ -2818,28 +2505,14 @@
 
 lemma field_differentiable_powr_of_int:
   fixes z :: complex
-  assumes gderiv: "g field_differentiable (at z within S)" and "g z \<noteq> 0"
+  assumes "g field_differentiable (at z within S)" and "g z \<noteq> 0"
   shows "(\<lambda>z. g z powr of_int n) field_differentiable (at z within S)"
-using has_field_derivative_powr_of_int assms(2) field_differentiable_def gderiv by blast
+  using has_field_derivative_powr_of_int assms field_differentiable_def by blast
 
 lemma holomorphic_on_powr_of_int [holomorphic_intros]:
-  assumes holf: "f holomorphic_on S" and 0: "\<And>z. z\<in>S \<Longrightarrow> f z \<noteq> 0"
+  assumes "f holomorphic_on S" and "\<And>z. z\<in>S \<Longrightarrow> f z \<noteq> 0"
   shows "(\<lambda>z. (f z) powr of_int n) holomorphic_on S"
-proof (cases "n\<ge>0")
-  case True
-  then have "?thesis \<longleftrightarrow> (\<lambda>z. (f z) ^ nat n) holomorphic_on S"
-    by (metis (no_types, lifting) 0 holomorphic_cong powr_of_int)
-  moreover have "(\<lambda>z. (f z) ^ nat n) holomorphic_on S"
-    using holf by (auto intro: holomorphic_intros)
-  ultimately show ?thesis by auto
-next
-  case False
-  then have "?thesis \<longleftrightarrow> (\<lambda>z. inverse (f z) ^ nat (-n)) holomorphic_on S"
-    by (metis (no_types, lifting) "0" holomorphic_cong power_inverse powr_of_int)
-  moreover have "(\<lambda>z. inverse (f z) ^ nat (-n)) holomorphic_on S"
-    using assms by (auto intro!:holomorphic_intros)
-  ultimately show ?thesis by auto
-qed
+  using assms field_differentiable_powr_of_int holomorphic_on_def by auto
 
 lemma has_field_derivative_powr_right [derivative_intros]:
     "w \<noteq> 0 \<Longrightarrow> ((\<lambda>z. w powr z) has_field_derivative Ln w * w powr z) (at z)"
@@ -2896,7 +2569,7 @@
   define h where
     "h = (\<lambda>z. if f z = 0 then 0 else exp (Re (g z) * ln (cmod (f z)) + abs (Im (g z)) * pi))"
   {
-    fix z :: 'a assume z: "f z \<noteq> 0"
+    fix z :: 'a assume z: "f z \<noteq> 0" 
     define c where "c = abs (Im (g z)) * pi"
     from mpi_less_Im_Ln[OF z] Im_Ln_le_pi[OF z]
       have "abs (Im (Ln (f z))) \<le> pi" by simp
@@ -2905,7 +2578,8 @@
     hence "-Im (g z) * Im (ln (f z)) \<le> c" by simp
     hence "norm (f z powr g z) \<le> h z" by (simp add: powr_def field_simps h_def c_def)
   }
-  hence le: "norm (f z powr g z) \<le> h z" for z by (cases "f x = 0") (simp_all add: h_def)
+  hence le: "norm (f z powr g z) \<le> h z" for z
+    by (simp add: h_def) 
 
   have g': "(g \<longlongrightarrow> b) (inf F (principal {z. f z \<noteq> 0}))"
     by (rule tendsto_mono[OF _ g]) simp_all
@@ -2914,8 +2588,7 @@
   moreover {
     have "filterlim (\<lambda>x. norm (f x)) (principal {0<..}) (principal {z. f z \<noteq> 0})"
       by (auto simp: filterlim_def)
-    hence "filterlim (\<lambda>x. norm (f x)) (principal {0<..})
-             (inf F (principal {z. f z \<noteq> 0}))"
+    hence "filterlim (\<lambda>x. norm (f x)) (principal {0<..}) (inf F (principal {z. f z \<noteq> 0}))"
       by (rule filterlim_mono) simp_all
   }
   ultimately have norm: "filterlim (\<lambda>x. norm (f x)) (at_right 0) (inf F (principal {z. f z \<noteq> 0}))"
@@ -3051,7 +2724,7 @@
 lemma lim_ln_over_power:
   fixes s :: real
   assumes "0 < s"
-  shows "((\<lambda>n. ln n / (n powr s)) \<longlongrightarrow> 0) sequentially"
+  shows "(\<lambda>n. ln (real n) / real n powr s) \<longlonglongrightarrow> 0"
 proof -
   have "(\<lambda>n. ln (Suc n) / (Suc n) powr s) \<longlonglongrightarrow> 0"
     using lim_Ln_over_power [of "of_real s", THEN filterlim_sequentially_Suc [THEN iffD2]] assms
@@ -3095,7 +2768,7 @@
   apply (subst filterlim_sequentially_Suc [symmetric])
   by (simp add: lim_sequentially dist_norm Ln_Reals_eq norm_powr_real_powr norm_divide)
 
-lemma lim_1_over_Ln: "((\<lambda>n. 1 / Ln(of_nat n)) \<longlongrightarrow> 0) sequentially"
+lemma lim_1_over_Ln: "(\<lambda>n. 1 / Ln (complex_of_nat n)) \<longlonglongrightarrow> 0"
 proof (clarsimp simp add: lim_sequentially dist_norm norm_divide field_split_simps)
   fix r::real
   assume "0 < r"
@@ -3117,7 +2790,7 @@
     by (rule_tac x=n in exI) (force simp: field_split_simps intro: less_le_trans)
 qed
 
-lemma lim_1_over_ln: "((\<lambda>n. 1 / ln(real_of_nat n)) \<longlongrightarrow> 0) sequentially"
+lemma lim_1_over_ln: "(\<lambda>n. 1 / ln (real n)) \<longlonglongrightarrow> 0"
   using lim_1_over_Ln [THEN filterlim_sequentially_Suc [THEN iffD2]]
   apply (subst filterlim_sequentially_Suc [symmetric])
   by (simp add: lim_sequentially dist_norm Ln_Reals_eq norm_powr_real_powr norm_divide)
@@ -3151,19 +2824,14 @@
 qed
 
 lemma lim_ln_over_ln1: "(\<lambda>n. ln n / ln(Suc n)) \<longlonglongrightarrow> 1"
-proof -
-  have "(\<lambda>n. inverse (ln(Suc n) / ln n)) \<longlonglongrightarrow> inverse 1"
-    by (rule tendsto_inverse [OF lim_ln1_over_ln]) auto
-  then show ?thesis
-    by simp
-qed
+  using tendsto_inverse [OF lim_ln1_over_ln] by force
 
 
 subsection\<^marker>\<open>tag unimportant\<close>\<open>Relation between Square Root and exp/ln, hence its derivative\<close>
 
 lemma csqrt_exp_Ln:
   assumes "z \<noteq> 0"
-    shows "csqrt z = exp(Ln(z) / 2)"
+    shows "csqrt z = exp(Ln z / 2)"
 proof -
   have "(exp (Ln z / 2))\<^sup>2 = (exp (Ln z))"
     by (metis exp_double nonzero_mult_div_cancel_left times_divide_eq_right zero_neq_numeral)
@@ -3263,12 +2931,7 @@
   by (simp add: continuous_at_imp_continuous_on continuous_within_csqrt)
 
 lemma holomorphic_on_csqrt [holomorphic_intros]: "csqrt holomorphic_on -\<real>\<^sub>\<le>\<^sub>0"
-proof -
-  have *: "(\<lambda>z. exp (ln z / 2)) holomorphic_on -\<real>\<^sub>\<le>\<^sub>0"
-    by (intro holomorphic_intros) auto
-  then show ?thesis
-    using field_differentiable_within_csqrt holomorphic_on_def by auto
-qed
+  by (simp add: field_differentiable_within_csqrt holomorphic_on_def)
 
 lemma holomorphic_on_csqrt' [holomorphic_intros]:
   "f holomorphic_on A \<Longrightarrow> (\<And>z. z \<in> A \<Longrightarrow> f z \<notin> \<real>\<^sub>\<le>\<^sub>0) \<Longrightarrow> (\<lambda>z. csqrt (f z)) holomorphic_on A"
@@ -3283,8 +2946,7 @@
 
 lemma continuous_within_closed_nontrivial:
     "closed s \<Longrightarrow> a \<notin> s ==> continuous (at a within s) f"
-  using open_Compl
-  by (force simp add: continuous_def eventually_at_topological filterlim_iff open_Collect_neg)
+  using Compl_iff continuous_within_topological open_Compl by fastforce
 
 lemma continuous_within_csqrt_posreal:
     "continuous (at z within (\<real> \<inter> {w. 0 \<le> Re(w)})) csqrt"
@@ -3344,17 +3006,13 @@
 
 lemma tan_Arctan:
   assumes "z\<^sup>2 \<noteq> -1"
-    shows [simp]:"tan(Arctan z) = z"
+  shows [simp]: "tan(Arctan z) = z"
 proof -
-  have "1 + \<i>*z \<noteq> 0"
-    by (metis assms complex_i_mult_minus i_squared minus_unique power2_eq_square power2_minus)
-  moreover
-  have "1 - \<i>*z \<noteq> 0"
-    by (metis assms complex_i_mult_minus i_squared power2_eq_square power2_minus right_minus_eq)
-  ultimately
-  show ?thesis
-    by (simp add: Arctan_def tan_def sin_exp_eq cos_exp_eq exp_minus csqrt_exp_Ln [symmetric]
-                  divide_simps power2_eq_square [symmetric])
+  obtain "1 + \<i>*z \<noteq> 0" "1 - \<i>*z \<noteq> 0"
+    by (metis add_diff_cancel_left' assms diff_0 i_times_eq_iff mult_cancel_left2 power2_i power2_minus right_minus_eq)
+  then show ?thesis
+    by (simp add: Arctan_def tan_def sin_exp_eq cos_exp_eq exp_minus divide_simps 
+        flip: csqrt_exp_Ln power2_eq_square)
 qed
 
 lemma Arctan_tan [simp]:
@@ -3377,8 +3035,7 @@
       by (simp add: algebra_simps)
     also have "\<dots> \<longleftrightarrow> False"
       using assms ge_pi2
-      apply (auto simp: algebra_simps)
-      by (metis abs_mult_pos not_less of_nat_less_0_iff of_nat_numeral)
+      by (metis eq_divide_eq linorder_not_less mult.commute zero_neq_numeral)
     finally have "exp (\<i>*z)*exp (\<i>*z) + 1 \<noteq> 0"
       by (auto simp: add.commute minus_unique)
     then show "exp (2 * z / \<i>) = (1 - \<i> * tan z) / (1 + \<i> * tan z)"
@@ -3464,7 +3121,7 @@
   define G where [abs_def]: "G z = (\<Sum>n. g n * z^n)" for z
   have summable: "summable (\<lambda>n. g n * u^n)" if "norm u < 1" for u
   proof (cases "u = 0")
-    assume u: "u \<noteq> 0"
+    case False
     have "(\<lambda>n. ereal (norm (h u n) / norm (h u (Suc n)))) = (\<lambda>n. ereal (inverse (norm u)^2) *
               ereal ((2 + inverse (real (Suc n))) / (2 - inverse (real (Suc n)))))"
     proof
@@ -3485,10 +3142,10 @@
       by (intro tendsto_intros LIMSEQ_inverse_real_of_nat) simp_all
     finally have "liminf (\<lambda>n. ereal (cmod (h u n) / cmod (h u (Suc n)))) = inverse (norm u)^2"
       by (intro lim_imp_Liminf) simp_all
-    moreover from power_strict_mono[OF that, of 2] u have "inverse (norm u)^2 > 1"
+    moreover from power_strict_mono[OF that, of 2] False have "inverse (norm u)^2 > 1"
       by (simp add: field_split_simps)
     ultimately have A: "liminf (\<lambda>n. ereal (cmod (h u n) / cmod (h u (Suc n)))) > 1" by simp
-    from u have "summable (h u)"
+    from False have "summable (h u)"
       by (intro summable_norm_cancel[OF ratio_test_convergence[OF _ A]])
          (auto simp: h_def norm_divide norm_mult norm_power simp del: of_nat_Suc
                intro!: mult_pos_pos divide_pos_pos always_eventually)
@@ -3590,7 +3247,7 @@
     by (simp add: Arctan_def)
 next
   have "tan (Re (Arctan (of_real x))) = Re (tan (Arctan (of_real x)))"
-    by (auto simp: tan_def Complex.Re_divide Re_sin Re_cos Im_sin Im_cos field_simps power2_eq_square)
+    by (metis Im_Arctan_of_real Re_complex_of_real complex_is_Real_iff of_real_Re tan_of_real)
   also have "\<dots> = x"
   proof -
     have "(complex_of_real x)\<^sup>2 \<noteq> - 1"
@@ -3632,8 +3289,7 @@
   show 12: "- (pi / 2) < arctan x + arctan y" "arctan x + arctan y < pi / 2"
     using assms by linarith+
   show "tan (arctan x + arctan y) = (x + y) / (1 - x * y)"
-    using cos_gt_zero_pi [OF 12]
-    by (simp add: arctan tan_add)
+    using cos_gt_zero_pi [OF 12] by (simp add: arctan tan_add)
 qed
 
 lemma arctan_inverse:
@@ -3677,8 +3333,7 @@
 lemma arctan_bounds:
   assumes "0 \<le> x" "x < 1"
   shows arctan_lower_bound:
-    "(\<Sum>k<2 * n. (- 1) ^ k * (1 / real (k * 2 + 1) * x ^ (k * 2 + 1))) \<le> arctan x"
-    (is "(\<Sum>k<_. (- 1)^ k * ?a k) \<le> _")
+    "(\<Sum>k<2 * n. (- 1) ^ k * (1 / real (k * 2 + 1) * x ^ (k * 2 + 1))) \<le> arctan x" (is "(\<Sum>k<_. _ * ?a k) \<le> _")
     and arctan_upper_bound:
     "arctan x \<le> (\<Sum>k<2 * n + 1. (- 1) ^ k * (1 / real (k * 2 + 1) * x ^ (k * 2 + 1)))"
 proof -
@@ -3724,7 +3379,7 @@
 
 lemma Arcsin_body_lemma: "\<i> * z + csqrt(1 - z\<^sup>2) \<noteq> 0"
   using power2_csqrt [of "1 - z\<^sup>2"]
-  by (metis add.inverse_inverse complex_i_mult_minus diff_0 diff_add_cancel diff_minus_eq_add mult.assoc mult.commute numeral_One power2_eq_square zero_neq_numeral)
+  by (metis add.inverse_unique diff_0 diff_add_cancel mult.left_commute mult_minus1_right power2_i power2_minus power_mult_distrib zero_neq_one)
 
 lemma Arcsin_range_lemma: "\<bar>Re z\<bar> < 1 \<Longrightarrow> 0 < Re(\<i> * z + csqrt(1 - z\<^sup>2))"
   using Complex.cmod_power2 [of z, symmetric]
@@ -4038,37 +3693,6 @@
 lemma holomorphic_on_Arccos: "(\<And>z. z \<in> s \<Longrightarrow> Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1) \<Longrightarrow> Arccos holomorphic_on s"
   by (simp add: field_differentiable_within_Arccos holomorphic_on_def)
 
-text \<open>This theorem is about REAL cos/arccos but relies on theorems about @{term Arg}\<close>
-lemma cos_eq_arccos_Ex:
-  "cos x = y \<longleftrightarrow> -1\<le>y \<and> y\<le>1 \<and> (\<exists>k::int. x = arccos y + 2*k*pi \<or> x = - arccos y + 2*k*pi)" (is "?L=?R")
-proof
-  assume R: ?R
-  then obtain k::int where "x = arccos y + 2*k*pi \<or> x = - arccos y + 2*k*pi" by auto
-  moreover have "cos x = y" when "x = arccos y + 2*k*pi"
-    by (metis (no_types) R cos_arccos cos_eq_periodic_intro cos_minus minus_add_cancel)
-  moreover have "cos x = y" when "x = -arccos y + 2*k*pi"
-    by (metis add_minus_cancel R cos_arccos cos_eq_periodic_intro uminus_add_conv_diff)
-  ultimately show "cos x = y" by auto
-next
-  assume L: ?L
-  let ?goal = "(\<exists>k::int. x = arccos y + 2*k*pi \<or> x = - arccos y + 2*k*pi)"
-  obtain k::int where k: "-pi < x-k*2*pi" "x-k*2*pi \<le> pi"
-    by (metis Arg_bounded Arg_exp_diff_2pi complex.sel(2) mult.assoc of_int_mult of_int_numeral)
-  have *: "cos (x - k * 2*pi) = y"
-    using cos.periodic_simps(3)[of x "-k"] L by (auto simp add:field_simps)
-  then have \<section>: ?goal when "x-k*2*pi \<ge> 0"
-    using arccos_cos k that by force
-  moreover have ?goal when "\<not> x-k*2*pi \<ge>0"
-  proof -
-    have "cos (k * 2*pi - x) = y"
-      by (metis * cos_minus minus_diff_eq)
-    then show ?goal
-      using arccos_cos \<section> k by fastforce 
-  qed
-  ultimately show "-1\<le>y \<and> y\<le>1 \<and> ?goal"
-    using L by auto
-qed
-
 subsection\<^marker>\<open>tag unimportant\<close>\<open>Upper and Lower Bounds for Inverse Sine and Cosine\<close>
 
 lemma Arcsin_bounds: "\<bar>Re z\<bar> < 1 \<Longrightarrow> \<bar>Re(Arcsin z)\<bar> < pi/2"
--- a/src/HOL/Analysis/Elementary_Metric_Spaces.thy	Mon Feb 20 13:59:16 2023 +0100
+++ b/src/HOL/Analysis/Elementary_Metric_Spaces.thy	Mon Feb 20 13:59:42 2023 +0100
@@ -916,6 +916,72 @@
     using continuous_attains_sup[of "S \<times> S" "\<lambda>x. dist (fst x) (snd x)"] by auto
 qed
 
+text \<open>
+  If \<open>A\<close> is a compact subset of an open set \<open>B\<close> in a metric space, then there exists an \<open>\<epsilon> > 0\<close>
+  such that the Minkowski sum of \<open>A\<close> with an open ball of radius \<open>\<epsilon>\<close> is also a subset of \<open>B\<close>.
+\<close>
+lemma compact_subset_open_imp_ball_epsilon_subset:
+  assumes "compact A" "open B" "A \<subseteq> B"
+  obtains e where "e > 0"  "(\<Union>x\<in>A. ball x e) \<subseteq> B"
+proof -
+  have "\<forall>x\<in>A. \<exists>e. e > 0 \<and> ball x e \<subseteq> B"
+    using assms unfolding open_contains_ball by blast
+  then obtain e where e: "\<And>x. x \<in> A \<Longrightarrow> e x > 0" "\<And>x. x \<in> A \<Longrightarrow> ball x (e x) \<subseteq> B"
+    by metis
+  define C where "C = e ` A"
+  obtain X where X: "X \<subseteq> A" "finite X" "A \<subseteq> (\<Union>c\<in>X. ball c (e c / 2))"
+    using assms(1)
+  proof (rule compactE_image)
+    show "open (ball x (e x / 2))" if "x \<in> A" for x
+      by simp
+    show "A \<subseteq> (\<Union>c\<in>A. ball c (e c / 2))"
+      using e by auto
+  qed auto
+
+  define e' where "e' = Min (insert 1 ((\<lambda>x. e x / 2) ` X))"
+  have "e' > 0"
+    unfolding e'_def using e X by (subst Min_gr_iff) auto
+  have e': "e' \<le> e x / 2" if "x \<in> X" for x
+    using that X unfolding e'_def by (intro Min.coboundedI) auto
+
+  show ?thesis
+  proof 
+    show "e' > 0"
+      by fact
+  next
+    show "(\<Union>x\<in>A. ball x e') \<subseteq> B"
+    proof clarify
+      fix x y assume xy: "x \<in> A" "y \<in> ball x e'"
+      from xy(1) X obtain z where z: "z \<in> X" "x \<in> ball z (e z / 2)"
+        by auto
+      have "dist y z \<le> dist x y + dist z x"
+        by (metis dist_commute dist_triangle)
+      also have "dist z x < e z / 2"
+        using xy z by auto
+      also have "dist x y < e'"
+        using xy by auto
+      also have "\<dots> \<le> e z / 2"
+        using z by (intro e') auto
+      finally have "y \<in> ball z (e z)"
+        by (simp add: dist_commute)
+      also have "\<dots> \<subseteq> B"
+        using z X by (intro e) auto
+      finally show "y \<in> B" .
+    qed
+  qed
+qed
+
+lemma compact_subset_open_imp_cball_epsilon_subset:
+  assumes "compact A" "open B" "A \<subseteq> B"
+  obtains e where "e > 0"  "(\<Union>x\<in>A. cball x e) \<subseteq> B"
+proof -
+  obtain e where "e > 0" and e: "(\<Union>x\<in>A. ball x e) \<subseteq> B"
+    using compact_subset_open_imp_ball_epsilon_subset [OF assms] by blast
+  then have "(\<Union>x\<in>A. cball x (e / 2)) \<subseteq> (\<Union>x\<in>A. ball x e)"
+    by auto
+  with \<open>0 < e\<close> that show ?thesis
+    by (metis e half_gt_zero_iff order_trans)
+qed
 
 subsubsection\<open>Totally bounded\<close>
 
--- a/src/HOL/Complex.thy	Mon Feb 20 13:59:16 2023 +0100
+++ b/src/HOL/Complex.thy	Mon Feb 20 13:59:42 2023 +0100
@@ -1001,6 +1001,21 @@
   "continuous_on A f \<Longrightarrow> continuous_on A (\<lambda>x. cis (f x))"
   by (auto simp: cis_conv_exp intro!: continuous_intros)
 
+lemma tendsto_exp_0_Re_at_bot: "(exp \<longlongrightarrow> 0) (filtercomap Re at_bot)"
+proof -
+  have "((\<lambda>z. cmod (exp z)) \<longlongrightarrow> 0) (filtercomap Re at_bot)"
+    by (auto intro!: filterlim_filtercomapI exp_at_bot)
+  thus ?thesis
+    using tendsto_norm_zero_iff by blast
+qed
+
+lemma filterlim_exp_at_infinity_Re_at_top: "filterlim exp at_infinity (filtercomap Re at_top)"
+proof -
+  have "filterlim (\<lambda>z. norm (exp z)) at_top (filtercomap Re at_top)"
+    by (auto intro!: filterlim_filtercomapI exp_at_top)
+  thus ?thesis
+    using filterlim_norm_at_top_imp_at_infinity by blast
+qed
 
 subsubsection \<open>Complex argument\<close>
 
--- a/src/HOL/Complex_Analysis/Complex_Analysis.thy	Mon Feb 20 13:59:16 2023 +0100
+++ b/src/HOL/Complex_Analysis/Complex_Analysis.thy	Mon Feb 20 13:59:42 2023 +0100
@@ -1,7 +1,7 @@
 theory Complex_Analysis
 imports
   Residue_Theorem
-  Riemann_Mapping
+  Meromorphic
 begin
 
 end
--- a/src/HOL/Complex_Analysis/Complex_Singularities.thy	Mon Feb 20 13:59:16 2023 +0100
+++ b/src/HOL/Complex_Analysis/Complex_Singularities.thy	Mon Feb 20 13:59:42 2023 +0100
@@ -249,6 +249,12 @@
   shows   "not_essential f z \<longleftrightarrow> not_essential g z'"
   unfolding not_essential_def using assms filterlim_cong is_pole_cong by fastforce
 
+lemma not_essential_compose_iff:
+  assumes "filtermap g (at z) = at z'"
+  shows   "not_essential (f \<circ> g) z = not_essential f z'"
+  unfolding not_essential_def filterlim_def filtermap_compose assms is_pole_compose_iff[OF assms]
+  by blast
+
 lemma isolated_singularity_at_cong:
   assumes "eventually (\<lambda>x. f x = g x) (at z)" "z = z'"
   shows   "isolated_singularity_at f z \<longleftrightarrow> isolated_singularity_at g z'"
@@ -362,8 +368,8 @@
       ultimately have "(f' \<longlongrightarrow> 0) F" unfolding F_def
         by (simp add: continuous_within)
       moreover have "(g \<longlongrightarrow> g z) F"
-        using holomorphic_on_imp_continuous_on[OF g_holo,unfolded continuous_on_def] \<open>r>0\<close>
-        unfolding F_def by auto
+        unfolding F_def
+        using \<open>r>0\<close> centre_in_ball continuous_on_def g_holo holomorphic_on_imp_continuous_on by blast
       ultimately show " ((\<lambda>w. f' w * g w) \<longlongrightarrow> 0) F" using tendsto_mult by fastforce
     qed
     moreover have "(h \<longlongrightarrow> h z) (at z within ball z r)"
@@ -1058,7 +1064,7 @@
   using analytic_at not_is_pole_holomorphic by blast
 
 lemma not_essential_const [singularity_intros]: "not_essential (\<lambda>_. c) z"
-  unfolding not_essential_def by (rule exI[of _ c]) auto
+  by blast
 
 lemma not_essential_uminus [singularity_intros]:
   assumes f_ness: "not_essential f z"
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Complex_Analysis/Laurent_Convergence.thy	Mon Feb 20 13:59:42 2023 +0100
@@ -0,0 +1,2917 @@
+theory Laurent_Convergence
+  imports "HOL-Computational_Algebra.Formal_Laurent_Series" "HOL-Library.Landau_Symbols"
+          Residue_Theorem
+
+begin
+
+(* TODO: Move *)
+text \<open>TODO: Better than @{thm deriv_compose_linear}?\<close>
+lemma deriv_compose_linear':
+  assumes "f field_differentiable at (c * z+a)"
+  shows "deriv (\<lambda>w. f (c * w+a)) z = c * deriv f (c * z+a)"
+  apply (subst deriv_chain[where f="\<lambda>w. c * w+a",unfolded comp_def])
+  using assms by (auto intro:derivative_intros)
+
+text \<open>TODO: Better than @{thm higher_deriv_compose_linear}?\<close>
+lemma higher_deriv_compose_linear':
+  fixes z::complex
+  assumes f: "f holomorphic_on T" and S: "open S" and T: "open T" and z: "z \<in> S"
+      and fg: "\<And>w. w \<in> S \<Longrightarrow> u * w+c \<in> T"
+    shows "(deriv ^^ n) (\<lambda>w. f (u * w+c)) z = u^n * (deriv ^^ n) f (u * z+c)"
+using z
+proof (induction n arbitrary: z)
+  case 0 then show ?case by simp
+next
+  case (Suc n z)
+  have holo0: "f holomorphic_on (\<lambda>w. u * w+c) ` S"
+    by (meson fg f holomorphic_on_subset image_subset_iff)
+  have holo2: "(deriv ^^ n) f holomorphic_on (\<lambda>w. u * w+c) ` S"
+    by (meson f fg holomorphic_higher_deriv holomorphic_on_subset image_subset_iff T)
+  have holo3: "(\<lambda>z. u ^ n * (deriv ^^ n) f (u * z+c)) holomorphic_on S"
+    by (intro holo2 holomorphic_on_compose [where g="(deriv ^^ n) f", unfolded o_def] holomorphic_intros)
+  have "(\<lambda>w. u * w+c) holomorphic_on S" "f holomorphic_on (\<lambda>w. u * w+c) ` S"
+    by (rule holo0 holomorphic_intros)+
+  then have holo1: "(\<lambda>w. f (u * w+c)) holomorphic_on S"
+    by (rule holomorphic_on_compose [where g=f, unfolded o_def])
+  have "deriv ((deriv ^^ n) (\<lambda>w. f (u * w+c))) z = deriv (\<lambda>z. u^n * (deriv ^^ n) f (u*z+c)) z"
+  proof (rule complex_derivative_transform_within_open [OF _ holo3 S Suc.prems])
+    show "(deriv ^^ n) (\<lambda>w. f (u * w+c)) holomorphic_on S"
+      by (rule holomorphic_higher_deriv [OF holo1 S])
+  qed (simp add: Suc.IH)
+  also have "\<dots> = u^n * deriv (\<lambda>z. (deriv ^^ n) f (u * z+c)) z"
+  proof -
+    have "(deriv ^^ n) f analytic_on T"
+      by (simp add: analytic_on_open f holomorphic_higher_deriv T)
+    then have "(\<lambda>w. (deriv ^^ n) f (u * w+c)) analytic_on S"
+    proof -
+      have "(deriv ^^ n) f \<circ> (\<lambda>w. u * w+c) holomorphic_on S"
+        using holomorphic_on_compose[OF _ holo2] \<open>(\<lambda>w. u * w+c) holomorphic_on S\<close>
+        by simp
+      then show ?thesis
+        by (simp add: S analytic_on_open o_def)
+    qed
+    then show ?thesis
+      by (intro deriv_cmult analytic_on_imp_differentiable_at [OF _ Suc.prems])
+  qed
+  also have "\<dots> = u * u ^ n * deriv ((deriv ^^ n) f) (u * z+c)"
+  proof -
+    have "(deriv ^^ n) f field_differentiable at (u * z+c)"
+      using Suc.prems T f fg holomorphic_higher_deriv holomorphic_on_imp_differentiable_at by blast
+    then show ?thesis
+      by (simp add: deriv_compose_linear')
+  qed
+  finally show ?case
+    by simp
+qed
+
+lemma fps_to_fls_numeral [simp]: "fps_to_fls (numeral n) = numeral n"
+  by (metis fps_to_fls_of_nat of_nat_numeral)
+
+lemma fls_const_power: "fls_const (a ^ b) = fls_const a ^ b"
+  by (induction b) (auto simp flip: fls_const_mult_const)
+
+lemma fls_deriv_numeral [simp]: "fls_deriv (numeral n) = 0"
+  by (metis fls_deriv_of_int of_int_numeral)
+
+lemma fls_const_numeral [simp]: "fls_const (numeral n) = numeral n"
+  by (metis fls_of_nat of_nat_numeral)
+
+lemma fls_mult_of_int_nth [simp]:
+  shows "fls_nth (numeral k * f) n = numeral k * fls_nth f n"
+  and   "fls_nth (f * numeral k) n = fls_nth f n * numeral k"
+  by (metis fls_const_numeral fls_mult_const_nth)+
+
+lemma fls_nth_numeral' [simp]:
+  "fls_nth (numeral n) 0 = numeral n" "k \<noteq> 0 \<Longrightarrow> fls_nth (numeral n) k = 0"
+  by (subst fls_const_numeral [symmetric], subst fls_const_nth, simp)+
+
+lemma fls_subdegree_prod:
+  fixes F :: "'a \<Rightarrow> 'b :: field_char_0 fls"
+  assumes "\<And>x. x \<in> I \<Longrightarrow> F x \<noteq> 0"
+  shows   "fls_subdegree (\<Prod>x\<in>I. F x) = (\<Sum>x\<in>I. fls_subdegree (F x))"
+  using assms by (induction I rule: infinite_finite_induct) auto
+
+lemma fls_subdegree_prod':
+  fixes F :: "'a \<Rightarrow> 'b :: field_char_0 fls"
+  assumes "\<And>x. x \<in> I \<Longrightarrow> fls_subdegree (F x) \<noteq> 0"
+  shows   "fls_subdegree (\<Prod>x\<in>I. F x) = (\<Sum>x\<in>I. fls_subdegree (F x))"
+proof (intro fls_subdegree_prod)
+  show "F x \<noteq> 0" if "x \<in> I" for x
+    using assms[OF that] by auto
+qed
+
+instance fps :: (semiring_char_0) semiring_char_0
+proof
+  show "inj (of_nat :: nat \<Rightarrow> 'a fps)"
+  proof
+    fix m n :: nat
+    assume "of_nat m = (of_nat n :: 'a fps)"
+    hence "fps_nth (of_nat m) 0 = (fps_nth (of_nat n) 0 :: 'a)"
+      by (simp only: )
+    thus "m = n"
+      by simp
+  qed
+qed
+
+instance fls :: (semiring_char_0) semiring_char_0
+proof
+  show "inj (of_nat :: nat \<Rightarrow> 'a fls)"
+  proof
+    fix m n :: nat
+    assume "of_nat m = (of_nat n :: 'a fls)"
+    hence "fls_nth (of_nat m) 0 = (fls_nth (of_nat n) 0 :: 'a)"
+      by (simp only: )
+    thus "m = n"
+      by (simp add: fls_of_nat_nth)
+  qed
+qed
+
+lemma fls_const_eq_0_iff [simp]: "fls_const c = 0 \<longleftrightarrow> c = 0"
+  using fls_const_0 fls_const_nonzero by blast
+
+lemma fls_subdegree_add_eq1:
+  assumes "f \<noteq> 0" "fls_subdegree f < fls_subdegree g"
+  shows   "fls_subdegree (f + g) = fls_subdegree f"
+proof (intro antisym)
+  from assms have *: "fls_nth (f + g) (fls_subdegree f) \<noteq> 0"
+    by auto
+  from * show "fls_subdegree (f + g) \<le> fls_subdegree f"
+    by (rule fls_subdegree_leI)
+  from * have "f + g \<noteq> 0"
+    using fls_nonzeroI by blast
+  thus "fls_subdegree f \<le> fls_subdegree (f + g)"
+    using assms(2) fls_plus_subdegree by force
+qed
+
+lemma fls_subdegree_add_eq2:
+  assumes "g \<noteq> 0" "fls_subdegree g < fls_subdegree f"
+  shows   "fls_subdegree (f + g) = fls_subdegree g"
+proof (intro antisym)
+  from assms have *: "fls_nth (f + g) (fls_subdegree g) \<noteq> 0"
+    by auto
+  from * show "fls_subdegree (f + g) \<le> fls_subdegree g"
+    by (rule fls_subdegree_leI)
+  from * have "f + g \<noteq> 0"
+    using fls_nonzeroI by blast
+  thus "fls_subdegree g \<le> fls_subdegree (f + g)"
+    using assms(2) fls_plus_subdegree by force
+qed
+
+lemma fls_subdegree_diff_eq1:
+  assumes "f \<noteq> 0" "fls_subdegree f < fls_subdegree g"
+  shows   "fls_subdegree (f - g) = fls_subdegree f"
+  using fls_subdegree_add_eq1[of f "-g"] assms by simp
+
+lemma fls_subdegree_diff_eq2:
+  assumes "g \<noteq> 0" "fls_subdegree g < fls_subdegree f"
+  shows   "fls_subdegree (f - g) = fls_subdegree g"
+  using fls_subdegree_add_eq2[of "-g" f] assms by simp
+
+lemma nat_minus_fls_subdegree_plus_const_eq:
+  "nat (-fls_subdegree (F + fls_const c)) = nat (-fls_subdegree F)"
+proof (cases "fls_subdegree F < 0")
+  case True
+  hence "fls_subdegree (F + fls_const c) = fls_subdegree F"
+    by (intro fls_subdegree_add_eq1) auto
+  thus ?thesis
+    by simp
+next
+  case False
+  thus ?thesis
+    by (auto simp: fls_subdegree_ge0I)
+qed
+
+lemma at_to_0': "NO_MATCH 0 z \<Longrightarrow> at z = filtermap (\<lambda>x. x + z) (at 0)"
+  for z :: "'a::real_normed_vector"
+  by (rule at_to_0)
+
+lemma nhds_to_0: "nhds (x :: 'a :: real_normed_vector) = filtermap ((+) x) (nhds 0)"
+proof -
+  have "(\<lambda>xa. xa - - x) = (+) x"
+    by auto
+  thus ?thesis
+    using filtermap_nhds_shift[of "-x" 0] by simp
+qed
+
+lemma nhds_to_0': "NO_MATCH 0 x \<Longrightarrow> nhds (x :: 'a :: real_normed_vector) = filtermap ((+) x) (nhds 0)"
+  by (rule nhds_to_0)
+
+
+definition%important fls_conv_radius :: "complex fls \<Rightarrow> ereal" where
+  "fls_conv_radius f = fps_conv_radius (fls_regpart f)"
+
+definition%important eval_fls :: "complex fls \<Rightarrow> complex \<Rightarrow> complex" where
+  "eval_fls F z = eval_fps (fls_base_factor_to_fps F) z * z powi fls_subdegree F"
+
+definition\<^marker>\<open>tag important\<close>
+  has_laurent_expansion :: "(complex \<Rightarrow> complex) \<Rightarrow> complex fls \<Rightarrow> bool"
+  (infixl "has'_laurent'_expansion" 60)
+  where "(f has_laurent_expansion F) \<longleftrightarrow>
+            fls_conv_radius F > 0 \<and> eventually (\<lambda>z. eval_fls F z = f z) (at 0)"
+
+lemma has_laurent_expansion_schematicI:
+  "f has_laurent_expansion F \<Longrightarrow> F = G \<Longrightarrow> f has_laurent_expansion G"
+  by simp
+
+lemma has_laurent_expansion_cong:
+  assumes "eventually (\<lambda>x. f x = g x) (at 0)" "F = G"
+  shows   "(f has_laurent_expansion F) \<longleftrightarrow> (g has_laurent_expansion G)"
+proof -
+  have "eventually (\<lambda>z. eval_fls F z = g z) (at 0)"
+    if "eventually (\<lambda>z. eval_fls F z = f z) (at 0)" "eventually (\<lambda>x. f x = g x) (at 0)" for f g
+    using that by eventually_elim auto
+  from this[of f g] this[of g f] show ?thesis
+    using assms by (auto simp: eq_commute has_laurent_expansion_def)
+qed
+
+lemma has_laurent_expansion_cong':
+  assumes "eventually (\<lambda>x. f x = g x) (at z)" "F = G" "z = z'"
+  shows   "((\<lambda>x. f (z + x)) has_laurent_expansion F) \<longleftrightarrow> ((\<lambda>x. g (z' + x)) has_laurent_expansion G)"
+  by (intro has_laurent_expansion_cong)
+     (use assms in \<open>auto simp: at_to_0' eventually_filtermap add_ac\<close>)
+
+lemma fls_conv_radius_altdef:
+  "fls_conv_radius F = fps_conv_radius (fls_base_factor_to_fps F)"
+proof -
+  have "conv_radius (\<lambda>n. fls_nth F (int n)) = conv_radius (\<lambda>n. fls_nth F (int n + fls_subdegree F))"
+  proof (cases "fls_subdegree F \<ge> 0")
+    case True
+    hence "conv_radius (\<lambda>n. fls_nth F (int n + fls_subdegree F)) =
+           conv_radius (\<lambda>n. fls_nth F (int (n + nat (fls_subdegree F))))"
+      by auto
+    thus ?thesis
+      by (subst (asm) conv_radius_shift) auto
+  next
+    case False
+    hence "conv_radius (\<lambda>n. fls_nth F (int n)) =
+           conv_radius (\<lambda>n. fls_nth F (fls_subdegree F + int (n + nat (-fls_subdegree F))))"
+      by auto
+    thus ?thesis
+      by (subst (asm) conv_radius_shift) (auto simp: add_ac)
+  qed
+  thus ?thesis
+    by (simp add: fls_conv_radius_def fps_conv_radius_def)
+qed
+
+lemma eval_fps_of_nat [simp]: "eval_fps (of_nat n) z = of_nat n"
+  and eval_fps_of_int [simp]: "eval_fps (of_int m) z = of_int m"
+  by (simp_all flip: fps_of_nat fps_of_int)
+
+lemma fls_subdegree_numeral [simp]: "fls_subdegree (numeral n) = 0"
+  by (metis fls_subdegree_of_nat of_nat_numeral)
+
+lemma fls_regpart_numeral [simp]: "fls_regpart (numeral n) = numeral n"
+  by (metis fls_regpart_of_nat of_nat_numeral)
+
+lemma fps_conv_radius_of_nat [simp]: "fps_conv_radius (of_nat n) = \<infinity>"
+  and fps_conv_radius_of_int [simp]: "fps_conv_radius (of_int m) = \<infinity>"
+  by (simp_all flip: fps_of_nat fps_of_int)
+
+lemma fps_conv_radius_fls_regpart: "fps_conv_radius (fls_regpart F) = fls_conv_radius F"
+  by (simp add: fls_conv_radius_def)
+
+lemma fls_conv_radius_0 [simp]: "fls_conv_radius 0 = \<infinity>"
+  and fls_conv_radius_1 [simp]: "fls_conv_radius 1 = \<infinity>"
+  and fls_conv_radius_const [simp]: "fls_conv_radius (fls_const c) = \<infinity>"
+  and fls_conv_radius_numeral [simp]: "fls_conv_radius (numeral num) = \<infinity>"
+  and fls_conv_radius_of_nat [simp]: "fls_conv_radius (of_nat n) = \<infinity>"
+  and fls_conv_radius_of_int [simp]: "fls_conv_radius (of_int m) = \<infinity>"
+  and fls_conv_radius_X [simp]: "fls_conv_radius fls_X = \<infinity>"
+  and fls_conv_radius_X_inv [simp]: "fls_conv_radius fls_X_inv = \<infinity>"
+  and fls_conv_radius_X_intpow [simp]: "fls_conv_radius (fls_X_intpow m) = \<infinity>"
+  by (simp_all add: fls_conv_radius_def fls_X_intpow_regpart)
+
+lemma fls_conv_radius_shift [simp]: "fls_conv_radius (fls_shift n F) = fls_conv_radius F"
+  unfolding fls_conv_radius_altdef by (subst fls_base_factor_to_fps_shift) (rule refl)
+
+lemma fls_conv_radius_fps_to_fls [simp]: "fls_conv_radius (fps_to_fls F) = fps_conv_radius F"
+  by (simp add: fls_conv_radius_def)
+
+lemma fls_conv_radius_deriv [simp]: "fls_conv_radius (fls_deriv F) \<ge> fls_conv_radius F"
+proof -
+  have "fls_conv_radius (fls_deriv F) = fps_conv_radius (fls_regpart (fls_deriv F))"
+    by (simp add: fls_conv_radius_def)
+  also have "fls_regpart (fls_deriv F) = fps_deriv (fls_regpart F)"
+    by (intro fps_ext) (auto simp: add_ac)
+  also have "fps_conv_radius \<dots> \<ge> fls_conv_radius F"
+    by (simp add: fls_conv_radius_def fps_conv_radius_deriv)
+  finally show ?thesis .
+qed
+
+lemma fls_conv_radius_uminus [simp]: "fls_conv_radius (-F) = fls_conv_radius F"
+  by (simp add: fls_conv_radius_def)
+
+lemma fls_conv_radius_add: "fls_conv_radius (F + G) \<ge> min (fls_conv_radius F) (fls_conv_radius G)"
+  by (simp add: fls_conv_radius_def fps_conv_radius_add)
+
+lemma fls_conv_radius_diff: "fls_conv_radius (F - G) \<ge> min (fls_conv_radius F) (fls_conv_radius G)"
+  by (simp add: fls_conv_radius_def fps_conv_radius_diff)
+
+lemma fls_conv_radius_mult: "fls_conv_radius (F * G) \<ge> min (fls_conv_radius F) (fls_conv_radius G)"
+proof (cases "F = 0 \<or> G = 0")
+  case False
+  hence [simp]: "F \<noteq> 0" "G \<noteq> 0"
+    by auto
+  have "fls_conv_radius (F * G) = fps_conv_radius (fls_regpart (fls_shift (fls_subdegree F + fls_subdegree G) (F * G)))"
+    by (simp add: fls_conv_radius_altdef)
+  also have "fls_regpart (fls_shift (fls_subdegree F + fls_subdegree G) (F * G)) =
+             fls_base_factor_to_fps F * fls_base_factor_to_fps G"
+    by (simp add: fls_times_def)
+  also have "fps_conv_radius \<dots> \<ge> min (fls_conv_radius F) (fls_conv_radius G)"
+    unfolding fls_conv_radius_altdef by (rule fps_conv_radius_mult)
+  finally show ?thesis .
+qed auto
+
+lemma fps_conv_radius_add_ge:
+  "fps_conv_radius F \<ge> r \<Longrightarrow> fps_conv_radius G \<ge> r \<Longrightarrow> fps_conv_radius (F + G) \<ge> r"
+  using fps_conv_radius_add[of F G] by (simp add: min_def split: if_splits)
+
+lemma fps_conv_radius_diff_ge:
+  "fps_conv_radius F \<ge> r \<Longrightarrow> fps_conv_radius G \<ge> r \<Longrightarrow> fps_conv_radius (F - G) \<ge> r"
+  using fps_conv_radius_diff[of F G] by (simp add: min_def split: if_splits)
+
+lemma fps_conv_radius_mult_ge:
+  "fps_conv_radius F \<ge> r \<Longrightarrow> fps_conv_radius G \<ge> r \<Longrightarrow> fps_conv_radius (F * G) \<ge> r"
+  using fps_conv_radius_mult[of F G] by (simp add: min_def split: if_splits)
+
+lemma fls_conv_radius_add_ge:
+  "fls_conv_radius F \<ge> r \<Longrightarrow> fls_conv_radius G \<ge> r \<Longrightarrow> fls_conv_radius (F + G) \<ge> r"
+  using fls_conv_radius_add[of F G] by (simp add: min_def split: if_splits)
+
+lemma fls_conv_radius_diff_ge:
+  "fls_conv_radius F \<ge> r \<Longrightarrow> fls_conv_radius G \<ge> r \<Longrightarrow> fls_conv_radius (F - G) \<ge> r"
+  using fls_conv_radius_diff[of F G] by (simp add: min_def split: if_splits)
+
+lemma fls_conv_radius_mult_ge:
+  "fls_conv_radius F \<ge> r \<Longrightarrow> fls_conv_radius G \<ge> r \<Longrightarrow> fls_conv_radius (F * G) \<ge> r"
+  using fls_conv_radius_mult[of F G] by (simp add: min_def split: if_splits)
+
+lemma fls_conv_radius_power: "fls_conv_radius (F ^ n) \<ge> fls_conv_radius F"
+  by (induction n) (auto intro!: fls_conv_radius_mult_ge)
+
+lemma eval_fls_0 [simp]: "eval_fls 0 z = 0"
+  and eval_fls_1 [simp]: "eval_fls 1 z = 1"
+  and eval_fls_const [simp]: "eval_fls (fls_const c) z = c"
+  and eval_fls_numeral [simp]: "eval_fls (numeral num) z = numeral num"
+  and eval_fls_of_nat [simp]: "eval_fls (of_nat n) z = of_nat n"
+  and eval_fls_of_int [simp]: "eval_fls (of_int m) z = of_int m"
+  and eval_fls_X [simp]: "eval_fls fls_X z = z"
+  and eval_fls_X_intpow [simp]: "eval_fls (fls_X_intpow m) z = z powi m"
+  by (simp_all add: eval_fls_def)
+
+lemma eval_fls_at_0: "eval_fls F 0 = (if fls_subdegree F \<ge> 0 then fls_nth F 0 else 0)"
+  by (cases "fls_subdegree F = 0")
+     (simp_all add: eval_fls_def fls_regpart_def eval_fps_at_0)
+
+lemma eval_fps_to_fls:
+  assumes "norm z < fps_conv_radius F"
+  shows   "eval_fls (fps_to_fls F) z = eval_fps F z"
+proof (cases "F = 0")
+  case [simp]: False
+  have "eval_fps F z = eval_fps (unit_factor F * normalize F) z"
+    by (metis unit_factor_mult_normalize)
+  also have "\<dots> = eval_fps (unit_factor F * fps_X ^ subdegree F) z"
+    by simp
+  also have "\<dots> = eval_fps (unit_factor F) z * z ^ subdegree F"
+    using assms by (subst eval_fps_mult) auto
+  also have "\<dots> = eval_fls (fps_to_fls F) z"
+    unfolding eval_fls_def fls_base_factor_to_fps_to_fls fls_subdegree_fls_to_fps
+              power_int_of_nat ..
+  finally show ?thesis ..
+qed auto
+
+lemma eval_fls_shift:
+  assumes [simp]: "z \<noteq> 0"
+  shows   "eval_fls (fls_shift n F) z = eval_fls F z * z powi -n"
+proof (cases "F = 0")
+  case [simp]: False
+  show ?thesis
+  unfolding eval_fls_def
+  by (subst fls_base_factor_to_fps_shift, subst fls_shift_subdegree[OF \<open>F \<noteq> 0\<close>], subst power_int_diff)
+     (auto simp: power_int_minus divide_simps)
+qed auto
+
+lemma eval_fls_add:
+  assumes "ereal (norm z) < fls_conv_radius F" "ereal (norm z) < fls_conv_radius G" "z \<noteq> 0"
+  shows   "eval_fls (F + G) z = eval_fls F z + eval_fls G z"
+  using assms
+proof (induction "fls_subdegree F" "fls_subdegree G" arbitrary: F G rule: linorder_wlog)
+  case (sym F G)
+  show ?case
+    using sym(1)[of G F] sym(2-) by (simp add: add_ac)
+next
+  case (le F G)
+  show ?case
+  proof (cases "F = 0 \<or> G = 0")
+    case False
+    hence [simp]: "F \<noteq> 0" "G \<noteq> 0"
+      by auto
+    note [simp] = \<open>z \<noteq> 0\<close>
+    define F' G' where "F' = fls_base_factor_to_fps F" "G' = fls_base_factor_to_fps G"
+    define m n where "m = fls_subdegree F" "n = fls_subdegree G"
+    have "m \<le> n"
+      using le by (auto simp: m_n_def)
+    have conv1: "ereal (cmod z) < fps_conv_radius F'" "ereal (cmod z) < fps_conv_radius G'"
+      using assms le by (simp_all add: F'_G'_def fls_conv_radius_altdef)
+    have conv2: "ereal (cmod z) < fps_conv_radius (G' * fps_X ^ nat (n - m))"
+      using conv1 by (intro less_le_trans[OF _ fps_conv_radius_mult]) auto
+    have conv3: "ereal (cmod z) < fps_conv_radius (F' + G' * fps_X ^ nat (n - m))"
+      using conv1 conv2 by (intro less_le_trans[OF _ fps_conv_radius_add]) auto
+
+    have "eval_fls F z + eval_fls G z = eval_fps F' z * z powi m + eval_fps G' z * z powi n"
+      unfolding eval_fls_def m_n_def[symmetric] F'_G'_def[symmetric]
+      by (simp add: power_int_add algebra_simps)
+    also have "\<dots> = (eval_fps F' z + eval_fps G' z * z powi (n - m)) * z powi m"
+      by (simp add: algebra_simps power_int_diff)
+    also have "eval_fps G' z * z powi (n - m) = eval_fps (G' * fps_X ^ nat (n - m)) z"
+      using assms \<open>m \<le> n\<close> conv1 by (subst eval_fps_mult) (auto simp: power_int_def)
+    also have "eval_fps F' z + \<dots> = eval_fps (F' + G' * fps_X ^ nat (n - m)) z"
+      using conv1 conv2 by (subst eval_fps_add) auto
+    also have "\<dots> = eval_fls (fps_to_fls (F' + G' * fps_X ^ nat (n - m))) z"
+      using conv3 by (subst eval_fps_to_fls) auto
+    also have "\<dots> * z powi m = eval_fls (fls_shift (-m) (fps_to_fls (F' + G' * fps_X ^ nat (n - m)))) z"
+      by (subst eval_fls_shift) auto
+    also have "fls_shift (-m) (fps_to_fls (F' + G' * fps_X ^ nat (n - m))) = F + G"
+      using \<open>m \<le> n\<close>
+      by (simp add: fls_times_fps_to_fls fps_to_fls_power fls_X_power_conv_shift_1
+                    fls_shifted_times_simps F'_G'_def m_n_def)
+    finally show ?thesis ..
+  qed auto
+qed
+
+lemma eval_fls_minus:
+  assumes "ereal (norm z) < fls_conv_radius F"
+  shows   "eval_fls (-F) z = -eval_fls F z"
+  using assms by (simp add: eval_fls_def eval_fps_minus fls_conv_radius_altdef)
+
+lemma eval_fls_diff:
+  assumes "ereal (norm z) < fls_conv_radius F" "ereal (norm z) < fls_conv_radius G"
+     and [simp]: "z \<noteq> 0"
+  shows   "eval_fls (F - G) z = eval_fls F z - eval_fls G z"
+proof -
+  have "eval_fls (F + (-G)) z = eval_fls F z - eval_fls G z"
+    using assms by (subst eval_fls_add) (auto simp: eval_fls_minus)
+  thus ?thesis
+    by simp
+qed
+
+lemma eval_fls_mult:
+  assumes "ereal (norm z) < fls_conv_radius F" "ereal (norm z) < fls_conv_radius G" "z \<noteq> 0"
+  shows   "eval_fls (F * G) z = eval_fls F z * eval_fls G z"
+proof (cases "F = 0 \<or> G = 0")
+  case False
+  hence [simp]: "F \<noteq> 0" "G \<noteq> 0"
+    by auto
+  note [simp] = \<open>z \<noteq> 0\<close>
+  define F' G' where "F' = fls_base_factor_to_fps F" "G' = fls_base_factor_to_fps G"
+  define m n where "m = fls_subdegree F" "n = fls_subdegree G"
+  have "eval_fls F z * eval_fls G z = (eval_fps F' z * eval_fps G' z) * z powi (m + n)"
+    unfolding eval_fls_def m_n_def[symmetric] F'_G'_def[symmetric]
+    by (simp add: power_int_add algebra_simps)
+  also have "\<dots> = eval_fps (F' * G') z * z powi (m + n)"
+    using assms by (subst eval_fps_mult) (auto simp: F'_G'_def fls_conv_radius_altdef)
+  also have "\<dots> = eval_fls (F * G) z"
+    by (simp add: eval_fls_def F'_G'_def m_n_def) (simp add: fls_times_def)
+  finally show ?thesis ..
+qed auto
+
+lemma eval_fls_power:
+  assumes "ereal (norm z) < fls_conv_radius F" "z \<noteq> 0"
+  shows   "eval_fls (F ^ n) z = eval_fls F z ^ n"
+proof (induction n)
+  case (Suc n)
+  have "eval_fls (F ^ Suc n) z = eval_fls (F * F ^ n) z"
+    by simp
+  also have "\<dots> = eval_fls F z * eval_fls (F ^ n) z"
+    using assms by (subst eval_fls_mult) (auto intro!: less_le_trans[OF _ fls_conv_radius_power])
+  finally show ?case
+    using Suc by simp
+qed auto
+
+lemma norm_summable_fls:
+  "norm z < fls_conv_radius f \<Longrightarrow> summable (\<lambda>n. norm (fls_nth f n * z ^ n))"
+  using norm_summable_fps[of z "fls_regpart f"] by (simp add: fls_conv_radius_def)
+
+lemma norm_summable_fls':
+  "norm z < fls_conv_radius f \<Longrightarrow> summable (\<lambda>n. norm (fls_nth f (n + fls_subdegree f) * z ^ n))"
+  using norm_summable_fps[of z "fls_base_factor_to_fps f"] by (simp add: fls_conv_radius_altdef)
+
+lemma summable_fls:
+  "norm z < fls_conv_radius f \<Longrightarrow> summable (\<lambda>n. fls_nth f n * z ^ n)"
+  by (rule summable_norm_cancel[OF norm_summable_fls])
+
+theorem sums_eval_fls:
+  fixes f
+  defines "n \<equiv> fls_subdegree f"
+  assumes "norm z < fls_conv_radius f" and "z \<noteq> 0 \<or> n \<ge> 0"
+  shows   "(\<lambda>k. fls_nth f (int k + n) * z powi (int k + n)) sums eval_fls f z"
+proof (cases "z = 0")
+  case [simp]: False
+  have "(\<lambda>k. fps_nth (fls_base_factor_to_fps f) k * z ^ k * z powi n) sums
+          (eval_fps (fls_base_factor_to_fps f) z * z powi n)"
+    using assms(2) by (intro sums_eval_fps sums_mult2) (auto simp: fls_conv_radius_altdef)
+  thus ?thesis
+    by (simp add: power_int_add n_def eval_fls_def mult_ac)
+next
+  case [simp]: True
+  with assms have "n \<ge> 0"
+    by auto
+  have "(\<lambda>k. fls_nth f (int k + n) * z powi (int k + n)) sums
+          (\<Sum>k\<in>(if n \<le> 0 then {nat (-n)} else {}). fls_nth f (int k + n) * z powi (int k + n))"
+    by (intro sums_finite) (auto split: if_splits)
+  also have "\<dots> = eval_fls f z"
+    using \<open>n \<ge> 0\<close> by (auto simp: eval_fls_at_0 n_def not_le)
+  finally show ?thesis .
+qed
+
+lemma holomorphic_on_eval_fls:
+  fixes f
+  defines "n \<equiv> fls_subdegree f"
+  assumes "A \<subseteq> eball 0 (fls_conv_radius f) - (if n \<ge> 0 then {} else {0})"
+  shows   "eval_fls f holomorphic_on A"
+proof (cases "n \<ge> 0")
+  case True
+  have "eval_fls f = (\<lambda>z. eval_fps (fls_base_factor_to_fps f) z * z ^ nat n)"
+    using True by (simp add: fun_eq_iff eval_fls_def power_int_def n_def)
+  moreover have "\<dots> holomorphic_on A"
+    using True assms(2) by (intro holomorphic_intros) (auto simp: fls_conv_radius_altdef)
+  ultimately show ?thesis
+    by simp
+next
+  case False
+  show ?thesis using assms
+    unfolding eval_fls_def by (intro holomorphic_intros) (auto simp: fls_conv_radius_altdef)
+qed
+
+lemma holomorphic_on_eval_fls' [holomorphic_intros]:
+  assumes "g holomorphic_on A"
+  assumes "g ` A \<subseteq> eball 0 (fls_conv_radius f) - (if fls_subdegree f \<ge> 0 then {} else {0})"
+  shows   "(\<lambda>x. eval_fls f (g x)) holomorphic_on A"
+proof -
+  have "eval_fls f \<circ> g holomorphic_on A"
+    by (intro holomorphic_on_compose[OF assms(1) holomorphic_on_eval_fls]) (use assms in auto)
+  thus ?thesis
+    by (simp add: o_def)
+qed
+
+lemma continuous_on_eval_fls:
+  fixes f
+  defines "n \<equiv> fls_subdegree f"
+  assumes "A \<subseteq> eball 0 (fls_conv_radius f) - (if n \<ge> 0 then {} else {0})"
+  shows   "continuous_on A (eval_fls f)"
+  by (intro holomorphic_on_imp_continuous_on holomorphic_on_eval_fls)
+     (use assms in auto)
+
+lemma continuous_on_eval_fls' [continuous_intros]:
+  fixes f
+  defines "n \<equiv> fls_subdegree f"
+  assumes "g ` A \<subseteq> eball 0 (fls_conv_radius f) - (if n \<ge> 0 then {} else {0})"
+  assumes "continuous_on A g"
+  shows   "continuous_on A (\<lambda>x. eval_fls f (g x))"
+  using assms(3)
+  by (intro continuous_on_compose2[OF continuous_on_eval_fls _ assms(2)])
+     (auto simp: n_def)
+
+lemmas has_field_derivative_eval_fps' [derivative_intros] =
+  DERIV_chain2[OF has_field_derivative_eval_fps]
+
+lemma fps_deriv_fls_regpart: "fps_deriv (fls_regpart F) = fls_regpart (fls_deriv F)"
+  by (intro fps_ext) (auto simp: add_ac)
+
+(* TODO: generalise for nonneg subdegree *)
+lemma has_field_derivative_eval_fls:
+  assumes "z \<in> eball 0 (fls_conv_radius f) - {0}"
+  shows   "(eval_fls f has_field_derivative eval_fls (fls_deriv f) z) (at z within A)"
+proof -
+  define g where "g = fls_base_factor_to_fps f"
+  define n where "n = fls_subdegree f"
+  have [simp]: "fps_conv_radius g = fls_conv_radius f"
+    by (simp add: fls_conv_radius_altdef g_def)
+  have conv1: "fps_conv_radius (fps_deriv g * fps_X) \<ge> fls_conv_radius f"
+    by (intro fps_conv_radius_mult_ge order.trans[OF _ fps_conv_radius_deriv]) auto
+  have conv2: "fps_conv_radius (of_int n * g) \<ge> fls_conv_radius f"
+    by (intro fps_conv_radius_mult_ge) auto
+  have conv3: "fps_conv_radius (fps_deriv g * fps_X + of_int n * g) \<ge> fls_conv_radius f"
+    by (intro fps_conv_radius_add_ge conv1 conv2)
+
+  have [simp]: "fps_conv_radius g = fls_conv_radius f"
+    by (simp add: g_def fls_conv_radius_altdef)
+  have "((\<lambda>z. eval_fps g z * z powi fls_subdegree f) has_field_derivative
+          (eval_fps (fps_deriv g) z * z powi n + of_int n * z powi (n - 1) * eval_fps g z))
+          (at z within A)"
+    using assms by (auto intro!: derivative_eq_intros simp: n_def)
+  also have "(\<lambda>z. eval_fps g z * z powi fls_subdegree f) = eval_fls f"
+    by (simp add: eval_fls_def g_def fun_eq_iff)
+  also have "eval_fps (fps_deriv g) z * z powi n + of_int n * z powi (n - 1) * eval_fps g z =
+             (z * eval_fps (fps_deriv g) z + of_int n * eval_fps g z) * z powi (n - 1)"
+    using assms by (auto simp: power_int_diff field_simps)
+  also have "(z * eval_fps (fps_deriv g) z + of_int n * eval_fps g z) =
+             eval_fps (fps_deriv g * fps_X + of_int n * g) z"
+    using conv1 conv2 assms fps_conv_radius_deriv[of g]
+    by (subst eval_fps_add) (auto simp: eval_fps_mult)
+  also have "\<dots> = eval_fls (fps_to_fls (fps_deriv g * fps_X + of_int n * g)) z"
+    using conv3 assms by (subst eval_fps_to_fls) auto
+  also have "\<dots> * z powi (n - 1) = eval_fls (fls_shift (1 - n) (fps_to_fls (fps_deriv g * fps_X + of_int n * g))) z"
+    using assms by (subst eval_fls_shift) auto
+  also have "fls_shift (1 - n) (fps_to_fls (fps_deriv g * fps_X + of_int n * g)) = fls_deriv f"
+    by (intro fls_eqI) (auto simp: g_def n_def algebra_simps eq_commute[of _ "fls_subdegree f"])
+  finally show ?thesis .
+qed
+
+lemma eval_fls_deriv:
+  assumes "z \<in> eball 0 (fls_conv_radius F) - {0}"
+  shows   "eval_fls (fls_deriv F) z = deriv (eval_fls F) z"
+  by (rule sym, rule DERIV_imp_deriv, rule has_field_derivative_eval_fls, rule assms)
+
+lemma analytic_on_eval_fls:
+  assumes "A \<subseteq> eball 0 (fls_conv_radius f) - (if fls_subdegree f \<ge> 0 then {} else {0})"
+  shows   "eval_fls f analytic_on A"
+proof (rule analytic_on_subset [OF _ assms])
+  show "eval_fls f analytic_on eball 0 (fls_conv_radius f) - (if fls_subdegree f \<ge> 0 then {} else {0})"
+    using holomorphic_on_eval_fls[OF order.refl]
+    by (subst analytic_on_open) auto
+qed
+
+lemma analytic_on_eval_fls' [analytic_intros]:
+  assumes "g analytic_on A"
+  assumes "g ` A \<subseteq> eball 0 (fls_conv_radius f) - (if fls_subdegree f \<ge> 0 then {} else {0})"
+  shows   "(\<lambda>x. eval_fls f (g x)) analytic_on A"
+proof -
+  have "eval_fls f \<circ> g analytic_on A"
+    by (intro analytic_on_compose[OF assms(1) analytic_on_eval_fls]) (use assms in auto)
+  thus ?thesis
+    by (simp add: o_def)
+qed
+
+lemma continuous_eval_fls [continuous_intros]:
+  assumes "z \<in> eball 0 (fls_conv_radius F) - (if fls_subdegree F \<ge> 0 then {} else {0})"
+  shows   "continuous (at z within A) (eval_fls F)"
+proof -
+  have "isCont (eval_fls F) z"
+    using continuous_on_eval_fls[OF order.refl] assms
+    by (subst (asm) continuous_on_eq_continuous_at) auto
+  thus ?thesis
+    using continuous_at_imp_continuous_at_within by blast
+qed
+
+
+
+
+named_theorems laurent_expansion_intros
+
+lemma has_laurent_expansion_imp_asymp_equiv_0:
+  assumes F: "f has_laurent_expansion F"
+  defines "n \<equiv> fls_subdegree F"
+  shows   "f \<sim>[at 0] (\<lambda>z. fls_nth F n * z powi n)"
+proof (cases "F = 0")
+  case True
+  thus ?thesis using assms
+    by (auto simp: has_laurent_expansion_def)
+next
+  case [simp]: False
+  define G where "G = fls_base_factor_to_fps F"
+  have "fls_conv_radius F > 0"
+    using F by (auto simp: has_laurent_expansion_def)
+  hence "isCont (eval_fps G) 0"
+    by (intro continuous_intros) (auto simp: G_def fps_conv_radius_fls_regpart zero_ereal_def)
+  hence lim: "eval_fps G \<midarrow>0\<rightarrow> eval_fps G 0"
+    by (meson isContD)
+  have [simp]: "fps_nth G 0 \<noteq> 0"
+    by (auto simp: G_def)
+
+  have "f \<sim>[at 0] eval_fls F"
+    using F by (intro asymp_equiv_refl_ev) (auto simp: has_laurent_expansion_def eq_commute)
+  also have "\<dots> = (\<lambda>z. eval_fps G z * z powi n)"
+    by (intro ext) (simp_all add: eval_fls_def G_def n_def)
+  also have "\<dots> \<sim>[at 0] (\<lambda>z. fps_nth G 0 * z powi n)" using lim
+    by (intro asymp_equiv_intros tendsto_imp_asymp_equiv_const) (auto simp: eval_fps_at_0)
+  also have "fps_nth G 0 = fls_nth F n"
+    by (simp add: G_def n_def)
+  finally show ?thesis
+    by simp
+qed
+
+lemma has_laurent_expansion_imp_asymp_equiv:
+  assumes F: "(\<lambda>w. f (z + w)) has_laurent_expansion F"
+  defines "n \<equiv> fls_subdegree F"
+  shows   "f \<sim>[at z] (\<lambda>w. fls_nth F n * (w - z) powi n)"
+  using has_laurent_expansion_imp_asymp_equiv_0[OF assms(1)] unfolding n_def
+  by (simp add: at_to_0[of z] asymp_equiv_filtermap_iff add_ac)
+
+
+lemmas [tendsto_intros del] = tendsto_power_int
+
+lemma has_laurent_expansion_imp_tendsto_0:
+  assumes F: "f has_laurent_expansion F" and "fls_subdegree F \<ge> 0"
+  shows   "f \<midarrow>0\<rightarrow> fls_nth F 0"
+proof (rule asymp_equiv_tendsto_transfer)
+  show "(\<lambda>z. fls_nth F (fls_subdegree F) * z powi fls_subdegree F) \<sim>[at 0] f"
+    by (rule asymp_equiv_symI, rule has_laurent_expansion_imp_asymp_equiv_0) fact
+  show "(\<lambda>z. fls_nth F (fls_subdegree F) * z powi fls_subdegree F) \<midarrow>0\<rightarrow> fls_nth F 0"
+    by (rule tendsto_eq_intros refl | use assms(2) in simp)+
+       (use assms(2) in \<open>auto simp: power_int_0_left_If\<close>)
+qed
+
+lemma has_laurent_expansion_imp_tendsto:
+  assumes F: "(\<lambda>w. f (z + w)) has_laurent_expansion F" and "fls_subdegree F \<ge> 0"
+  shows   "f \<midarrow>z\<rightarrow> fls_nth F 0"
+  using has_laurent_expansion_imp_tendsto_0[OF assms]
+  by (simp add: at_to_0[of z] filterlim_filtermap add_ac)
+
+lemma has_laurent_expansion_imp_filterlim_infinity_0:
+  assumes F: "f has_laurent_expansion F" and "fls_subdegree F < 0"
+  shows   "filterlim f at_infinity (at 0)"
+proof (rule asymp_equiv_at_infinity_transfer)
+  have [simp]: "F \<noteq> 0"
+    using assms(2) by auto
+  show "(\<lambda>z. fls_nth F (fls_subdegree F) * z powi fls_subdegree F) \<sim>[at 0] f"
+    by (rule asymp_equiv_symI, rule has_laurent_expansion_imp_asymp_equiv_0) fact
+  show "filterlim (\<lambda>z. fls_nth F (fls_subdegree F) * z powi fls_subdegree F) at_infinity (at 0)"
+    by (rule tendsto_mult_filterlim_at_infinity tendsto_const
+             filterlim_power_int_neg_at_infinity | use assms(2) in simp)+
+       (auto simp: eventually_at_filter)
+qed
+
+lemma has_laurent_expansion_imp_neg_fls_subdegree:
+  assumes F: "f has_laurent_expansion F"
+    and infy:"filterlim f at_infinity (at 0)"
+  shows   "fls_subdegree F < 0"
+proof (rule ccontr)
+  assume asm:"\<not> fls_subdegree F < 0"
+  define ff where "ff=(\<lambda>z. fls_nth F (fls_subdegree F)
+                              * z powi fls_subdegree F)"
+
+  have "(ff \<longlongrightarrow> (if fls_subdegree F =0 then fls_nth F 0 else 0)) (at 0)"
+    using asm unfolding ff_def
+    by (auto intro!: tendsto_eq_intros)
+  moreover have "filterlim ff at_infinity (at 0)"
+  proof (rule asymp_equiv_at_infinity_transfer)
+    show "f \<sim>[at 0] ff" unfolding ff_def
+      using has_laurent_expansion_imp_asymp_equiv_0[OF F] unfolding ff_def .
+    show "filterlim f at_infinity (at 0)" by fact
+  qed
+  ultimately show False
+    using not_tendsto_and_filterlim_at_infinity[of "at (0::complex)"] by auto
+qed
+
+lemma has_laurent_expansion_imp_filterlim_infinity:
+  assumes F: "(\<lambda>w. f (z + w)) has_laurent_expansion F" and "fls_subdegree F < 0"
+  shows   "filterlim f at_infinity (at z)"
+  using has_laurent_expansion_imp_filterlim_infinity_0[OF assms]
+  by (simp add: at_to_0[of z] filterlim_filtermap add_ac)
+
+lemma has_laurent_expansion_imp_is_pole_0:
+  assumes F: "f has_laurent_expansion F" and "fls_subdegree F < 0"
+  shows   "is_pole f 0"
+  using has_laurent_expansion_imp_filterlim_infinity_0[OF assms]
+  by (simp add: is_pole_def)
+
+lemma is_pole_0_imp_neg_fls_subdegree:
+  assumes F: "f has_laurent_expansion F" and "is_pole f 0"
+  shows   "fls_subdegree F < 0"
+  using F assms(2) has_laurent_expansion_imp_neg_fls_subdegree is_pole_def
+  by blast
+
+lemma has_laurent_expansion_imp_is_pole:
+  assumes F: "(\<lambda>x. f (z + x)) has_laurent_expansion F" and "fls_subdegree F < 0"
+  shows   "is_pole f z"
+  using has_laurent_expansion_imp_is_pole_0[OF assms]
+  by (simp add: is_pole_shift_0')
+
+lemma is_pole_imp_neg_fls_subdegree:
+  assumes F: "(\<lambda>x. f (z + x)) has_laurent_expansion F" and "is_pole f z"
+  shows   "fls_subdegree F < 0"
+  apply (rule is_pole_0_imp_neg_fls_subdegree[OF F])
+  using assms(2) is_pole_shift_0 by blast
+
+lemma is_pole_fls_subdegree_iff:
+  assumes "(\<lambda>x. f (z + x)) has_laurent_expansion F"
+  shows "is_pole f z \<longleftrightarrow> fls_subdegree F < 0"
+  using assms is_pole_imp_neg_fls_subdegree has_laurent_expansion_imp_is_pole
+  by auto
+
+lemma
+  assumes "f has_laurent_expansion F"
+  shows   has_laurent_expansion_isolated_0: "isolated_singularity_at f 0"
+    and   has_laurent_expansion_not_essential_0: "not_essential f 0"
+proof -
+  from assms have "eventually (\<lambda>z. eval_fls F z = f z) (at 0)"
+    by (auto simp: has_laurent_expansion_def)
+  then obtain r where r: "r > 0" "\<And>z. z \<in> ball 0 r - {0} \<Longrightarrow> eval_fls F z = f z"
+    by (auto simp: eventually_at_filter ball_def eventually_nhds_metric)
+
+  have "fls_conv_radius F > 0"
+    using assms by (auto simp: has_laurent_expansion_def)
+  then obtain R :: real where R: "R > 0" "R \<le> min r (fls_conv_radius F)"
+    using \<open>r > 0\<close> by (metis dual_order.strict_implies_order ereal_dense2 ereal_less(2) min_def)
+
+  have "eval_fls F holomorphic_on ball 0 R - {0}"
+    using r R by (intro holomorphic_intros ball_eball_mono Diff_mono)  (auto simp: ereal_le_less)
+  also have "?this \<longleftrightarrow> f holomorphic_on ball 0 R - {0}"
+    using r R by (intro holomorphic_cong) auto
+  also have "\<dots> \<longleftrightarrow> f analytic_on ball 0 R - {0}"
+    by (subst analytic_on_open) auto
+  finally show "isolated_singularity_at f 0"
+    unfolding isolated_singularity_at_def using \<open>R > 0\<close> by blast
+
+  show "not_essential f 0"
+  proof (cases "fls_subdegree F \<ge> 0")
+    case True
+    hence "f \<midarrow>0\<rightarrow> fls_nth F 0"
+      by (intro has_laurent_expansion_imp_tendsto_0[OF assms])
+    thus ?thesis
+      by (auto simp: not_essential_def)
+  next
+    case False
+    hence "is_pole f 0"
+      by (intro has_laurent_expansion_imp_is_pole_0[OF assms]) auto
+    thus ?thesis
+      by (auto simp: not_essential_def)
+  qed
+qed
+
+lemma
+  assumes "(\<lambda>w. f (z + w)) has_laurent_expansion F"
+  shows   has_laurent_expansion_isolated: "isolated_singularity_at f z"
+    and   has_laurent_expansion_not_essential: "not_essential f z"
+  using has_laurent_expansion_isolated_0[OF assms] has_laurent_expansion_not_essential_0[OF assms]
+  by (simp_all add: isolated_singularity_at_shift_0 not_essential_shift_0)
+
+lemma has_laurent_expansion_fps:
+  assumes "f has_fps_expansion F"
+  shows   "f has_laurent_expansion fps_to_fls F"
+proof -
+  from assms have radius: "0 < fps_conv_radius F" and eval: "\<forall>\<^sub>F z in nhds 0. eval_fps F z = f z"
+    by (auto simp: has_fps_expansion_def)
+  from eval have eval': "\<forall>\<^sub>F z in at 0. eval_fps F z = f z"
+    using eventually_at_filter eventually_mono by fastforce
+  moreover have "eventually (\<lambda>z. z \<in> eball 0 (fps_conv_radius F) - {0}) (at 0)"
+    using radius by (intro eventually_at_in_open) (auto simp: zero_ereal_def)
+  ultimately have "eventually (\<lambda>z. eval_fls (fps_to_fls F) z = f z) (at 0)"
+    by eventually_elim (auto simp: eval_fps_to_fls)
+  thus ?thesis using radius
+    by (auto simp: has_laurent_expansion_def)
+qed
+
+lemma has_laurent_expansion_const [simp, intro, laurent_expansion_intros]:
+  "(\<lambda>_. c) has_laurent_expansion fls_const c"
+  by (auto simp: has_laurent_expansion_def)
+
+lemma has_laurent_expansion_0 [simp, intro, laurent_expansion_intros]:
+  "(\<lambda>_. 0) has_laurent_expansion 0"
+  by (auto simp: has_laurent_expansion_def)
+
+lemma has_fps_expansion_0_iff: "f has_fps_expansion 0 \<longleftrightarrow> eventually (\<lambda>z. f z = 0) (nhds 0)"
+  by (auto simp: has_fps_expansion_def)
+
+lemma has_laurent_expansion_1 [simp, intro, laurent_expansion_intros]:
+  "(\<lambda>_. 1) has_laurent_expansion 1"
+  by (auto simp: has_laurent_expansion_def)
+
+lemma has_laurent_expansion_numeral [simp, intro, laurent_expansion_intros]:
+  "(\<lambda>_. numeral n) has_laurent_expansion numeral n"
+  by (auto simp: has_laurent_expansion_def)
+
+lemma has_laurent_expansion_fps_X_power [laurent_expansion_intros]:
+  "(\<lambda>x. x ^ n) has_laurent_expansion (fls_X_intpow n)"
+  by (auto simp: has_laurent_expansion_def)
+
+lemma has_laurent_expansion_fps_X_power_int [laurent_expansion_intros]:
+  "(\<lambda>x. x powi n) has_laurent_expansion (fls_X_intpow n)"
+  by (auto simp: has_laurent_expansion_def)
+
+lemma has_laurent_expansion_fps_X [laurent_expansion_intros]:
+  "(\<lambda>x. x) has_laurent_expansion fls_X"
+  by (auto simp: has_laurent_expansion_def)
+
+lemma has_laurent_expansion_cmult_left [laurent_expansion_intros]:
+  assumes "f has_laurent_expansion F"
+  shows   "(\<lambda>x. c * f x) has_laurent_expansion fls_const c * F"
+proof -
+  from assms have "eventually (\<lambda>z. z \<in> eball 0 (fls_conv_radius F) - {0}) (at 0)"
+    by (intro eventually_at_in_open) (auto simp: has_laurent_expansion_def zero_ereal_def)
+  moreover from assms have "eventually (\<lambda>z. eval_fls F z = f z) (at 0)"
+    by (auto simp: has_laurent_expansion_def)
+  ultimately have "eventually (\<lambda>z. eval_fls (fls_const c * F) z = c * f z) (at 0)"
+    by eventually_elim (simp_all add: eval_fls_mult)
+  with assms show ?thesis
+    by (auto simp: has_laurent_expansion_def intro!: less_le_trans[OF _ fls_conv_radius_mult])
+qed
+
+lemma has_laurent_expansion_cmult_right [laurent_expansion_intros]:
+  assumes "f has_laurent_expansion F"
+  shows   "(\<lambda>x. f x * c) has_laurent_expansion F * fls_const c"
+proof -
+  have "F * fls_const c = fls_const c * F"
+    by (intro fls_eqI) (auto simp: mult.commute)
+  with has_laurent_expansion_cmult_left [OF assms] show ?thesis
+    by (simp add: mult.commute)
+qed
+
+lemma has_fps_expansion_scaleR [fps_expansion_intros]:
+  fixes F :: "'a :: {banach, real_normed_div_algebra, comm_ring_1} fps"
+  shows "f has_fps_expansion F \<Longrightarrow> (\<lambda>x. c *\<^sub>R f x) has_fps_expansion fps_const (of_real c) * F"
+  unfolding scaleR_conv_of_real by (intro fps_expansion_intros)
+
+lemma has_laurent_expansion_scaleR [laurent_expansion_intros]:
+  "f has_laurent_expansion F \<Longrightarrow> (\<lambda>x. c *\<^sub>R f x) has_laurent_expansion fls_const (of_real c) * F"
+  unfolding scaleR_conv_of_real by (intro laurent_expansion_intros)
+
+lemma has_laurent_expansion_minus [laurent_expansion_intros]:
+  assumes "f has_laurent_expansion F"
+  shows   "(\<lambda>x. - f x) has_laurent_expansion -F"
+proof -
+  from assms have "eventually (\<lambda>x. x \<in> eball 0 (fls_conv_radius F) - {0}) (at 0)"
+    by (intro eventually_at_in_open) (auto simp: has_laurent_expansion_def zero_ereal_def)
+  moreover from assms have "eventually (\<lambda>x. eval_fls F x = f x) (at 0)"
+    by (auto simp: has_laurent_expansion_def)
+  ultimately have "eventually (\<lambda>x. eval_fls (-F) x = -f x) (at 0)"
+    by eventually_elim (auto simp: eval_fls_minus)
+  thus ?thesis using assms by (auto simp: has_laurent_expansion_def)
+qed
+
+lemma has_laurent_expansion_add [laurent_expansion_intros]:
+  assumes "f has_laurent_expansion F" "g has_laurent_expansion G"
+  shows   "(\<lambda>x. f x + g x) has_laurent_expansion F + G"
+proof -
+  from assms have "0 < min (fls_conv_radius F) (fls_conv_radius G)"
+    by (auto simp: has_laurent_expansion_def)
+  also have "\<dots> \<le> fls_conv_radius (F + G)"
+    by (rule fls_conv_radius_add)
+  finally have radius: "\<dots> > 0" .
+
+  from assms have "eventually (\<lambda>x. x \<in> eball 0 (fls_conv_radius F) - {0}) (at 0)"
+                  "eventually (\<lambda>x. x \<in> eball 0 (fls_conv_radius G) - {0}) (at 0)"
+    by (intro eventually_at_in_open; force simp: has_laurent_expansion_def zero_ereal_def)+
+  moreover have "eventually (\<lambda>x. eval_fls F x = f x) (at 0)"
+            and "eventually (\<lambda>x. eval_fls G x = g x) (at 0)"
+    using assms by (auto simp: has_laurent_expansion_def)
+  ultimately have "eventually (\<lambda>x. eval_fls (F + G) x = f x + g x) (at 0)"
+    by eventually_elim (auto simp: eval_fls_add)
+  with radius show ?thesis by (auto simp: has_laurent_expansion_def)
+qed
+
+lemma has_laurent_expansion_diff [laurent_expansion_intros]:
+  assumes "f has_laurent_expansion F" "g has_laurent_expansion G"
+  shows   "(\<lambda>x. f x - g x) has_laurent_expansion F - G"
+  using has_laurent_expansion_add[of f F "\<lambda>x. - g x" "-G"] assms
+  by (simp add: has_laurent_expansion_minus)
+
+lemma has_laurent_expansion_mult [laurent_expansion_intros]:
+  assumes "f has_laurent_expansion F" "g has_laurent_expansion G"
+  shows   "(\<lambda>x. f x * g x) has_laurent_expansion F * G"
+proof -
+  from assms have "0 < min (fls_conv_radius F) (fls_conv_radius G)"
+    by (auto simp: has_laurent_expansion_def)
+  also have "\<dots> \<le> fls_conv_radius (F * G)"
+    by (rule fls_conv_radius_mult)
+  finally have radius: "\<dots> > 0" .
+
+  from assms have "eventually (\<lambda>x. x \<in> eball 0 (fls_conv_radius F) - {0}) (at 0)"
+                  "eventually (\<lambda>x. x \<in> eball 0 (fls_conv_radius G) - {0}) (at 0)"
+    by (intro eventually_at_in_open; force simp: has_laurent_expansion_def zero_ereal_def)+
+  moreover have "eventually (\<lambda>x. eval_fls F x = f x) (at 0)"
+            and "eventually (\<lambda>x. eval_fls G x = g x) (at 0)"
+    using assms by (auto simp: has_laurent_expansion_def)
+  ultimately have "eventually (\<lambda>x. eval_fls (F * G) x = f x * g x) (at 0)"
+    by eventually_elim (auto simp: eval_fls_mult)
+  with radius show ?thesis by (auto simp: has_laurent_expansion_def)
+qed
+
+lemma has_fps_expansion_power [fps_expansion_intros]:
+  fixes F :: "'a :: {banach, real_normed_div_algebra, comm_ring_1} fps"
+  shows "f has_fps_expansion F \<Longrightarrow> (\<lambda>x. f x ^ m) has_fps_expansion F ^ m"
+  by (induction m) (auto intro!: fps_expansion_intros)
+
+lemma has_laurent_expansion_power [laurent_expansion_intros]:
+  assumes "f has_laurent_expansion F"
+  shows   "(\<lambda>x. f x ^ n) has_laurent_expansion F ^ n"
+  by (induction n) (auto intro!: laurent_expansion_intros assms)
+
+lemma has_laurent_expansion_sum [laurent_expansion_intros]:
+  assumes "\<And>x. x \<in> I \<Longrightarrow> f x has_laurent_expansion F x"
+  shows   "(\<lambda>y. \<Sum>x\<in>I. f x y) has_laurent_expansion (\<Sum>x\<in>I. F x)"
+  using assms by (induction I rule: infinite_finite_induct) (auto intro!: laurent_expansion_intros)
+
+lemma has_laurent_expansion_prod [laurent_expansion_intros]:
+  assumes "\<And>x. x \<in> I \<Longrightarrow> f x has_laurent_expansion F x"
+  shows   "(\<lambda>y. \<Prod>x\<in>I. f x y) has_laurent_expansion (\<Prod>x\<in>I. F x)"
+  using assms by (induction I rule: infinite_finite_induct) (auto intro!: laurent_expansion_intros)
+
+lemma has_laurent_expansion_deriv [laurent_expansion_intros]:
+  assumes "f has_laurent_expansion F"
+  shows   "deriv f has_laurent_expansion fls_deriv F"
+proof -
+  have "eventually (\<lambda>z. z \<in> eball 0 (fls_conv_radius F) - {0}) (at 0)"
+    using assms by (intro eventually_at_in_open)
+                   (auto simp: has_laurent_expansion_def zero_ereal_def)
+  moreover from assms have "eventually (\<lambda>z. eval_fls F z = f z) (at 0)"
+    by (auto simp: has_laurent_expansion_def)
+  then obtain s where "open s" "0 \<in> s" and s: "\<And>w. w \<in> s - {0} \<Longrightarrow> eval_fls F w = f w"
+    by (auto simp: eventually_nhds eventually_at_filter)
+  hence "eventually (\<lambda>w. w \<in> s - {0}) (at 0)"
+    by (intro eventually_at_in_open) auto
+  ultimately have "eventually (\<lambda>z. eval_fls (fls_deriv F) z = deriv f z) (at 0)"
+  proof eventually_elim
+    case (elim z)
+    hence "eval_fls (fls_deriv F) z = deriv (eval_fls F) z"
+      by (simp add: eval_fls_deriv)
+    also have "eventually (\<lambda>w. w \<in> s - {0}) (nhds z)"
+      using elim and \<open>open s\<close> by (intro eventually_nhds_in_open) auto
+    hence "eventually (\<lambda>w. eval_fls F w = f w) (nhds z)"
+      by eventually_elim (use s in auto)
+    hence "deriv (eval_fls F) z = deriv f z"
+      by (intro deriv_cong_ev refl)
+    finally show ?case .
+  qed
+  with assms show ?thesis
+    by (auto simp: has_laurent_expansion_def intro!: less_le_trans[OF _ fls_conv_radius_deriv])
+qed
+
+lemma has_laurent_expansion_shift [laurent_expansion_intros]:
+  assumes "f has_laurent_expansion F"
+  shows   "(\<lambda>x. f x * x powi n) has_laurent_expansion (fls_shift (-n) F)"
+proof -
+  have "eventually (\<lambda>x. x \<in> eball 0 (fls_conv_radius F) - {0}) (at 0)"
+    using assms by (intro eventually_at_in_open) (auto simp: has_laurent_expansion_def zero_ereal_def)
+  moreover have "eventually (\<lambda>x. eval_fls F x = f x) (at 0)"
+    using assms by (auto simp: has_laurent_expansion_def)
+  ultimately have "eventually (\<lambda>x. eval_fls (fls_shift (-n) F) x = f x * x powi n) (at 0)"
+    by eventually_elim (auto simp: eval_fls_shift assms)
+  with assms show ?thesis by (auto simp: has_laurent_expansion_def)
+qed
+
+lemma has_laurent_expansion_shift' [laurent_expansion_intros]:
+  assumes "f has_laurent_expansion F"
+  shows   "(\<lambda>x. f x * x powi (-n)) has_laurent_expansion (fls_shift n F)"
+  using has_laurent_expansion_shift[OF assms, of "-n"] by simp
+
+
+lemma has_laurent_expansion_deriv':
+  assumes "f has_laurent_expansion F"
+  assumes "open A" "0 \<in> A" "\<And>x. x \<in> A - {0} \<Longrightarrow> (f has_field_derivative f' x) (at x)"
+  shows   "f' has_laurent_expansion fls_deriv F"
+proof -
+  have "deriv f has_laurent_expansion fls_deriv F"
+    by (intro laurent_expansion_intros assms)
+  also have "?this \<longleftrightarrow> ?thesis"
+  proof (intro has_laurent_expansion_cong refl)
+    have "eventually (\<lambda>z. z \<in> A - {0}) (at 0)"
+      by (intro eventually_at_in_open assms)
+    thus "eventually (\<lambda>z. deriv f z = f' z) (at 0)"
+      by eventually_elim (auto intro!: DERIV_imp_deriv assms)
+  qed
+  finally show ?thesis .
+qed
+
+definition laurent_expansion :: "(complex \<Rightarrow> complex) \<Rightarrow> complex \<Rightarrow> complex fls" where
+  "laurent_expansion f z =
+     (if eventually (\<lambda>z. f z = 0) (at z) then 0
+      else fls_shift (-zorder f z) (fps_to_fls (fps_expansion (zor_poly f z) z)))"
+
+lemma laurent_expansion_cong:
+  assumes "eventually (\<lambda>w. f w = g w) (at z)" "z = z'"
+  shows   "laurent_expansion f z = laurent_expansion g z'"
+  unfolding laurent_expansion_def
+  using zor_poly_cong[OF assms(1,2)] zorder_cong[OF assms] assms
+  by (intro if_cong refl) (auto elim: eventually_elim2)
+
+theorem not_essential_has_laurent_expansion_0:
+  assumes "isolated_singularity_at f 0" "not_essential f 0"
+  shows   "f has_laurent_expansion laurent_expansion f 0"
+proof (cases "\<exists>\<^sub>F w in at 0. f w \<noteq> 0")
+  case False
+  have "(\<lambda>_. 0) has_laurent_expansion 0"
+    by simp
+  also have "?this \<longleftrightarrow> f has_laurent_expansion 0"
+    using False by (intro has_laurent_expansion_cong) (auto simp: frequently_def)
+  finally show ?thesis
+    using False by (simp add: laurent_expansion_def frequently_def)
+next
+  case True
+  define n where "n = zorder f 0"
+  obtain r where r: "zor_poly f 0 0 \<noteq> 0" "zor_poly f 0 holomorphic_on cball 0 r" "r > 0"
+                    "\<forall>w\<in>cball 0 r - {0}. f w = zor_poly f 0 w * w powr of_int n \<and>
+                                         zor_poly f 0 w \<noteq> 0"
+    using zorder_exist[OF assms True] unfolding n_def by auto
+  have holo: "zor_poly f 0 holomorphic_on ball 0 r"
+    by (rule holomorphic_on_subset[OF r(2)]) auto
+
+  define F where "F = fps_expansion (zor_poly f 0) 0"
+  have F: "zor_poly f 0 has_fps_expansion F"
+    unfolding F_def by (rule has_fps_expansion_fps_expansion[OF _ _ holo]) (use \<open>r > 0\<close> in auto)
+  have "(\<lambda>z. zor_poly f 0 z * z powi n) has_laurent_expansion fls_shift (-n) (fps_to_fls F)"
+    by (intro laurent_expansion_intros has_laurent_expansion_fps[OF F])
+  also have "?this \<longleftrightarrow> f has_laurent_expansion fls_shift (-n) (fps_to_fls F)"
+    by (intro has_laurent_expansion_cong refl eventually_mono[OF eventually_at_in_open[of "ball 0 r"]])
+       (use r in \<open>auto simp: complex_powr_of_int\<close>)
+  finally show ?thesis using True
+    by (simp add: laurent_expansion_def F_def n_def frequently_def)
+qed
+
+lemma not_essential_has_laurent_expansion:
+  assumes "isolated_singularity_at f z" "not_essential f z"
+  shows   "(\<lambda>x. f (z + x)) has_laurent_expansion laurent_expansion f z"
+proof -
+  from assms(1) have iso:"isolated_singularity_at (\<lambda>x. f (z + x)) 0"
+    by (simp add: isolated_singularity_at_shift_0)
+  moreover from assms(2) have ness:"not_essential (\<lambda>x. f (z + x)) 0"
+    by (simp add: not_essential_shift_0)
+  ultimately have "(\<lambda>x. f (z + x)) has_laurent_expansion laurent_expansion (\<lambda>x. f (z + x)) 0"
+    by (rule not_essential_has_laurent_expansion_0)
+
+  also have "\<dots> = laurent_expansion f z"
+  proof (cases "\<exists>\<^sub>F w in at z. f w \<noteq> 0")
+    case False
+    then have "\<forall>\<^sub>F w in at z. f w = 0" using not_frequently by force
+    then have "laurent_expansion (\<lambda>x. f (z + x)) 0 = 0"
+      by (smt (verit, best) add.commute eventually_at_to_0 eventually_mono
+          laurent_expansion_def)
+    moreover have "laurent_expansion f z = 0"
+      using \<open>\<forall>\<^sub>F w in at z. f w = 0\<close> unfolding laurent_expansion_def by auto
+    ultimately show ?thesis by auto
+  next
+    case True
+    define df where "df=zor_poly (\<lambda>x. f (z + x)) 0"
+    define g where "g=(\<lambda>u. u-z)"
+
+    have "fps_expansion df 0
+        =  fps_expansion (df o g) z"
+    proof -
+      have "\<exists>\<^sub>F w in at 0. f (z + w) \<noteq> 0" using True
+        by (smt (verit, best) add.commute eventually_at_to_0
+            eventually_mono not_frequently)
+      from zorder_exist[OF iso ness this,folded df_def]
+      obtain r where "r>0" and df_holo:"df holomorphic_on cball 0 r" and "df 0 \<noteq> 0"
+          "\<forall>w\<in>cball 0 r - {0}.
+             f (z + w) = df w * w powr of_int (zorder (\<lambda>w. f (z + w)) 0) \<and>
+             df w \<noteq> 0"
+        by auto
+      then have df_nz:"\<forall>w\<in>ball 0 r. df w\<noteq>0" by auto
+
+      have "(deriv ^^ n) df 0 =  (deriv ^^ n) (df \<circ> g) z" for n
+        unfolding comp_def g_def
+      proof (subst higher_deriv_compose_linear'[where u=1 and c="-z",simplified])
+        show "df holomorphic_on ball 0 r"
+          using df_holo by auto
+        show "open (ball z r)" "open (ball 0 r)" "z \<in> ball z r"
+          using \<open>r>0\<close> by auto
+        show " \<And>w. w \<in> ball z r \<Longrightarrow> w - z \<in> ball 0 r"
+          by (simp add: dist_norm)
+      qed auto
+      then show ?thesis
+        unfolding fps_expansion_def by auto
+    qed
+    also have "... = fps_expansion (zor_poly f z) z"
+    proof (rule fps_expansion_cong)
+      have "\<forall>\<^sub>F w in nhds z. zor_poly f z w
+                = zor_poly (\<lambda>u. f (z + u)) 0 (w - z)"
+        apply (rule zor_poly_shift)
+        using True assms by auto
+      then show "\<forall>\<^sub>F w in nhds z. (df \<circ> g) w = zor_poly f z w"
+        unfolding df_def g_def comp_def
+        by (auto elim:eventually_mono)
+    qed
+    finally show ?thesis unfolding df_def
+      by (auto simp: laurent_expansion_def at_to_0[of z]
+          eventually_filtermap add_ac zorder_shift')
+  qed
+  finally show ?thesis .
+qed
+
+lemma has_fps_expansion_to_laurent:
+  "f has_fps_expansion F \<longleftrightarrow> f has_laurent_expansion fps_to_fls F \<and> f 0 = fps_nth F 0"
+proof safe
+  assume *: "f has_laurent_expansion fps_to_fls F" "f 0 = fps_nth F 0"
+  have "eventually (\<lambda>z. z \<in> eball 0 (fps_conv_radius F)) (nhds 0)"
+    using * by (intro eventually_nhds_in_open) (auto simp: has_laurent_expansion_def zero_ereal_def)
+  moreover have "eventually (\<lambda>z. z \<noteq> 0 \<longrightarrow> eval_fls (fps_to_fls F) z = f z) (nhds 0)"
+    using * by (auto simp: has_laurent_expansion_def eventually_at_filter)
+  ultimately have "eventually (\<lambda>z. f z = eval_fps F z) (nhds 0)"
+    by eventually_elim
+       (auto simp: has_laurent_expansion_def eventually_at_filter eval_fps_at_0 eval_fps_to_fls *(2))
+  thus "f has_fps_expansion F"
+    using * by (auto simp: has_fps_expansion_def has_laurent_expansion_def eq_commute)
+next
+  assume "f has_fps_expansion F"
+  thus "f 0 = fps_nth F 0"
+    by (metis eval_fps_at_0 has_fps_expansion_imp_holomorphic)
+qed (auto intro: has_laurent_expansion_fps)
+
+lemma eval_fps_fls_base_factor [simp]:
+  assumes "z \<noteq> 0"
+  shows   "eval_fps (fls_base_factor_to_fps F) z = eval_fls F z * z powi -fls_subdegree F"
+  using assms unfolding eval_fls_def by (simp add: power_int_minus field_simps)
+
+lemma has_fps_expansion_imp_analytic_0:
+  assumes "f has_fps_expansion F"
+  shows   "f analytic_on {0}"
+  by (meson analytic_at_two assms has_fps_expansion_imp_holomorphic)
+
+lemma has_fps_expansion_imp_analytic:
+  assumes "(\<lambda>x. f (z + x)) has_fps_expansion F"
+  shows   "f analytic_on {z}"
+proof -
+  have "(\<lambda>x. f (z + x)) analytic_on {0}"
+    by (rule has_fps_expansion_imp_analytic_0) fact
+  hence "(\<lambda>x. f (z + x)) \<circ> (\<lambda>x. x - z) analytic_on {z}"
+    by (intro analytic_on_compose_gen analytic_intros) auto
+  thus ?thesis
+    by (simp add: o_def)
+qed
+
+lemma is_pole_cong_asymp_equiv:
+  assumes "f \<sim>[at z] g" "z = z'"
+  shows   "is_pole f z = is_pole g z'"
+  using asymp_equiv_at_infinity_transfer[OF assms(1)]
+        asymp_equiv_at_infinity_transfer[OF asymp_equiv_symI[OF assms(1)]] assms(2)
+  unfolding is_pole_def by auto
+
+lemma not_is_pole_const [simp]: "\<not>is_pole (\<lambda>_::'a::perfect_space. c :: complex) z"
+  using not_tendsto_and_filterlim_at_infinity[of "at z" "\<lambda>_::'a. c" c] by (auto simp: is_pole_def)
+
+lemma has_laurent_expansion_imp_is_pole_iff:
+  assumes F: "(\<lambda>x. f (z + x)) has_laurent_expansion F"
+  shows   "is_pole f z \<longleftrightarrow> fls_subdegree F < 0"
+proof
+  assume pole: "is_pole f z"
+  have [simp]: "F \<noteq> 0"
+  proof
+    assume "F = 0"
+    hence "is_pole f z \<longleftrightarrow> is_pole (\<lambda>_. 0 :: complex) z" using assms
+      by (intro is_pole_cong)
+         (auto simp: has_laurent_expansion_def at_to_0[of z] eventually_filtermap add_ac)
+    with pole show False
+      by simp
+  qed
+
+  note pole
+  also have "is_pole f z \<longleftrightarrow>
+             is_pole (\<lambda>w. fls_nth F (fls_subdegree F) * (w - z) powi fls_subdegree F) z"
+    using has_laurent_expansion_imp_asymp_equiv[OF F] by (intro is_pole_cong_asymp_equiv refl)
+  also have "\<dots> \<longleftrightarrow> is_pole (\<lambda>w. (w - z) powi fls_subdegree F) z"
+    by simp
+  finally have pole': \<dots> .
+
+  have False if "fls_subdegree F \<ge> 0"
+  proof -
+    have "(\<lambda>w. (w - z) powi fls_subdegree F) holomorphic_on UNIV"
+      using that by (intro holomorphic_intros) auto
+    hence "\<not>is_pole (\<lambda>w. (w - z) powi fls_subdegree F) z"
+      by (meson UNIV_I not_is_pole_holomorphic open_UNIV)
+    with pole' show False
+      by simp
+  qed
+  thus "fls_subdegree F < 0"
+    by force
+qed (use has_laurent_expansion_imp_is_pole[OF assms] in auto)
+
+lemma analytic_at_imp_has_fps_expansion_0:
+  assumes "f analytic_on {0}"
+  shows   "f has_fps_expansion fps_expansion f 0"
+  using assms has_fps_expansion_fps_expansion analytic_at by fast
+
+lemma deriv_shift_0: "deriv f z = deriv (f \<circ> (\<lambda>x. z + x)) 0"
+proof -
+  have *: "(f \<circ> (+) z has_field_derivative D) (at z')"
+    if "(f has_field_derivative D) (at (z + z'))" for D z z' and f :: "'a \<Rightarrow> 'a"
+  proof -
+    have "(f \<circ> (+) z has_field_derivative D * 1) (at z')"
+      by (rule DERIV_chain that derivative_eq_intros refl)+ auto
+    thus ?thesis by simp
+  qed
+  have "(\<lambda>D. (f has_field_derivative D) (at z)) = (\<lambda> D. (f \<circ> (+) z has_field_derivative D) (at 0))"
+    using *[of f _ z 0] *[of "f \<circ> (+) z" _ "-z" z] by (intro ext iffI) (auto simp: o_def)
+  thus ?thesis
+    by (simp add: deriv_def)
+qed
+
+lemma deriv_shift_0': "NO_MATCH 0 z \<Longrightarrow> deriv f z = deriv (f \<circ> (\<lambda>x. z + x)) 0"
+  by (rule deriv_shift_0)
+
+lemma higher_deriv_shift_0: "(deriv ^^ n) f z = (deriv ^^ n) (f \<circ> (\<lambda>x. z + x)) 0"
+proof (induction n arbitrary: f)
+  case (Suc n)
+  have "(deriv ^^ Suc n) f z = (deriv ^^ n) (deriv f) z"
+    by (subst funpow_Suc_right) auto
+  also have "\<dots> = (deriv ^^ n) (\<lambda>x. deriv f (z + x)) 0"
+    by (subst Suc) (auto simp: o_def)
+  also have "\<dots> = (deriv ^^ n) (\<lambda>x. deriv (\<lambda>xa. f (z + x + xa)) 0) 0"
+    by (subst deriv_shift_0) (auto simp: o_def)
+  also have "(\<lambda>x. deriv (\<lambda>xa. f (z + x + xa)) 0) = deriv (\<lambda>x. f (z + x))"
+    by (rule ext) (simp add: deriv_shift_0' o_def add_ac)
+  also have "(deriv ^^ n) \<dots> 0 = (deriv ^^ Suc n) (f \<circ> (\<lambda>x. z + x)) 0"
+    by (subst funpow_Suc_right) (auto simp: o_def)
+  finally show ?case .
+qed auto
+
+lemma higher_deriv_shift_0': "NO_MATCH 0 z \<Longrightarrow> (deriv ^^ n) f z = (deriv ^^ n) (f \<circ> (\<lambda>x. z + x)) 0"
+  by (rule higher_deriv_shift_0)
+
+lemma analytic_at_imp_has_fps_expansion:
+  assumes "f analytic_on {z}"
+  shows   "(\<lambda>x. f (z + x)) has_fps_expansion fps_expansion f z"
+proof -
+  have "f \<circ> (\<lambda>x. z + x) analytic_on {0}"
+    by (intro analytic_on_compose_gen[OF _ assms] analytic_intros) auto
+  hence "(f \<circ> (\<lambda>x. z + x)) has_fps_expansion fps_expansion (f \<circ> (\<lambda>x. z + x)) 0"
+    unfolding o_def by (intro analytic_at_imp_has_fps_expansion_0) auto
+  also have "\<dots> = fps_expansion f z"
+    by (simp add: fps_expansion_def higher_deriv_shift_0')
+  finally show ?thesis by (simp add: add_ac)
+qed
+
+lemma has_laurent_expansion_zorder_0:
+  assumes "f has_laurent_expansion F" "F \<noteq> 0"
+  shows   "zorder f 0 = fls_subdegree F"
+proof -
+  define G where "G = fls_base_factor_to_fps F"
+  from assms obtain A where A: "0 \<in> A" "open A" "\<And>x. x \<in> A - {0} \<Longrightarrow> eval_fls F x = f x"
+    unfolding has_laurent_expansion_def eventually_at_filter eventually_nhds
+    by blast
+
+  show ?thesis
+  proof (rule zorder_eqI)
+    show "open (A \<inter> eball 0 (fls_conv_radius F))" "0 \<in> A \<inter>  eball 0 (fls_conv_radius F)"
+      using assms A by (auto simp: has_laurent_expansion_def zero_ereal_def)
+    show "eval_fps G holomorphic_on A \<inter> eball 0 (fls_conv_radius F)"
+      by (intro holomorphic_intros) (auto simp: fls_conv_radius_altdef G_def)
+    show "eval_fps G 0 \<noteq> 0" using \<open>F \<noteq> 0\<close>
+      by (auto simp: eval_fps_at_0 G_def)
+  next
+    fix w :: complex assume "w \<in> A \<inter> eball 0 (fls_conv_radius F)" "w \<noteq> 0"
+    thus "f w = eval_fps G w * (w - 0) powr of_int (fls_subdegree F)"
+      using A unfolding G_def
+      by (subst eval_fps_fls_base_factor)
+         (auto simp: complex_powr_of_int power_int_minus field_simps)
+  qed
+qed
+
+lemma has_laurent_expansion_zorder:
+  assumes "(\<lambda>w. f (z + w)) has_laurent_expansion F" "F \<noteq> 0"
+  shows   "zorder f z = fls_subdegree F"
+  using has_laurent_expansion_zorder_0[OF assms] by (simp add: zorder_shift' add_ac)
+
+lemma has_fps_expansion_zorder_0:
+  assumes "f has_fps_expansion F" "F \<noteq> 0"
+  shows   "zorder f 0 = int (subdegree F)"
+  using assms has_laurent_expansion_zorder_0[of f "fps_to_fls F"]
+  by (auto simp: has_fps_expansion_to_laurent fls_subdegree_fls_to_fps)
+
+lemma has_fps_expansion_zorder:
+  assumes "(\<lambda>w. f (z + w)) has_fps_expansion F" "F \<noteq> 0"
+  shows   "zorder f z = int (subdegree F)"
+  using has_fps_expansion_zorder_0[OF assms]
+  by (simp add: zorder_shift' add_ac)
+
+lemma has_fps_expansion_fls_base_factor_to_fps:
+  assumes "f has_laurent_expansion F"
+  defines "n \<equiv> fls_subdegree F"
+  defines "c \<equiv> fps_nth (fls_base_factor_to_fps F) 0"
+  shows   "(\<lambda>z. if z = 0 then c else f z * z powi -n) has_fps_expansion fls_base_factor_to_fps F"
+proof -
+  have "(\<lambda>z. f z * z powi -n) has_laurent_expansion fls_shift (-(-n)) F"
+    by (intro laurent_expansion_intros assms)
+  also have "fls_shift (-(-n)) F = fps_to_fls (fls_base_factor_to_fps F)"
+    by (simp add: n_def fls_shift_nonneg_subdegree)
+  also have "(\<lambda>z. f z * z powi - n) has_laurent_expansion fps_to_fls (fls_base_factor_to_fps F) \<longleftrightarrow>
+             (\<lambda>z. if z = 0 then c else f z * z powi -n) has_laurent_expansion fps_to_fls (fls_base_factor_to_fps F)"
+    by (intro has_laurent_expansion_cong) (auto simp: eventually_at_filter)
+  also have "\<dots> \<longleftrightarrow> (\<lambda>z. if z = 0 then c else f z * z powi -n) has_fps_expansion fls_base_factor_to_fps F"
+    by (subst has_fps_expansion_to_laurent) (auto simp: c_def)
+  finally show ?thesis .
+qed
+
+lemma zero_has_laurent_expansion_imp_eq_0:
+  assumes "(\<lambda>_. 0) has_laurent_expansion F"
+  shows   "F = 0"
+proof -
+  have "at (0 :: complex) \<noteq> bot"
+    by auto
+  moreover have "(\<lambda>z. if z = 0 then fls_nth F (fls_subdegree F) else 0) has_fps_expansion
+          fls_base_factor_to_fps F" (is "?f has_fps_expansion _")
+    using has_fps_expansion_fls_base_factor_to_fps[OF assms] by (simp cong: if_cong)
+  hence "isCont ?f 0"
+    using has_fps_expansion_imp_continuous by blast
+  hence "?f \<midarrow>0\<rightarrow> fls_nth F (fls_subdegree F)"
+    by (auto simp: isCont_def)
+  moreover have "?f \<midarrow>0\<rightarrow> 0 \<longleftrightarrow> (\<lambda>_::complex. 0 :: complex) \<midarrow>0\<rightarrow> 0"
+    by (intro filterlim_cong) (auto simp: eventually_at_filter)
+  hence "?f \<midarrow>0\<rightarrow> 0"
+    by simp
+  ultimately have "fls_nth F (fls_subdegree F) = 0"
+    by (rule tendsto_unique)
+  thus ?thesis
+    by (meson nth_fls_subdegree_nonzero)
+qed
+
+lemma has_laurent_expansion_unique:
+  assumes "f has_laurent_expansion F" "f has_laurent_expansion G"
+  shows   "F = G"
+proof -
+  from assms have "(\<lambda>x. f x - f x) has_laurent_expansion F - G"
+    by (intro laurent_expansion_intros)
+  hence "(\<lambda>_. 0) has_laurent_expansion F - G"
+    by simp
+  hence "F - G = 0"
+    by (rule zero_has_laurent_expansion_imp_eq_0)
+  thus ?thesis
+    by simp
+qed
+
+lemma laurent_expansion_eqI:
+  assumes "(\<lambda>x. f (z + x)) has_laurent_expansion F"
+  shows   "laurent_expansion f z = F"
+  using assms has_laurent_expansion_isolated has_laurent_expansion_not_essential
+        has_laurent_expansion_unique not_essential_has_laurent_expansion by blast
+
+lemma laurent_expansion_0_eqI:
+  assumes "f has_laurent_expansion F"
+  shows   "laurent_expansion f 0 = F"
+  using assms laurent_expansion_eqI[of f 0] by simp
+
+lemma has_laurent_expansion_nonzero_imp_eventually_nonzero:
+  assumes "f has_laurent_expansion F" "F \<noteq> 0"
+  shows   "eventually (\<lambda>x. f x \<noteq> 0) (at 0)"
+proof (rule ccontr)
+  assume "\<not>eventually (\<lambda>x. f x \<noteq> 0) (at 0)"
+  with assms have "eventually (\<lambda>x. f x = 0) (at 0)"
+    by (intro not_essential_frequently_0_imp_eventually_0 has_laurent_expansion_isolated
+              has_laurent_expansion_not_essential)
+       (auto simp: frequently_def)
+  hence "(f has_laurent_expansion 0) \<longleftrightarrow> ((\<lambda>_. 0) has_laurent_expansion 0)"
+    by (intro has_laurent_expansion_cong) auto
+  hence "f has_laurent_expansion 0"
+    by simp
+  with assms(1) have "F = 0"
+    using has_laurent_expansion_unique by blast
+  with \<open>F \<noteq> 0\<close> show False
+    by contradiction
+qed
+
+lemma has_laurent_expansion_eventually_nonzero_iff':
+  assumes "f has_laurent_expansion F"
+  shows   "eventually (\<lambda>x. f x \<noteq> 0) (at 0) \<longleftrightarrow> F \<noteq> 0 "
+proof
+  assume "\<forall>\<^sub>F x in at 0. f x \<noteq> 0"
+  moreover have "\<not> (\<forall>\<^sub>F x in at 0. f x \<noteq> 0)" if "F=0"
+  proof -
+    have "\<forall>\<^sub>F x in at 0. f x = 0"
+      using assms that unfolding has_laurent_expansion_def by simp
+    then show ?thesis unfolding not_eventually
+      by (auto elim:eventually_frequentlyE)
+  qed
+  ultimately show "F \<noteq> 0" by auto
+qed (simp add:has_laurent_expansion_nonzero_imp_eventually_nonzero[OF assms])
+
+lemma has_laurent_expansion_eventually_nonzero_iff:
+  assumes "(\<lambda>w. f (z+w)) has_laurent_expansion F"
+  shows   "eventually (\<lambda>x. f x \<noteq> 0) (at z)  \<longleftrightarrow> F \<noteq> 0"
+  apply (subst eventually_at_to_0)
+  apply (rule has_laurent_expansion_eventually_nonzero_iff')
+  using assms by (simp add:add.commute)
+
+lemma has_laurent_expansion_inverse [laurent_expansion_intros]:
+  assumes "f has_laurent_expansion F"
+  shows   "(\<lambda>x. inverse (f x)) has_laurent_expansion inverse F"
+proof (cases "F = 0")
+  case True
+  thus ?thesis using assms
+    by (auto simp: has_laurent_expansion_def)
+next
+  case False
+  define G where "G = laurent_expansion (\<lambda>x. inverse (f x)) 0"
+  from False have ev: "eventually (\<lambda>z. f z \<noteq> 0) (at 0)"
+    by (intro has_laurent_expansion_nonzero_imp_eventually_nonzero[OF assms])
+
+  have *: "(\<lambda>x. inverse (f x)) has_laurent_expansion G" unfolding G_def
+    by (intro not_essential_has_laurent_expansion_0 isolated_singularity_at_inverse not_essential_inverse
+              has_laurent_expansion_isolated_0[OF assms] has_laurent_expansion_not_essential_0[OF assms])
+  have "(\<lambda>x. f x * inverse (f x)) has_laurent_expansion F * G"
+    by (intro laurent_expansion_intros assms *)
+  also have "?this \<longleftrightarrow> (\<lambda>x. 1) has_laurent_expansion F * G"
+    by (intro has_laurent_expansion_cong refl eventually_mono[OF ev]) auto
+  finally have "(\<lambda>_. 1) has_laurent_expansion F * G" .
+  moreover have "(\<lambda>_. 1) has_laurent_expansion 1"
+    by simp
+  ultimately have "F * G = 1"
+    using has_laurent_expansion_unique by blast
+  hence "G = inverse F"
+    using inverse_unique by blast
+  with * show ?thesis
+    by simp
+qed
+
+lemma has_laurent_expansion_power_int [laurent_expansion_intros]:
+  "f has_laurent_expansion F \<Longrightarrow> (\<lambda>x. f x powi n) has_laurent_expansion (F powi n)"
+  by (auto simp: power_int_def intro!: laurent_expansion_intros)
+
+
+lemma has_fps_expansion_0_analytic_continuation:
+  assumes "f has_fps_expansion 0" "f holomorphic_on A"
+  assumes "open A" "connected A" "0 \<in> A" "x \<in> A"
+  shows   "f x = 0"
+proof -
+  have "eventually (\<lambda>z. z \<in> A \<and> f z = 0) (nhds 0)" using assms
+    by (intro eventually_conj eventually_nhds_in_open) (auto simp: has_fps_expansion_def)
+  then obtain B where B: "open B" "0 \<in> B" "\<forall>z\<in>B. z \<in> A \<and> f z = 0"
+    unfolding eventually_nhds by blast
+  show ?thesis
+  proof (rule analytic_continuation_open[where f = f and g = "\<lambda>_. 0"])
+    show "B \<noteq> {}"
+      using \<open>open B\<close> B by auto
+    show "connected A"
+      using assms by auto
+  qed (use assms B in auto)
+qed
+
+lemma has_laurent_expansion_0_analytic_continuation:
+  assumes "f has_laurent_expansion 0" "f holomorphic_on A - {0}"
+  assumes "open A" "connected A" "0 \<in> A" "x \<in> A - {0}"
+  shows   "f x = 0"
+proof -
+  have "eventually (\<lambda>z. z \<in> A - {0} \<and> f z = 0) (at 0)" using assms
+    by (intro eventually_conj eventually_at_in_open) (auto simp: has_laurent_expansion_def)
+  then obtain B where B: "open B" "0 \<in> B" "\<forall>z\<in>B - {0}. z \<in> A - {0} \<and> f z = 0"
+    unfolding eventually_at_filter eventually_nhds by blast
+  show ?thesis
+  proof (rule analytic_continuation_open[where f = f and g = "\<lambda>_. 0"])
+    show "B - {0} \<noteq> {}"
+      using \<open>open B\<close> \<open>0 \<in> B\<close> by (metis insert_Diff not_open_singleton)
+    show "connected (A - {0})"
+      using assms by (intro connected_open_delete) auto
+  qed (use assms B in auto)
+qed
+
+lemma has_fps_expansion_cong:
+  assumes "eventually (\<lambda>x. f x = g x) (nhds 0)" "F = G"
+  shows   "f has_fps_expansion F \<longleftrightarrow> g has_fps_expansion G"
+  using assms(2) by (auto simp: has_fps_expansion_def elim!: eventually_elim2[OF assms(1)])
+
+lemma zor_poly_has_fps_expansion:
+  assumes "f has_laurent_expansion F" "F \<noteq> 0"
+  shows   "zor_poly f 0 has_fps_expansion fls_base_factor_to_fps F"
+proof -
+  note [simp] = \<open>F \<noteq> 0\<close>
+  have "eventually (\<lambda>z. f z \<noteq> 0) (at 0)"
+    by (rule has_laurent_expansion_nonzero_imp_eventually_nonzero[OF assms])
+  hence freq: "frequently (\<lambda>z. f z \<noteq> 0) (at 0)"
+    by (rule eventually_frequently[rotated]) auto
+
+  have *: "isolated_singularity_at f 0" "not_essential f 0"
+    using has_laurent_expansion_isolated_0[OF assms(1)] has_laurent_expansion_not_essential_0[OF assms(1)]
+    by auto
+
+  define G where "G = fls_base_factor_to_fps F"
+  define n where "n = zorder f 0"
+  have n_altdef: "n = fls_subdegree F"
+    using has_laurent_expansion_zorder_0 [OF assms(1)] by (simp add: n_def)
+  obtain r where r: "zor_poly f 0 0 \<noteq> 0" "zor_poly f 0 holomorphic_on cball 0 r" "r > 0"
+                    "\<forall>w\<in>cball 0 r - {0}. f w = zor_poly f 0 w * w powr of_int n \<and>
+                                         zor_poly f 0 w \<noteq> 0"
+    using zorder_exist[OF * freq] unfolding n_def by auto
+  obtain r' where r': "r' > 0" "\<forall>x\<in>ball 0 r'-{0}. eval_fls F x = f x"
+    using assms(1) unfolding has_laurent_expansion_def eventually_at_filter eventually_nhds_metric ball_def
+    by (auto simp: dist_commute)
+  have holo: "zor_poly f 0 holomorphic_on ball 0 r"
+    by (rule holomorphic_on_subset[OF r(2)]) auto
+
+  have "(\<lambda>z. if z = 0 then fps_nth G 0 else f z * z powi -n) has_fps_expansion G"
+    unfolding G_def n_altdef by (intro has_fps_expansion_fls_base_factor_to_fps assms)
+  also have "?this \<longleftrightarrow> zor_poly f 0 has_fps_expansion G"
+  proof (intro has_fps_expansion_cong)
+    have "eventually (\<lambda>z. z \<in> ball 0 (min r r')) (nhds 0)"
+      using \<open>r > 0\<close> \<open>r' > 0\<close> by (intro eventually_nhds_in_open) auto
+    thus "\<forall>\<^sub>F x in nhds 0. (if x = 0 then G $ 0 else f x * x powi - n) = zor_poly f 0 x"
+    proof eventually_elim
+      case (elim w)
+      have w: "w \<in> ball 0 r" "w \<in> ball 0 r'"
+        using elim by auto
+      show ?case
+      proof (cases "w = 0")
+        case False
+        hence "f w = zor_poly f 0 w * w powr of_int n"
+          using r w by auto
+        thus ?thesis using False
+          by (simp add: powr_minus complex_powr_of_int power_int_minus)
+      next
+        case [simp]: True
+        obtain R where R: "R > 0" "R \<le> r" "R \<le> r'" "R \<le> fls_conv_radius F"
+          using \<open>r > 0\<close> \<open>r' > 0\<close> assms(1) unfolding has_laurent_expansion_def
+          by (smt (verit, ccfv_SIG) ereal_dense2 ereal_less(2) less_ereal.simps(1) order.strict_implies_order order_trans)
+        have "eval_fps G 0 = zor_poly f 0 0"
+        proof (rule analytic_continuation_open[where f = "eval_fps G" and g = "zor_poly f 0"])
+          show "connected (ball 0 R :: complex set)"
+            by auto
+          have "of_real R / 2 \<in> ball 0 R - {0 :: complex}"
+            using R by auto
+          thus "ball 0 R - {0 :: complex} \<noteq> {}"
+            by blast
+          show "eval_fps G holomorphic_on ball 0 R"
+            using R less_le_trans[OF _ R(4)] unfolding G_def
+            by (intro holomorphic_intros) (auto simp: fls_conv_radius_altdef)
+          show "zor_poly f 0 holomorphic_on ball 0 R"
+            by (rule holomorphic_on_subset[OF holo]) (use R in auto)
+          show "eval_fps G z = zor_poly f 0 z" if "z \<in> ball 0 R - {0}" for z
+            using that r r' R n_altdef unfolding G_def
+            by (subst eval_fps_fls_base_factor)
+               (auto simp: complex_powr_of_int field_simps power_int_minus n_def)
+        qed (use R in auto)
+        hence "zor_poly f 0 0 = fps_nth G 0"
+          by (simp add: eval_fps_at_0)
+        thus ?thesis by simp
+      qed
+    qed
+  qed (use r' in auto)
+  finally show ?thesis
+    by (simp add: G_def)
+qed
+
+lemma zorder_geI_0:
+  assumes "f analytic_on {0}" "f holomorphic_on A" "open A" "connected A" "0 \<in> A" "z \<in> A" "f z \<noteq> 0"
+  assumes "\<And>k. k < n \<Longrightarrow> (deriv ^^ k) f 0 = 0"
+  shows   "zorder f 0 \<ge> n"
+proof -
+  define F where "F = fps_expansion f 0"
+  from assms have "f has_fps_expansion F"
+    unfolding F_def using analytic_at_imp_has_fps_expansion_0 by blast
+  hence laurent: "f has_laurent_expansion fps_to_fls F" and [simp]: "f 0 = fps_nth F 0"
+    by (simp_all add: has_fps_expansion_to_laurent)
+
+  have [simp]: "F \<noteq> 0"
+  proof
+    assume [simp]: "F = 0"
+    hence "f z = 0"
+    proof (cases "z = 0")
+      case False
+      have "f has_laurent_expansion 0"
+        using laurent by simp
+      thus ?thesis
+      proof (rule has_laurent_expansion_0_analytic_continuation)
+        show "f holomorphic_on A - {0}"
+          using assms(2) by (rule holomorphic_on_subset) auto
+      qed (use assms False in auto)
+    qed auto
+    with \<open>f z \<noteq> 0\<close> show False by contradiction
+  qed
+
+  have "zorder f 0 = int (subdegree F)"
+    using has_laurent_expansion_zorder_0[OF laurent] by (simp add: fls_subdegree_fls_to_fps)
+  also have "subdegree F \<ge> n"
+    using assms by (intro subdegree_geI \<open>F \<noteq> 0\<close>) (auto simp: F_def fps_expansion_def)
+  hence "int (subdegree F) \<ge> int n"
+    by simp
+  finally show ?thesis .
+qed
+
+lemma zorder_geI:
+  assumes "f analytic_on {x}" "f holomorphic_on A" "open A" "connected A" "x \<in> A" "z \<in> A" "f z \<noteq> 0"
+  assumes "\<And>k. k < n \<Longrightarrow> (deriv ^^ k) f x = 0"
+  shows   "zorder f x \<ge> n"
+proof -
+  have "zorder f x = zorder (f \<circ> (\<lambda>u. u + x)) 0"
+    by (subst zorder_shift) (auto simp: o_def)
+  also have "\<dots> \<ge> n"
+  proof (rule zorder_geI_0)
+    show "(f \<circ> (\<lambda>u. u + x)) analytic_on {0}"
+      by (intro analytic_on_compose_gen[OF _ assms(1)] analytic_intros) auto
+    show "f \<circ> (\<lambda>u. u + x) holomorphic_on ((+) (-x)) ` A"
+      by (intro holomorphic_on_compose_gen[OF _ assms(2)] holomorphic_intros) auto
+    show "connected ((+) (- x) ` A)"
+      by (intro connected_continuous_image continuous_intros assms)
+    show "open ((+) (- x) ` A)"
+      by (intro open_translation assms)
+    show "z - x \<in> (+) (- x) ` A"
+      using \<open>z \<in> A\<close> by auto
+    show "0 \<in> (+) (- x) ` A"
+      using \<open>x \<in> A\<close> by auto
+    show "(f \<circ> (\<lambda>u. u + x)) (z - x) \<noteq> 0"
+      using \<open>f z \<noteq> 0\<close> by auto
+  next
+    fix k :: nat assume "k < n"
+    hence "(deriv ^^ k) f x = 0"
+      using assms by simp
+    also have "(deriv ^^ k) f x = (deriv ^^ k) (f \<circ> (+) x) 0"
+      by (subst higher_deriv_shift_0) auto
+    finally show "(deriv ^^ k) (f \<circ> (\<lambda>u. u + x)) 0 = 0"
+      by (subst add.commute) auto
+  qed
+  finally show ?thesis .
+qed
+
+lemma has_laurent_expansion_divide [laurent_expansion_intros]:
+  assumes "f has_laurent_expansion F" and "g has_laurent_expansion G"
+  shows   "(\<lambda>x. f x / g x) has_laurent_expansion (F / G)"
+proof -
+  have "(\<lambda>x. f x * inverse (g x)) has_laurent_expansion (F * inverse G)"
+    by (intro laurent_expansion_intros assms)
+  thus ?thesis
+    by (simp add: field_simps)
+qed
+
+lemma vector_derivative_translate [simp]:
+  "vector_derivative ((+) z \<circ> g) (at x within A) = vector_derivative g (at x within A)"
+proof -
+  have "(((+) z \<circ> g) has_vector_derivative g') (at x within A)"
+    if "(g has_vector_derivative g') (at x within A)" for g :: "real \<Rightarrow> 'a" and z g'
+    unfolding o_def using that by (auto intro!: derivative_eq_intros)
+  from this[of g _ z] this[of "\<lambda>x. z + g x" _ "-z"] show ?thesis
+    unfolding vector_derivative_def
+    by (intro arg_cong[where f = Eps] ext) (auto simp: o_def algebra_simps)
+qed
+
+lemma has_contour_integral_translate:
+  "(f has_contour_integral I) ((+) z \<circ> g) \<longleftrightarrow> ((\<lambda>x. f (x + z)) has_contour_integral I) g"
+  by (simp add: has_contour_integral_def add_ac)
+
+lemma contour_integrable_translate:
+  "f contour_integrable_on ((+) z \<circ> g) \<longleftrightarrow> (\<lambda>x. f (x + z)) contour_integrable_on g"
+  by (simp add: contour_integrable_on_def has_contour_integral_translate)
+
+lemma contour_integral_translate:
+  "contour_integral ((+) z \<circ> g) f = contour_integral g (\<lambda>x. f (x + z))"
+  by (simp add: contour_integral_def contour_integrable_translate has_contour_integral_translate)
+
+lemma residue_shift_0: "residue f z = residue (\<lambda>x. f (z + x)) 0"
+proof -
+  define Q where
+    "Q = (\<lambda>r f z \<epsilon>. (f has_contour_integral complex_of_real (2 * pi) * \<i> * r) (circlepath z \<epsilon>))"
+  define P where
+    "P = (\<lambda>r f z. \<exists>e>0. \<forall>\<epsilon>>0. \<epsilon> < e \<longrightarrow> Q r f z \<epsilon>)"
+  have path_eq: "circlepath (z - w) \<epsilon> = (+) (-w) \<circ> circlepath z \<epsilon>" for z w \<epsilon>
+    by (simp add: circlepath_def o_def part_circlepath_def algebra_simps)
+  have *: "P r f z" if "P r (\<lambda>x. f (x + w)) (z - w)" for r w f z
+    using that by (auto simp: P_def Q_def path_eq has_contour_integral_translate)
+  have "(SOME r. P r f z) = (SOME r. P r (\<lambda>x. f (z + x)) 0)"
+    using *[of _ f z z] *[of _ "\<lambda>x. f (z + x)" "-z"]
+    by (intro arg_cong[where f = Eps] ext iffI) (simp_all add: add_ac)
+  thus ?thesis
+    by (simp add: residue_def P_def Q_def)
+qed
+
+lemma residue_shift_0': "NO_MATCH 0 z \<Longrightarrow> residue f z = residue (\<lambda>x. f (z + x)) 0"
+  by (rule residue_shift_0)
+
+lemma has_laurent_expansion_residue_0:
+  assumes "f has_laurent_expansion F"
+  shows   "residue f 0 = fls_residue F"
+proof (cases "fls_subdegree F \<ge> 0")
+  case True
+  have "residue f 0 = residue (eval_fls F) 0"
+    using assms by (intro residue_cong) (auto simp: has_laurent_expansion_def eq_commute)
+  also have "\<dots> = 0"
+    by (rule residue_holo[OF _ _ holomorphic_on_eval_fls[OF order.refl]])
+       (use True assms in \<open>auto simp: has_laurent_expansion_def zero_ereal_def\<close>)
+  also have "\<dots> = fls_residue F"
+    using True by simp
+  finally show ?thesis .
+next
+  case False
+  hence "F \<noteq> 0"
+    by auto
+  have *: "zor_poly f 0 has_fps_expansion fls_base_factor_to_fps F"
+    by (intro zor_poly_has_fps_expansion False assms \<open>F \<noteq> 0\<close>)
+
+  have "residue f 0 = (deriv ^^ (nat (-zorder f 0) - 1)) (zor_poly f 0) 0 / fact (nat (- zorder f 0) - 1)"
+    by (intro residue_pole_order has_laurent_expansion_isolated_0[OF assms]
+              has_laurent_expansion_imp_is_pole_0[OF assms]) (use False in auto)
+  also have "\<dots> = fls_residue F"
+    using has_laurent_expansion_zorder_0[OF assms \<open>F \<noteq> 0\<close>] False
+    by (subst fps_nth_fps_expansion [OF *, symmetric]) (auto simp: of_nat_diff)
+  finally show ?thesis .
+qed
+
+lemma has_laurent_expansion_residue:
+  assumes "(\<lambda>x. f (z + x)) has_laurent_expansion F"
+  shows   "residue f z = fls_residue F"
+  using has_laurent_expansion_residue_0[OF assms] by (simp add: residue_shift_0')
+
+lemma eval_fls_has_laurent_expansion [laurent_expansion_intros]:
+  assumes "fls_conv_radius F > 0"
+  shows   "eval_fls F has_laurent_expansion F"
+  using assms by (auto simp: has_laurent_expansion_def)
+
+lemma fps_expansion_unique_complex:
+  fixes F G :: "complex fps"
+  assumes "f has_fps_expansion F" "f has_fps_expansion G"
+  shows   "F = G"
+  using assms unfolding fps_eq_iff by (auto simp: fps_eq_iff fps_nth_fps_expansion)
+
+lemma fps_expansion_eqI:
+  assumes "f has_fps_expansion F"
+  shows   "fps_expansion f 0 = F"
+  using assms unfolding fps_eq_iff
+  by (auto simp: fps_eq_iff fps_nth_fps_expansion fps_expansion_def)
+
+lemma has_fps_expansion_imp_eval_fps_eq:
+  assumes "f has_fps_expansion F" "norm z < r"
+  assumes "f holomorphic_on ball 0 r"
+  shows   "eval_fps F z = f z"
+proof -
+  have [simp]: "fps_expansion f 0 = F"
+    by (rule fps_expansion_eqI) fact
+  have *: "f holomorphic_on eball 0 (ereal r)"
+    using assms by simp
+  from conv_radius_fps_expansion[OF *] have "fps_conv_radius F \<ge> ereal r"
+    by simp
+  have "eval_fps (fps_expansion f 0) z = f (0 + z)"
+    by (rule eval_fps_expansion'[OF *]) (use assms in auto)
+  thus ?thesis
+    by simp
+qed
+
+lemma fls_conv_radius_ge:
+  assumes "f has_laurent_expansion F"
+  assumes "f holomorphic_on eball 0 r - {0}"
+  shows   "fls_conv_radius F \<ge> r"
+proof -
+  define n where "n = fls_subdegree F"
+  define G where "G = fls_base_factor_to_fps F"
+  define g where "g = (\<lambda>z. if z = 0 then fps_nth G 0 else f z * z powi -n)"
+  have G: "g has_fps_expansion G"
+    unfolding G_def g_def n_def
+    by (intro has_fps_expansion_fls_base_factor_to_fps assms)
+  have "(\<lambda>z. f z * z powi -n) holomorphic_on eball 0 r - {0}"
+    by (intro holomorphic_intros assms) auto
+  also have "?this \<longleftrightarrow> g holomorphic_on eball 0 r - {0}"
+    by (intro holomorphic_cong) (auto simp: g_def)
+  finally have "g analytic_on eball 0 r - {0}"
+    by (subst analytic_on_open) auto
+  moreover have "g analytic_on {0}"
+    using G has_fps_expansion_imp_analytic_0 by auto
+  ultimately have "g analytic_on (eball 0 r - {0} \<union> {0})"
+    by (subst analytic_on_Un) auto
+  hence "g analytic_on eball 0 r"
+    by (rule analytic_on_subset) auto
+  hence "g holomorphic_on eball 0 r"
+    by (subst (asm) analytic_on_open) auto
+  hence "fps_conv_radius (fps_expansion g 0) \<ge> r"
+    by (intro conv_radius_fps_expansion)
+  also have "fps_expansion g 0 = G"
+    using G by (intro fps_expansion_eqI)
+  finally show ?thesis
+    by (simp add: fls_conv_radius_altdef G_def)
+qed
+
+lemma connected_eball [intro]: "connected (eball (z :: 'a :: real_normed_vector) r)"
+  by (cases r) auto
+
+lemma eval_fls_eqI:
+  assumes "f has_laurent_expansion F" "f holomorphic_on eball 0 r - {0}"
+  assumes "z \<in> eball 0 r - {0}"
+  shows   "eval_fls F z = f z"
+proof -
+  have conv: "fls_conv_radius F \<ge> r"
+    by (intro fls_conv_radius_ge[OF assms(1,2)])
+  have "(\<lambda>z. eval_fls F z - f z) has_laurent_expansion F - F"
+    using assms by (intro laurent_expansion_intros assms) (auto simp: has_laurent_expansion_def)
+  hence "(\<lambda>z. eval_fls F z - f z) has_laurent_expansion 0"
+    by simp
+  hence "eval_fls F z - f z = 0"
+  proof (rule has_laurent_expansion_0_analytic_continuation)
+    have "ereal 0 \<le> ereal (norm z)"
+      by simp
+    also have "norm z < r"
+      using assms by auto
+    finally have "r > 0"
+      by (simp add: zero_ereal_def)
+    thus "open (eball 0 r :: complex set)" "connected (eball 0 r :: complex set)"
+         "0 \<in> eball 0 r" "z \<in> eball 0 r - {0}"
+      using assms by (auto simp: zero_ereal_def)
+  qed (auto intro!: holomorphic_intros assms less_le_trans[OF _ conv] split: if_splits)
+  thus ?thesis by simp
+qed
+
+lemma fls_nth_as_contour_integral:
+  assumes F: "f has_laurent_expansion F"
+  assumes holo: "f holomorphic_on ball 0 r - {0}"
+  assumes R: "0 < R" "R < r"
+  shows "((\<lambda>z. f z * z powi (-(n+1))) has_contour_integral
+            complex_of_real (2 * pi) * \<i> * fls_nth F n) (circlepath 0 R)"
+proof -
+  define I where "I = (\<lambda>z. f z * z powi (-(n+1)))"
+  have "(I has_contour_integral complex_of_real (2 * pi) * \<i> * residue I 0) (circlepath 0 R)"
+  proof (rule base_residue)
+    show "open (ball (0::complex) r)" "0 \<in> ball (0::complex) r"
+      using R F by (auto simp: has_laurent_expansion_def zero_ereal_def)
+  qed (use R in \<open>auto intro!: holomorphic_intros holomorphic_on_subset[OF holo]
+                      simp: I_def split: if_splits\<close>)
+  also have "residue I 0 = fls_residue (fls_shift (n + 1) F)"
+    unfolding I_def by (intro has_laurent_expansion_residue_0 laurent_expansion_intros F)
+  also have "\<dots> = fls_nth F n"
+    by simp
+  finally show ?thesis
+    by (simp add: I_def)
+qed
+
+lemma tendsto_0_subdegree_iff_0:
+  assumes F:"f has_laurent_expansion F" and "F\<noteq>0"
+  shows "(f \<midarrow>0\<rightarrow>0) \<longleftrightarrow> fls_subdegree F > 0"
+proof -
+  have ?thesis if "is_pole f 0"
+  proof -
+    have "fls_subdegree F <0"
+      using is_pole_0_imp_neg_fls_subdegree[OF F that] .
+    moreover then have "\<not> f \<midarrow>0\<rightarrow>0"
+      using \<open>is_pole f 0\<close> F at_neq_bot
+        has_laurent_expansion_imp_filterlim_infinity_0
+        not_tendsto_and_filterlim_at_infinity that
+      by blast
+    ultimately show ?thesis by auto
+  qed
+  moreover have ?thesis if "\<not>is_pole f 0" "\<exists>x. f \<midarrow>0\<rightarrow>x"
+  proof -
+    have "fls_subdegree F \<ge>0"
+      using has_laurent_expansion_imp_is_pole_0[OF F] that(1)
+      by linarith
+    have "f \<midarrow>0\<rightarrow>0" if "fls_subdegree F > 0"
+      using fls_eq0_below_subdegree[OF that]
+      by (metis F \<open>0 \<le> fls_subdegree F\<close> has_laurent_expansion_imp_tendsto_0)
+    moreover have "fls_subdegree F > 0" if "f \<midarrow>0\<rightarrow>0"
+    proof -
+      have False if "fls_subdegree F = 0"
+      proof -
+        have "f \<midarrow>0\<rightarrow> fls_nth F 0"
+          using has_laurent_expansion_imp_tendsto_0
+              [OF F \<open>fls_subdegree F \<ge>0\<close>] .
+        then have "fls_nth F 0 = 0" using \<open>f \<midarrow>0\<rightarrow>0\<close>
+          using LIM_unique by blast
+        then have "F = 0"
+          using nth_fls_subdegree_zero_iff \<open>fls_subdegree F = 0\<close>
+          by metis
+        with \<open>F\<noteq>0\<close> show False by auto
+      qed
+      with \<open>fls_subdegree F \<ge>0\<close>
+      show ?thesis by fastforce
+    qed
+    ultimately show ?thesis by auto
+  qed
+  moreover have "is_pole f 0 \<or> (\<exists>x. f \<midarrow>0\<rightarrow>x)"
+  proof -
+    have "not_essential f 0"
+      using F has_laurent_expansion_not_essential_0 by auto
+    then show ?thesis unfolding not_essential_def
+      by auto
+  qed
+  ultimately show ?thesis by auto
+qed
+
+lemma tendsto_0_subdegree_iff:
+  assumes F:"(\<lambda>w. f (z+w)) has_laurent_expansion F" and "F\<noteq>0"
+  shows "(f \<midarrow>z\<rightarrow>0) \<longleftrightarrow> fls_subdegree F > 0"
+  apply (subst Lim_at_zero)
+  apply (rule tendsto_0_subdegree_iff_0)
+  using assms by auto
+
+lemma is_pole_0_deriv_divide_iff:
+  assumes F:"f has_laurent_expansion F" and "F\<noteq>0"
+  shows "is_pole (\<lambda>x. deriv f x / f x) 0 \<longleftrightarrow> is_pole f 0 \<or> (f \<midarrow>0\<rightarrow>0)"
+proof -
+  have "(\<lambda>x. deriv f x / f x) has_laurent_expansion fls_deriv F / F"
+    using F by (auto intro:laurent_expansion_intros)
+
+  have "is_pole (\<lambda>x. deriv f x / f x) 0 \<longleftrightarrow>
+            fls_subdegree (fls_deriv F / F) < 0"
+    apply (rule is_pole_fls_subdegree_iff)
+    using F by (auto intro:laurent_expansion_intros)
+  also have "... \<longleftrightarrow> is_pole f 0 \<or> (f \<midarrow>0\<rightarrow>0)"
+  proof (cases "fls_subdegree F = 0")
+    case True
+    then have "fls_subdegree (fls_deriv F / F) \<ge> 0"
+      by (metis diff_zero div_0 \<open>F\<noteq>0\<close> fls_deriv_subdegree0
+          fls_divide_subdegree)
+    moreover then have "\<not> is_pole f 0"
+      by (metis F True is_pole_0_imp_neg_fls_subdegree less_le)
+    moreover have "\<not> (f \<midarrow>0\<rightarrow>0)"
+      using tendsto_0_subdegree_iff_0[OF F \<open>F\<noteq>0\<close>] True by auto
+    ultimately show ?thesis by auto
+  next
+    case False
+    then have "fls_deriv F \<noteq> 0"
+      by (metis fls_const_subdegree fls_deriv_eq_0_iff)
+    then have "fls_subdegree (fls_deriv F / F) =
+              fls_subdegree (fls_deriv F) - fls_subdegree F"
+      by (rule fls_divide_subdegree[OF _ \<open>F\<noteq>0\<close>])
+    moreover have "fls_subdegree (fls_deriv F) = fls_subdegree F - 1"
+      using fls_subdegree_deriv[OF False] .
+    ultimately have "fls_subdegree (fls_deriv F / F) < 0" by auto
+    moreover have "f \<midarrow>0\<rightarrow> 0 = (0 < fls_subdegree F)"
+      using tendsto_0_subdegree_iff_0[OF F \<open>F \<noteq> 0\<close>] .
+    moreover have "is_pole f 0 = (fls_subdegree F < 0)"
+      using is_pole_fls_subdegree_iff F by auto
+    ultimately show ?thesis using False by auto
+  qed
+  finally show ?thesis .
+qed
+
+lemma is_pole_deriv_divide_iff:
+  assumes F:"(\<lambda>w. f (z+w))  has_laurent_expansion F" and "F\<noteq>0"
+  shows "is_pole (\<lambda>x. deriv f x / f x) z \<longleftrightarrow> is_pole f z \<or> (f \<midarrow>z\<rightarrow>0)"
+proof -
+  define ff df where "ff=(\<lambda>w. f (z+w))" and "df=(\<lambda>w. deriv f (z + w))"
+  have "is_pole (\<lambda>x. deriv f x / f x) z
+          \<longleftrightarrow> is_pole (\<lambda>x. deriv ff x / ff x) 0"
+    unfolding ff_def df_def
+    by (simp add:deriv_shift_0' is_pole_shift_0' comp_def algebra_simps)
+  moreover have "is_pole f z \<longleftrightarrow> is_pole ff 0"
+    unfolding ff_def by (auto simp:is_pole_shift_0')
+  moreover have "(f \<midarrow>z\<rightarrow>0) \<longleftrightarrow> (ff \<midarrow>0\<rightarrow>0)"
+    unfolding ff_def by (simp add: LIM_offset_zero_iff)
+  moreover have "is_pole (\<lambda>x. deriv ff x / ff x) 0 = (is_pole ff 0 \<or> ff \<midarrow>0\<rightarrow> 0)"
+    apply (rule is_pole_0_deriv_divide_iff)
+    using F ff_def \<open>F\<noteq>0\<close> by blast+
+  ultimately show ?thesis by auto
+qed
+
+lemma subdegree_imp_eventually_deriv_nzero_0:
+  assumes F:"f has_laurent_expansion F" and "fls_subdegree F\<noteq>0"
+  shows "eventually (\<lambda>z. deriv f z \<noteq> 0) (at 0)"
+proof -
+  have "deriv f has_laurent_expansion fls_deriv F"
+    using has_laurent_expansion_deriv[OF F] .
+  moreover have "fls_deriv F\<noteq>0"
+    using \<open>fls_subdegree F\<noteq>0\<close>
+    by (metis fls_const_subdegree fls_deriv_eq_0_iff)
+  ultimately show ?thesis
+    using has_laurent_expansion_eventually_nonzero_iff' by blast
+qed
+
+lemma subdegree_imp_eventually_deriv_nzero:
+  assumes F:"(\<lambda>w. f (z+w)) has_laurent_expansion F"
+      and "fls_subdegree F\<noteq>0"
+  shows "eventually (\<lambda>w. deriv f w \<noteq> 0) (at z)"
+proof -
+  have "\<forall>\<^sub>F x in at 0. deriv (\<lambda>w. f (z + w)) x \<noteq> 0"
+    using subdegree_imp_eventually_deriv_nzero_0 assms by auto
+  then show ?thesis
+    apply (subst eventually_at_to_0)
+    by (simp add:deriv_shift_0' comp_def algebra_simps)
+qed
+
+lemma has_fps_expansion_imp_asymp_equiv_0:
+  fixes f :: "complex \<Rightarrow> complex"
+  assumes F: "f has_fps_expansion F"
+  defines "n \<equiv> subdegree F"
+  shows   "f \<sim>[nhds 0] (\<lambda>z. fps_nth F n * z ^ n)"
+proof -
+  have F': "f has_laurent_expansion fps_to_fls F"
+    using F has_laurent_expansion_fps by blast
+
+  have "f \<sim>[at 0] (\<lambda>z. fps_nth F n * z ^ n)"
+    using has_laurent_expansion_imp_asymp_equiv_0[OF F']
+    by (simp add: fls_subdegree_fls_to_fps n_def)
+  moreover have "f 0 = fps_nth F n * 0 ^ n"
+    using F by (auto simp: n_def has_fps_expansion_to_laurent power_0_left)
+  ultimately show ?thesis
+    by (auto simp: asymp_equiv_nhds_iff)
+qed
+
+lemma has_fps_expansion_imp_tendsto_0:
+  fixes f :: "complex \<Rightarrow> complex"
+  assumes "f has_fps_expansion F"
+  shows   "(f \<longlongrightarrow> fps_nth F 0) (nhds 0)"
+proof (rule asymp_equiv_tendsto_transfer)
+  show "(\<lambda>z. fps_nth F (subdegree F) * z ^ subdegree F) \<sim>[nhds 0] f"
+    by (rule asymp_equiv_symI, rule has_fps_expansion_imp_asymp_equiv_0) fact
+  have "((\<lambda>z. F $ subdegree F * z ^ subdegree F) \<longlongrightarrow> F $ 0) (at 0)"
+    by (rule tendsto_eq_intros refl | simp)+ (auto simp: power_0_left)
+  thus "((\<lambda>z. F $ subdegree F * z ^ subdegree F) \<longlongrightarrow> F $ 0) (nhds 0)"
+    by (auto simp: tendsto_nhds_iff power_0_left)
+qed
+
+lemma has_fps_expansion_imp_0_eq_fps_nth_0:
+  assumes "f has_fps_expansion F"
+  shows   "f 0 = fps_nth F 0"
+proof -
+  have "eventually (\<lambda>x. f x = eval_fps F x) (nhds 0)"
+    using assms by (auto simp: has_fps_expansion_def eq_commute)
+  then obtain A where "open A" "0 \<in> A" "\<forall>x\<in>A. f x = eval_fps F x"
+    unfolding eventually_nhds by blast
+  hence "f 0 = eval_fps F 0"
+    by blast
+  thus ?thesis
+    by (simp add: eval_fps_at_0)
+qed
+
+lemma fls_nth_compose_aux:
+  assumes "f has_fps_expansion F"
+  assumes G: "g has_fps_expansion G" "fps_nth G 0 = 0" "fps_deriv G \<noteq> 0"
+  assumes "(f \<circ> g) has_laurent_expansion H"
+  shows   "fls_nth H (int n) = fps_nth (fps_compose F G) n"
+  using assms(1,5)
+proof (induction n arbitrary: f F H rule: less_induct)
+  case (less n f F H)
+  have [simp]: "g 0 = 0"
+    using has_fps_expansion_imp_0_eq_fps_nth_0[OF G(1)] G(2) by simp
+  have ana_f: "f analytic_on {0}"
+    using less.prems by (meson has_fps_expansion_imp_analytic_0)
+  have ana_g: "g analytic_on {0}"
+    using G by (meson has_fps_expansion_imp_analytic_0)
+  have "(f \<circ> g) has_laurent_expansion fps_to_fls (fps_expansion (f \<circ> g) 0)"
+    by (rule analytic_at_imp_has_fps_expansion_0 analytic_intros has_laurent_expansion_fps
+             analytic_on_compose_gen ana_f ana_g)+ auto
+  with less.prems have "H = fps_to_fls (fps_expansion (f \<circ> g) 0)"
+    using has_laurent_expansion_unique by blast
+  also have "fls_subdegree \<dots> \<ge> 0"
+    by (simp add: fls_subdegree_fls_to_fps)
+  finally have subdeg: "fls_subdegree H \<ge> 0" .
+
+  show ?case
+  proof (cases "n = 0")
+    case [simp]: True
+    have lim_g: "g \<midarrow>0\<rightarrow> 0"
+      using has_laurent_expansion_imp_tendsto_0[of g "fps_to_fls G"] G
+      by (auto simp: fls_subdegree_fls_to_fps_gt0 has_fps_expansion_to_laurent)
+    have lim_f: "(f \<longlongrightarrow> fps_nth F 0) (nhds 0)"
+      by (intro has_fps_expansion_imp_tendsto_0 less.prems)
+    have "(\<lambda>x. f (g x)) \<midarrow>0\<rightarrow> fps_nth F 0"
+      by (rule filterlim_compose[OF lim_f lim_g])
+    moreover have "(f \<circ> g) \<midarrow>0\<rightarrow> fls_nth H 0"
+      by (intro has_laurent_expansion_imp_tendsto_0 less.prems subdeg)
+    ultimately have "fps_nth F 0 = fls_nth H 0"
+      using tendsto_unique by (force simp: o_def)
+    thus ?thesis
+      by simp
+  next
+    case n: False
+    define GH where "GH = (fls_deriv H / fls_deriv (fps_to_fls G))"
+    define GH' where "GH' = fls_regpart GH"
+
+    have "(\<lambda>x. deriv (f \<circ> g) x / deriv g x) has_laurent_expansion
+          fls_deriv H / fls_deriv (fps_to_fls G)"
+      by (intro laurent_expansion_intros less.prems has_laurent_expansion_fps[of _ G] G)
+    also have "?this \<longleftrightarrow> (deriv f \<circ> g) has_laurent_expansion fls_deriv H / fls_deriv (fps_to_fls G)"
+    proof (rule has_laurent_expansion_cong)
+      from ana_f obtain r1 where r1: "r1 > 0" "f holomorphic_on ball 0 r1"
+        unfolding analytic_on_def by blast
+      from ana_g obtain r2 where r2: "r2 > 0" "g holomorphic_on ball 0 r2"
+        unfolding analytic_on_def by blast
+      have lim_g: "g \<midarrow>0\<rightarrow> 0"
+        using has_laurent_expansion_imp_tendsto_0[of g "fps_to_fls G"] G
+        by (auto simp: fls_subdegree_fls_to_fps_gt0 has_fps_expansion_to_laurent)
+      moreover have "open (ball 0 r1)" "0 \<in> ball 0 r1"
+        using r1 by auto
+      ultimately have "eventually (\<lambda>x. g x \<in> ball 0 r1) (at 0)"
+        unfolding tendsto_def by blast
+      moreover have "eventually (\<lambda>x. deriv g x \<noteq> 0) (at 0)"
+        using G fps_to_fls_eq_0_iff has_fps_expansion_deriv has_fps_expansion_to_laurent
+              has_laurent_expansion_nonzero_imp_eventually_nonzero by blast
+      moreover have "eventually (\<lambda>x. x \<in> ball 0 (min r1 r2) - {0}) (at 0)"
+        by (intro eventually_at_in_open) (use r1 r2 in auto)
+      ultimately show "eventually (\<lambda>x. deriv (f \<circ> g) x / deriv g x = (deriv f \<circ> g) x) (at 0)"
+      proof eventually_elim
+        case (elim x)
+        thus ?case using r1 r2
+          by (subst deriv_chain)
+             (auto simp: field_simps holomorphic_on_def at_within_open[of _ "ball _ _"])
+      qed
+    qed auto
+    finally have GH: "(deriv f \<circ> g) has_laurent_expansion GH"
+      unfolding GH_def .
+
+    have "(deriv f \<circ> g) has_laurent_expansion fps_to_fls (fps_expansion (deriv f \<circ> g) 0)"
+      by (rule analytic_at_imp_has_fps_expansion_0 analytic_intros has_laurent_expansion_fps
+               analytic_on_compose_gen ana_f ana_g)+ auto
+    with GH have "GH = fps_to_fls (fps_expansion (deriv f \<circ> g) 0)"
+      using has_laurent_expansion_unique by blast
+    also have "fls_subdegree \<dots> \<ge> 0"
+      by (simp add: fls_subdegree_fls_to_fps)
+    finally have subdeg': "fls_subdegree GH \<ge> 0" .
+
+    have "deriv f has_fps_expansion fps_deriv F"
+      by (intro fps_expansion_intros less.prems)
+    from this and GH have IH: "fls_nth GH (int k) = fps_nth (fps_compose (fps_deriv F) G) k"
+      if "k < n" for k
+      by (intro less.IH that)
+
+    have "fps_nth (fps_compose (fps_deriv F) G) n = (\<Sum>i=0..n. of_nat (Suc i) * F $ Suc i * G ^ i $ n)"
+      by (simp add: fps_compose_nth)
+
+    have "fps_nth (fps_compose F G) n =
+            fps_nth (fps_deriv (fps_compose F G)) (n - 1) / of_nat n"
+      using n by (cases n) (auto simp del: of_nat_Suc)
+    also have "fps_deriv (fps_compose F G) = fps_compose (fps_deriv F) G * fps_deriv G "
+      using G by (subst fps_compose_deriv) auto
+    also have "fps_nth \<dots> (n - 1) = (\<Sum>i=0..n-1. (fps_deriv F oo G) $ i * fps_deriv G $ (n - 1 - i))"
+      unfolding fps_mult_nth ..
+    also have "\<dots> = (\<Sum>i=0..n-1. fps_nth GH' i * of_nat (n - i) * G $ (n - i))"
+      using n by (intro sum.cong) (auto simp: IH Suc_diff_Suc GH'_def)
+    also have "\<dots> = (\<Sum>i=0..n. fps_nth GH' i * of_nat (n - i) * G $ (n - i))"
+      by (intro sum.mono_neutral_left) auto
+    also have "\<dots> = fps_nth (GH' * Abs_fps (\<lambda>i. of_nat i * fps_nth G i)) n"
+      by (simp add: fps_mult_nth mult_ac)
+    also have "Abs_fps (\<lambda>i. of_nat i * fps_nth G i) = fps_X * fps_deriv G"
+      by (simp add: fps_mult_fps_X_deriv_shift)
+    also have "fps_nth (GH' * (fps_X * fps_deriv G)) n =
+               fls_nth (fps_to_fls (GH' * (fps_X * fps_deriv G))) (int n)"
+      by simp
+    also have "fps_to_fls (GH' * (fps_X * fps_deriv G)) =
+                 GH * fps_to_fls (fps_deriv G) * fls_X"
+      using subdeg' by (simp add: mult_ac fls_times_fps_to_fls GH'_def)
+    also have "GH * fps_to_fls (fps_deriv G) = fls_deriv H"
+      unfolding GH_def using G  by (simp add: fls_deriv_fps_to_fls)
+    also have "fls_deriv H * fls_X = fls_shift (-1) (fls_deriv H)"
+      using fls_X_times_conv_shift(2) by blast
+    finally show ?thesis
+      using n by simp
+  qed
+qed
+
+lemma has_fps_expansion_compose [fps_expansion_intros]:
+  fixes f g :: "complex \<Rightarrow> complex"
+  assumes F: "f has_fps_expansion F"
+  assumes G: "g has_fps_expansion G" "fps_nth G 0 = 0"
+  shows   "(f \<circ> g) has_fps_expansion fps_compose F G"
+proof (cases "fps_deriv G = 0")
+  case False
+  have [simp]: "g 0 = 0"
+    using has_fps_expansion_imp_0_eq_fps_nth_0[OF G(1)] G(2) False by simp
+  have ana_f: "f analytic_on {0}"
+    using F by (meson has_fps_expansion_imp_analytic_0)
+  have ana_g: "g analytic_on {0}"
+    using G by (meson has_fps_expansion_imp_analytic_0)
+  have fg: "(f \<circ> g) has_fps_expansion fps_expansion (f \<circ> g) 0"
+    by (rule analytic_at_imp_has_fps_expansion_0 analytic_intros
+         analytic_on_compose_gen ana_f ana_g)+ auto
+
+  have "fls_nth (fps_to_fls (fps_expansion (f \<circ> g) 0)) (int n) = fps_nth (fps_compose F G) n" for n
+    by (rule fls_nth_compose_aux has_laurent_expansion_fps F G False fg)+
+  hence "fps_expansion (f \<circ> g) 0 = fps_compose F G"
+    by (simp add: fps_eq_iff)
+  thus ?thesis using fg
+    by simp
+next
+  case True
+  have [simp]: "f 0 = fps_nth F 0"
+    using F by (auto dest: has_fps_expansion_imp_0_eq_fps_nth_0)
+  from True have "fps_nth G n = 0" for n
+    using G(2) by (cases n) (auto simp del: of_nat_Suc)
+  hence [simp]: "G = 0"
+    by (auto simp: fps_eq_iff)
+  have "(\<lambda>_. f 0) has_fps_expansion fps_const (f 0)"
+    by (intro fps_expansion_intros)
+  also have "eventually (\<lambda>x. g x = 0) (nhds 0)"
+    using G by (auto simp: has_fps_expansion_def)
+  hence "(\<lambda>_. f 0) has_fps_expansion fps_const (f 0) \<longleftrightarrow> (f \<circ> g) has_fps_expansion fps_const (f 0)"
+    by (intro has_fps_expansion_cong) (auto elim!: eventually_mono)
+  thus ?thesis
+    by simp
+qed
+
+hide_const (open) fls_compose_fps
+
+definition fls_compose_fps :: "'a :: field fls \<Rightarrow> 'a fps \<Rightarrow> 'a fls" where
+  "fls_compose_fps F G =
+     fps_to_fls (fps_compose (fls_base_factor_to_fps F) G) * fps_to_fls G powi fls_subdegree F"
+
+lemma fps_compose_of_nat [simp]: "fps_compose (of_nat n :: 'a :: comm_ring_1 fps) H = of_nat n"
+  and fps_compose_of_int [simp]: "fps_compose (of_int i) H = of_int i"
+  unfolding fps_of_nat [symmetric] fps_of_int [symmetric] numeral_fps_const
+  by (rule fps_const_compose)+
+
+lemmas [simp] = fps_to_fls_of_nat fps_to_fls_of_int
+
+lemma fls_compose_fps_0 [simp]: "fls_compose_fps 0 H = 0"
+  and fls_compose_fps_1 [simp]: "fls_compose_fps 1 H = 1"
+  and fls_compose_fps_const [simp]: "fls_compose_fps (fls_const c) H = fls_const c"
+  and fls_compose_fps_of_nat [simp]: "fls_compose_fps (of_nat n) H = of_nat n"
+  and fls_compose_fps_of_int [simp]: "fls_compose_fps (of_int i) H = of_int i"
+  and fls_compose_fps_X [simp]: "fls_compose_fps fls_X F = fps_to_fls F"
+  by (simp_all add: fls_compose_fps_def)
+
+lemma fls_compose_fps_0_right:
+  "fls_compose_fps F 0 = (if fls_subdegree F \<ge> 0 then fls_const (fls_nth F 0) else 0)"
+  by (cases "fls_subdegree F = 0") (simp_all add: fls_compose_fps_def)
+
+lemma fls_compose_fps_shift:
+  assumes "H \<noteq> 0"
+  shows   "fls_compose_fps (fls_shift n F) H = fls_compose_fps F H * fps_to_fls H powi (-n)"
+proof (cases "F = 0")
+  case False
+  thus ?thesis
+    using assms by (simp add: fls_compose_fps_def power_int_diff power_int_minus field_simps)
+qed auto
+
+lemma fls_compose_fps_to_fls [simp]:
+  assumes [simp]: "G \<noteq> 0" "fps_nth G 0 = 0"
+  shows   "fls_compose_fps (fps_to_fls F) G = fps_to_fls (fps_compose F G)"
+proof (cases "F = 0")
+  case False
+  define n where "n = subdegree F"
+  define F' where "F' = fps_shift n F"
+  have [simp]: "F' \<noteq> 0" "subdegree F' = 0"
+    using False by (auto simp: F'_def n_def)
+  have F_eq: "F = F' * fps_X ^ n"
+    unfolding F'_def n_def using subdegree_decompose by blast
+  have "fls_compose_fps (fps_to_fls F) G =
+          fps_to_fls (fps_shift n (fls_regpart (fps_to_fls F' * fls_X_intpow (int n))) oo G) * fps_to_fls (G ^ n)"
+    unfolding F_eq fls_compose_fps_def
+    by (simp add: fls_times_fps_to_fls fls_X_power_conv_shift_1 power_int_add
+                  fls_subdegree_fls_to_fps fps_to_fls_power fls_regpart_shift_conv_fps_shift
+             flip: fls_times_both_shifted_simp)
+  also have "fps_to_fls F' * fls_X_intpow (int n) = fps_to_fls F"
+    by (simp add: F_eq fls_times_fps_to_fls fps_to_fls_power fls_X_power_conv_shift_1)
+  also have "fps_to_fls (fps_shift n (fls_regpart (fps_to_fls F)) oo G) * fps_to_fls (G ^ n) =
+             fps_to_fls ((fps_shift n (fls_regpart (fps_to_fls F)) * fps_X ^ n) oo G)"
+    by (simp add: fls_times_fps_to_fls flip: fps_compose_power add: fps_compose_mult_distrib)
+  also have "fps_shift n (fls_regpart (fps_to_fls F)) * fps_X ^ n = F"
+    by (simp add: F_eq)
+  finally show ?thesis .
+qed (auto simp: fls_compose_fps_def)
+
+lemma fls_compose_fps_mult:
+  assumes [simp]: "H \<noteq> 0" "fps_nth H 0 = 0"
+  shows   "fls_compose_fps (F * G) H = fls_compose_fps F H * fls_compose_fps G H"
+  using assms
+proof (cases "F * G = 0")
+  case False
+  hence [simp]: "F \<noteq> 0" "G \<noteq> 0"
+    by auto
+  define n m where "n = fls_subdegree F" "m = fls_subdegree G"
+  define F' where "F' = fls_regpart (fls_shift n F)"
+  define G' where "G' = fls_regpart (fls_shift m G)"
+  have F_eq: "F = fls_shift (-n) (fps_to_fls F')" and G_eq: "G = fls_shift (-m) (fps_to_fls G')"
+    by (simp_all add: F'_def G'_def n_m_def)
+  have "fls_compose_fps (F * G) H = fls_compose_fps (fls_shift (-(n + m)) (fps_to_fls (F' * G'))) H"
+    by (simp add: fls_times_fps_to_fls F_eq G_eq fls_shifted_times_simps)
+  also have "\<dots> = fps_to_fls ((F' oo H) * (G' oo H)) * fps_to_fls H powi (m + n)"
+    by (simp add: fls_compose_fps_shift fps_compose_mult_distrib)
+  also have "\<dots> = fls_compose_fps F H * fls_compose_fps G H"
+    by (simp add: F_eq G_eq fls_compose_fps_shift fls_times_fps_to_fls power_int_add)
+  finally show ?thesis .
+qed auto
+
+lemma fls_compose_fps_power:
+  assumes [simp]: "G \<noteq> 0" "fps_nth G 0 = 0"
+  shows   "fls_compose_fps (F ^ n) G = fls_compose_fps F G ^ n"
+  by (induction n) (auto simp: fls_compose_fps_mult)
+
+lemma fls_compose_fps_add:
+  assumes [simp]: "H \<noteq> 0" "fps_nth H 0 = 0"
+  shows   "fls_compose_fps (F + G) H = fls_compose_fps F H + fls_compose_fps G H"
+proof (cases "F = 0 \<or> G = 0")
+  case False
+  hence [simp]: "F \<noteq> 0" "G \<noteq> 0"
+    by auto
+  define n where "n = min (fls_subdegree F) (fls_subdegree G)"
+  define F' where "F' = fls_regpart (fls_shift n F)"
+  define G' where "G' = fls_regpart (fls_shift n G)"
+  have F_eq: "F = fls_shift (-n) (fps_to_fls F')" and G_eq: "G = fls_shift (-n) (fps_to_fls G')"
+    unfolding n_def by (simp_all add: F'_def G'_def n_def)
+  have "F + G = fls_shift (-n) (fps_to_fls (F' + G'))"
+    by (simp add: F_eq G_eq)
+  also have "fls_compose_fps \<dots> H = fls_compose_fps (fps_to_fls (F' + G')) H * fps_to_fls H powi n"
+    by (subst fls_compose_fps_shift) auto
+  also have "\<dots> = fps_to_fls (fps_compose (F' + G') H) * fps_to_fls H powi n"
+    by (subst fls_compose_fps_to_fls) auto
+  also have "\<dots> = fls_compose_fps F H + fls_compose_fps G H"
+    by (simp add: F_eq G_eq fls_compose_fps_shift fps_compose_add_distrib algebra_simps)
+  finally show ?thesis .
+qed auto
+
+lemma fls_compose_fps_uminus [simp]: "fls_compose_fps (-F) H = -fls_compose_fps F H"
+  by (simp add: fls_compose_fps_def fps_compose_uminus)
+
+lemma fls_compose_fps_diff:
+  assumes [simp]: "H \<noteq> 0" "fps_nth H 0 = 0"
+  shows   "fls_compose_fps (F - G) H = fls_compose_fps F H - fls_compose_fps G H"
+  using fls_compose_fps_add[of H F "-G"] by simp
+
+lemma fps_compose_eq_0_iff:
+  fixes F G :: "'a :: idom fps"
+  assumes "fps_nth G 0 = 0"
+  shows "fps_compose F G = 0 \<longleftrightarrow> F = 0 \<or> (G = 0 \<and> fps_nth F 0 = 0)"
+proof safe
+  assume *: "fps_compose F G = 0" "F \<noteq> 0"
+  have "fps_nth (fps_compose F G) 0 = fps_nth F 0"
+    by simp
+  also have "fps_compose F G = 0"
+    by (simp add: *)
+  finally show "fps_nth F 0 = 0"
+    by simp
+  show "G = 0"
+  proof (rule ccontr)
+    assume "G \<noteq> 0"
+    hence "subdegree G > 0" using assms
+      using subdegree_eq_0_iff by blast
+    define N where "N = subdegree F * subdegree G"
+    have "fps_nth (fps_compose F G) N = (\<Sum>i = 0..N. fps_nth F i * fps_nth (G ^ i) N)"
+      unfolding fps_compose_def by (simp add: N_def)
+    also have "\<dots> = (\<Sum>i\<in>{subdegree F}. fps_nth F i * fps_nth (G ^ i) N)"
+    proof (intro sum.mono_neutral_right ballI)
+      fix i assume i: "i \<in> {0..N} - {subdegree F}"
+      show "fps_nth F i * fps_nth (G ^ i) N = 0"
+      proof (cases i "subdegree F" rule: linorder_cases)
+        assume "i > subdegree F"
+        hence "fps_nth (G ^ i) N = 0"
+          using i \<open>subdegree G > 0\<close> by (intro fps_pow_nth_below_subdegree) (auto simp: N_def)
+        thus ?thesis by simp
+      qed (use i in \<open>auto simp: N_def\<close>)
+    qed (use \<open>subdegree G > 0\<close> in \<open>auto simp: N_def\<close>)
+    also have "\<dots> = fps_nth F (subdegree F) * fps_nth (G ^ subdegree F) N"
+      by simp
+    also have "\<dots> \<noteq> 0"
+      using \<open>G \<noteq> 0\<close> \<open>F \<noteq> 0\<close> by (auto simp: N_def)
+    finally show False using * by auto
+  qed
+qed auto
+
+lemma fls_compose_fps_eq_0_iff:
+  assumes "H \<noteq> 0" "fps_nth H 0 = 0"
+  shows   "fls_compose_fps F H = 0 \<longleftrightarrow> F = 0"
+  using assms fls_base_factor_to_fps_nonzero[of F]
+  by (cases "F = 0") (auto simp: fls_compose_fps_def fps_compose_eq_0_iff)
+
+lemma fls_compose_fps_inverse:
+  assumes [simp]: "H \<noteq> 0" "fps_nth H 0 = 0"
+  shows   "fls_compose_fps (inverse F) H = inverse (fls_compose_fps F H)"
+proof (cases "F = 0")
+  case False
+  have "fls_compose_fps (inverse F) H * fls_compose_fps F H =
+        fls_compose_fps (inverse F * F) H"
+    by (subst fls_compose_fps_mult) auto
+  also have "inverse F * F = 1"
+    using False by simp
+  finally show ?thesis
+    using False by (simp add: field_simps fls_compose_fps_eq_0_iff)
+qed auto
+
+lemma fls_compose_fps_divide:
+  assumes [simp]: "H \<noteq> 0" "fps_nth H 0 = 0"
+  shows   "fls_compose_fps (F / G) H = fls_compose_fps F H / fls_compose_fps G H"
+  using fls_compose_fps_mult[of H F "inverse G"] fls_compose_fps_inverse[of H G]
+  by (simp add: field_simps)
+
+lemma fls_compose_fps_powi:
+  assumes [simp]: "H \<noteq> 0" "fps_nth H 0 = 0"
+  shows   "fls_compose_fps (F powi n) H = fls_compose_fps F H powi n"
+  by (simp add: power_int_def fls_compose_fps_power fls_compose_fps_inverse)
+
+lemma fls_compose_fps_assoc:
+  assumes [simp]: "G \<noteq> 0" "fps_nth G 0 = 0" "H \<noteq> 0" "fps_nth H 0 = 0"
+  shows "fls_compose_fps (fls_compose_fps F G) H = fls_compose_fps F (fps_compose G H)"
+proof (cases "F = 0")
+  case [simp]: False
+  define n where "n = fls_subdegree F"
+  define F' where "F' = fls_regpart (fls_shift n F)"
+  have F_eq: "F = fls_shift (-n) (fps_to_fls F')"
+    by (simp add: F'_def n_def)
+  show ?thesis
+    by (simp add: F_eq fls_compose_fps_shift fls_compose_fps_mult fls_compose_fps_powi
+                  fps_compose_eq_0_iff fps_compose_assoc)
+qed auto
+
+lemma subdegree_pos_iff: "subdegree F > 0 \<longleftrightarrow> F \<noteq> 0 \<and> fps_nth F 0 = 0"
+  using subdegree_eq_0_iff[of F] by auto
+
+lemma has_fps_expansion_fps_to_fls:
+  assumes "f has_laurent_expansion fps_to_fls F"
+  shows   "(\<lambda>z. if z = 0 then fps_nth F 0 else f z) has_fps_expansion F"
+  (is "?f' has_fps_expansion _")
+proof -
+  have "f has_laurent_expansion fps_to_fls F \<longleftrightarrow> ?f' has_laurent_expansion fps_to_fls F"
+    by (intro has_laurent_expansion_cong) (auto simp: eventually_at_filter)
+  with assms show ?thesis
+    by (auto simp: has_fps_expansion_to_laurent)
+qed
+
+
+lemma has_laurent_expansion_compose [laurent_expansion_intros]:
+  fixes f g :: "complex \<Rightarrow> complex"
+  assumes F: "f has_laurent_expansion F"
+  assumes G: "g has_laurent_expansion fps_to_fls G" "fps_nth G 0 = 0" "G \<noteq> 0"
+  shows   "(f \<circ> g) has_laurent_expansion fls_compose_fps F G"
+proof -
+  from assms have lim_g: "g \<midarrow>0\<rightarrow> 0"
+    by (subst tendsto_0_subdegree_iff_0[OF G(1)])
+       (auto simp: fls_subdegree_fls_to_fps subdegree_pos_iff)
+  have ev1: "eventually (\<lambda>z. g z \<noteq> 0) (at 0)"
+    using \<open>G \<noteq> 0\<close> G(1) fps_to_fls_eq_0_iff has_laurent_expansion_fps
+           has_laurent_expansion_nonzero_imp_eventually_nonzero by blast
+  moreover have "eventually (\<lambda>z. z \<noteq> 0) (at (0 :: complex))"
+    by (auto simp: eventually_at_filter)
+  ultimately have ev: "eventually (\<lambda>z. z \<noteq> 0 \<and> g z \<noteq> 0) (at 0)"
+    by eventually_elim blast
+  from ev1 and lim_g have lim_g': "filterlim g (at 0) (at 0)"
+    by (auto simp: filterlim_at)
+  define g' where "g' = (\<lambda>z. if z = 0 then fps_nth G 0 else g z)"
+
+  show ?thesis
+  proof (cases "F = 0")
+    assume [simp]: "F = 0"
+    have "eventually (\<lambda>z. f z = 0) (at 0)"
+      using F by (auto simp: has_laurent_expansion_def)
+    hence "eventually (\<lambda>z. f (g z) = 0) (at 0)"
+      using lim_g' by (rule eventually_compose_filterlim)
+    thus ?thesis
+      by (auto simp: has_laurent_expansion_def)
+  next
+    assume [simp]: "F \<noteq> 0"
+    define n where "n = fls_subdegree F"
+    define f' where
+      "f' = (\<lambda>z. if z = 0 then fps_nth (fls_base_factor_to_fps F) 0 else f z * z powi -n)"
+    have "((\<lambda>z. (f' \<circ> g') z * g z powi n)) has_laurent_expansion fls_compose_fps F G"
+      unfolding f'_def n_def fls_compose_fps_def g'_def
+      by (intro fps_expansion_intros laurent_expansion_intros has_fps_expansion_fps_to_fls
+                has_fps_expansion_fls_base_factor_to_fps assms has_laurent_expansion_fps)
+    also have "?this \<longleftrightarrow> ?thesis"
+      by (intro has_laurent_expansion_cong eventually_mono[OF ev])
+         (auto simp: f'_def power_int_minus g'_def)
+    finally show ?thesis .
+  qed
+qed
+
+lemma has_laurent_expansion_fls_X_inv [laurent_expansion_intros]:
+  "inverse has_laurent_expansion fls_X_inv"
+  using has_laurent_expansion_inverse[OF has_laurent_expansion_fps_X]
+  by (simp add: fls_inverse_X)
+
+lemma fls_X_power_int [simp]: "fls_X powi n = (fls_X_intpow n :: 'a :: division_ring fls)"
+  by (auto simp: power_int_def fls_X_power_conv_shift_1 fls_inverse_X fls_inverse_shift
+           simp flip: fls_inverse_X_power)
+
+lemma fls_const_power_int: "fls_const (c powi n) = fls_const (c :: 'a :: division_ring) powi n"
+  by (auto simp: power_int_def fls_const_power fls_inverse_const)
+
+lemma fls_nth_fls_compose_fps_linear:
+  fixes c :: "'a :: field"
+  assumes [simp]: "c \<noteq> 0"
+  shows "fls_nth (fls_compose_fps F (fps_const c * fps_X)) n = fls_nth F n * c powi n"
+proof -
+  {
+    assume *: "n \<ge> fls_subdegree F"
+    hence "c ^ nat (n - fls_subdegree F) = c powi int (nat (n - fls_subdegree F))"
+      by (simp add: power_int_def)
+    also have "\<dots> * c powi fls_subdegree F = c powi (int (nat (n - fls_subdegree F)) + fls_subdegree F)"
+      using * by (subst power_int_add) auto
+    also have "\<dots> = c powi n"
+      using * by simp
+    finally have "c ^ nat (n - fls_subdegree F) * c powi fls_subdegree F = c powi n" .
+  }
+  thus ?thesis
+    by (simp add: fls_compose_fps_def fps_compose_linear fls_times_fps_to_fls power_int_mult_distrib
+                  fls_shifted_times_simps
+             flip: fls_const_power_int)
+qed
+
+lemma zorder_times_analytic:
+  assumes "f analytic_on {z}" "g analytic_on {z}"
+  assumes "eventually (\<lambda>z. f z * g z \<noteq> 0) (at z)"
+  shows   "zorder (\<lambda>z. f z * g z) z = zorder f z + zorder g z"
+proof -
+  have *: "(\<lambda>w. f (z + w)) has_fps_expansion fps_expansion f z"
+          "(\<lambda>w. g (z + w)) has_fps_expansion fps_expansion g z"
+          "(\<lambda>w. f (z + w) * g (z + w)) has_fps_expansion fps_expansion f z * fps_expansion g z"
+    by (intro fps_expansion_intros analytic_at_imp_has_fps_expansion assms)+
+  have [simp]: "fps_expansion f z \<noteq> 0"
+  proof
+    assume "fps_expansion f z = 0"
+    hence "eventually (\<lambda>z. f z * g z = 0) (at z)" using *(1)
+      by (auto simp: has_fps_expansion_0_iff nhds_to_0' eventually_filtermap eventually_at_filter
+               elim: eventually_mono)
+    with assms(3) have "eventually (\<lambda>z. False) (at z)"
+      by eventually_elim auto
+    thus False by simp
+  qed
+  have [simp]: "fps_expansion g z \<noteq> 0"
+  proof
+    assume "fps_expansion g z = 0"
+    hence "eventually (\<lambda>z. f z * g z = 0) (at z)" using *(2)
+      by (auto simp: has_fps_expansion_0_iff nhds_to_0' eventually_filtermap eventually_at_filter
+               elim: eventually_mono)
+    with assms(3) have "eventually (\<lambda>z. False) (at z)"
+      by eventually_elim auto
+    thus False by simp
+  qed
+  from *[THEN has_fps_expansion_zorder] show ?thesis
+    by auto
+qed
+
+lemma analytic_on_prod [analytic_intros]:
+  assumes "\<And>x. x \<in> A \<Longrightarrow> f x analytic_on B"
+  shows   "(\<lambda>z. \<Prod>x\<in>A. f x z) analytic_on B"
+  using assms by (induction A rule: infinite_finite_induct) (auto intro!: analytic_intros)
+
+lemma zorder_const [simp]: "c \<noteq> 0 \<Longrightarrow> zorder (\<lambda>_. c) z = 0"
+  by (intro zorder_eqI[where s = UNIV]) auto
+
+lemma zorder_prod_analytic:
+  assumes "\<And>x. x \<in> A \<Longrightarrow> f x analytic_on {z}"
+  assumes "eventually (\<lambda>z. (\<Prod>x\<in>A. f x z) \<noteq> 0) (at z)"
+  shows   "zorder (\<lambda>z. \<Prod>x\<in>A. f x z) z = (\<Sum>x\<in>A. zorder (f x) z)"
+  using assms
+proof (induction A rule: infinite_finite_induct)
+  case (insert x A)
+  have "zorder (\<lambda>z. f x z * (\<Prod>x\<in>A. f x z)) z = zorder (f x) z + zorder (\<lambda>z. \<Prod>x\<in>A. f x z) z"
+    using insert.prems insert.hyps by (intro zorder_times_analytic analytic_intros) auto
+  also have "zorder (\<lambda>z. \<Prod>x\<in>A. f x z) z = (\<Sum>x\<in>A. zorder (f x) z)"
+    using insert.prems insert.hyps by (intro insert.IH) (auto elim!: eventually_mono)
+  finally show ?case using insert
+    by simp
+qed auto
+
+lemma zorder_eq_0I:
+  assumes "g analytic_on {z}" "g z \<noteq> 0"
+  shows   "zorder g z = 0"
+proof -
+  from assms obtain r where r: "r > 0" "g holomorphic_on ball z r"
+    unfolding analytic_on_def by blast
+  thus ?thesis using assms
+    by (intro zorder_eqI[of "ball z r" _ g]) auto
+qed
+
+lemma zorder_pos_iff:
+  assumes "f holomorphic_on A" "open A" "z \<in> A" "frequently (\<lambda>z. f z \<noteq> 0) (at z)"
+  shows   "zorder f z > 0 \<longleftrightarrow> f z = 0"
+proof -
+  have "f analytic_on {z}"
+    using assms analytic_at by blast
+  hence *: "(\<lambda>w. f (z + w)) has_fps_expansion fps_expansion f z"
+    using analytic_at_imp_has_fps_expansion by blast
+  have nz: "fps_expansion f z \<noteq> 0"
+  proof
+    assume "fps_expansion f z = 0"
+    hence "eventually (\<lambda>z. f z = 0) (nhds z)"
+      using * by (auto simp: has_fps_expansion_def nhds_to_0' eventually_filtermap add_ac)
+    hence "eventually (\<lambda>z. f z = 0) (at z)"
+      by (auto simp: eventually_at_filter elim: eventually_mono)
+    with assms show False
+      by (auto simp: frequently_def)
+  qed
+  from has_fps_expansion_zorder[OF * this] have eq: "zorder f z = int (subdegree (fps_expansion f z))"
+    by auto
+  moreover have "subdegree (fps_expansion f z) = 0 \<longleftrightarrow> fps_nth (fps_expansion f z) 0 \<noteq> 0"
+    using nz by (auto simp: subdegree_eq_0_iff)
+  moreover have "fps_nth (fps_expansion f z) 0 = f z"
+    by (auto simp: fps_expansion_def)
+  ultimately show ?thesis
+    by auto
+qed
+
+lemma zorder_pos_iff':
+  assumes "f analytic_on {z}" "frequently (\<lambda>z. f z \<noteq> 0) (at z)"
+  shows   "zorder f z > 0 \<longleftrightarrow> f z = 0"
+proof -
+  from assms(1) obtain A where A: "open A" "{z} \<subseteq> A" "f holomorphic_on A"
+    unfolding analytic_on_holomorphic by auto
+  with zorder_pos_iff [OF A(3,1), of z] assms show ?thesis
+    by auto
+qed
+
+lemma zorder_ge_0:
+  assumes "f analytic_on {z}" "frequently (\<lambda>z. f z \<noteq> 0) (at z)"
+  shows   "zorder f z \<ge> 0"
+proof -
+  have *: "(\<lambda>w. f (z + w)) has_laurent_expansion fps_to_fls (fps_expansion f z)"
+    using assms by (simp add: analytic_at_imp_has_fps_expansion has_laurent_expansion_fps)
+  from * assms(2) have "fps_to_fls (fps_expansion f z) \<noteq> 0"
+    by (auto simp: has_laurent_expansion_def frequently_def at_to_0' eventually_filtermap add_ac)
+  with has_laurent_expansion_zorder[OF *] show ?thesis
+    by (simp add: fls_subdegree_fls_to_fps)
+qed
+
+lemma zorder_eq_0_iff:
+  assumes "f analytic_on {z}" "frequently (\<lambda>w. f w \<noteq> 0) (at z)"
+  shows   "zorder f z = 0 \<longleftrightarrow> f z \<noteq> 0"
+proof
+  assume "f z \<noteq> 0"
+  thus "zorder f z = 0"
+    using assms zorder_eq_0I by blast
+next
+  assume "zorder f z = 0"
+  thus "f z \<noteq> 0"
+    using assms zorder_pos_iff' by fastforce
+qed
+
+lemma dist_mult_left:
+  "dist (a * b) (a * c :: 'a :: real_normed_field) = norm a * dist b c"
+  unfolding dist_norm right_diff_distrib [symmetric] norm_mult by simp
+
+lemma dist_mult_right:
+  "dist (b * a) (c * a :: 'a :: real_normed_field) = norm a * dist b c"
+  using dist_mult_left[of a b c] by (simp add: mult_ac)
+
+lemma zorder_scale:
+  assumes "f analytic_on {a * z}" "eventually (\<lambda>w. f w \<noteq> 0) (at (a * z))" "a \<noteq> 0"
+  shows "zorder (\<lambda>w. f (a * w)) z = zorder f (a * z)"
+proof -
+  from assms(1) obtain r where r: "r > 0" "f holomorphic_on ball (a * z) r"
+    by (auto simp: analytic_on_def)
+  have *: "open (ball (a * z) r)" "connected (ball (a * z) r)" "a * z \<in> ball (a * z) r"
+    using r \<open>a \<noteq> 0\<close> by (auto simp: dist_norm)
+  from assms(2) have "eventually (\<lambda>w. f w \<noteq> 0 \<and> w \<in> ball (a * z) r - {a * z}) (at (a * z))"
+    using \<open>r > 0\<close> by (intro eventually_conj eventually_at_in_open) auto
+  then obtain z0 where "f z0 \<noteq> 0 \<and> z0 \<in> ball (a * z) r - {a * z}"
+    using eventually_happens[of _ "at (a * z)"] by force
+  hence **: "\<exists>w\<in>ball (a * z) r. f w \<noteq> 0"
+    by blast
+
+  define n where "n = nat (zorder f (a * z))"
+  obtain r' where r':
+     "(if f (a * z) = 0 then 0 < zorder f (a * z) else zorder f (a * z) = 0)"
+     "r' > 0" "cball (a * z) r' \<subseteq> ball (a * z) r" "zor_poly f (a * z) holomorphic_on cball (a * z) r'"
+     "\<And>w. w \<in> cball (a * z) r' \<Longrightarrow>
+        f w = zor_poly f (a * z) w * (w - a * z) ^ n \<and> zor_poly f (a * z) w \<noteq> 0"
+    unfolding n_def using zorder_exist_zero[OF r(2) * **] by blast
+
+  show ?thesis
+  proof (rule zorder_eqI)
+    show "open (ball z (r' / norm a))" "z \<in> ball z (r' / norm a)"
+      using r \<open>r' > 0\<close> \<open>a \<noteq> 0\<close> by auto
+    have "(*) a ` ball z (r' / cmod a) \<subseteq> cball (a * z) r'"
+    proof safe
+      fix w assume "w \<in> ball z (r' / cmod a)"
+      thus "a * w \<in> cball (a * z) r'"
+        using dist_mult_left[of a z w] \<open>a \<noteq> 0\<close> by (auto simp: divide_simps mult_ac)
+    qed
+    thus "(\<lambda>w. a ^ n * (zor_poly f (a * z) \<circ> (\<lambda>w. a * w)) w) holomorphic_on ball z (r' / norm a)"
+      using \<open>a \<noteq> 0\<close> by (intro holomorphic_on_compose_gen[OF _ r'(4)] holomorphic_intros) auto
+    show "a ^ n * (zor_poly f (a * z) \<circ> (\<lambda>w. a * w)) z \<noteq> 0"
+      using r' \<open>a \<noteq> 0\<close> by auto
+    show "f (a * w) = a ^ n * (zor_poly f (a * z) \<circ> (*) a) w * (w - z) powr of_int (zorder f (a * z))"
+      if "w \<in> ball z (r' / norm a)" "w \<noteq> z" for w
+    proof -
+      have "f (a * w) = zor_poly f (a * z) (a * w) * (a * (w - z)) ^ n"
+        using that r'(5)[of "a * w"] dist_mult_left[of a z w] \<open>a \<noteq> 0\<close> unfolding ring_distribs
+        by (auto simp: divide_simps mult_ac)
+      also have "\<dots> = a ^ n * zor_poly f (a * z) (a * w) * (w - z) ^ n"
+        by (subst power_mult_distrib) (auto simp: mult_ac)
+      also have "(w - z) ^ n = (w - z) powr of_nat n"
+        using \<open>w \<noteq> z\<close> by (subst powr_nat') auto
+      also have "of_nat n = of_int (zorder f (a * z))"
+        using r'(1) by (auto simp: n_def split: if_splits)
+      finally show ?thesis
+        unfolding o_def n_def .
+    qed
+  qed
+qed
+
+lemma subdegree_fps_compose [simp]:
+  fixes F G :: "'a :: idom fps"
+  assumes [simp]: "fps_nth G 0 = 0"
+  shows "subdegree (fps_compose F G) = subdegree F * subdegree G"
+proof (cases "G = 0"; cases "F = 0")
+  assume [simp]: "G \<noteq> 0" "F \<noteq> 0"
+  define m where "m = subdegree F"
+  define F' where "F' = fps_shift m F"
+  have F_eq: "F = F' * fps_X ^ m"
+    unfolding F'_def by (simp add: fps_shift_times_fps_X_power m_def)
+  have [simp]: "F' \<noteq> 0"
+    using \<open>F \<noteq> 0\<close> unfolding F_eq by auto
+  have "subdegree (fps_compose F G) = subdegree (fps_compose F' G) + m * subdegree G"
+    by (simp add: F_eq fps_compose_mult_distrib fps_compose_eq_0_iff flip: fps_compose_power)
+  also have "subdegree (fps_compose F' G) = 0"
+    by (intro subdegree_eq_0) (auto simp: F'_def m_def)
+  finally show ?thesis by (simp add: m_def)
+qed auto
+
+lemma fls_subdegree_power_int [simp]:
+  fixes   F :: "'a :: field fls"
+  shows "fls_subdegree (F powi n) = n * fls_subdegree F"
+  by (auto simp: power_int_def fls_subdegree_pow)
+
+lemma subdegree_fls_compose_fps [simp]:
+  fixes G :: "'a :: field fps"
+  assumes [simp]: "fps_nth G 0 = 0"
+  shows "fls_subdegree (fls_compose_fps F G) = fls_subdegree F * subdegree G"
+proof (cases "F = 0"; cases "G = 0")
+  assume [simp]: "G \<noteq> 0" "F \<noteq> 0"
+  have nz1: "fls_base_factor_to_fps F \<noteq> 0"
+    using \<open>F \<noteq> 0\<close> fls_base_factor_to_fps_nonzero by blast
+  show ?thesis
+    unfolding fls_compose_fps_def using nz1
+    by (subst fls_subdegree_mult) (simp_all add: fps_compose_eq_0_iff fls_subdegree_fls_to_fps)
+qed (auto simp: fls_compose_fps_0_right)
+
+lemma zorder_compose_aux:
+  assumes "isolated_singularity_at f 0" "not_essential f 0"
+  assumes G: "g has_fps_expansion G" "G \<noteq> 0" "g 0 = 0"
+  assumes "eventually (\<lambda>w. f w \<noteq> 0) (at 0)"
+  shows   "zorder (f \<circ> g) 0 = zorder f 0 * subdegree G"
+proof -
+  obtain F where F: "f has_laurent_expansion F"
+    using not_essential_has_laurent_expansion_0[OF assms(1,2)] by blast
+  have [simp]: "fps_nth G 0 = 0"
+   using G \<open>g 0 = 0\<close> by (simp add: has_fps_expansion_imp_0_eq_fps_nth_0)
+  note [simp] = \<open>G \<noteq> 0\<close> \<open>g 0 = 0\<close>
+  have [simp]: "F \<noteq> 0"
+    using has_laurent_expansion_eventually_nonzero_iff[of f 0 F] F assms by simp
+  have FG: "(f \<circ> g) has_laurent_expansion fls_compose_fps F G"
+    by (intro has_laurent_expansion_compose has_laurent_expansion_fps F G) auto
+
+  have "zorder (f \<circ> g) 0 = fls_subdegree (fls_compose_fps F G)"
+    using has_laurent_expansion_zorder_0 [OF FG] by (auto simp: fls_compose_fps_eq_0_iff)
+  also have "\<dots> = fls_subdegree F * int (subdegree G)"
+    by simp
+  also have "fls_subdegree F = zorder f 0"
+    using has_laurent_expansion_zorder_0 [OF F] by auto
+  finally show ?thesis .
+qed
+
+lemma zorder_compose:
+  assumes "isolated_singularity_at f (g z)" "not_essential f (g z)"
+  assumes G: "(\<lambda>x. g (z + x) - g z) has_fps_expansion G" "G \<noteq> 0"
+  assumes "eventually (\<lambda>w. f w \<noteq> 0) (at (g z))"
+  shows   "zorder (f \<circ> g) z = zorder f (g z) * subdegree G"
+proof -
+  define f' where "f' = (\<lambda>w. f (g z + w))"
+  define g' where "g' = (\<lambda>w. g (z + w) - g z)"
+  have "zorder f (g z) = zorder f' 0"
+    by (simp add: f'_def zorder_shift' add_ac)
+  have "zorder (\<lambda>x. g x - g z) z = zorder g' 0"
+    by (simp add: g'_def zorder_shift' add_ac)
+  have "zorder (f \<circ> g) z = zorder (f' \<circ> g') 0"
+    by (simp add: zorder_shift' f'_def g'_def add_ac o_def)
+  also have "\<dots> = zorder f' 0 * int (subdegree G)"
+  proof (rule zorder_compose_aux)
+    show "isolated_singularity_at f' 0" unfolding f'_def
+      using assms has_laurent_expansion_isolated_0 not_essential_has_laurent_expansion by blast
+    show "not_essential f' 0" unfolding f'_def
+      using assms has_laurent_expansion_not_essential_0 not_essential_has_laurent_expansion by blast
+  qed (use assms in \<open>auto simp: f'_def g'_def at_to_0' eventually_filtermap add_ac\<close>)
+  also have "zorder f' 0 = zorder f (g z)"
+    by (simp add: f'_def zorder_shift' add_ac)
+  finally show ?thesis .
+qed
+
+lemma fps_to_fls_eq_fls_const_iff [simp]: "fps_to_fls F = fls_const c \<longleftrightarrow> F = fps_const c"
+proof
+  assume "F = fps_const c"
+  thus "fps_to_fls F = fls_const c"
+    by simp
+next
+  assume "fps_to_fls F = fls_const c"
+  thus "F = fps_const c"
+    by (metis fls_regpart_const fls_regpart_fps_trivial)
+qed
+
+lemma zorder_compose':
+  assumes "isolated_singularity_at f (g z)" "not_essential f (g z)"
+  assumes "g analytic_on {z}"
+  assumes "eventually (\<lambda>w. f w \<noteq> 0) (at (g z))"
+  assumes "eventually (\<lambda>w. g w \<noteq> g z) (at z)"
+  shows   "zorder (f \<circ> g) z = zorder f (g z) * zorder (\<lambda>x. g x - g z) z"
+proof -
+  obtain G where G [fps_expansion_intros]: "(\<lambda>x. g (z + x)) has_fps_expansion G"
+    using assms analytic_at_imp_has_fps_expansion by blast
+  have G': "(\<lambda>x. g (z + x) - g z) has_fps_expansion G - fps_const (g z)"
+    by (intro fps_expansion_intros)
+  hence G'': "(\<lambda>x. g (z + x) - g z) has_laurent_expansion fps_to_fls (G - fps_const (g z))"
+    using has_laurent_expansion_fps by blast
+  have nz: "G - fps_const (g z) \<noteq> 0"
+    using has_laurent_expansion_eventually_nonzero_iff[OF G''] assms by auto
+  have "zorder (f \<circ> g) z = zorder f (g z) * subdegree (G - fps_const (g z))"
+  proof (rule zorder_compose)
+    show "(\<lambda>x. g (z + x) - g z) has_fps_expansion G - fps_const (g z)"
+      by (intro fps_expansion_intros)
+  qed (use assms nz in auto)
+  also have "int (subdegree (G - fps_const (g z))) = fls_subdegree (fps_to_fls G - fls_const (g z))"
+    by (simp flip: fls_subdegree_fls_to_fps)
+  also have "\<dots> = zorder (\<lambda>x. g x - g z) z"
+    using has_laurent_expansion_zorder [OF G''] nz by auto
+  finally show ?thesis .
+qed
+
+lemma analytic_at_cong:
+  assumes "eventually (\<lambda>x. f x = g x) (nhds x)" "x = y"
+  shows "f analytic_on {x} \<longleftrightarrow> g analytic_on {y}"
+proof -
+  have "g analytic_on {x}" if "f analytic_on {x}" "eventually (\<lambda>x. f x = g x) (nhds x)" for f g
+  proof -
+    have "(\<lambda>y. f (x + y)) has_fps_expansion fps_expansion f x"
+      by (rule analytic_at_imp_has_fps_expansion) fact
+    also have "?this \<longleftrightarrow> (\<lambda>y. g (x + y)) has_fps_expansion fps_expansion f x"
+      using that by (intro has_fps_expansion_cong refl) (auto simp: nhds_to_0' eventually_filtermap)
+    finally show ?thesis
+      by (rule has_fps_expansion_imp_analytic)
+  qed
+  from this[of f g] this[of g f] show ?thesis using assms
+    by (auto simp: eq_commute)
+qed
+
+
+lemma has_laurent_expansion_sin' [laurent_expansion_intros]:
+  "sin has_laurent_expansion fps_to_fls (fps_sin 1)"
+  using has_fps_expansion_sin' has_fps_expansion_to_laurent by blast
+
+lemma has_laurent_expansion_cos' [laurent_expansion_intros]:
+  "cos has_laurent_expansion fps_to_fls (fps_cos 1)"
+  using has_fps_expansion_cos' has_fps_expansion_to_laurent by blast
+
+lemma has_laurent_expansion_sin [laurent_expansion_intros]:
+  "(\<lambda>z. sin (c * z)) has_laurent_expansion fps_to_fls (fps_sin c)"
+  by (intro has_laurent_expansion_fps has_fps_expansion_sin)
+
+lemma has_laurent_expansion_cos [laurent_expansion_intros]:
+  "(\<lambda>z. cos (c * z)) has_laurent_expansion fps_to_fls (fps_cos c)"
+  by (intro has_laurent_expansion_fps has_fps_expansion_cos)
+
+lemma has_laurent_expansion_tan' [laurent_expansion_intros]:
+  "tan has_laurent_expansion fps_to_fls (fps_tan 1)"
+  using has_fps_expansion_tan' has_fps_expansion_to_laurent by blast
+
+lemma has_laurent_expansion_tan [laurent_expansion_intros]:
+  "(\<lambda>z. tan (c * z)) has_laurent_expansion fps_to_fls (fps_tan c)"
+  by (intro has_laurent_expansion_fps has_fps_expansion_tan)
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Complex_Analysis/Meromorphic.thy	Mon Feb 20 13:59:42 2023 +0100
@@ -0,0 +1,2333 @@
+theory Meromorphic
+  imports Laurent_Convergence Riemann_Mapping
+begin
+
+lemma analytic_at_cong:
+  assumes "eventually (\<lambda>x. f x = g x) (nhds x)" "x = y"
+  shows "f analytic_on {x} \<longleftrightarrow> g analytic_on {y}"
+proof -
+  have "g analytic_on {x}" if "f analytic_on {x}" "eventually (\<lambda>x. f x = g x) (nhds x)" for f g
+  proof -
+    have "(\<lambda>y. f (x + y)) has_fps_expansion fps_expansion f x"
+      by (rule analytic_at_imp_has_fps_expansion) fact
+    also have "?this \<longleftrightarrow> (\<lambda>y. g (x + y)) has_fps_expansion fps_expansion f x"
+      using that by (intro has_fps_expansion_cong refl) (auto simp: nhds_to_0' eventually_filtermap)
+    finally show ?thesis
+      by (rule has_fps_expansion_imp_analytic)
+  qed
+  from this[of f g] this[of g f] show ?thesis using assms
+    by (auto simp: eq_commute)
+qed
+
+definition remove_sings :: "(complex \<Rightarrow> complex) \<Rightarrow> complex \<Rightarrow> complex" where
+  "remove_sings f z = (if \<exists>c. f \<midarrow>z\<rightarrow> c then Lim (at z) f else 0)"
+
+lemma remove_sings_eqI [intro]:
+  assumes "f \<midarrow>z\<rightarrow> c"
+  shows   "remove_sings f z = c"
+  using assms unfolding remove_sings_def by (auto simp: tendsto_Lim)
+
+lemma remove_sings_at_analytic [simp]:
+  assumes "f analytic_on {z}"
+  shows   "remove_sings f z = f z"
+  using assms by (intro remove_sings_eqI) (simp add: analytic_at_imp_isCont isContD)
+
+lemma remove_sings_at_pole [simp]:
+  assumes "is_pole f z"
+  shows   "remove_sings f z = 0"
+  using assms unfolding remove_sings_def is_pole_def
+  by (meson at_neq_bot not_tendsto_and_filterlim_at_infinity)
+
+lemma eventually_remove_sings_eq_at:
+  assumes "isolated_singularity_at f z"
+  shows   "eventually (\<lambda>w. remove_sings f w = f w) (at z)"
+proof -
+  from assms obtain r where r: "r > 0" "f analytic_on ball z r - {z}"
+    by (auto simp: isolated_singularity_at_def)
+  hence *: "f analytic_on {w}" if "w \<in> ball z r - {z}" for w
+    using r that by (auto intro: analytic_on_subset)
+  have "eventually (\<lambda>w. w \<in> ball z r - {z}) (at z)"
+    using r by (intro eventually_at_in_open) auto
+  thus ?thesis
+    by eventually_elim (auto simp: remove_sings_at_analytic *)
+qed
+
+lemma eventually_remove_sings_eq_nhds:
+  assumes "f analytic_on {z}"
+  shows   "eventually (\<lambda>w. remove_sings f w = f w) (nhds z)"
+proof -
+  from assms obtain A where A: "open A" "z \<in> A" "f holomorphic_on A"
+    by (auto simp: analytic_at)
+  have "eventually (\<lambda>z. z \<in> A) (nhds z)"
+    by (intro eventually_nhds_in_open A)
+  thus ?thesis
+  proof eventually_elim
+    case (elim w)
+    from elim have "f analytic_on {w}"
+      using A analytic_at by blast
+    thus ?case by auto
+  qed
+qed
+
+lemma remove_sings_compose:
+  assumes "filtermap g (at z) = at z'"
+  shows   "remove_sings (f \<circ> g) z = remove_sings f z'"
+proof (cases "\<exists>c. f \<midarrow>z'\<rightarrow> c")
+  case True
+  then obtain c where c: "f \<midarrow>z'\<rightarrow> c"
+    by auto
+  from c have "remove_sings f z' = c"
+    by blast
+  moreover from c have "remove_sings (f \<circ> g) z = c"
+    using c by (intro remove_sings_eqI) (auto simp: filterlim_def filtermap_compose assms)
+  ultimately show ?thesis
+    by simp
+next
+  case False
+  hence "\<not>(\<exists>c. (f \<circ> g) \<midarrow>z\<rightarrow> c)"
+    by (auto simp: filterlim_def filtermap_compose assms)
+  with False show ?thesis
+    by (auto simp: remove_sings_def)
+qed
+
+lemma remove_sings_cong:
+  assumes "eventually (\<lambda>x. f x = g x) (at z)" "z = z'"
+  shows   "remove_sings f z = remove_sings g z'"
+proof (cases "\<exists>c. f \<midarrow>z\<rightarrow> c")
+  case True
+  then obtain c where c: "f \<midarrow>z\<rightarrow> c" by blast
+  hence "remove_sings f z = c"
+    by blast
+  moreover have "f \<midarrow>z\<rightarrow> c \<longleftrightarrow> g \<midarrow>z'\<rightarrow> c"
+    using assms by (intro filterlim_cong refl) auto
+  with c have "remove_sings g z' = c"
+    by (intro remove_sings_eqI) auto
+  ultimately show ?thesis
+    by simp
+next
+  case False
+  have "f \<midarrow>z\<rightarrow> c \<longleftrightarrow> g \<midarrow>z'\<rightarrow> c" for c
+    using assms by (intro filterlim_cong) auto
+  with False show ?thesis
+    by (auto simp: remove_sings_def)
+qed
+
+
+lemma deriv_remove_sings_at_analytic [simp]:
+  assumes "f analytic_on {z}"
+  shows   "deriv (remove_sings f) z = deriv f z"
+  apply (rule deriv_cong_ev)
+  apply (rule eventually_remove_sings_eq_nhds)
+  using assms by auto
+
+lemma isolated_singularity_at_remove_sings [simp, intro]:
+  assumes "isolated_singularity_at f z"
+  shows   "isolated_singularity_at (remove_sings f) z"
+  using isolated_singularity_at_cong[OF eventually_remove_sings_eq_at[OF assms] refl] assms
+  by simp
+
+lemma not_essential_remove_sings_iff [simp]:
+  assumes "isolated_singularity_at f z"
+  shows   "not_essential (remove_sings f) z \<longleftrightarrow> not_essential f z"
+  using not_essential_cong[OF eventually_remove_sings_eq_at[OF assms(1)] refl]
+  by simp
+
+lemma not_essential_remove_sings [intro]:
+  assumes "isolated_singularity_at f z" "not_essential f z"
+  shows   "not_essential (remove_sings f) z"
+  by (subst not_essential_remove_sings_iff) (use assms in auto)
+
+lemma
+  assumes "isolated_singularity_at f z"
+  shows is_pole_remove_sings_iff [simp]:
+        "is_pole (remove_sings f) z \<longleftrightarrow> is_pole f z"
+  and zorder_remove_sings [simp]:
+        "zorder (remove_sings f) z = zorder f z"
+  and zor_poly_remove_sings [simp]:
+        "zor_poly (remove_sings f) z = zor_poly f z"
+  and has_laurent_expansion_remove_sings_iff [simp]:
+        "(\<lambda>w. remove_sings f (z + w)) has_laurent_expansion F \<longleftrightarrow>
+         (\<lambda>w. f (z + w)) has_laurent_expansion F"
+  and tendsto_remove_sings_iff [simp]:
+        "remove_sings f \<midarrow>z\<rightarrow> c \<longleftrightarrow> f \<midarrow>z\<rightarrow> c"
+  by (intro is_pole_cong eventually_remove_sings_eq_at refl zorder_cong
+            zor_poly_cong has_laurent_expansion_cong' tendsto_cong assms)+
+
+lemma get_all_poles_from_remove_sings:
+  fixes f:: "complex \<Rightarrow> complex"
+  defines "ff\<equiv>remove_sings f"
+  assumes f_holo:"f holomorphic_on s - pts" and "finite pts" 
+    "pts\<subseteq>s" "open s" and not_ess:"\<forall>x\<in>pts. not_essential f x"
+  obtains pts' where 
+    "pts' \<subseteq> pts" "finite pts'" "ff holomorphic_on s - pts'" "\<forall>x\<in>pts'. is_pole ff x"
+proof -
+  define pts' where "pts' = {x\<in>pts. is_pole f x}"
+
+  have "pts' \<subseteq> pts" unfolding pts'_def by auto
+  then have "finite pts'" using \<open>finite pts\<close> 
+    using rev_finite_subset by blast
+  then have "open (s - pts')" using \<open>open s\<close>
+    by (simp add: finite_imp_closed open_Diff)
+
+  have isolated:"isolated_singularity_at f z" if "z\<in>pts" for z
+  proof (rule isolated_singularity_at_holomorphic)
+    show "f holomorphic_on (s-(pts-{z})) - {z}" 
+      by (metis Diff_insert f_holo insert_Diff that)
+    show " open (s - (pts - {z}))" 
+      by (meson assms(3) assms(5) finite_Diff finite_imp_closed open_Diff)
+    show "z \<in> s - (pts - {z})" 
+      using assms(4) that by auto
+  qed
+
+  have "ff holomorphic_on s - pts'"
+  proof (rule no_isolated_singularity')
+    show "(ff \<longlongrightarrow> ff z) (at z within s - pts')" if "z \<in> pts-pts'" for z
+    proof -
+      have "at z within s - pts' = at z"
+        apply (rule at_within_open)
+        using \<open>open (s - pts')\<close> that \<open>pts\<subseteq>s\<close>  by auto
+      moreover have "ff \<midarrow>z\<rightarrow> ff z"
+        unfolding ff_def
+      proof (subst tendsto_remove_sings_iff)
+        show "isolated_singularity_at f z"
+          apply (rule isolated)
+          using that by auto
+        have "not_essential f z" 
+          using not_ess that by auto
+        moreover have "\<not>is_pole f z"
+          using that unfolding pts'_def by auto
+        ultimately have "\<exists>c. f \<midarrow>z\<rightarrow> c" 
+          unfolding not_essential_def by auto
+        then show "f \<midarrow>z\<rightarrow> remove_sings f z"
+          using remove_sings_eqI by blast
+      qed
+      ultimately show ?thesis by auto
+    qed
+    have "ff holomorphic_on s - pts"
+      using f_holo 
+    proof (elim holomorphic_transform)
+      fix x assume "x \<in> s - pts"
+      then have "f analytic_on {x}" 
+        using assms(3) assms(5) f_holo
+        by (meson finite_imp_closed 
+            holomorphic_on_imp_analytic_at open_Diff) 
+      from remove_sings_at_analytic[OF this]
+      show "f x = ff x" unfolding ff_def by auto 
+    qed
+    then show "ff holomorphic_on s - pts' - (pts - pts')"
+      apply (elim holomorphic_on_subset)
+      by blast
+    show "open (s - pts')" 
+      by (simp add: \<open>open (s - pts')\<close>)
+    show "finite (pts - pts')" 
+      by (simp add: assms(3))
+  qed
+  moreover have "\<forall>x\<in>pts'. is_pole ff x"
+    unfolding pts'_def 
+    using ff_def is_pole_remove_sings_iff isolated by blast
+  moreover note \<open>pts' \<subseteq> pts\<close> \<open>finite pts'\<close> 
+  ultimately show ?thesis using that by auto
+qed
+
+lemma remove_sings_eq_0_iff:
+  assumes "not_essential f w"
+  shows "remove_sings f w = 0 \<longleftrightarrow> is_pole f w \<or> f \<midarrow>w\<rightarrow> 0"
+proof (cases "is_pole f w")
+  case True
+  then show ?thesis by simp
+next
+  case False
+  then obtain c where c:"f \<midarrow>w\<rightarrow> c"
+    using \<open>not_essential f w\<close> unfolding not_essential_def by auto
+  then show ?thesis 
+    using False remove_sings_eqI by auto
+qed
+
+definition meromorphic_on:: "[complex \<Rightarrow> complex, complex set, complex set] \<Rightarrow> bool" 
+  ("_ (meromorphic'_on) _ _" [50,50,50]50) where 
+  "f meromorphic_on D pts \<equiv> 
+     open D \<and> pts \<subseteq> D \<and> (\<forall>z\<in>pts. isolated_singularity_at f z \<and> not_essential f z) \<and>
+     (\<forall>z\<in>D. \<not>(z islimpt pts)) \<and> (f holomorphic_on D-pts)"
+
+lemma meromorphic_imp_holomorphic: "f meromorphic_on D pts \<Longrightarrow> f holomorphic_on (D - pts)"
+  unfolding meromorphic_on_def by auto
+
+lemma meromorphic_imp_closedin_pts:
+  assumes "f meromorphic_on D pts"
+  shows "closedin (top_of_set D) pts"
+  by (meson assms closedin_limpt meromorphic_on_def)
+
+lemma meromorphic_imp_open_diff':
+  assumes "f meromorphic_on D pts" "pts' \<subseteq> pts"
+  shows "open (D - pts')"
+proof -
+  have "D - pts' = D - closure pts'"
+  proof safe
+    fix x assume x: "x \<in> D" "x \<in> closure pts'" "x \<notin> pts'"
+    hence "x islimpt pts'"
+      by (subst islimpt_in_closure) auto
+    hence "x islimpt pts"
+      by (rule islimpt_subset) fact
+    with assms x show False
+      by (auto simp: meromorphic_on_def)
+  qed (use closure_subset in auto)
+  then show ?thesis
+    using assms meromorphic_on_def by auto
+qed
+
+lemma meromorphic_imp_open_diff: "f meromorphic_on D pts \<Longrightarrow> open (D - pts)"
+  by (erule meromorphic_imp_open_diff') auto
+
+lemma meromorphic_pole_subset:
+  assumes merf: "f meromorphic_on D pts" 
+  shows "{x\<in>D. is_pole f x} \<subseteq> pts"
+  by (smt (verit) Diff_iff assms mem_Collect_eq meromorphic_imp_open_diff 
+      meromorphic_on_def not_is_pole_holomorphic subsetI)
+
+named_theorems meromorphic_intros
+
+lemma meromorphic_on_subset:
+  assumes "f meromorphic_on A pts" "open B" "B \<subseteq> A" "pts' = pts \<inter> B"
+  shows   "f meromorphic_on B pts'"
+  unfolding meromorphic_on_def
+proof (intro ballI conjI)
+  fix z assume "z \<in> B"
+  show "\<not>z islimpt pts'"
+  proof
+    assume "z islimpt pts'"
+    hence "z islimpt pts"
+      by (rule islimpt_subset) (use \<open>pts' = _\<close> in auto)
+    thus False using \<open>z \<in> B\<close> \<open>B \<subseteq> A\<close> assms(1)
+      by (auto simp: meromorphic_on_def)
+  qed
+qed (use assms in \<open>auto simp: meromorphic_on_def\<close>)
+
+lemma meromorphic_on_superset_pts:
+  assumes "f meromorphic_on A pts" "pts \<subseteq> pts'" "pts' \<subseteq> A" "\<forall>x\<in>A. \<not>x islimpt pts'"
+  shows   "f meromorphic_on A pts'"
+  unfolding meromorphic_on_def
+proof (intro conjI ballI impI)
+  fix z assume "z \<in> pts'"
+  from assms(1) have holo: "f holomorphic_on A - pts" and "open A"
+    unfolding meromorphic_on_def by blast+
+  have "open (A - pts)"
+    by (intro meromorphic_imp_open_diff[OF assms(1)])
+
+  show "isolated_singularity_at f z"
+  proof (cases "z \<in> pts")
+    case False
+    thus ?thesis
+      using \<open>open (A - pts)\<close> assms \<open>z \<in> pts'\<close>
+      by (intro isolated_singularity_at_holomorphic[of _ "A - pts"] holomorphic_on_subset[OF holo])
+         auto
+  qed (use assms in \<open>auto simp: meromorphic_on_def\<close>)
+
+  show "not_essential f z"
+  proof (cases "z \<in> pts")
+    case False
+    thus ?thesis
+      using \<open>open (A - pts)\<close> assms \<open>z \<in> pts'\<close>
+      by (intro not_essential_holomorphic[of _ "A - pts"] holomorphic_on_subset[OF holo])
+         auto
+  qed (use assms in \<open>auto simp: meromorphic_on_def\<close>)
+qed (use assms in \<open>auto simp: meromorphic_on_def\<close>)
+
+lemma meromorphic_on_no_singularities: "f meromorphic_on A {} \<longleftrightarrow> f holomorphic_on A \<and> open A"
+  by (auto simp: meromorphic_on_def)
+
+lemma holomorphic_on_imp_meromorphic_on:
+  "f holomorphic_on A \<Longrightarrow> pts \<subseteq> A \<Longrightarrow> open A \<Longrightarrow> \<forall>x\<in>A. \<not>x islimpt pts \<Longrightarrow> f meromorphic_on A pts"
+  by (rule meromorphic_on_superset_pts[where pts = "{}"])
+     (auto simp: meromorphic_on_no_singularities)
+
+lemma meromorphic_on_const [meromorphic_intros]: 
+  assumes "open A" "\<forall>x\<in>A. \<not>x islimpt pts" "pts \<subseteq> A"
+  shows   "(\<lambda>_. c) meromorphic_on A pts"
+  by (rule holomorphic_on_imp_meromorphic_on) (use assms in auto)
+
+lemma meromorphic_on_ident [meromorphic_intros]:
+  assumes "open A" "\<forall>x\<in>A. \<not>x islimpt pts" "pts \<subseteq> A"
+  shows   "(\<lambda>x. x) meromorphic_on A pts"
+  by (rule holomorphic_on_imp_meromorphic_on) (use assms in auto)
+
+lemma meromorphic_on_id [meromorphic_intros]:
+  assumes "open A" "\<forall>x\<in>A. \<not>x islimpt pts" "pts \<subseteq> A"
+  shows   "id meromorphic_on A pts"
+  using meromorphic_on_ident assms unfolding id_def .
+
+lemma not_essential_add [singularity_intros]:
+  assumes f_ness: "not_essential f z" and g_ness: "not_essential g z"
+  assumes f_iso: "isolated_singularity_at f z" and g_iso: "isolated_singularity_at g z"
+  shows "not_essential (\<lambda>w. f w + g w) z"
+proof -
+  have "(\<lambda>w. f (z + w) + g (z + w)) has_laurent_expansion laurent_expansion f z + laurent_expansion g z"
+    by (intro not_essential_has_laurent_expansion laurent_expansion_intros assms)
+  hence "not_essential (\<lambda>w. f (z + w) + g (z + w)) 0"
+    using has_laurent_expansion_not_essential_0 by blast
+  thus ?thesis
+    by (simp add: not_essential_shift_0)
+qed
+
+lemma meromorphic_on_uminus [meromorphic_intros]:
+  assumes "f meromorphic_on A pts"
+  shows   "(\<lambda>z. -f z) meromorphic_on A pts"
+  unfolding meromorphic_on_def
+  by (use assms in \<open>auto simp: meromorphic_on_def intro!: holomorphic_intros singularity_intros\<close>)
+
+lemma meromorphic_on_add [meromorphic_intros]:
+  assumes "f meromorphic_on A pts" "g meromorphic_on A pts"
+  shows   "(\<lambda>z. f z + g z) meromorphic_on A pts"
+  unfolding meromorphic_on_def
+  by (use assms in \<open>auto simp: meromorphic_on_def intro!: holomorphic_intros singularity_intros\<close>)
+
+lemma meromorphic_on_add':
+  assumes "f meromorphic_on A pts1" "g meromorphic_on A pts2"
+  shows   "(\<lambda>z. f z + g z) meromorphic_on A (pts1 \<union> pts2)"
+proof (rule meromorphic_intros)
+  show "f meromorphic_on A (pts1 \<union> pts2)"
+    by (rule meromorphic_on_superset_pts[OF assms(1)])
+       (use assms in \<open>auto simp: meromorphic_on_def islimpt_Un\<close>)
+  show "g meromorphic_on A (pts1 \<union> pts2)"
+    by (rule meromorphic_on_superset_pts[OF assms(2)])
+       (use assms in \<open>auto simp: meromorphic_on_def islimpt_Un\<close>)
+qed
+
+lemma meromorphic_on_add_const [meromorphic_intros]:
+  assumes "f meromorphic_on A pts" 
+  shows   "(\<lambda>z. f z + c) meromorphic_on A pts"
+  unfolding meromorphic_on_def
+  by (use assms in \<open>auto simp: meromorphic_on_def intro!: holomorphic_intros singularity_intros\<close>)
+
+lemma meromorphic_on_minus_const [meromorphic_intros]:
+  assumes "f meromorphic_on A pts" 
+  shows   "(\<lambda>z. f z - c) meromorphic_on A pts"
+  using meromorphic_on_add_const[OF assms,of "-c"] by simp
+
+lemma meromorphic_on_diff [meromorphic_intros]:
+  assumes "f meromorphic_on A pts" "g meromorphic_on A pts"
+  shows   "(\<lambda>z. f z - g z) meromorphic_on A pts"
+  using meromorphic_on_add[OF assms(1) meromorphic_on_uminus[OF assms(2)]] by simp
+
+lemma meromorphic_on_diff':
+  assumes "f meromorphic_on A pts1" "g meromorphic_on A pts2"
+  shows   "(\<lambda>z. f z - g z) meromorphic_on A (pts1 \<union> pts2)"
+proof (rule meromorphic_intros)
+  show "f meromorphic_on A (pts1 \<union> pts2)"
+    by (rule meromorphic_on_superset_pts[OF assms(1)])
+       (use assms in \<open>auto simp: meromorphic_on_def islimpt_Un\<close>)
+  show "g meromorphic_on A (pts1 \<union> pts2)"
+    by (rule meromorphic_on_superset_pts[OF assms(2)])
+       (use assms in \<open>auto simp: meromorphic_on_def islimpt_Un\<close>)
+qed
+
+lemma meromorphic_on_mult [meromorphic_intros]:
+  assumes "f meromorphic_on A pts" "g meromorphic_on A pts"
+  shows   "(\<lambda>z. f z * g z) meromorphic_on A pts"
+  unfolding meromorphic_on_def
+  by (use assms in \<open>auto simp: meromorphic_on_def intro!: holomorphic_intros singularity_intros\<close>)
+
+lemma meromorphic_on_mult':
+  assumes "f meromorphic_on A pts1" "g meromorphic_on A pts2"
+  shows   "(\<lambda>z. f z * g z) meromorphic_on A (pts1 \<union> pts2)"
+proof (rule meromorphic_intros)
+  show "f meromorphic_on A (pts1 \<union> pts2)"
+    by (rule meromorphic_on_superset_pts[OF assms(1)])
+       (use assms in \<open>auto simp: meromorphic_on_def islimpt_Un\<close>)
+  show "g meromorphic_on A (pts1 \<union> pts2)"
+    by (rule meromorphic_on_superset_pts[OF assms(2)])
+       (use assms in \<open>auto simp: meromorphic_on_def islimpt_Un\<close>)
+qed
+
+
+
+lemma meromorphic_on_imp_not_essential:
+  assumes "f meromorphic_on A pts" "z \<in> A"
+  shows   "not_essential f z"
+proof (cases "z \<in> pts")
+  case False
+  thus ?thesis
+    using not_essential_holomorphic[of f "A - pts" z] meromorphic_imp_open_diff[OF assms(1)] assms
+    by (auto simp: meromorphic_on_def)
+qed (use assms in \<open>auto simp: meromorphic_on_def\<close>)
+
+lemma meromorphic_imp_analytic: "f meromorphic_on D pts \<Longrightarrow> f analytic_on (D - pts)"
+  unfolding meromorphic_on_def 
+  apply (subst analytic_on_open)
+  using meromorphic_imp_open_diff meromorphic_on_id apply blast
+  apply auto
+  done
+
+lemma not_islimpt_isolated_zeros:
+  assumes mero: "f meromorphic_on A pts" and "z \<in> A"
+  shows "\<not>z islimpt {w\<in>A. isolated_zero f w}"
+proof
+  assume islimpt: "z islimpt {w\<in>A. isolated_zero f w}"
+  have holo: "f holomorphic_on A - pts" and "open A"
+    using assms by (auto simp: meromorphic_on_def)
+  have open': "open (A - (pts - {z}))"
+    by (intro meromorphic_imp_open_diff'[OF mero]) auto
+  then obtain r where r: "r > 0" "ball z r \<subseteq> A - (pts - {z})"
+    using meromorphic_imp_open_diff[OF mero] \<open>z \<in> A\<close> openE by blast
+
+  have "not_essential f z"
+    using assms by (rule meromorphic_on_imp_not_essential)
+  then consider c where "f \<midarrow>z\<rightarrow> c" | "is_pole f z"
+    unfolding not_essential_def by blast
+  thus False
+  proof cases
+    assume "is_pole f z"
+    hence "eventually (\<lambda>w. f w \<noteq> 0) (at z)"
+      by (rule non_zero_neighbour_pole)
+    hence "\<not>z islimpt {w. f w = 0}"
+      by (simp add: islimpt_conv_frequently_at frequently_def)
+    moreover have "z islimpt {w. f w = 0}"
+      using islimpt by (rule islimpt_subset) (auto simp: isolated_zero_def)
+    ultimately show False by contradiction
+  next
+    fix c assume c: "f \<midarrow>z\<rightarrow> c"
+    define g where "g = (\<lambda>w. if w = z then c else f w)"
+    have holo': "g holomorphic_on A - (pts - {z})" unfolding g_def
+      by (intro removable_singularity holomorphic_on_subset[OF holo] open' c) auto
+
+    have eq_zero: "g w = 0" if "w \<in> ball z r" for w
+    proof (rule analytic_continuation[where f = g])
+      show "open (ball z r)" "connected (ball z r)" "{w\<in>ball z r. isolated_zero f w} \<subseteq> ball z r"
+        by auto
+      have "z islimpt {w\<in>A. isolated_zero f w} \<inter> ball z r"
+        using islimpt \<open>r > 0\<close> by (intro islimpt_Int_eventually eventually_at_in_open') auto
+      also have "\<dots> = {w\<in>ball z r. isolated_zero f w}"
+        using r by auto
+      finally show "z islimpt {w\<in>ball z r. isolated_zero f w}"
+        by simp
+    next
+      fix w assume w: "w \<in> {w\<in>ball z r. isolated_zero f w}"
+      show "g w = 0"
+      proof (cases "w = z")
+        case False
+        thus ?thesis using w by (auto simp: g_def isolated_zero_def)
+      next
+        case True
+        have "z islimpt {z. f z = 0}"
+          using islimpt by (rule islimpt_subset) (auto simp: isolated_zero_def)
+        thus ?thesis
+          using w by (simp add: isolated_zero_altdef True)
+      qed
+    qed (use r that in \<open>auto intro!: holomorphic_on_subset[OF holo'] simp: isolated_zero_def\<close>)
+
+    have "infinite ({w\<in>A. isolated_zero f w} \<inter> ball z r)"
+      using islimpt \<open>r > 0\<close> unfolding islimpt_eq_infinite_ball by blast
+    hence "{w\<in>A. isolated_zero f w} \<inter> ball z r \<noteq> {}"
+      by force
+    then obtain z0 where z0: "z0 \<in> A" "isolated_zero f z0" "z0 \<in> ball z r"
+      by blast
+    have "\<forall>\<^sub>F y in at z0. y \<in> ball z r - (if z = z0 then {} else {z}) - {z0}"
+      using r z0 by (intro eventually_at_in_open) auto
+    hence "eventually (\<lambda>w. f w = 0) (at z0)"
+    proof eventually_elim
+      case (elim w)
+      show ?case
+        using eq_zero[of w] elim by (auto simp: g_def split: if_splits)
+    qed
+    hence "eventually (\<lambda>w. f w = 0) (at z0)"
+      by (auto simp: g_def eventually_at_filter elim!: eventually_mono split: if_splits)
+    moreover from z0 have "eventually (\<lambda>w. f w \<noteq> 0) (at z0)"
+      by (simp add: isolated_zero_def)
+    ultimately have "eventually (\<lambda>_. False) (at z0)"
+      by eventually_elim auto
+    thus False
+      by simp
+  qed
+qed
+  
+lemma closedin_isolated_zeros:
+  assumes "f meromorphic_on A pts"
+  shows   "closedin (top_of_set A) {z\<in>A. isolated_zero f z}"
+  unfolding closedin_limpt using not_islimpt_isolated_zeros[OF assms] by auto
+
+lemma meromorphic_on_deriv':
+  assumes "f meromorphic_on A pts" "open A"
+  assumes "\<And>x. x \<in> A - pts \<Longrightarrow> (f has_field_derivative f' x) (at x)"
+  shows   "f' meromorphic_on A pts"
+  unfolding meromorphic_on_def
+proof (intro conjI ballI)
+  have "open (A - pts)"
+    by (intro meromorphic_imp_open_diff[OF assms(1)])
+  thus "f' holomorphic_on A - pts"
+    by (rule derivative_is_holomorphic) (use assms in auto)
+next
+  fix z assume "z \<in> pts"
+  hence "z \<in> A"
+    using assms(1) by (auto simp: meromorphic_on_def)
+  from \<open>z \<in> pts\<close> obtain r where r: "r > 0" "f analytic_on ball z r - {z}"
+    using assms(1) by (auto simp: meromorphic_on_def isolated_singularity_at_def)
+
+  have "open (ball z r \<inter> (A - (pts - {z})))"
+    by (intro open_Int assms meromorphic_imp_open_diff'[OF assms(1)]) auto
+  then obtain r' where r': "r' > 0" "ball z r' \<subseteq> ball z r \<inter> (A - (pts - {z}))"
+    using r \<open>z \<in> A\<close> by (subst (asm) open_contains_ball) fastforce
+
+  have "open (ball z r' - {z})"
+    by auto
+  hence "f' holomorphic_on ball z r' - {z}"
+    by (rule derivative_is_holomorphic[of _ f]) (use r' in \<open>auto intro!: assms(3)\<close>)
+  moreover have "open (ball z r' - {z})"
+    by auto
+  ultimately show "isolated_singularity_at f' z"
+    unfolding isolated_singularity_at_def using \<open>r' > 0\<close>
+    by (auto simp: analytic_on_open intro!: exI[of _ r'])
+next
+  fix z assume z: "z \<in> pts"
+  hence z': "not_essential f z" "z \<in> A"
+    using assms by (auto simp: meromorphic_on_def)
+  from z'(1) show "not_essential f' z"
+  proof (rule not_essential_deriv')
+    show "z \<in> A - (pts - {z})"
+      using \<open>z \<in> A\<close> by blast
+    show "open (A - (pts - {z}))"
+      by (intro meromorphic_imp_open_diff'[OF assms(1)]) auto
+  qed (use assms in auto)
+qed (use assms in \<open>auto simp: meromorphic_on_def\<close>)
+
+lemma meromorphic_on_deriv [meromorphic_intros]:
+  assumes "f meromorphic_on A pts" "open A"
+  shows   "deriv f meromorphic_on A pts"
+proof (intro meromorphic_on_deriv'[OF assms(1)])
+  have *: "open (A - pts)"
+    by (intro meromorphic_imp_open_diff[OF assms(1)])
+  show "(f has_field_derivative deriv f x) (at x)" if "x \<in> A - pts" for x
+    using assms(1) by (intro holomorphic_derivI[OF _ * that]) (auto simp: meromorphic_on_def)
+qed fact
+
+lemma meromorphic_on_imp_analytic_at:
+  assumes "f meromorphic_on A pts" "z \<in> A - pts"
+  shows   "f analytic_on {z}"
+  using assms by (metis analytic_at meromorphic_imp_open_diff meromorphic_on_def)
+
+lemma meromorphic_compact_finite_pts:
+  assumes "f meromorphic_on D pts" "compact S" "S \<subseteq> D"
+  shows "finite (S \<inter> pts)"
+proof -
+  { assume "infinite (S \<inter> pts)"
+    then obtain z where "z \<in> S" and z: "z islimpt (S \<inter> pts)"
+      using assms by (metis compact_eq_Bolzano_Weierstrass inf_le1) 
+    then have False
+        using assms by (meson in_mono inf_le2 islimpt_subset meromorphic_on_def) }
+  then show ?thesis by metis
+qed
+
+lemma meromorphic_imp_countable:
+  assumes "f meromorphic_on D pts" 
+  shows "countable pts"
+proof -
+  obtain K :: "nat \<Rightarrow> complex set" where K: "D = (\<Union>n. K n)" "\<And>n. compact (K n)"
+    using assms unfolding meromorphic_on_def by (metis open_Union_compact_subsets)
+  then have "pts = (\<Union>n. K n \<inter> pts)"
+    using assms meromorphic_on_def by auto
+  moreover have "\<And>n. finite (K n \<inter> pts)"
+    by (metis K(1) K(2) UN_I assms image_iff meromorphic_compact_finite_pts rangeI subset_eq)
+  ultimately show ?thesis
+    by (metis countableI_type countable_UN countable_finite)
+qed
+
+lemma meromorphic_imp_connected_diff':
+  assumes "f meromorphic_on D pts" "connected D" "pts' \<subseteq> pts"
+  shows "connected (D - pts')"
+proof (rule connected_open_diff_countable)
+  show "countable pts'"
+    by (rule countable_subset [OF assms(3)]) (use assms(1) in \<open>auto simp: meromorphic_imp_countable\<close>)
+qed (use assms in \<open>auto simp: meromorphic_on_def\<close>)
+
+lemma meromorphic_imp_connected_diff:
+  assumes "f meromorphic_on D pts" "connected D"
+  shows "connected (D - pts)"
+  using meromorphic_imp_connected_diff'[OF assms order.refl] .
+
+lemma meromorphic_on_compose [meromorphic_intros]:
+  assumes f: "f meromorphic_on A pts" and g: "g holomorphic_on B"
+  assumes "open B" and "g ` B \<subseteq> A"
+  shows   "(\<lambda>x. f (g x)) meromorphic_on B (isolated_points_of (g -` pts \<inter> B))"
+  unfolding meromorphic_on_def
+proof (intro ballI conjI)
+  fix z assume z: "z \<in> isolated_points_of (g -` pts \<inter> B)"
+  hence z': "z \<in> B" "g z \<in> pts"
+    using isolated_points_of_subset by blast+
+  have g': "g analytic_on {z}"
+    using g z' \<open>open B\<close> analytic_at by blast
+
+  show "isolated_singularity_at (\<lambda>x. f (g x)) z"
+    by (rule isolated_singularity_at_compose[OF _ g']) (use f z' in \<open>auto simp: meromorphic_on_def\<close>)
+  show "not_essential (\<lambda>x. f (g x)) z"
+    by (rule not_essential_compose[OF _ g']) (use f z' in \<open>auto simp: meromorphic_on_def\<close>)
+next
+  fix z assume z: "z \<in> B"
+  hence "g z \<in> A"
+    using assms by auto
+  hence "\<not>g z islimpt pts"
+    using f by (auto simp: meromorphic_on_def)
+  hence ev: "eventually (\<lambda>w. w \<notin> pts) (at (g z))"
+    by (auto simp: islimpt_conv_frequently_at frequently_def)
+  have g': "g analytic_on {z}"
+    by (rule holomorphic_on_imp_analytic_at[OF g]) (use assms z in auto)
+
+  (* TODO: There's probably a useful lemma somewhere in here to extract... *)
+  have "eventually (\<lambda>w. w \<notin> isolated_points_of (g -` pts \<inter> B)) (at z)"
+  proof (cases "isolated_zero (\<lambda>w. g w - g z) z")
+    case True
+    have "eventually (\<lambda>w. w \<notin> pts) (at (g z))"
+      using ev by (auto simp: islimpt_conv_frequently_at frequently_def)
+    moreover have "g \<midarrow>z\<rightarrow> g z"
+      using analytic_at_imp_isCont[OF g'] isContD by blast
+    hence lim: "filterlim g (at (g z)) (at z)"
+      using True by (auto simp: filterlim_at isolated_zero_def)
+    have "eventually (\<lambda>w. g w \<notin> pts) (at z)"
+      using ev lim by (rule eventually_compose_filterlim)
+    thus ?thesis
+      by eventually_elim (auto simp: isolated_points_of_def)
+  next
+    case False
+    have "eventually (\<lambda>w. g w - g z = 0) (nhds z)"
+      using False by (rule non_isolated_zero) (auto intro!: analytic_intros g')
+    hence "eventually (\<lambda>w. g w = g z \<and> w \<in> B) (nhds z)"
+      using eventually_nhds_in_open[OF \<open>open B\<close> \<open>z \<in> B\<close>]
+      by eventually_elim auto
+    then obtain X where X: "open X" "z \<in> X" "X \<subseteq> B" "\<forall>x\<in>X. g x = g z"
+      unfolding eventually_nhds by blast
+
+    have "z0 \<notin> isolated_points_of (g -` pts \<inter> B)" if "z0 \<in> X" for z0
+    proof (cases "g z \<in> pts")
+      case False
+      with that have "g z0 \<notin> pts"
+        using X by metis
+      thus ?thesis
+        by (auto simp: isolated_points_of_def)
+    next
+      case True
+      have "eventually (\<lambda>w. w \<in> X) (at z0)"
+        by (intro eventually_at_in_open') fact+
+      hence "eventually (\<lambda>w. w \<in> g -` pts \<inter> B) (at z0)"
+        by eventually_elim (use X True in fastforce)
+      hence "frequently (\<lambda>w. w \<in> g -` pts \<inter> B) (at z0)"
+        by (meson at_neq_bot eventually_frequently)
+      thus "z0 \<notin> isolated_points_of (g -` pts \<inter> B)"
+        unfolding isolated_points_of_def by (auto simp: frequently_def)
+    qed
+    moreover have "eventually (\<lambda>x. x \<in> X) (at z)"
+      by (intro eventually_at_in_open') fact+
+    ultimately show ?thesis
+      by (auto elim!: eventually_mono)
+  qed
+  thus "\<not>z islimpt isolated_points_of (g -` pts \<inter> B)"
+    by (auto simp: islimpt_conv_frequently_at frequently_def)
+next
+  have "f \<circ> g analytic_on (\<Union>z\<in>B - isolated_points_of (g -` pts \<inter> B). {z})"
+    unfolding analytic_on_UN
+  proof
+    fix z assume z: "z \<in> B - isolated_points_of (g -` pts \<inter> B)"
+    hence "z \<in> B" by blast
+    have g': "g analytic_on {z}"
+      by (rule holomorphic_on_imp_analytic_at[OF g]) (use assms z in auto)
+    show "f \<circ> g analytic_on {z}"
+    proof (cases "g z \<in> pts")
+      case False
+      show ?thesis
+      proof (rule analytic_on_compose)
+        show "f analytic_on g ` {z}" using False z assms
+          by (auto intro!: meromorphic_on_imp_analytic_at[OF f])
+      qed fact
+    next
+      case True
+      show ?thesis
+      proof (cases "isolated_zero (\<lambda>w. g w - g z) z")
+        case False
+        hence "eventually (\<lambda>w. g w - g z = 0) (nhds z)"
+          by (rule non_isolated_zero) (auto intro!: analytic_intros g')
+        hence "f \<circ> g analytic_on {z} \<longleftrightarrow> (\<lambda>_. f (g z)) analytic_on {z}"
+          by (intro analytic_at_cong) (auto elim!: eventually_mono)
+        thus ?thesis
+          by simp
+      next
+        case True
+        hence ev: "eventually (\<lambda>w. g w \<noteq> g z) (at z)"
+          by (auto simp: isolated_zero_def)
+  
+        have "\<not>g z islimpt pts"
+          using \<open>g z \<in> pts\<close> f by (auto simp: meromorphic_on_def)
+        hence "eventually (\<lambda>w. w \<notin> pts) (at (g z))"
+          by (auto simp: islimpt_conv_frequently_at frequently_def)
+        moreover have "g \<midarrow>z\<rightarrow> g z"
+          using analytic_at_imp_isCont[OF g'] isContD by blast
+        with ev have "filterlim g (at (g z)) (at z)"
+          by (auto simp: filterlim_at)
+        ultimately have "eventually (\<lambda>w. g w \<notin> pts) (at z)"
+          using eventually_compose_filterlim by blast
+        hence "z \<in> isolated_points_of (g -` pts \<inter> B)"
+          using \<open>g z \<in> pts\<close> \<open>z \<in> B\<close>
+          by (auto simp: isolated_points_of_def elim!: eventually_mono)
+        with z show ?thesis by simp
+      qed
+    qed
+  qed
+  also have "\<dots> = B - isolated_points_of (g -` pts \<inter> B)"
+    by blast
+  finally show "(\<lambda>x. f (g x)) holomorphic_on B - isolated_points_of (g -` pts \<inter> B)"
+    unfolding o_def using analytic_imp_holomorphic by blast
+qed (auto simp: isolated_points_of_def \<open>open B\<close>)
+
+lemma meromorphic_on_compose':
+  assumes f: "f meromorphic_on A pts" and g: "g holomorphic_on B"
+  assumes "open B" and "g ` B \<subseteq> A" and "pts' = (isolated_points_of (g -` pts \<inter> B))"
+  shows   "(\<lambda>x. f (g x)) meromorphic_on B pts'"
+  using meromorphic_on_compose[OF assms(1-4)] assms(5) by simp
+
+lemma meromorphic_on_inverse': "inverse meromorphic_on UNIV 0"
+  unfolding meromorphic_on_def
+  by (auto intro!: holomorphic_intros singularity_intros not_essential_inverse 
+                   isolated_singularity_at_inverse simp: islimpt_finite)
+
+lemma meromorphic_on_inverse [meromorphic_intros]:
+  assumes mero: "f meromorphic_on A pts"
+  shows   "(\<lambda>z. inverse (f z)) meromorphic_on A (pts \<union> {z\<in>A. isolated_zero f z})"
+proof -
+  have "open A"
+    using mero by (auto simp: meromorphic_on_def)
+  have open': "open (A - pts)"
+    by (intro meromorphic_imp_open_diff[OF mero])
+  have holo: "f holomorphic_on A - pts"
+    using assms by (auto simp: meromorphic_on_def)
+  have ana: "f analytic_on A - pts"
+    using open' holo by (simp add: analytic_on_open)
+
+  show ?thesis
+    unfolding meromorphic_on_def
+  proof (intro conjI ballI)
+    fix z assume z: "z \<in> pts \<union> {z\<in>A. isolated_zero f z}"
+    have "isolated_singularity_at f z \<and> not_essential f z"
+    proof (cases "z \<in> pts")
+      case False
+      have "f holomorphic_on A - pts - {z}"
+        by (intro holomorphic_on_subset[OF holo]) auto
+      hence "isolated_singularity_at f z"
+        by (rule isolated_singularity_at_holomorphic)
+           (use z False in \<open>auto intro!: meromorphic_imp_open_diff[OF mero]\<close>)
+      moreover have "not_essential f z"
+        using z False
+        by (intro not_essential_holomorphic[OF holo] meromorphic_imp_open_diff[OF mero]) auto
+      ultimately show ?thesis by blast
+    qed (use assms in \<open>auto simp: meromorphic_on_def\<close>)
+    thus "isolated_singularity_at (\<lambda>z. inverse (f z)) z" "not_essential (\<lambda>z. inverse (f z)) z"
+      by (auto intro!: isolated_singularity_at_inverse not_essential_inverse)
+  next
+    fix z assume "z \<in> A"
+    hence "\<not> z islimpt {z\<in>A. isolated_zero f z}"
+      by (rule not_islimpt_isolated_zeros[OF mero])
+    thus "\<not> z islimpt pts \<union> {z \<in> A. isolated_zero f z}" using \<open>z \<in> A\<close>
+      using mero by (auto simp: islimpt_Un meromorphic_on_def)
+  next
+    show "pts \<union> {z \<in> A. isolated_zero f z} \<subseteq> A"
+      using mero by (auto simp: meromorphic_on_def)
+  next
+    have "(\<lambda>z. inverse (f z)) analytic_on (\<Union>w\<in>A - (pts \<union> {z \<in> A. isolated_zero f z}) . {w})"
+      unfolding analytic_on_UN
+    proof (intro ballI)
+      fix w assume w: "w \<in> A - (pts \<union> {z \<in> A. isolated_zero f z})"
+      show "(\<lambda>z. inverse (f z)) analytic_on {w}"
+      proof (cases "f w = 0")
+        case False
+        thus ?thesis using w
+          by (intro analytic_intros analytic_on_subset[OF ana]) auto
+      next
+        case True
+        have "eventually (\<lambda>w. f w = 0) (nhds w)"
+          using True w by (intro non_isolated_zero analytic_on_subset[OF ana]) auto
+        hence "(\<lambda>z. inverse (f z)) analytic_on {w} \<longleftrightarrow> (\<lambda>_. 0) analytic_on {w}"
+          using w by (intro analytic_at_cong refl) auto
+        thus ?thesis
+          by simp
+      qed
+    qed
+    also have "\<dots> = A - (pts \<union> {z \<in> A. isolated_zero f z})"
+      by blast
+    finally have "(\<lambda>z. inverse (f z)) analytic_on \<dots>" .
+    moreover have "open (A - (pts \<union> {z \<in> A. isolated_zero f z}))"
+      using closedin_isolated_zeros[OF mero] open' \<open>open A\<close>
+      by (metis (no_types, lifting) Diff_Diff_Int Diff_Un closedin_closed open_Diff open_Int)
+    ultimately show "(\<lambda>z. inverse (f z)) holomorphic_on A - (pts \<union> {z \<in> A. isolated_zero f z})"
+      by (subst (asm) analytic_on_open) auto
+  qed (use assms in \<open>auto simp: meromorphic_on_def islimpt_Un 
+                          intro!: holomorphic_intros singularity_intros\<close>)
+qed
+
+lemma meromorphic_on_inverse'' [meromorphic_intros]:
+  assumes "f meromorphic_on A pts" "{z\<in>A. f z = 0} \<subseteq> pts"
+  shows   "(\<lambda>z. inverse (f z)) meromorphic_on A pts"
+proof -
+  have "(\<lambda>z. inverse (f z)) meromorphic_on A (pts \<union> {z \<in> A. isolated_zero f z})"
+    by (intro meromorphic_on_inverse assms)
+  also have "(pts \<union> {z \<in> A. isolated_zero f z}) = pts"
+    using assms(2) by (auto simp: isolated_zero_def)
+  finally show ?thesis .
+qed
+
+lemma meromorphic_on_divide [meromorphic_intros]:
+  assumes "f meromorphic_on A pts" and "g meromorphic_on A pts"
+  shows   "(\<lambda>z. f z / g z) meromorphic_on A (pts \<union> {z\<in>A. isolated_zero g z})"
+proof -
+  have mero1: "(\<lambda>z. inverse (g z)) meromorphic_on A (pts \<union> {z\<in>A. isolated_zero g z})"
+    by (intro meromorphic_intros assms)
+  have sparse: "\<forall>x\<in>A. \<not> x islimpt pts \<union> {z\<in>A. isolated_zero g z}" and "pts \<subseteq> A"
+    using mero1 by (auto simp: meromorphic_on_def)
+  have mero2: "f meromorphic_on A (pts \<union> {z\<in>A. isolated_zero g z})"
+    by (rule meromorphic_on_superset_pts[OF assms(1)]) (use sparse \<open>pts \<subseteq> A\<close> in auto)
+  have "(\<lambda>z. f z * inverse (g z)) meromorphic_on A (pts \<union> {z\<in>A. isolated_zero g z})"
+    by (intro meromorphic_on_mult mero1 mero2)
+  thus ?thesis
+    by (simp add: field_simps)
+qed
+
+lemma meromorphic_on_divide' [meromorphic_intros]:
+  assumes "f meromorphic_on A pts" "g meromorphic_on A pts" "{z\<in>A. g z = 0} \<subseteq> pts"
+  shows   "(\<lambda>z. f z / g z) meromorphic_on A pts"
+proof -
+  have "(\<lambda>z. f z * inverse (g z)) meromorphic_on A pts"
+    by (intro meromorphic_intros assms)
+  thus ?thesis
+    by (simp add: field_simps)
+qed
+
+lemma meromorphic_on_cmult_left [meromorphic_intros]:
+  assumes "f meromorphic_on A pts"
+  shows   "(\<lambda>x. c * f x) meromorphic_on A pts"
+  using assms by (intro meromorphic_intros) (auto simp: meromorphic_on_def)
+
+lemma meromorphic_on_cmult_right [meromorphic_intros]:
+  assumes "f meromorphic_on A pts"
+  shows   "(\<lambda>x. f x * c) meromorphic_on A pts"
+  using assms by (intro meromorphic_intros) (auto simp: meromorphic_on_def)
+
+lemma meromorphic_on_scaleR [meromorphic_intros]:
+  assumes "f meromorphic_on A pts"
+  shows   "(\<lambda>x. c *\<^sub>R f x) meromorphic_on A pts"
+  using assms unfolding scaleR_conv_of_real
+  by (intro meromorphic_intros) (auto simp: meromorphic_on_def)
+
+lemma meromorphic_on_sum [meromorphic_intros]:
+  assumes "\<And>y. y \<in> I \<Longrightarrow> f y meromorphic_on A pts"
+  assumes "I \<noteq> {} \<or> open A \<and> pts \<subseteq> A \<and> (\<forall>x\<in>A. \<not>x islimpt pts)"
+  shows   "(\<lambda>x. \<Sum>y\<in>I. f y x) meromorphic_on A pts"
+proof -
+  have *: "open A \<and> pts \<subseteq> A \<and> (\<forall>x\<in>A. \<not>x islimpt pts)"
+    using assms(2)
+  proof
+    assume "I \<noteq> {}"
+    then obtain x where "x \<in> I"
+      by blast
+    from assms(1)[OF this] show ?thesis
+      by (auto simp: meromorphic_on_def)
+  qed auto
+  show ?thesis
+    using assms(1)
+    by (induction I rule: infinite_finite_induct) (use * in \<open>auto intro!: meromorphic_intros\<close>)
+qed
+
+lemma meromorphic_on_prod [meromorphic_intros]:
+  assumes "\<And>y. y \<in> I \<Longrightarrow> f y meromorphic_on A pts"
+  assumes "I \<noteq> {} \<or> open A \<and> pts \<subseteq> A \<and> (\<forall>x\<in>A. \<not>x islimpt pts)"
+  shows   "(\<lambda>x. \<Prod>y\<in>I. f y x) meromorphic_on A pts"
+proof -
+  have *: "open A \<and> pts \<subseteq> A \<and> (\<forall>x\<in>A. \<not>x islimpt pts)"
+    using assms(2)
+  proof
+    assume "I \<noteq> {}"
+    then obtain x where "x \<in> I"
+      by blast
+    from assms(1)[OF this] show ?thesis
+      by (auto simp: meromorphic_on_def)
+  qed auto
+  show ?thesis
+    using assms(1)
+    by (induction I rule: infinite_finite_induct) (use * in \<open>auto intro!: meromorphic_intros\<close>)
+qed
+
+lemma meromorphic_on_power [meromorphic_intros]:
+  assumes "f meromorphic_on A pts"
+  shows   "(\<lambda>x. f x ^ n) meromorphic_on A pts"
+proof -
+  have "(\<lambda>x. \<Prod>i\<in>{..<n}. f x) meromorphic_on A pts"
+    by (intro meromorphic_intros assms(1)) (use assms in \<open>auto simp: meromorphic_on_def\<close>)
+  thus ?thesis
+    by simp
+qed
+
+lemma meromorphic_on_power_int [meromorphic_intros]:
+  assumes "f meromorphic_on A pts"
+  shows   "(\<lambda>z. f z powi n) meromorphic_on A (pts \<union> {z \<in> A. isolated_zero f z})"
+proof -
+  have inv: "(\<lambda>x. inverse (f x)) meromorphic_on A (pts \<union> {z \<in> A. isolated_zero f z})"
+    by (intro meromorphic_intros assms)
+  have *: "f meromorphic_on A (pts \<union> {z \<in> A. isolated_zero f z})"
+    by (intro meromorphic_on_superset_pts [OF assms(1)])
+       (use inv in \<open>auto simp: meromorphic_on_def\<close>)
+  show ?thesis
+  proof (cases "n \<ge> 0")
+    case True   
+    have "(\<lambda>x. f x ^ nat n) meromorphic_on A (pts \<union> {z \<in> A. isolated_zero f z})"
+      by (intro meromorphic_intros *)
+    thus ?thesis
+      using True by (simp add: power_int_def)
+  next
+    case False
+    have "(\<lambda>x. inverse (f x) ^ nat (-n)) meromorphic_on A (pts \<union> {z \<in> A. isolated_zero f z})"
+      by (intro meromorphic_intros assms)
+    thus ?thesis
+      using False by (simp add: power_int_def)
+  qed
+qed
+
+lemma meromorphic_on_power_int' [meromorphic_intros]:
+  assumes "f meromorphic_on A pts" "n \<ge> 0 \<or> (\<forall>z\<in>A. isolated_zero f z \<longrightarrow> z \<in> pts)"
+  shows   "(\<lambda>z. f z powi n) meromorphic_on A pts"
+proof (cases "n \<ge> 0")
+  case True
+  have "(\<lambda>z. f z ^ nat n) meromorphic_on A pts"
+    by (intro meromorphic_intros assms)
+  thus ?thesis
+    using True by (simp add: power_int_def)
+next
+  case False
+  have "(\<lambda>z. f z powi n) meromorphic_on A (pts \<union> {z\<in>A. isolated_zero f z})"
+    by (rule meromorphic_on_power_int) fact
+  also from assms(2) False have "pts \<union> {z\<in>A. isolated_zero f z} = pts"
+    by auto
+  finally show ?thesis .
+qed
+
+lemma has_laurent_expansion_on_imp_meromorphic_on:
+  assumes "open A" 
+  assumes laurent: "\<And>z. z \<in> A \<Longrightarrow> \<exists>F. (\<lambda>w. f (z + w)) has_laurent_expansion F"
+  shows   "f meromorphic_on A {z\<in>A. \<not>f analytic_on {z}}"
+  unfolding meromorphic_on_def
+proof (intro conjI ballI)
+  fix z assume "z \<in> {z\<in>A. \<not>f analytic_on {z}}"
+  then obtain F where F: "(\<lambda>w. f (z + w)) has_laurent_expansion F"
+    using laurent[of z] by blast
+  from F show "not_essential f z" "isolated_singularity_at f z"
+    using has_laurent_expansion_not_essential has_laurent_expansion_isolated by blast+
+next
+  fix z assume z: "z \<in> A"
+  obtain F where F: "(\<lambda>w. f (z + w)) has_laurent_expansion F"
+    using laurent[of z] \<open>z \<in> A\<close> by blast
+  from F have "isolated_singularity_at f z"
+    using has_laurent_expansion_isolated z by blast
+  then obtain r where r: "r > 0" "f analytic_on ball z r - {z}"
+    unfolding isolated_singularity_at_def by blast
+  have "f analytic_on {w}" if "w \<in> ball z r - {z}" for w
+    by (rule analytic_on_subset[OF r(2)]) (use that in auto)
+  hence "eventually (\<lambda>w. f analytic_on {w}) (at z)"
+    using eventually_at_in_open[of "ball z r" z] \<open>r > 0\<close> by (auto elim!: eventually_mono)
+  hence "\<not>z islimpt {w. \<not>f analytic_on {w}}"
+    by (auto simp: islimpt_conv_frequently_at frequently_def)
+  thus "\<not>z islimpt {w\<in>A. \<not>f analytic_on {w}}"
+    using islimpt_subset[of z "{w\<in>A. \<not>f analytic_on {w}}" "{w. \<not>f analytic_on {w}}"] by blast
+next
+  have "f analytic_on A - {w\<in>A. \<not>f analytic_on {w}}"
+    by (subst analytic_on_analytic_at) auto
+  thus "f holomorphic_on A - {w\<in>A. \<not>f analytic_on {w}}"
+    by (meson analytic_imp_holomorphic)
+qed (use assms in auto)
+
+lemma meromorphic_on_imp_has_laurent_expansion:
+  assumes "f meromorphic_on A pts" "z \<in> A"
+  shows   "(\<lambda>w. f (z + w)) has_laurent_expansion laurent_expansion f z"
+proof (cases "z \<in> pts")
+  case True
+  thus ?thesis
+    using assms by (intro not_essential_has_laurent_expansion) (auto simp: meromorphic_on_def)
+next
+  case False
+  have "f holomorphic_on (A - pts)"
+    using assms by (auto simp: meromorphic_on_def)
+  moreover have "z \<in> A - pts" "open (A - pts)"
+    using assms(2) False by (auto intro!: meromorphic_imp_open_diff[OF assms(1)])
+  ultimately have "f analytic_on {z}"
+    unfolding analytic_at by blast
+  thus ?thesis
+    using isolated_singularity_at_analytic not_essential_analytic
+          not_essential_has_laurent_expansion by blast
+qed    
+
+lemma
+  assumes "isolated_singularity_at f z" "f \<midarrow>z\<rightarrow> c"
+  shows   eventually_remove_sings_eq_nhds':
+            "eventually (\<lambda>w. remove_sings f w = (if w = z then c else f w)) (nhds z)"
+    and   remove_sings_analytic_at_singularity: "remove_sings f analytic_on {z}"
+proof -
+  have "eventually (\<lambda>w. w \<noteq> z) (at z)"
+    by (auto simp: eventually_at_filter)
+  hence "eventually (\<lambda>w. remove_sings f w = (if w = z then c else f w)) (at z)"
+    using eventually_remove_sings_eq_at[OF assms(1)]
+    by eventually_elim auto
+  moreover have "remove_sings f z = c"
+    using assms by auto
+  ultimately show ev: "eventually (\<lambda>w. remove_sings f w = (if w = z then c else f w)) (nhds z)"
+    by (simp add: eventually_at_filter)
+
+  have "(\<lambda>w. if w = z then c else f w) analytic_on {z}"
+    by (intro removable_singularity' assms)
+  also have "?this \<longleftrightarrow> remove_sings f analytic_on {z}"
+    using ev by (intro analytic_at_cong) (auto simp: eq_commute)
+  finally show \<dots> .
+qed
+
+lemma remove_sings_meromorphic_on:
+  assumes "f meromorphic_on A pts" "\<And>z. z \<in> pts - pts' \<Longrightarrow> \<not>is_pole f z" "pts' \<subseteq> pts"
+  shows   "remove_sings f meromorphic_on A pts'"
+  unfolding meromorphic_on_def
+proof safe
+  have "remove_sings f analytic_on {z}" if "z \<in> A - pts'" for z
+  proof (cases "z \<in> pts")
+    case False
+    hence *: "f analytic_on {z}"
+      using assms meromorphic_imp_open_diff[OF assms(1)] that
+      by (force simp: meromorphic_on_def analytic_at) 
+    have "remove_sings f analytic_on {z} \<longleftrightarrow> f analytic_on {z}"
+      by (intro analytic_at_cong eventually_remove_sings_eq_nhds * refl)
+    thus ?thesis using * by simp
+  next
+    case True
+    have isol: "isolated_singularity_at f z"
+      using True using assms by (auto simp: meromorphic_on_def)
+    from assms(1) have "not_essential f z"
+      using True by (auto simp: meromorphic_on_def)
+    with assms(2) True that obtain c where "f \<midarrow>z\<rightarrow> c"
+      by (auto simp: not_essential_def)
+    thus "remove_sings f analytic_on {z}"
+      by (intro remove_sings_analytic_at_singularity isol)
+  qed
+  hence "remove_sings f analytic_on A - pts'"
+    by (subst analytic_on_analytic_at) auto
+  thus "remove_sings f holomorphic_on A - pts'"
+    using meromorphic_imp_open_diff'[OF assms(1,3)] by (subst (asm) analytic_on_open)
+qed (use assms islimpt_subset[OF _ assms(3)] in \<open>auto simp: meromorphic_on_def\<close>)
+
+lemma remove_sings_holomorphic_on:
+  assumes "f meromorphic_on A pts" "\<And>z. z \<in> pts \<Longrightarrow> \<not>is_pole f z"
+  shows   "remove_sings f holomorphic_on A"
+  using remove_sings_meromorphic_on[OF assms(1), of "{}"] assms(2)
+  by (auto simp: meromorphic_on_no_singularities)
+
+lemma meromorphic_on_Ex_iff:
+  "(\<exists>pts. f meromorphic_on A pts) \<longleftrightarrow>
+     open A \<and> (\<forall>z\<in>A. \<exists>F. (\<lambda>w. f (z + w)) has_laurent_expansion F)"
+proof safe
+  fix pts assume *: "f meromorphic_on A pts"
+  from * show "open A"
+    by (auto simp: meromorphic_on_def)
+  show "\<exists>F. (\<lambda>w. f (z + w)) has_laurent_expansion F" if "z \<in> A" for z
+    using that *
+    by (intro exI[of _ "laurent_expansion f z"] meromorphic_on_imp_has_laurent_expansion)
+qed (blast intro!: has_laurent_expansion_on_imp_meromorphic_on)
+
+lemma is_pole_inverse_holomorphic_pts:
+  fixes pts::"complex set" and f::"complex \<Rightarrow> complex"
+  defines "g \<equiv> \<lambda>x. (if x\<in>pts then 0 else inverse (f x))"
+  assumes mer: "f meromorphic_on D pts"
+    and non_z: "\<And>z. z \<in> D - pts \<Longrightarrow> f z \<noteq> 0"
+    and all_poles:"\<forall>x. is_pole f x \<longleftrightarrow> x\<in>pts"
+  shows "g holomorphic_on D"
+proof -
+  have "open D" and f_holo: "f holomorphic_on (D-pts)" 
+    using mer by (auto simp: meromorphic_on_def)
+  have "\<exists>r. r>0 \<and> f analytic_on ball z r - {z} 
+            \<and> (\<forall>x \<in> ball z r - {z}. f x\<noteq>0)" if "z\<in>pts" for z 
+  proof -
+    have "isolated_singularity_at f z" "is_pole f z"
+      using mer meromorphic_on_def that all_poles by blast+
+    then obtain r1 where "r1>0" and fan: "f analytic_on ball z r1 - {z}"
+      by (meson isolated_singularity_at_def)
+    obtain r2 where "r2>0" "\<forall>x \<in> ball z r2 - {z}. f x\<noteq>0"
+      using non_zero_neighbour_pole[OF \<open>is_pole f z\<close>] 
+      unfolding eventually_at by (metis Diff_iff UNIV_I dist_commute insertI1 mem_ball)
+    define r where "r = min r1 r2"
+    have "r>0" by (simp add: \<open>0 < r2\<close> \<open>r1>0\<close> r_def)
+    moreover have "f analytic_on ball z r - {z}"
+      using r_def by (force intro: analytic_on_subset [OF fan])
+    moreover have "\<forall>x \<in> ball z r - {z}. f x\<noteq>0"
+      by (simp add: \<open>\<forall>x\<in>ball z r2 - {z}. f x \<noteq> 0\<close> r_def)
+    ultimately show ?thesis by auto
+  qed
+  then obtain get_r where r_pos:"get_r z>0" 
+      and r_ana:"f analytic_on ball z (get_r z) - {z}"
+      and r_nz:"\<forall>x \<in> ball z (get_r z) - {z}. f x\<noteq>0"
+    if "z\<in>pts" for z
+    by metis
+  define p_balls where "p_balls \<equiv> \<Union>z\<in>pts. ball z (get_r z)"
+  have g_ball:"g holomorphic_on ball z (get_r z)" if "z\<in>pts" for z
+  proof -
+    have "(\<lambda>x. if x = z then 0 else inverse (f x)) holomorphic_on ball z (get_r z)"
+    proof (rule is_pole_inverse_holomorphic)
+      show "f holomorphic_on ball z (get_r z) - {z}"
+        using analytic_imp_holomorphic r_ana that by blast
+      show "is_pole f z"
+        using mer meromorphic_on_def that all_poles by force
+      show "\<forall>x\<in>ball z (get_r z) - {z}. f x \<noteq> 0"
+        using r_nz that by metis
+    qed auto
+    then show ?thesis unfolding g_def
+      by (smt (verit, ccfv_SIG) Diff_iff Elementary_Metric_Spaces.open_ball
+          all_poles analytic_imp_holomorphic empty_iff 
+          holomorphic_transform insert_iff not_is_pole_holomorphic 
+          open_delete r_ana that)
+  qed
+  then have "g holomorphic_on p_balls" 
+  proof -
+    have "g analytic_on p_balls"
+      unfolding p_balls_def analytic_on_UN
+      using g_ball by (simp add: analytic_on_open)
+    moreover have "open p_balls" using p_balls_def by blast
+    ultimately show ?thesis 
+      by (simp add: analytic_imp_holomorphic)
+  qed
+  moreover have "g holomorphic_on D-pts" 
+  proof -
+    have "(\<lambda>z. inverse (f z)) holomorphic_on D - pts"
+      using f_holo holomorphic_on_inverse non_z by blast
+    then show ?thesis
+      by (metis DiffD2 g_def holomorphic_transform) 
+  qed
+  moreover have "open p_balls" 
+    using p_balls_def by blast
+  ultimately have "g holomorphic_on (p_balls \<union> (D-pts))"
+    by (simp add: holomorphic_on_Un meromorphic_imp_open_diff[OF mer])
+  moreover have "D \<subseteq> p_balls \<union> (D-pts)"
+    unfolding p_balls_def using \<open>\<And>z. z \<in> pts \<Longrightarrow> 0 < get_r z\<close> by force
+  ultimately show "g holomorphic_on D" by (meson holomorphic_on_subset)
+qed
+
+lemma meromorphic_imp_analytic_on:
+  assumes "f meromorphic_on D pts"
+  shows "f analytic_on (D - pts)"
+  by (metis assms analytic_on_open meromorphic_imp_open_diff meromorphic_on_def)
+
+lemma meromorphic_imp_constant_on:
+  assumes merf: "f meromorphic_on D pts" 
+      and "f constant_on (D - pts)"
+      and "\<forall>x\<in>pts. is_pole f x"
+    shows "f constant_on D"
+proof -
+  obtain c where c:"\<And>z. z \<in> D-pts \<Longrightarrow> f z = c"
+    by (meson assms constant_on_def)
+
+  have "f z = c" if "z \<in> D" for z
+  proof (cases "is_pole f z")
+    case True
+    then obtain r0 where "r0 > 0" and r0: "f analytic_on ball z r0 - {z}" and pol: "is_pole f z"
+      using merf unfolding meromorphic_on_def isolated_singularity_at_def 
+      by (metis \<open>z \<in> D\<close> insert_Diff insert_Diff_if insert_iff merf 
+          meromorphic_imp_open_diff not_is_pole_holomorphic)
+    have "open D"
+      using merf meromorphic_on_def by auto
+    then obtain r where "r > 0" "ball z r \<subseteq> D" "r \<le> r0"
+      by (smt (verit, best) \<open>0 < r0\<close> \<open>z \<in> D\<close> openE order_subst2 subset_ball)
+    have r: "f analytic_on ball z r - {z}"
+      by (meson Diff_mono \<open>r \<le> r0\<close> analytic_on_subset order_refl r0 subset_ball)
+    have "ball z r - {z} \<subseteq> -pts"
+      using merf r unfolding meromorphic_on_def
+      by (meson ComplI Elementary_Metric_Spaces.open_ball 
+          analytic_imp_holomorphic assms(3) not_is_pole_holomorphic open_delete subsetI)
+    with \<open>ball z r \<subseteq> D\<close> have "ball z r - {z} \<subseteq> D-pts"
+      by fastforce
+    with c have c': "\<And>u. u \<in> ball z r - {z} \<Longrightarrow> f u = c"
+      by blast    
+    have False if "\<forall>\<^sub>F x in at z. cmod c + 1 \<le> cmod (f x)"
+    proof -
+      have "\<forall>\<^sub>F x in at z within ball z r - {z}. cmod c + 1 \<le> cmod (f x)"
+        by (smt (verit, best) Diff_UNIV Diff_eq_empty_iff eventually_at_topological insert_subset that)
+      with \<open>r > 0\<close> show ?thesis
+        apply (simp add: c' eventually_at_filter topological_space_class.eventually_nhds open_dist)
+        by (metis dist_commute min_less_iff_conj perfect_choose_dist)
+    qed
+    with pol show ?thesis
+      by (auto simp: is_pole_def filterlim_at_infinity_conv_norm_at_top filterlim_at_top)
+  next
+    case False
+    then show ?thesis by (meson DiffI assms(3) c that)
+  qed 
+  then show ?thesis
+    by (simp add: constant_on_def)
+qed
+
+
+lemma meromorphic_isolated:
+  assumes merf: "f meromorphic_on D pts" and "p\<in>pts"
+  obtains r where "r>0" "ball p r \<subseteq> D" "ball p r \<inter> pts = {p}"
+proof -
+  have "\<forall>z\<in>D. \<exists>e>0. finite (pts \<inter> ball z e)" 
+    using merf unfolding meromorphic_on_def islimpt_eq_infinite_ball
+    by auto
+  then obtain r0 where r0:"r0>0" "finite (pts \<inter> ball p r0)"
+    by (metis assms(2) in_mono merf meromorphic_on_def)
+  moreover define pts' where "pts' = pts \<inter> ball p r0 - {p}"
+  ultimately have "finite pts'"
+    by simp
+  
+  define r1 where "r1=(if pts'={} then r0 else 
+                          min (Min {dist p' p |p'. p'\<in>pts'}/2) r0)"
+  have "r1>0 \<and> pts \<inter> ball p r1 - {p} = {}"
+  proof (cases "pts'={}")
+    case True
+    then show ?thesis 
+      using pts'_def r0(1) r1_def by presburger
+  next
+    case False
+    define S where "S={dist p' p |p'. p'\<in>pts'}"
+
+    have nempty:"S \<noteq> {}"
+      using False S_def by blast
+    have finite:"finite S"
+      using \<open>finite pts'\<close> S_def by simp
+
+    have "r1>0"
+    proof -
+      have "r1=min (Min S/2) r0"
+        using False unfolding S_def r1_def by auto
+      moreover have "Min S\<in>S"
+        using \<open>S\<noteq>{}\<close> \<open>finite S\<close>  Min_in by auto
+      then have "Min S>0" unfolding S_def 
+        using pts'_def by force
+      ultimately show ?thesis using \<open>r0>0\<close> by auto
+    qed
+    moreover have "pts \<inter> ball p r1 - {p} = {}"
+    proof (rule ccontr)
+      assume "pts \<inter> ball p r1 - {p} \<noteq> {}"
+      then obtain p' where "p'\<in>pts \<inter> ball p r1 - {p}" by blast
+      moreover have "r1\<le>r0" using r1_def by auto
+      ultimately have "p'\<in>pts'" unfolding pts'_def 
+        by auto
+      then have "dist p' p\<ge>Min S" 
+        using S_def eq_Min_iff local.finite by blast
+      moreover have "dist p' p < Min S"
+        using \<open>p'\<in>pts \<inter> ball p r1 - {p}\<close> False unfolding r1_def
+        apply (fold S_def)
+        by (smt (verit, ccfv_threshold) DiffD1 Int_iff dist_commute 
+            dist_triangle_half_l mem_ball)
+      ultimately show False by auto
+    qed
+    ultimately show ?thesis by auto
+  qed
+  then have "r1>0" and r1_pts:"pts \<inter> ball p r1 - {p} = {}" by auto
+
+  obtain r2 where "r2>0" "ball p r2 \<subseteq> D"
+    by (metis assms(2) merf meromorphic_on_def openE subset_eq)
+  define r where "r=min r1 r2"
+  have "r > 0" unfolding r_def 
+    by (simp add: \<open>0 < r1\<close> \<open>0 < r2\<close>)
+  moreover have "ball p r \<subseteq> D" 
+    using \<open>ball p r2 \<subseteq> D\<close> r_def by auto
+  moreover have "ball p r \<inter> pts = {p}"
+    using assms(2) \<open>r>0\<close> r1_pts
+    unfolding r_def by auto
+  ultimately show ?thesis using that by auto
+qed
+
+lemma meromorphic_pts_closure:
+  assumes merf: "f meromorphic_on D pts" 
+  shows "pts \<subseteq> closure (D - pts)"
+proof -
+  have "p islimpt (D - pts)" if "p\<in>pts" for p 
+  proof -
+    obtain r where "r>0" "ball p r \<subseteq> D" "ball p r \<inter> pts = {p}"
+      using meromorphic_isolated[OF merf \<open>p\<in>pts\<close>] by auto
+    from \<open>r>0\<close>
+    have "p islimpt ball p r - {p}"
+      by (meson open_ball ball_subset_cball in_mono islimpt_ball 
+          islimpt_punctured le_less open_contains_ball_eq)
+    moreover have " ball p r - {p} \<subseteq> D - pts"
+      using \<open>ball p r \<inter> pts = {p}\<close> \<open>ball p r \<subseteq> D\<close> by fastforce
+    ultimately show ?thesis 
+      using islimpt_subset by auto
+  qed
+  then show ?thesis by (simp add: islimpt_in_closure subset_eq)
+qed
+
+lemma nconst_imp_nzero_neighbour:
+  assumes merf: "f meromorphic_on D pts" 
+    and f_nconst:"\<not>(\<forall>w\<in>D-pts. f w=0)"
+    and "z\<in>D" and "connected D"
+  shows "(\<forall>\<^sub>F w in at z. f w \<noteq> 0 \<and> w \<in> D - pts)"
+proof -
+  obtain \<beta> where \<beta>:"\<beta> \<in> D - pts" "f \<beta>\<noteq>0"
+    using f_nconst by auto
+
+  have ?thesis if "z\<notin>pts" 
+  proof -
+    have "\<forall>\<^sub>F w in at z. f w \<noteq> 0 \<and> w \<in> D - pts"
+      apply (rule non_zero_neighbour_alt[of f "D-pts" z  \<beta>])
+      subgoal using merf meromorphic_on_def by blast
+      subgoal using merf meromorphic_imp_open_diff by auto
+      subgoal using assms(4) merf meromorphic_imp_connected_diff by blast
+      subgoal by (simp add: assms(3) that)
+      using \<beta> by auto
+    then show ?thesis by (auto elim:eventually_mono)
+  qed
+  moreover have ?thesis if "z\<in>pts" "\<not> f \<midarrow>z\<rightarrow> 0" 
+  proof -
+    have "\<forall>\<^sub>F w in at z. w \<in> D - pts"
+      using merf[unfolded meromorphic_on_def islimpt_iff_eventually] \<open>z\<in>D\<close>
+      using eventually_at_in_open' eventually_elim2 by fastforce
+    moreover have "\<forall>\<^sub>F w in at z. f w \<noteq> 0" 
+    proof (cases  "is_pole f z")
+      case True
+      then show ?thesis using non_zero_neighbour_pole by auto
+    next
+      case False
+      moreover have "not_essential f z"
+        using merf meromorphic_on_def that(1) by fastforce
+      ultimately obtain c where "c\<noteq>0" "f \<midarrow>z\<rightarrow> c"
+        by (metis \<open>\<not> f \<midarrow>z\<rightarrow> 0\<close> not_essential_def)
+      then show ?thesis 
+        using tendsto_imp_eventually_ne by auto
+    qed
+    ultimately show ?thesis by eventually_elim auto
+  qed
+  moreover have ?thesis if "z\<in>pts" "f \<midarrow>z\<rightarrow> 0" 
+  proof -
+    define ff where "ff=(\<lambda>x. if x=z then 0 else f x)"
+    define A where "A=D - (pts - {z})"
+
+    have "f holomorphic_on A - {z}"
+      by (metis A_def Diff_insert analytic_imp_holomorphic 
+            insert_Diff merf meromorphic_imp_analytic_on that(1))
+    moreover have "open A"  
+      using A_def merf meromorphic_imp_open_diff' by force
+    ultimately have "ff holomorphic_on A" 
+      using \<open>f \<midarrow>z\<rightarrow> 0\<close> unfolding ff_def
+      by (rule removable_singularity)
+    moreover have "connected A"
+    proof -
+      have "connected (D - pts)" 
+        using assms(4) merf meromorphic_imp_connected_diff by auto
+      moreover have "D - pts \<subseteq> A"
+        unfolding A_def by auto
+      moreover have "A \<subseteq> closure (D - pts)" unfolding A_def
+        by (smt (verit, ccfv_SIG) Diff_empty Diff_insert 
+            closure_subset insert_Diff_single insert_absorb 
+            insert_subset merf meromorphic_pts_closure that(1))
+      ultimately show ?thesis using connected_intermediate_closure 
+        by auto
+    qed
+    moreover have "z \<in> A" using A_def assms(3) by blast
+    moreover have "ff z = 0" unfolding ff_def by auto
+    moreover have "\<beta> \<in> A " using A_def \<beta>(1) by blast
+    moreover have "ff \<beta> \<noteq> 0" using \<beta>(1) \<beta>(2) ff_def that(1) by auto
+    ultimately obtain r where "0 < r" 
+        "ball z r \<subseteq> A" "\<And>x. x \<in> ball z r - {z} \<Longrightarrow> ff x \<noteq> 0"
+      using \<open>open A\<close> isolated_zeros[of ff A z \<beta>] by auto
+    then show ?thesis unfolding eventually_at ff_def
+      by (intro exI[of _ r]) (auto simp: A_def dist_commute ball_def)
+  qed
+  ultimately show ?thesis by auto
+qed
+
+lemma nconst_imp_nzero_neighbour':
+  assumes merf: "f meromorphic_on D pts" 
+    and f_nconst:"\<not>(\<forall>w\<in>D-pts. f w=0)"
+    and "z\<in>D" and "connected D"
+  shows "\<forall>\<^sub>F w in at z. f w \<noteq> 0"
+  using nconst_imp_nzero_neighbour[OF assms]
+  by (auto elim:eventually_mono)
+
+lemma meromorphic_compact_finite_zeros:
+  assumes merf:"f meromorphic_on D pts" 
+    and "compact S" "S \<subseteq> D" "connected D"
+    and f_nconst:"\<not>(\<forall>w\<in>D-pts. f w=0)"
+  shows "finite ({x\<in>S. f x=0})"
+proof -
+  have "finite ({x\<in>S. f x=0 \<and> x \<notin> pts})" 
+  proof (rule ccontr)
+    assume "infinite {x \<in> S. f x = 0 \<and> x \<notin> pts}"
+    then obtain z where "z\<in>S" and z_lim:"z islimpt {x \<in> S. f x = 0
+                                              \<and> x \<notin> pts}"
+      using \<open>compact S\<close> unfolding compact_eq_Bolzano_Weierstrass
+      by auto
+  
+    from z_lim
+    have "\<exists>\<^sub>F x in at z. f x = 0 \<and> x \<in> S \<and> x \<notin> pts"
+      unfolding islimpt_iff_eventually not_eventually by simp
+    moreover have "\<forall>\<^sub>F w in at z. f w \<noteq> 0 \<and> w \<in> D - pts"
+      using nconst_imp_nzero_neighbour[OF merf f_nconst _ \<open>connected D\<close>]
+        \<open>z\<in>S\<close> \<open>S \<subseteq> D\<close>
+      by auto
+    ultimately have "\<exists>\<^sub>F x in at z. False"
+      by (simp add: eventually_mono frequently_def)
+    then show False by auto
+  qed
+  moreover have "finite (S \<inter> pts)" 
+    using meromorphic_compact_finite_pts[OF merf \<open>compact S\<close> \<open>S \<subseteq> D\<close>] .
+  ultimately have "finite ({x\<in>S. f x=0 \<and> x \<notin> pts} \<union> (S \<inter> pts))"
+    unfolding finite_Un by auto 
+  then show ?thesis by (elim rev_finite_subset) auto
+qed
+
+lemma meromorphic_onI [intro?]:
+  assumes "open A" "pts \<subseteq> A"
+  assumes "f holomorphic_on A - pts" "\<And>z. z \<in> A \<Longrightarrow> \<not>z islimpt pts"
+  assumes "\<And>z. z \<in> pts \<Longrightarrow> isolated_singularity_at f z"
+  assumes "\<And>z. z \<in> pts \<Longrightarrow> not_essential f z"
+  shows   "f meromorphic_on A pts"
+  using assms unfolding meromorphic_on_def by blast
+
+lemma Polygamma_plus_of_nat:
+  assumes "\<forall>k<m. z \<noteq> -of_nat k"
+  shows   "Polygamma n (z + of_nat m) =
+             Polygamma n z + (-1) ^ n * fact n * (\<Sum>k<m. 1 / (z + of_nat k) ^ Suc n)"
+  using assms
+proof (induction m)
+  case (Suc m)
+  have "Polygamma n (z + of_nat (Suc m)) = Polygamma n (z + of_nat m + 1)"
+    by (simp add: add_ac)
+  also have "\<dots> = Polygamma n (z + of_nat m) + (-1) ^ n * fact n * (1 / ((z + of_nat m) ^ Suc n))"
+    using Suc.prems by (subst Polygamma_plus1) (auto simp: add_eq_0_iff2)
+  also have "Polygamma n (z + of_nat m) =
+               Polygamma n z + (-1) ^ n * (\<Sum>k<m. 1 / (z + of_nat k) ^ Suc n) * fact n"
+    using Suc.prems by (subst Suc.IH) auto
+  finally show ?case
+    by (simp add: algebra_simps)
+qed auto
+
+lemma tendsto_Gamma [tendsto_intros]:
+  assumes "(f \<longlongrightarrow> c) F" "c \<notin> \<int>\<^sub>\<le>\<^sub>0"
+  shows   "((\<lambda>z. Gamma (f z)) \<longlongrightarrow> Gamma c) F"
+  by (intro isCont_tendsto_compose[OF _ assms(1)] continuous_intros assms)
+
+lemma tendsto_Polygamma [tendsto_intros]:
+  fixes f :: "_ \<Rightarrow> 'a :: {real_normed_field,euclidean_space}"
+  assumes "(f \<longlongrightarrow> c) F" "c \<notin> \<int>\<^sub>\<le>\<^sub>0"
+  shows   "((\<lambda>z. Polygamma n (f z)) \<longlongrightarrow> Polygamma n c) F"
+  by (intro isCont_tendsto_compose[OF _ assms(1)] continuous_intros assms)
+
+lemma analytic_on_Gamma' [analytic_intros]:
+  assumes "f analytic_on A" "\<forall>x\<in>A. f x \<notin> \<int>\<^sub>\<le>\<^sub>0" 
+  shows   "(\<lambda>z. Gamma (f z)) analytic_on A"
+  using analytic_on_compose_gen[OF assms(1) analytic_Gamma[of "f ` A"]] assms(2)
+  by (auto simp: o_def)
+
+lemma analytic_on_Polygamma' [analytic_intros]:
+  assumes "f analytic_on A" "\<forall>x\<in>A. f x \<notin> \<int>\<^sub>\<le>\<^sub>0" 
+  shows   "(\<lambda>z. Polygamma n (f z)) analytic_on A"
+  using analytic_on_compose_gen[OF assms(1) analytic_on_Polygamma[of "f ` A" n]] assms(2)
+  by (auto simp: o_def)
+
+lemma
+  shows is_pole_Polygamma: "is_pole (Polygamma n) (-of_nat m :: complex)"
+  and   zorder_Polygamma:  "zorder (Polygamma n) (-of_nat m) = -int (Suc n)"
+  and   residue_Polygamma: "residue (Polygamma n) (-of_nat m) = (if n = 0 then -1 else 0)"
+proof -
+  define g1 :: "complex \<Rightarrow> complex" where
+    "g1 = (\<lambda>z. Polygamma n (z + of_nat (Suc m)) +
+              (-1) ^ Suc n * fact n * (\<Sum>k<m. 1 / (z + of_nat k) ^ Suc n))"
+  define g :: "complex \<Rightarrow> complex" where
+    "g = (\<lambda>z. g1 z + (-1) ^ Suc n * fact n / (z + of_nat m) ^ Suc n)"
+  define F where "F = fps_to_fls (fps_expansion g1 (-of_nat m)) + fls_const ((-1) ^ Suc n * fact n) / fls_X ^ Suc n"
+  have F_altdef: "F = fps_to_fls (fps_expansion g1 (-of_nat m)) + fls_shift (n+1) (fls_const ((-1) ^ Suc n * fact n))"
+    by (simp add: F_def del: power_Suc)
+
+  have "\<not>(-of_nat m) islimpt (\<int>\<^sub>\<le>\<^sub>0 :: complex set)"
+    by (intro discrete_imp_not_islimpt[where e = 1])
+       (auto elim!: nonpos_Ints_cases simp: dist_of_int)
+  hence "eventually (\<lambda>z::complex. z \<notin> \<int>\<^sub>\<le>\<^sub>0) (at (-of_nat m))"
+    by (auto simp: islimpt_conv_frequently_at frequently_def)
+  hence ev: "eventually (\<lambda>z. Polygamma n z = g z) (at (-of_nat m))"
+  proof eventually_elim
+    case (elim z)
+    hence *: "\<forall>k<Suc m. z \<noteq> - of_nat k"
+      by auto
+    thus ?case
+      using Polygamma_plus_of_nat[of "Suc m" z n, OF *]
+      by (auto simp: g_def g1_def algebra_simps)
+  qed
+
+  have "(\<lambda>w. g (-of_nat m + w)) has_laurent_expansion F"
+    unfolding g_def F_def
+    by (intro laurent_expansion_intros has_laurent_expansion_fps analytic_at_imp_has_fps_expansion)
+       (auto simp: g1_def intro!: laurent_expansion_intros analytic_intros)
+  also have "?this \<longleftrightarrow> (\<lambda>w. Polygamma n (-of_nat m + w)) has_laurent_expansion F"
+    using ev by (intro has_laurent_expansion_cong refl)
+                (simp_all add: eq_commute at_to_0' eventually_filtermap)
+  finally have *: "(\<lambda>w. Polygamma n (-of_nat m + w)) has_laurent_expansion F" .
+
+  have subdegree: "fls_subdegree F = -int (Suc n)" unfolding F_def
+    by (subst fls_subdegree_add_eq2) (simp_all add: fls_subdegree_fls_to_fps fls_divide_subdegree)
+  have [simp]: "F \<noteq> 0"
+    using subdegree by auto
+  
+  show "is_pole (Polygamma n) (-of_nat m :: complex)"
+    using * by (rule has_laurent_expansion_imp_is_pole) (auto simp: subdegree)
+  show "zorder (Polygamma n) (-of_nat m :: complex) = -int (Suc n)"
+    by (subst has_laurent_expansion_zorder[OF *]) (auto simp: subdegree)
+  show "residue (Polygamma n) (-of_nat m :: complex) = (if n = 0 then -1 else 0)"
+    by (subst has_laurent_expansion_residue[OF *]) (auto simp: F_altdef)
+qed
+
+lemma Gamma_meromorphic_on [meromorphic_intros]: "Gamma meromorphic_on UNIV \<int>\<^sub>\<le>\<^sub>0"
+proof
+  show "\<not>z islimpt \<int>\<^sub>\<le>\<^sub>0" for z :: complex
+    by (intro discrete_imp_not_islimpt[of 1]) (auto elim!: nonpos_Ints_cases simp: dist_of_int)
+next
+  fix z :: complex assume z: "z \<in> \<int>\<^sub>\<le>\<^sub>0"
+  then obtain n where n: "z = -of_nat n"
+    by (elim nonpos_Ints_cases')
+  show "not_essential Gamma z"
+    by (auto simp: n intro!: is_pole_imp_not_essential is_pole_Gamma)
+  have *: "open (-(\<int>\<^sub>\<le>\<^sub>0 - {z}))"
+    by (intro open_Compl discrete_imp_closed[of 1]) (auto elim!: nonpos_Ints_cases simp: dist_of_int)
+  have "Gamma holomorphic_on -(\<int>\<^sub>\<le>\<^sub>0 - {z}) - {z}"
+    by (intro holomorphic_intros) auto
+  thus "isolated_singularity_at Gamma z"
+    by (rule isolated_singularity_at_holomorphic) (use z * in auto)
+qed (auto intro!: holomorphic_intros)
+
+lemma Polygamma_meromorphic_on [meromorphic_intros]: "Polygamma n meromorphic_on UNIV \<int>\<^sub>\<le>\<^sub>0"
+proof
+  show "\<not>z islimpt \<int>\<^sub>\<le>\<^sub>0" for z :: complex
+    by (intro discrete_imp_not_islimpt[of 1]) (auto elim!: nonpos_Ints_cases simp: dist_of_int)
+next
+  fix z :: complex assume z: "z \<in> \<int>\<^sub>\<le>\<^sub>0"
+  then obtain m where n: "z = -of_nat m"
+    by (elim nonpos_Ints_cases')
+  show "not_essential (Polygamma n) z"
+    by (auto simp: n intro!: is_pole_imp_not_essential is_pole_Polygamma)
+  have *: "open (-(\<int>\<^sub>\<le>\<^sub>0 - {z}))"
+    by (intro open_Compl discrete_imp_closed[of 1]) (auto elim!: nonpos_Ints_cases simp: dist_of_int)
+  have "Polygamma n holomorphic_on -(\<int>\<^sub>\<le>\<^sub>0 - {z}) - {z}"
+    by (intro holomorphic_intros) auto
+  thus "isolated_singularity_at (Polygamma n) z"
+    by (rule isolated_singularity_at_holomorphic) (use z * in auto)
+qed (auto intro!: holomorphic_intros)
+
+
+theorem argument_principle':
+  fixes f::"complex \<Rightarrow> complex" and poles s:: "complex set"
+  \<comment> \<open>\<^term>\<open>pz\<close> is the set of non-essential singularities and zeros\<close>
+  defines "pz \<equiv> {w\<in>s. f w = 0 \<or> w \<in> poles}"
+  assumes "open s" and
+          "connected s" and
+          f_holo:"f holomorphic_on s-poles" and
+          h_holo:"h holomorphic_on s" and
+          "valid_path g" and
+          loop:"pathfinish g = pathstart g" and
+          path_img:"path_image g \<subseteq> s - pz" and
+          homo:"\<forall>z. (z \<notin> s) \<longrightarrow> winding_number g z = 0" and
+          finite:"finite pz" and
+          poles:"\<forall>p\<in>s\<inter>poles. not_essential f p"
+  shows "contour_integral g (\<lambda>x. deriv f x * h x / f x) = 2 * pi * \<i> *
+          (\<Sum>p\<in>pz. winding_number g p * h p * zorder f p)"
+proof -
+  define ff where "ff = remove_sings f"
+
+  have finite':"finite (s \<inter> poles)"  
+    using finite unfolding pz_def by (auto elim:rev_finite_subset)
+
+  have isolated:"isolated_singularity_at f z" if "z\<in>s" for z 
+  proof (rule isolated_singularity_at_holomorphic)
+    show "f holomorphic_on (s-(poles-{z})) - {z}" 
+      by (metis Diff_empty Diff_insert Diff_insert0 Diff_subset 
+          f_holo holomorphic_on_subset insert_Diff)
+    show "open (s - (poles - {z}))" 
+      by (metis Diff_Diff_Int Int_Diff assms(2) finite' finite_Diff 
+          finite_imp_closed inf.idem open_Diff)
+    show "z \<in> s - (poles - {z})" 
+      using assms(4) that by auto
+  qed
+
+  have not_ess:"not_essential f w" if "w\<in>s" for w 
+    by (metis Diff_Diff_Int Diff_iff Int_Diff Int_absorb assms(2) 
+        f_holo finite' finite_imp_closed not_essential_holomorphic 
+        open_Diff poles that)
+
+  have nzero:"\<forall>\<^sub>F x in at w. f x \<noteq> 0" if "w\<in>s" for w
+  proof (rule ccontr) 
+    assume "\<not> (\<forall>\<^sub>F x in at w. f x \<noteq> 0)"
+    then have "\<exists>\<^sub>F x in at w. f x = 0" 
+      unfolding not_eventually by simp
+    moreover have "\<forall>\<^sub>F x in at w. x\<in>s" 
+      by (simp add: assms(2) eventually_at_in_open' that)
+    ultimately have "\<exists>\<^sub>F x in at w. x\<in>{w\<in>s. f w = 0}" 
+      apply (elim frequently_rev_mp)
+      by (auto elim:eventually_mono)
+    from frequently_at_imp_islimpt[OF this] 
+    have "w islimpt {w \<in> s. f w = 0}" .
+    then have "infinite({w \<in> s. f w = 0} \<inter> ball w 1)"
+      unfolding islimpt_eq_infinite_ball by auto
+    then have "infinite({w \<in> s. f w = 0})"
+      by auto
+    then have "infinite pz" unfolding pz_def 
+      by (smt (verit) Collect_mono_iff rev_finite_subset)
+    then show False using finite by auto
+  qed
+
+  obtain pts' where pts':"pts' \<subseteq> s \<inter> poles" 
+    "finite pts'" "ff holomorphic_on s - pts'" "\<forall>x\<in>pts'. is_pole ff x"
+    apply (elim get_all_poles_from_remove_sings
+        [of f,folded ff_def,rotated -1])
+    subgoal using f_holo by fastforce
+    using \<open>open s\<close> poles finite' by auto
+
+  have pts'_sub_pz:"{w \<in> s. ff w = 0 \<or> w \<in> pts'} \<subseteq> pz"
+  proof -
+    have "w\<in>poles" if "w\<in>s" "w\<in>pts'" for w 
+      by (meson in_mono le_infE pts'(1) that(2))
+    moreover have "f w=0" if" w\<in>s" "w\<notin>poles" "ff w=0" for w
+    proof -
+      have "\<not> is_pole f w"
+        by (metis DiffI Diff_Diff_Int Diff_subset assms(2) f_holo 
+            finite' finite_imp_closed inf.absorb_iff2 
+            not_is_pole_holomorphic open_Diff that(1) that(2))
+      then have "f \<midarrow>w\<rightarrow> 0" 
+        using remove_sings_eq_0_iff[OF not_ess[OF \<open>w\<in>s\<close>]] \<open>ff w=0\<close>
+        unfolding ff_def by auto
+      moreover have "f analytic_on {w}" 
+        using that(1,2) finite' f_holo assms(2)
+        by (metis Diff_Diff_Int Diff_empty Diff_iff Diff_subset 
+            double_diff finite_imp_closed 
+            holomorphic_on_imp_analytic_at open_Diff)
+      ultimately show ?thesis 
+        using ff_def remove_sings_at_analytic that(3) by presburger
+    qed
+    ultimately show ?thesis unfolding pz_def by auto
+  qed
+
+
+  have "contour_integral g (\<lambda>x. deriv f x * h x / f x)
+          = contour_integral g (\<lambda>x. deriv ff x * h x / ff x)"
+  proof (rule contour_integral_eq)
+    fix x assume "x \<in> path_image g" 
+    have "f analytic_on {x}"
+    proof (rule holomorphic_on_imp_analytic_at[of _ "s-poles"])
+      from finite' 
+      show "open (s - poles)" 
+        using \<open>open s\<close> 
+        by (metis Diff_Compl Diff_Diff_Int Diff_eq finite_imp_closed 
+            open_Diff)
+      show "x \<in> s - poles"
+        using path_img \<open>x \<in> path_image g\<close> unfolding pz_def by auto
+    qed (use f_holo in simp)
+    then show "deriv f x * h x / f x = deriv ff x * h x / ff x"
+      unfolding ff_def by auto
+  qed
+  also have "... = complex_of_real (2 * pi) * \<i> *
+                      (\<Sum>p\<in>{w \<in> s. ff w = 0 \<or> w \<in> pts'}. 
+                        winding_number g p * h p * of_int (zorder ff p))"
+  proof (rule argument_principle[OF \<open>open s\<close> \<open>connected s\<close>, of ff pts' h g])
+    show "path_image g \<subseteq> s - {w \<in> s. ff w = 0 \<or> w \<in> pts'}"
+      using path_img pts'_sub_pz  by auto
+    show "finite {w \<in> s. ff w = 0 \<or> w \<in> pts'}" 
+      using pts'_sub_pz finite 
+      using rev_finite_subset by blast  
+  qed (use pts' assms in auto)
+  also have "... = 2 * pi * \<i> *
+          (\<Sum>p\<in>pz. winding_number g p * h p * zorder f p)"
+  proof -
+    have "(\<Sum>p\<in>{w \<in> s. ff w = 0 \<or> w \<in> pts'}.
+       winding_number g p * h p * of_int (zorder ff p)) =
+      (\<Sum>p\<in>pz. winding_number g p * h p * of_int (zorder f p))"
+    proof (rule sum.mono_neutral_cong_left)
+      have "zorder f w = 0" 
+        if "w\<in>s" " f w = 0 \<or> w \<in> poles" "ff w \<noteq> 0" " w \<notin> pts'"
+        for w
+      proof -
+        define F where "F=laurent_expansion f w"
+        have has_l:"(\<lambda>x. f (w + x)) has_laurent_expansion F"
+          unfolding F_def
+          apply (rule not_essential_has_laurent_expansion)
+          using isolated not_ess \<open>w\<in>s\<close> by auto
+        from has_laurent_expansion_eventually_nonzero_iff[OF this]
+        have "F \<noteq>0"
+          using nzero \<open>w\<in>s\<close> by auto
+        from tendsto_0_subdegree_iff[OF has_l this] 
+        have "f \<midarrow>w\<rightarrow> 0 = (0 < fls_subdegree F)" .
+        moreover have "\<not> (is_pole f w \<or> f \<midarrow>w\<rightarrow> 0)"
+          using remove_sings_eq_0_iff[OF not_ess[OF \<open>w\<in>s\<close>]] \<open>ff w \<noteq> 0\<close>
+          unfolding ff_def by auto
+        moreover have "is_pole f w = (fls_subdegree F < 0)"
+          using is_pole_fls_subdegree_iff[OF has_l] .
+        ultimately have "fls_subdegree F = 0" by auto
+        then show ?thesis
+          using has_laurent_expansion_zorder[OF has_l \<open>F\<noteq>0\<close>] by auto
+      qed
+      then show "\<forall>i\<in>pz - {w \<in> s. ff w = 0 \<or> w \<in> pts'}.
+        winding_number g i * h i * of_int (zorder f i) = 0" 
+        unfolding pz_def by auto
+      show "\<And>x. x \<in> {w \<in> s. ff w = 0 \<or> w \<in> pts'} \<Longrightarrow>
+         winding_number g x * h x * of_int (zorder ff x) =
+         winding_number g x * h x * of_int (zorder f x)"
+        using isolated zorder_remove_sings[of f,folded ff_def] by auto
+    qed (use pts'_sub_pz finite in auto)
+    then show ?thesis by auto
+  qed
+  finally show ?thesis .
+qed
+
+lemma meromorphic_on_imp_isolated_singularity:
+  assumes "f meromorphic_on D pts" "z \<in> D"
+  shows   "isolated_singularity_at f z"
+  by (meson DiffI assms(1) assms(2) holomorphic_on_imp_analytic_at isolated_singularity_at_analytic 
+        meromorphic_imp_open_diff meromorphic_on_def)
+
+lemma meromorphic_imp_not_is_pole:
+  assumes "f meromorphic_on D pts" "z \<in> D - pts"
+  shows   "\<not>is_pole f z"
+proof -
+  from assms have "f analytic_on {z}"
+    using meromorphic_on_imp_analytic_at by blast
+  thus ?thesis
+    using analytic_at not_is_pole_holomorphic by blast
+qed
+
+lemma meromorphic_all_poles_iff_empty [simp]: "f meromorphic_on pts pts \<longleftrightarrow> pts = {}"
+  by (auto simp: meromorphic_on_def holomorphic_on_def open_imp_islimpt)
+
+lemma meromorphic_imp_nonsingular_point_exists:
+  assumes "f meromorphic_on A pts" "A \<noteq> {}"
+  obtains x where "x \<in> A - pts"
+proof -
+  have "A \<noteq> pts"
+    using assms by auto
+  moreover have "pts \<subseteq> A"
+    using assms by (auto simp: meromorphic_on_def)
+  ultimately show ?thesis
+    using that by blast
+qed
+
+lemma meromorphic_frequently_const_imp_const:
+  assumes "f meromorphic_on A pts" "connected A"
+  assumes "frequently (\<lambda>w. f w = c) (at z)"
+  assumes "z \<in> A - pts"
+  assumes "w \<in> A - pts"
+  shows   "f w = c"
+proof -
+  have "f w - c = 0"
+  proof (rule analytic_continuation[where f = "\<lambda>z. f z - c"])
+    show "(\<lambda>z. f z - c) holomorphic_on (A - pts)"
+      by (intro holomorphic_intros meromorphic_imp_holomorphic[OF assms(1)])
+    show [intro]: "open (A - pts)"
+      using assms meromorphic_imp_open_diff by blast
+    show "connected (A - pts)"
+      using assms meromorphic_imp_connected_diff by blast
+    show "{z\<in>A-pts. f z = c} \<subseteq> A - pts"
+      by blast
+    have "eventually (\<lambda>z. z \<in> A - pts) (at z)"
+      using assms by (intro eventually_at_in_open') auto
+    hence "frequently (\<lambda>z. f z = c \<and> z \<in> A - pts) (at z)"
+      by (intro frequently_eventually_frequently assms)
+    thus "z islimpt {z\<in>A-pts. f z = c}"
+      by (simp add: islimpt_conv_frequently_at conj_commute)
+  qed (use assms in auto)
+  thus ?thesis
+    by simp
+qed
+
+lemma meromorphic_imp_eventually_neq:
+  assumes "f meromorphic_on A pts" "connected A" "\<not>f constant_on A - pts"
+  assumes "z \<in> A - pts"
+  shows   "eventually (\<lambda>z. f z \<noteq> c) (at z)"
+proof (rule ccontr)
+  assume "\<not>eventually (\<lambda>z. f z \<noteq> c) (at z)"
+  hence *: "frequently (\<lambda>z. f z = c) (at z)"
+    by (auto simp: frequently_def)
+  have "\<forall>w\<in>A-pts. f w = c"
+    using meromorphic_frequently_const_imp_const [OF assms(1,2) * assms(4)] by blast
+  hence "f constant_on A - pts"
+    by (auto simp: constant_on_def)
+  thus False
+    using assms(3) by contradiction
+qed
+
+lemma meromorphic_frequently_const_imp_const':
+  assumes "f meromorphic_on A pts" "connected A" "\<forall>w\<in>pts. is_pole f w"
+  assumes "frequently (\<lambda>w. f w = c) (at z)"
+  assumes "z \<in> A"
+  assumes "w \<in> A"
+  shows   "f w = c"
+proof -
+  have "\<not>is_pole f z"
+    using frequently_const_imp_not_is_pole[OF assms(4)] .
+  with assms have z: "z \<in> A - pts"
+    by auto
+  have *: "f w = c" if "w \<in> A - pts" for w
+    using that meromorphic_frequently_const_imp_const [OF assms(1,2,4) z] by auto
+  have "\<not>is_pole f u" if "u \<in> A" for u
+  proof -
+    have "is_pole f u \<longleftrightarrow> is_pole (\<lambda>_. c) u"
+    proof (rule is_pole_cong)
+      have "eventually (\<lambda>w. w \<in> A - (pts - {u}) - {u}) (at u)"
+        by (intro eventually_at_in_open meromorphic_imp_open_diff' [OF assms(1)]) (use that in auto)
+      thus "eventually (\<lambda>w. f w = c) (at u)"
+        by eventually_elim (use * in auto)
+    qed auto
+    thus ?thesis
+      by auto
+  qed
+  moreover have "pts \<subseteq> A"
+    using assms(1) by (simp add: meromorphic_on_def)
+  ultimately have "pts = {}"
+    using assms(3) by auto
+  with * and \<open>w \<in> A\<close> show ?thesis
+    by blast
+qed
+
+lemma meromorphic_imp_eventually_neq':
+  assumes "f meromorphic_on A pts" "connected A" "\<forall>w\<in>pts. is_pole f w" "\<not>f constant_on A"
+  assumes "z \<in> A"
+  shows   "eventually (\<lambda>z. f z \<noteq> c) (at z)"
+proof (rule ccontr)
+  assume "\<not>eventually (\<lambda>z. f z \<noteq> c) (at z)"
+  hence *: "frequently (\<lambda>z. f z = c) (at z)"
+    by (auto simp: frequently_def)
+  have "\<forall>w\<in>A. f w = c"
+    using meromorphic_frequently_const_imp_const' [OF assms(1,2,3) * assms(5)] by blast
+  hence "f constant_on A"
+    by (auto simp: constant_on_def)
+  thus False
+    using assms(4) by contradiction
+qed
+
+lemma zorder_eq_0_iff_meromorphic:
+  assumes "f meromorphic_on A pts" "\<forall>z\<in>pts. is_pole f z" "z \<in> A"
+  assumes "eventually (\<lambda>x. f x \<noteq> 0) (at z)"
+  shows   "zorder f z = 0 \<longleftrightarrow> \<not>is_pole f z \<and> f z \<noteq> 0"
+proof (cases "z \<in> pts")
+  case True
+  from assms obtain F where F: "(\<lambda>x. f (z + x)) has_laurent_expansion F"
+    by (metis True meromorphic_on_def not_essential_has_laurent_expansion) (* TODO: better lemmas *)
+  from F and assms(4) have [simp]: "F \<noteq> 0"
+    using has_laurent_expansion_eventually_nonzero_iff by blast
+  show ?thesis using True assms(2)
+    using is_pole_fls_subdegree_iff [OF F] has_laurent_expansion_zorder [OF F]
+    by auto
+next
+  case False
+  have ana: "f analytic_on {z}"
+    using meromorphic_on_imp_analytic_at False assms by blast
+  hence "\<not>is_pole f z"
+    using analytic_at not_is_pole_holomorphic by blast
+  moreover have "frequently (\<lambda>w. f w \<noteq> 0) (at z)"
+    using assms(4) by (intro eventually_frequently) auto
+  ultimately show ?thesis using zorder_eq_0_iff[OF ana] False
+    by auto
+qed
+
+lemma zorder_pos_iff_meromorphic:
+  assumes "f meromorphic_on A pts" "\<forall>z\<in>pts. is_pole f z" "z \<in> A"
+  assumes "eventually (\<lambda>x. f x \<noteq> 0) (at z)"
+  shows   "zorder f z > 0 \<longleftrightarrow> \<not>is_pole f z \<and> f z = 0"
+proof (cases "z \<in> pts")
+  case True
+  from assms obtain F where F: "(\<lambda>x. f (z + x)) has_laurent_expansion F"
+    by (metis True meromorphic_on_def not_essential_has_laurent_expansion) (* TODO: better lemmas *)
+  from F and assms(4) have [simp]: "F \<noteq> 0"
+    using has_laurent_expansion_eventually_nonzero_iff by blast
+  show ?thesis using True assms(2)
+    using is_pole_fls_subdegree_iff [OF F] has_laurent_expansion_zorder [OF F]
+    by auto
+next
+  case False
+  have ana: "f analytic_on {z}"
+    using meromorphic_on_imp_analytic_at False assms by blast
+  hence "\<not>is_pole f z"
+    using analytic_at not_is_pole_holomorphic by blast
+  moreover have "frequently (\<lambda>w. f w \<noteq> 0) (at z)"
+    using assms(4) by (intro eventually_frequently) auto
+  ultimately show ?thesis using zorder_pos_iff'[OF ana] False
+    by auto
+qed
+
+lemma zorder_neg_iff_meromorphic:
+  assumes "f meromorphic_on A pts" "\<forall>z\<in>pts. is_pole f z" "z \<in> A"
+  assumes "eventually (\<lambda>x. f x \<noteq> 0) (at z)"
+  shows   "zorder f z < 0 \<longleftrightarrow> is_pole f z"
+proof -
+  have "frequently (\<lambda>x. f x \<noteq> 0) (at z)"
+    using assms by (intro eventually_frequently) auto
+  moreover from assms have "isolated_singularity_at f z" "not_essential f z"
+    using meromorphic_on_imp_isolated_singularity meromorphic_on_imp_not_essential by blast+
+  ultimately show ?thesis
+    using isolated_pole_imp_neg_zorder neg_zorder_imp_is_pole by blast
+qed
+
+lemma meromorphic_on_imp_discrete:
+  assumes mero:"f meromorphic_on S pts" and "connected S" 
+    and nconst:"\<not> (\<forall>w\<in>S - pts. f w = c)"
+  shows "discrete {x\<in>S. f x=c}" 
+proof -
+  define g where "g=(\<lambda>x. f x - c)"
+  have "\<forall>\<^sub>F w in at z. g w \<noteq> 0" if "z \<in> S" for z
+  proof (rule nconst_imp_nzero_neighbour'[of g S pts z])
+    show "g meromorphic_on S pts" using mero unfolding g_def
+      by (auto intro:meromorphic_intros)
+    show "\<not> (\<forall>w\<in>S - pts. g w = 0)" using nconst unfolding g_def by auto
+  qed fact+
+  then show ?thesis 
+    unfolding discrete_altdef g_def 
+    using eventually_mono by fastforce
+qed
+
+lemma meromorphic_isolated_in:
+  assumes merf: "f meromorphic_on D pts" "p\<in>pts"
+  shows "p isolated_in pts"
+  by (meson assms isolated_in_islimpt_iff meromorphic_on_def subsetD)
+
+lemma remove_sings_constant_on:
+  assumes merf: "f meromorphic_on D pts" and "connected D"
+      and const:"f constant_on (D - pts)"
+    shows "(remove_sings f) constant_on D"
+proof -
+  have remove_sings_const: "remove_sings f constant_on D - pts" 
+    using const
+    by (metis constant_onE merf meromorphic_on_imp_analytic_at remove_sings_at_analytic)
+
+  have ?thesis if "D = {}"
+    using that unfolding constant_on_def by auto
+  moreover have ?thesis if "D\<noteq>{}" "{x\<in>pts. is_pole f x} = {}"
+  proof -
+    obtain \<xi> where "\<xi> \<in> (D - pts)" "\<xi> islimpt (D - pts)"
+    proof -
+      have "open (D - pts)"
+        using meromorphic_imp_open_diff[OF merf] .
+      moreover have "(D - pts) \<noteq> {}" using \<open>D\<noteq>{}\<close>
+        by (metis Diff_empty closure_empty merf 
+            meromorphic_pts_closure subset_empty)
+      ultimately show ?thesis using open_imp_islimpt that by auto
+    qed
+    moreover have "remove_sings f holomorphic_on D"
+      using remove_sings_holomorphic_on[OF merf] that by auto
+    moreover note remove_sings_const
+    moreover have "open D" 
+      using assms(1) meromorphic_on_def by blast
+    ultimately show ?thesis
+      using Conformal_Mappings.analytic_continuation'
+              [of "remove_sings f" D "D-pts" \<xi>] \<open>connected D\<close>
+      by auto
+  qed
+  moreover have ?thesis if "D\<noteq>{}" "{x\<in>pts. is_pole f x} \<noteq> {}"
+  proof -
+    define PP where "PP={x\<in>D. is_pole f x}"
+    have "remove_sings f meromorphic_on D PP"
+      using merf unfolding PP_def
+      apply (elim remove_sings_meromorphic_on)
+      subgoal using assms(1) meromorphic_on_def by force
+      subgoal using meromorphic_pole_subset merf by auto
+      done
+    moreover have "remove_sings f constant_on D - PP"
+    proof -
+      obtain \<xi> where "\<xi> \<in> f ` (D - pts)" 
+        by (metis Diff_empty Diff_eq_empty_iff \<open>D \<noteq> {}\<close> assms(1) 
+            closure_empty ex_in_conv imageI meromorphic_pts_closure)
+      have \<xi>:"\<forall>x\<in>D - pts. f x = \<xi>"    
+        by (metis \<open>\<xi> \<in> f ` (D - pts)\<close> assms(3) constant_on_def image_iff)
+
+      have "remove_sings f x = \<xi>" if "x\<in>D - PP" for x
+      proof (cases "x\<in>pts")
+        case True
+        then have"x isolated_in pts" 
+          using meromorphic_isolated_in[OF merf] by auto
+        then obtain T0 where T0:"open T0" "T0 \<inter> pts = {x}"
+          unfolding isolated_in_def by auto
+        obtain T1 where T1:"open T1" "x\<in>T1" "T1 \<subseteq> D"
+          using merf unfolding meromorphic_on_def 
+          using True by blast
+        define T2 where "T2 = T1 \<inter> T0"
+        have "open T2" "x\<in>T2" "T2 - {x} \<subseteq> D - pts"
+          using T0 T1 unfolding T2_def by auto
+        then have "\<forall>w\<in>T2. w\<noteq>x \<longrightarrow> f w =\<xi>"
+          using \<xi> by auto
+        then have "\<forall>\<^sub>F x in at x. f x = \<xi>" 
+          unfolding eventually_at_topological
+          using \<open>open T2\<close> \<open>x\<in>T2\<close> by auto
+        then have "f \<midarrow>x\<rightarrow> \<xi>" 
+          using tendsto_eventually by auto
+        then show ?thesis by blast
+      next
+        case False
+        then show ?thesis 
+          using \<open>\<forall>x\<in>D - pts. f x = \<xi>\<close> assms(1) 
+            meromorphic_on_imp_analytic_at that by auto
+      qed
+
+      then show ?thesis unfolding constant_on_def by auto
+    qed
+
+    moreover have "is_pole (remove_sings f) x" if "x\<in>PP" for x
+    proof -
+      have "isolated_singularity_at f x"
+        by (metis (mono_tags, lifting) DiffI PP_def assms(1) 
+            isolated_singularity_at_analytic mem_Collect_eq 
+            meromorphic_on_def meromorphic_on_imp_analytic_at that)
+      then show ?thesis using that unfolding PP_def by simp
+    qed
+    ultimately show ?thesis
+      using meromorphic_imp_constant_on
+            [of "remove_sings f" D PP]
+      by auto
+  qed
+  ultimately show ?thesis by auto
+qed
+
+lemma meromorphic_eq_meromorphic_extend:
+  assumes "f meromorphic_on A pts1" "g meromorphic_on A pts1" "\<not>z islimpt pts2"
+  assumes "\<And>z. z \<in> A - pts2 \<Longrightarrow> f z = g z" "pts1 \<subseteq> pts2" "z \<in> A - pts1"
+  shows   "f z = g z"
+proof -
+  have "g analytic_on {z}"
+    using assms by (intro meromorphic_on_imp_analytic_at[OF assms(2)]) auto
+  hence "g \<midarrow>z\<rightarrow> g z"
+    using analytic_at_imp_isCont isContD by blast
+  also have "?this \<longleftrightarrow> f \<midarrow>z\<rightarrow> g z"
+  proof (intro filterlim_cong)
+    have "eventually (\<lambda>w. w \<notin> pts2) (at z)"
+      using assms by (auto simp: islimpt_conv_frequently_at frequently_def)
+    moreover have "eventually (\<lambda>w. w \<in> A) (at z)"
+      using assms by (intro eventually_at_in_open') (auto simp: meromorphic_on_def)
+    ultimately show "\<forall>\<^sub>F x in at z. g x = f x"
+      by eventually_elim (use assms in auto)
+  qed auto
+  finally have "f \<midarrow>z\<rightarrow> g z" .
+  moreover have "f analytic_on {z}"
+    using assms by (intro meromorphic_on_imp_analytic_at[OF assms(1)]) auto
+  hence "f \<midarrow>z\<rightarrow> f z"
+    using analytic_at_imp_isCont isContD by blast
+  ultimately show ?thesis
+    using tendsto_unique by force
+qed
+
+lemma meromorphic_constant_on_extend:
+  assumes "f constant_on A - pts1" "f meromorphic_on A pts1" "f meromorphic_on A pts2" "pts2 \<subseteq> pts1"
+  shows   "f constant_on A - pts2"
+proof -
+  from assms(1) obtain c where c: "\<And>z. z \<in> A - pts1 \<Longrightarrow> f z = c"
+    unfolding constant_on_def by auto
+  have "f z = c" if "z \<in> A - pts2" for z
+    using assms(3)
+  proof (rule meromorphic_eq_meromorphic_extend[where z = z])
+    show "(\<lambda>a. c) meromorphic_on A pts2"
+      by (intro meromorphic_on_const) (use assms in \<open>auto simp: meromorphic_on_def\<close>)
+    show "\<not>z islimpt pts1"
+      using that assms by (auto simp: meromorphic_on_def)
+  qed (use assms c that in auto)
+  thus ?thesis
+    by (auto simp: constant_on_def)
+qed
+
+lemma meromorphic_remove_sings_constant_on_imp_constant_on:
+  assumes "f meromorphic_on A pts"
+  assumes "remove_sings f constant_on A"
+  shows   "f constant_on A - pts"
+proof -
+  from assms(2) obtain c where c: "\<And>z. z \<in> A \<Longrightarrow> remove_sings f z = c"
+    by (auto simp: constant_on_def)
+  have "f z = c" if "z \<in> A - pts" for z
+    using meromorphic_on_imp_analytic_at[OF assms(1) that] c[of z] that
+    by auto
+  thus ?thesis
+    by (auto simp: constant_on_def)
+qed
+
+
+
+
+definition singularities_on :: "complex set \<Rightarrow> (complex \<Rightarrow> complex) \<Rightarrow> complex set" where
+  "singularities_on A f =
+     {z\<in>A. isolated_singularity_at f z \<and> not_essential f z \<and> \<not>f analytic_on {z}}"
+
+lemma singularities_on_subset: "singularities_on A f \<subseteq> A"
+  by (auto simp: singularities_on_def)
+
+lemma pole_in_singularities_on:
+  assumes "f meromorphic_on A pts" "z \<in> A" "is_pole f z"
+  shows   "z \<in> singularities_on A f"
+  unfolding singularities_on_def not_essential_def using assms
+  using analytic_at_imp_no_pole meromorphic_on_imp_isolated_singularity by force
+
+
+lemma meromorphic_on_subset_pts:
+  assumes "f meromorphic_on A pts" "pts' \<subseteq> pts" "f analytic_on pts - pts'"
+  shows   "f meromorphic_on A pts'"
+proof
+  show "open A" "pts' \<subseteq> A"
+    using assms by (auto simp: meromorphic_on_def)
+  show "isolated_singularity_at f z" "not_essential f z" if "z \<in> pts'" for z
+    using assms that by (auto simp: meromorphic_on_def)
+  show "\<not>z islimpt pts'" if "z \<in> A" for z
+    using assms that islimpt_subset unfolding meromorphic_on_def by blast
+  have "f analytic_on A - pts"
+    using assms(1) meromorphic_imp_analytic by blast
+  with assms have "f analytic_on (A - pts) \<union> (pts - pts')"
+    by (subst analytic_on_Un) auto
+  also have "(A - pts) \<union> (pts - pts') = A - pts'"
+    using assms by (auto simp: meromorphic_on_def)
+  finally show "f holomorphic_on A - pts'"
+    using analytic_imp_holomorphic by blast
+qed
+
+lemma meromorphic_on_imp_superset_singularities_on:
+  assumes "f meromorphic_on A pts"
+  shows   "singularities_on A f \<subseteq> pts"
+proof
+  fix z assume "z \<in> singularities_on A f"
+  hence "z \<in> A" "\<not>f analytic_on {z}"
+    by (auto simp: singularities_on_def)
+  with assms show "z \<in> pts"
+    by (meson DiffI meromorphic_on_imp_analytic_at)
+qed  
+
+lemma meromorphic_on_singularities_on:
+  assumes "f meromorphic_on A pts"
+  shows   "f meromorphic_on A (singularities_on A f)"
+  using assms meromorphic_on_imp_superset_singularities_on[OF assms]
+proof (rule meromorphic_on_subset_pts)
+  have "f analytic_on {z}" if "z \<in> pts - singularities_on A f" for z
+    using that assms by (auto simp: singularities_on_def meromorphic_on_def)
+  thus "f analytic_on pts - singularities_on A f"
+    using analytic_on_analytic_at by blast
+qed
+
+theorem Residue_theorem_inside:
+  assumes f: "f meromorphic_on s pts"
+             "simply_connected s"
+  assumes g: "valid_path g"
+             "pathfinish g = pathstart g"
+             "path_image g \<subseteq> s - pts"
+  defines "pts1 \<equiv> pts \<inter> inside (path_image g)"
+  shows "finite pts1"
+    and "contour_integral g f = 2 * pi * \<i> * (\<Sum>p\<in>pts1. winding_number g p * residue f p)"
+proof - 
+  note [dest] = valid_path_imp_path
+  have cl_g [intro]: "closed (path_image g)"
+    using g by (auto intro!: closed_path_image)
+  have "open s"
+    using f(1) by (auto simp: meromorphic_on_def)
+  define pts2 where "pts2 = pts - pts1"
+
+  define A where "A = path_image g \<union> inside (path_image g)"
+  have "closed A"
+    unfolding A_def using g by (intro closed_path_image_Un_inside) auto
+  moreover have "bounded A"
+    unfolding A_def using g by (auto intro!: bounded_path_image bounded_inside)
+  ultimately have 1: "compact A"
+    using compact_eq_bounded_closed by blast
+  have 2: "open (s - pts2)"
+    using f by (auto intro!: meromorphic_imp_open_diff' [OF f(1)] simp: pts2_def)
+  have 3: "A \<subseteq> s - pts2"
+    unfolding A_def pts2_def pts1_def
+    using f(2) g(3) 2 subset_simply_connected_imp_inside_subset[of s "path_image g"] \<open>open s\<close>
+    by auto
+
+  obtain \<epsilon> where \<epsilon>: "\<epsilon> > 0" "(\<Union>x\<in>A. ball x \<epsilon>) \<subseteq> s - pts2"
+    using compact_subset_open_imp_ball_epsilon_subset[OF 1 2 3] by blast
+  define B where "B = (\<Union>x\<in>A. ball x \<epsilon>)"
+
+  have "finite (A \<inter> pts)"
+    using 1 3 by (intro meromorphic_compact_finite_pts[OF f(1)]) auto
+  also have "A \<inter> pts = pts1"
+    unfolding pts1_def using g by (auto simp: A_def)
+  finally show fin: "finite pts1" .
+
+  show "contour_integral g f = 2 * pi * \<i> * (\<Sum>p\<in>pts1. winding_number g p * residue f p)"
+  proof (rule Residue_theorem)
+    show "open B"
+      by (auto simp: B_def)
+  next
+    have "connected A"
+      unfolding A_def using g
+      by (intro connected_with_inside closed_path_image connected_path_image) auto
+    hence "connected (A \<union> B)"
+      unfolding B_def using g \<open>\<epsilon> > 0\<close> f(2)
+      by (intro connected_Un_UN connected_path_image valid_path_imp_path)
+         (auto simp: simply_connected_imp_connected)
+    also have "A \<union> B = B"
+      using \<epsilon>(1) by (auto simp: B_def)
+    finally show "connected B" .
+  next
+    have "f holomorphic_on (s - pts)"
+      by (intro meromorphic_imp_holomorphic f)
+    moreover have "B - pts1 \<subseteq> s - pts"
+      using \<epsilon> unfolding B_def by (auto simp: pts1_def pts2_def)
+    ultimately show "f holomorphic_on (B - pts1)"
+      by (rule holomorphic_on_subset)
+  next
+    have "path_image g \<subseteq> A - pts1"
+      using g unfolding pts1_def by (auto simp: A_def)
+    also have "\<dots> \<subseteq> B - pts1"
+      unfolding B_def using \<epsilon>(1) by auto
+    finally show "path_image g \<subseteq> B - pts1" .
+  next
+    show "\<forall>z. z \<notin> B \<longrightarrow> winding_number g z = 0"
+    proof safe
+      fix z assume z: "z \<notin> B"
+      hence "z \<notin> A"
+        using \<epsilon>(1) by (auto simp: B_def)
+      hence "z \<in> outside (path_image g)"
+        unfolding A_def by (simp add: union_with_inside)
+      thus "winding_number g z = 0"
+        using g by (intro winding_number_zero_in_outside) auto
+    qed
+  qed (use g fin in auto)
+qed
+
+theorem Residue_theorem':
+  assumes f: "f meromorphic_on s pts"
+             "simply_connected s"
+  assumes g: "valid_path g" 
+             "pathfinish g = pathstart g"
+             "path_image g \<subseteq> s - pts"
+  assumes pts': "finite pts'"
+                "pts' \<subseteq> s"
+                "\<And>z. z \<in> pts - pts' \<Longrightarrow> winding_number g z = 0"
+  shows "contour_integral g f = 2 * pi * \<i> * (\<Sum>p\<in>pts'. winding_number g p * residue f p)"
+proof -
+  note [dest] = valid_path_imp_path
+  define pts1 where "pts1 = pts \<inter> inside (path_image g)"
+
+  have "contour_integral g f = 2 * pi * \<i> * (\<Sum>p\<in>pts1. winding_number g p * residue f p)"
+    unfolding pts1_def by (intro Residue_theorem_inside[OF f g])
+  also have "(\<Sum>p\<in>pts1. winding_number g p * residue f p) =
+             (\<Sum>p\<in>pts'. winding_number g p * residue f p)"
+  proof (intro sum.mono_neutral_cong refl)
+    show "finite pts1"
+      unfolding pts1_def by (intro Residue_theorem_inside[OF f g])
+    show "finite pts'"
+      by fact
+  next
+    fix z assume z: "z \<in> pts' - pts1"
+    show "winding_number g z * residue f z = 0"
+    proof (cases "z \<in> pts")
+      case True
+      with z have "z \<notin> path_image g \<union> inside (path_image g)"
+        using g(3) by (auto simp: pts1_def)
+      hence "z \<in> outside (path_image g)"
+        by (simp add: union_with_inside)
+      hence "winding_number g z = 0"
+        using g by (intro winding_number_zero_in_outside) auto
+      thus ?thesis
+        by simp
+    next
+      case False
+      with z pts' have "z \<in> s - pts"
+        by auto
+      with f(1) have "f analytic_on {z}"
+        by (intro meromorphic_on_imp_analytic_at)
+      hence "residue f z = 0"
+        using analytic_at residue_holo by blast
+      thus ?thesis
+        by simp
+    qed
+  next
+    fix z assume z: "z \<in> pts1 - pts'"
+    hence "winding_number g z = 0"
+      using pts' by (auto simp: pts1_def)
+    thus "winding_number g z * residue f z = 0"
+      by simp
+  qed
+  finally show ?thesis .
+qed
+
+end
\ No newline at end of file
--- a/src/HOL/Complex_Analysis/Residue_Theorem.thy	Mon Feb 20 13:59:16 2023 +0100
+++ b/src/HOL/Complex_Analysis/Residue_Theorem.thy	Mon Feb 20 13:59:42 2023 +0100
@@ -3,6 +3,34 @@
   imports Complex_Residues "HOL-Library.Landau_Symbols"
 begin
 
+text \<open>Could be moved to a previous theory importing both Landau Symbols and Elementary Metric Spaces\<close>
+lemma continuous_bounded_at_infinity_imp_bounded:
+  fixes f :: "real \<Rightarrow> 'a :: real_normed_field"
+  assumes "f \<in> O[at_bot](\<lambda>_. 1)"
+  assumes "f \<in> O[at_top](\<lambda>_. 1)"
+  assumes "continuous_on UNIV f"
+  shows   "bounded (range f)"
+proof -
+  from assms(1) obtain c1 where "eventually (\<lambda>x. norm (f x) \<le> c1) at_bot"
+    by (auto elim!: landau_o.bigE)
+  then obtain x1 where x1: "\<And>x. x \<le> x1 \<Longrightarrow> norm (f x) \<le> c1"
+    by (auto simp: eventually_at_bot_linorder)
+  from assms(2) obtain c2 where "eventually (\<lambda>x. norm (f x) \<le> c2) at_top"
+    by (auto elim!: landau_o.bigE)
+  then obtain x2 where x2: "\<And>x. x \<ge> x2 \<Longrightarrow> norm (f x) \<le> c2"
+    by (auto simp: eventually_at_top_linorder)
+  have "compact (f ` {x1..x2})"
+    by (intro compact_continuous_image continuous_on_subset[OF assms(3)]) auto
+  hence "bounded (f ` {x1..x2})"
+    by (rule compact_imp_bounded)
+  then obtain c3 where c3: "\<And>x. x \<in> {x1..x2} \<Longrightarrow> norm (f x) \<le> c3"
+    unfolding bounded_iff by fast
+  have "norm (f x) \<le> Max {c1, c2, c3}" for x
+    by (cases "x \<le> x1"; cases "x \<ge> x2") (use x1 x2 c3 in \<open>auto simp: le_max_iff_disj\<close>)
+  thus ?thesis
+    unfolding bounded_iff by blast
+qed
+
 subsection \<open>Cauchy's residue theorem\<close>
 
 lemma get_integrable_path:
--- a/src/HOL/Complex_Analysis/Riemann_Mapping.thy	Mon Feb 20 13:59:16 2023 +0100
+++ b/src/HOL/Complex_Analysis/Riemann_Mapping.thy	Mon Feb 20 13:59:42 2023 +0100
@@ -1245,21 +1245,9 @@
   interpret SC_Chain
     using assms by (simp add: SC_Chain_def)
   have "?fp \<and> ?ucc \<and> ?ei"
-proof -
-  have *: "\<lbrakk>\<alpha> \<Longrightarrow> \<beta>; \<beta> \<Longrightarrow> \<gamma>; \<gamma> \<Longrightarrow> \<delta>; \<delta> \<Longrightarrow> \<alpha>\<rbrakk>
-           \<Longrightarrow> (\<alpha> \<longleftrightarrow> \<beta>) \<and> (\<alpha> \<longleftrightarrow> \<gamma>) \<and> (\<alpha> \<longleftrightarrow> \<delta>)" for \<alpha> \<beta> \<gamma> \<delta>
-    by blast
-  show ?thesis
-    apply (rule *)
-    using frontier_properties simply_connected_imp_connected apply blast
-apply clarify
-    using unbounded_complement_components simply_connected_imp_connected apply blast
-    using empty_inside apply blast
-    using empty_inside_imp_simply_connected apply blast
-    done
-qed
+    using empty_inside empty_inside_imp_simply_connected frontier_properties unbounded_complement_components winding_number_zero by blast
   then show ?fp ?ucc ?ei
-    by safe
+    by blast+
 qed
 
 lemma simply_connected_iff_simple:
@@ -1270,6 +1258,12 @@
    apply (metis DIM_complex assms(2) cobounded_has_bounded_component double_compl order_refl)
   by (meson assms inside_bounded_complement_connected_empty simply_connected_eq_empty_inside simply_connected_eq_unbounded_complement_components)
 
+lemma subset_simply_connected_imp_inside_subset:
+  fixes A :: "complex set"
+  assumes "simply_connected A" "open A" "B \<subseteq> A"
+  shows   "inside B \<subseteq> A" 
+by (metis assms Diff_eq_empty_iff inside_mono subset_empty simply_connected_eq_empty_inside)
+
 subsection\<open>Further equivalences based on continuous logs and sqrts\<close>
 
 context SC_Chain
@@ -1299,9 +1293,7 @@
              and expg: "\<And>z. z \<in> ball 0 1 \<Longrightarrow> (f \<circ> k) z = exp (g z)"
     proof (rule continuous_logarithm_on_ball)
       show "continuous_on (ball 0 1) (f \<circ> k)"
-        apply (rule continuous_on_compose [OF contk])
-        using kim continuous_on_subset [OF contf]
-        by blast
+        using contf continuous_on_compose contk kim by blast
       show "\<And>z. z \<in> ball 0 1 \<Longrightarrow> (f \<circ> k) z \<noteq> 0"
         using kim nz by auto
     qed auto
@@ -1438,9 +1430,7 @@
 lemma Borsukian_eq_simply_connected:
   fixes S :: "complex set"
   shows "open S \<Longrightarrow> Borsukian S \<longleftrightarrow> (\<forall>C \<in> components S. simply_connected C)"
-apply (auto simp: Borsukian_componentwise_eq open_imp_locally_connected)
-  using in_components_connected open_components simply_connected_eq_Borsukian apply blast
-  using open_components simply_connected_eq_Borsukian by blast
+  by (meson Borsukian_componentwise_eq in_components_connected open_components open_imp_locally_connected simply_connected_eq_Borsukian)
 
 lemma Borsukian_separation_open_closed:
   fixes S :: "complex set"
@@ -1451,7 +1441,7 @@
   assume "open S"
   show ?thesis
     unfolding Borsukian_eq_simply_connected [OF \<open>open S\<close>]
-    by (meson \<open>open S\<close> \<open>bounded S\<close> bounded_subset in_components_connected in_components_subset nonseparation_by_component_eq open_components simply_connected_iff_simple)
+    by (metis \<open>open S\<close> \<open>bounded S\<close> bounded_subset in_components_maximal nonseparation_by_component_eq open_components simply_connected_iff_simple)
 next
   assume "closed S"
   with \<open>bounded S\<close> show ?thesis
@@ -1659,10 +1649,8 @@
 proof
   assume ?lhs
   then show ?rhs
-    apply (auto simp: winding_number_homotopic_loops_null_eq [OF assms])
-    apply (rule homotopic_loops_imp_homotopic_paths_null)
-    apply (simp add: linepath_refl)
-    done
+    using homotopic_loops_imp_homotopic_paths_null 
+    by (force simp add: linepath_refl winding_number_homotopic_loops_null_eq [OF assms])
 next
   assume ?rhs
   then show ?lhs
@@ -1701,11 +1689,7 @@
   then show ?rhs
     using homotopic_paths_imp_pathstart assms
     by (fastforce simp add: dest: homotopic_paths_imp_homotopic_loops homotopic_paths_loop_parts)
-next
-  assume ?rhs
-  then show ?lhs
-    by (simp add: winding_number_homotopic_paths)
-qed
+qed (simp add: winding_number_homotopic_paths)
 
 lemma winding_number_homotopic_loops_eq:
   assumes "path p" and \<zeta>p: "\<zeta> \<notin> path_image p"
@@ -1725,17 +1709,20 @@
   then have "pathstart r \<noteq> \<zeta>" by blast
   have "homotopic_loops (- {\<zeta>}) p (r +++ q +++ reversepath r)"
   proof (rule homotopic_paths_imp_homotopic_loops)
-    show "homotopic_paths (- {\<zeta>}) p (r +++ q +++ reversepath r)"
-      by (metis (mono_tags, opaque_lifting) \<open>path r\<close> L \<zeta>p \<zeta>q \<open>path p\<close> \<open>path q\<close> homotopic_loops_conjugate loops not_in_path_image_join paf pas path_image_reversepath path_imp_reversepath path_join_eq pathfinish_join pathfinish_reversepath  pathstart_join pathstart_reversepath rim subset_Compl_singleton winding_number_homotopic_loops winding_number_homotopic_paths_eq)
+    have "path (r +++ q +++ reversepath r)"
+      by (simp add: \<open>path r\<close> \<open>path q\<close> loops paf)
+    moreover have "\<zeta> \<notin> path_image (r +++ q +++ reversepath r)"
+      by (metis \<zeta>q not_in_path_image_join path_image_reversepath rim subset_Compl_singleton)
+    moreover have "homotopic_loops (- {\<zeta>}) (r +++ q +++ reversepath r) q"
+      using \<open>path q\<close> \<open>path r\<close> \<zeta>q homotopic_loops_conjugate loops(2) paf rim by blast
+    ultimately show "homotopic_paths (- {\<zeta>}) p (r +++ q +++ reversepath r)"
+      using loops pathfinish_join pathfinish_reversepath pathstart_join
+      by (metis L \<zeta>p \<open>path p\<close> pas winding_number_homotopic_loops winding_number_homotopic_paths_eq)
   qed (use loops pas in auto)
   moreover have "homotopic_loops (- {\<zeta>}) (r +++ q +++ reversepath r) q"
     using rim \<zeta>q by (auto simp: homotopic_loops_conjugate paf \<open>path q\<close> \<open>path r\<close> loops)
   ultimately show ?rhs
     using homotopic_loops_trans by metis
-next
-  assume ?rhs
-  then show ?lhs
-    by (simp add: winding_number_homotopic_loops)
-qed
+qed (simp add: winding_number_homotopic_loops)
 
 end
--- a/src/HOL/Complex_Analysis/Winding_Numbers.thy	Mon Feb 20 13:59:16 2023 +0100
+++ b/src/HOL/Complex_Analysis/Winding_Numbers.thy	Mon Feb 20 13:59:42 2023 +0100
@@ -901,6 +901,16 @@
     by metis
 qed
 
+lemma bounded_winding_number_nz:
+  assumes "path g" "pathfinish g = pathstart g"
+  shows   "bounded {z. winding_number g z \<noteq> 0}"
+proof -
+  obtain B where "\<And>x. norm x \<ge> B \<Longrightarrow> winding_number g x = 0"
+    using winding_number_zero_at_infinity[OF assms] by auto
+  thus ?thesis
+    unfolding bounded_iff by (intro exI[of _ "B + 1"]) force
+qed
+  
 lemma winding_number_zero_point:
     "\<lbrakk>path \<gamma>; convex S; pathfinish \<gamma> = pathstart \<gamma>; open S; path_image \<gamma> \<subseteq> S\<rbrakk>
      \<Longrightarrow> \<exists>z. z \<in> S \<and> winding_number \<gamma> z = 0"
--- a/src/HOL/Computational_Algebra/Formal_Laurent_Series.thy	Mon Feb 20 13:59:16 2023 +0100
+++ b/src/HOL/Computational_Algebra/Formal_Laurent_Series.thy	Mon Feb 20 13:59:42 2023 +0100
@@ -332,6 +332,9 @@
 lemma fls_shift_eq0_iff: "fls_shift m f = 0 \<longleftrightarrow> f = 0"
   using fls_shift_eq_iff[of m f 0] by simp
 
+lemma fls_shift_eq_1_iff: "fls_shift n f = 1 \<longleftrightarrow> f = fls_shift (-n) 1"
+  by (metis add_minus_cancel fls_shift_eq_iff fls_shift_fls_shift)
+
 lemma fls_shift_nonneg_subdegree: "m \<le> fls_subdegree f \<Longrightarrow> fls_subdegree (fls_shift m f) \<ge> 0"
   by (cases "f=0") (auto intro: fls_subdegree_geI)
 
@@ -699,6 +702,9 @@
   thus "f $ n = g $ n" by simp
 qed
 
+lemma fps_to_fls_eq_iff [simp]: "fps_to_fls f = fps_to_fls g \<longleftrightarrow> f = g"
+  using fps_to_fls_eq_imp_fps_eq by blast
+
 lemma fps_zero_to_fls [simp]: "fps_to_fls 0 = 0"
   by (intro fls_zero_eqI) simp
 
@@ -723,9 +729,12 @@
 lemma fps_X_to_fls [simp]: "fps_to_fls fps_X = fls_X"
   by (fastforce intro: fls_eqI)
 
-lemma fps_to_fls_eq_zero_iff: "(fps_to_fls f = 0) \<longleftrightarrow> (f=0)"
+lemma fps_to_fls_eq_0_iff [simp]: "(fps_to_fls f = 0) \<longleftrightarrow> (f=0)"
   using fps_to_fls_nonzeroI by auto
 
+lemma fps_to_fls_eq_1_iff [simp]: "fps_to_fls f = 1 \<longleftrightarrow> f = 1"
+  using fps_to_fls_eq_iff by fastforce
+
 lemma fls_subdegree_fls_to_fps_gt0: "fls_subdegree (fps_to_fls f) \<ge> 0"
 proof (cases "f=0")
   case False show ?thesis
@@ -780,6 +789,25 @@
   using fls_base_factor_fps_to_fls[of f] fls_regpart_fps_trivial[of "unit_factor f"]
   by    simp
 
+lemma fls_as_fps:
+  fixes f :: "'a :: zero fls" and n :: int
+  assumes n: "n \<ge> -fls_subdegree f"
+  obtains f' where "f = fls_shift n (fps_to_fls f')"
+proof -
+  have "fls_subdegree (fls_shift (- n) f) \<ge> 0"
+    by (rule fls_shift_nonneg_subdegree) (use n in simp)
+  hence "f = fls_shift n (fps_to_fls (fls_regpart (fls_shift (-n) f)))"
+    by (subst fls_regpart_to_fls_trivial) simp_all
+  thus ?thesis
+    by (rule that)
+qed
+
+lemma fls_as_fps':
+  fixes f :: "'a :: zero fls" and n :: int
+  assumes n: "n \<ge> -fls_subdegree f"
+  shows "\<exists>f'. f = fls_shift n (fps_to_fls f')"
+  using fls_as_fps[OF assms] by metis
+
 abbreviation
   "fls_regpart_as_fls f \<equiv> fps_to_fls (fls_regpart f)"
 abbreviation
@@ -1719,10 +1747,12 @@
     by (simp add: fls_times_conv_fps_times)
 qed simp
 
+lemma fps_to_fls_power: "fps_to_fls (f ^ n) = fps_to_fls f ^ n"
+  by (simp add: fls_pow_conv_fps_pow fls_subdegree_fls_to_fps_gt0)
+
 lemma fls_pow_conv_regpart:
   "fls_subdegree f \<ge> 0 \<Longrightarrow> fls_regpart (f ^ n) = (fls_regpart f) ^ n"
-  using fls_pow_subdegree_ge0[of f n] fls_pow_conv_fps_pow[of f n]
-  by    (intro fps_to_fls_eq_imp_fps_eq) simp
+  by (simp add: fls_pow_conv_fps_pow)
 
 text \<open>These two lemmas show that shifting 1 is equivalent to powers of the implied variable.\<close>
 
@@ -1995,17 +2025,7 @@
 lemma fls_lr_inverse_eq0_imp_starting0:
   "fls_left_inverse f x = 0 \<Longrightarrow> x = 0"
   "fls_right_inverse f x = 0 \<Longrightarrow> x = 0"
-proof-
-  assume "fls_left_inverse f x = 0"
-  hence "fps_left_inverse (fls_base_factor_to_fps f) x = 0"
-    using fls_shift_eq_iff fps_to_fls_eq_zero_iff by fastforce
-  thus "x = 0" using fps_lr_inverse_eq0_imp_starting0(1) by fast
-next
-  assume "fls_right_inverse f x = 0"
-  hence "fps_right_inverse (fls_base_factor_to_fps f) x = 0"
-    using fls_shift_eq_iff fps_to_fls_eq_zero_iff by fastforce
-  thus "x = 0" using fps_lr_inverse_eq0_imp_starting0(2) by fast
-qed
+  by (metis fls_lr_inverse_base fls_nonzeroI)+
 
 lemma fls_lr_inverse_eq_0_iff:
   fixes x :: "'a::{comm_monoid_add,mult_zero,uminus}"
@@ -3231,10 +3251,146 @@
   thus "\<exists>g. 1 = g * f" by fast
 qed
 
+subsection \<open>Composition\<close>
+
+definition fls_compose_fps :: "'a :: field fls \<Rightarrow> 'a fps \<Rightarrow> 'a fls" where
+  "fls_compose_fps f g =
+     (if f = 0 then 0
+      else if fls_subdegree f \<ge> 0 then fps_to_fls (fps_compose (fls_regpart f) g)
+      else fps_to_fls (fps_compose (fls_base_factor_to_fps f) g) /
+             fps_to_fls g ^ nat (-fls_subdegree f))"
+
+lemma fls_compose_fps_fps [simp]:
+  "fls_compose_fps (fps_to_fls f) g = fps_to_fls (fps_compose f g)"
+  by (simp add: fls_compose_fps_def fls_subdegree_fls_to_fps_gt0 fps_to_fls_eq_0_iff)
+
+lemma fls_const_transfer [transfer_rule]:
+  "rel_fun (=) (pcr_fls (=))
+     (\<lambda>c n. if n = 0 then c else 0) fls_const"
+  by (auto simp: fls_const_def rel_fun_def pcr_fls_def OO_def cr_fls_def)
+
+lemma fls_shift_transfer [transfer_rule]:
+  "rel_fun (=) (rel_fun (pcr_fls (=)) (pcr_fls (=)))
+     (\<lambda>n f k. f (k+n)) fls_shift"
+  by (auto simp: fls_const_def rel_fun_def pcr_fls_def OO_def cr_fls_def)
+
+lift_definition fls_compose_power :: "'a :: zero fls \<Rightarrow> nat \<Rightarrow> 'a fls" is
+  "\<lambda>f d n. if d > 0 \<and> int d dvd n then f (n div int d) else 0"
+proof -
+  fix f :: "int \<Rightarrow> 'a" and d :: nat
+  assume *: "eventually (\<lambda>n. f (-int n) = 0) cofinite"
+  show "eventually (\<lambda>n. (if d > 0 \<and> int d dvd -int n then f (-int n div int d) else 0) = 0) cofinite"
+  proof (cases "d = 0")
+    case False
+    from * have "eventually (\<lambda>n. f (-int n) = 0) at_top"
+      by (simp add: cofinite_eq_sequentially)
+    hence "eventually (\<lambda>n. f (-int (n div d)) = 0) at_top"
+      by (rule eventually_compose_filterlim[OF _ filterlim_at_top_div_const_nat]) (use False in auto)
+    hence "eventually (\<lambda>n. (if d > 0 \<and> int d dvd -int n then f (-int n div int d) else 0) = 0) at_top"
+      by eventually_elim (auto simp: zdiv_int dvd_neg_div)
+    thus ?thesis
+      by (simp add: cofinite_eq_sequentially)
+  qed auto
+qed
+
+lemma fls_nth_compose_power:
+  assumes "d > 0"
+  shows   "fls_nth (fls_compose_power f d) n = (if int d dvd n then fls_nth f (n div int d) else 0)"
+  using assms by transfer auto
+     
+
+lemma fls_compose_power_0_left [simp]: "fls_compose_power 0 d = 0"
+  by transfer auto
+
+lemma fls_compose_power_1_left [simp]: "d > 0 \<Longrightarrow> fls_compose_power 1 d = 1"
+  by transfer (auto simp: fun_eq_iff)
+
+lemma fls_compose_power_const_left [simp]:
+  "d > 0 \<Longrightarrow> fls_compose_power (fls_const c) d = fls_const c"
+  by transfer (auto simp: fun_eq_iff)
+
+lemma fls_compose_power_shift [simp]:
+  "d > 0 \<Longrightarrow> fls_compose_power (fls_shift n f) d = fls_shift (d * n) (fls_compose_power f d)"
+  by transfer (auto simp: fun_eq_iff add_ac mult_ac)
+
+lemma fls_compose_power_X_intpow [simp]:
+  "d > 0 \<Longrightarrow> fls_compose_power (fls_X_intpow n) d = fls_X_intpow (int d * n)"
+  by simp
+
+lemma fls_compose_power_X [simp]:
+  "d > 0 \<Longrightarrow> fls_compose_power fls_X d = fls_X_intpow (int d)"
+  by transfer (auto simp: fun_eq_iff)
+
+lemma fls_compose_power_X_inv [simp]:
+  "d > 0 \<Longrightarrow> fls_compose_power fls_X_inv d = fls_X_intpow (-int d)"
+  by (simp add: fls_X_inv_conv_shift_1)
+
+lemma fls_compose_power_0_right [simp]: "fls_compose_power f 0 = 0"
+  by transfer auto
+
+lemma fls_compose_power_add [simp]:
+  "fls_compose_power (f + g) d = fls_compose_power f d + fls_compose_power g d"
+  by transfer auto
+
+lemma fls_compose_power_diff [simp]:
+  "fls_compose_power (f - g) d = fls_compose_power f d - fls_compose_power g d"
+  by transfer auto
+
+lemma fls_compose_power_uminus [simp]:
+  "fls_compose_power (-f) d = -fls_compose_power f d"
+  by transfer auto
+
+lemma fps_nth_compose_X_power:
+  "fps_nth (f oo (fps_X ^ d)) n = (if d dvd n then fps_nth f (n div d) else 0)"
+proof -
+  have "fps_nth (f oo (fps_X ^ d)) n = (\<Sum>i = 0..n. f $ i * (fps_X ^ (d * i)) $ n)"
+    unfolding fps_compose_def by (simp add: power_mult)
+  also have "\<dots> = (\<Sum>i\<in>(if d dvd n then {n div d} else {}). f $ i * (fps_X ^ (d * i)) $ n)"
+    by (intro sum.mono_neutral_right) auto
+  also have "\<dots> = (if d dvd n then fps_nth f (n div d) else 0)"
+    by auto
+  finally show ?thesis .
+qed
+
+lemma fls_compose_power_fps_to_fls:
+  assumes "d > 0"
+  shows   "fls_compose_power (fps_to_fls f) d = fps_to_fls (fps_compose f (fps_X ^ d))"
+  using assms
+  by (intro fls_eqI) (auto simp: fls_nth_compose_power fps_nth_compose_X_power
+                                 pos_imp_zdiv_neg_iff div_neg_pos_less0 nat_div_distrib
+                           simp flip: int_dvd_int_iff)
+
+lemma fls_compose_power_mult [simp]:
+  "fls_compose_power (f * g :: 'a :: idom fls) d = fls_compose_power f d * fls_compose_power g d"
+proof (cases "d > 0")
+  case True
+  define n where "n = nat (max 0 (max (- fls_subdegree f) (- fls_subdegree g)))"
+  have n_ge: "-fls_subdegree f \<le> int n" "-fls_subdegree g \<le> int n"
+    unfolding n_def by auto
+  obtain f' where f': "f = fls_shift n (fps_to_fls f')"
+    using fls_as_fps[OF n_ge(1)] by (auto simp: n_def)
+  obtain g' where g': "g = fls_shift n (fps_to_fls g')"
+    using fls_as_fps[OF n_ge(2)] by (auto simp: n_def)
+  show ?thesis using \<open>d > 0\<close>
+    by (simp add: f' g' fls_shifted_times_simps mult_ac fls_compose_power_fps_to_fls
+                  fps_compose_mult_distrib flip: fls_times_fps_to_fls)
+qed auto
+
+lemma fls_compose_power_power [simp]:
+  assumes "d > 0 \<or> n > 0"
+  shows   "fls_compose_power (f ^ n :: 'a :: idom fls) d = fls_compose_power f d ^ n"
+proof (cases "d > 0")
+  case True
+  thus ?thesis by (induction n) auto
+qed (use assms in auto)
+
+lemma fls_nth_compose_power' [simp]:
+  "d = 0 \<or> \<not>d dvd n \<Longrightarrow> fls_nth (fls_compose_power f d) n = 0"
+  "d dvd n \<Longrightarrow> d > 0 \<Longrightarrow> fls_nth (fls_compose_power f d) n = fls_nth f (n div d)"
+  by (transfer; force; fail)+
 
 subsection \<open>Formal differentiation and integration\<close>
 
-
 subsubsection \<open>Derivative definition and basic properties\<close>
 
 definition "fls_deriv f = Abs_fls (\<lambda>n. of_int (n+1) * f$$(n+1))"
--- a/src/HOL/Computational_Algebra/Formal_Power_Series.thy	Mon Feb 20 13:59:16 2023 +0100
+++ b/src/HOL/Computational_Algebra/Formal_Power_Series.thy	Mon Feb 20 13:59:42 2023 +0100
@@ -59,12 +59,9 @@
       by (rule LeastI_ex)
     moreover have "\<forall>m<?n. f $ m = 0"
       by (auto dest: not_less_Least)
-    ultimately have "f $ ?n \<noteq> 0 \<and> (\<forall>m<?n. f $ m = 0)" ..
-    then show ?thesis ..
+    ultimately show ?thesis by metis
   qed
-  show ?lhs if ?rhs
-    using that by (auto simp add: expand_fps_eq)
-qed
+qed (auto simp: expand_fps_eq)
 
 lemma fps_nonzeroI: "f$n \<noteq> 0 \<Longrightarrow> f \<noteq> 0"
   by auto
@@ -165,71 +162,36 @@
 lemma subdegreeI:
   assumes "f $ d \<noteq> 0" and "\<And>i. i < d \<Longrightarrow> f $ i = 0"
   shows   "subdegree f = d"
-proof-
-  from assms(1) have "f \<noteq> 0" by auto
-  moreover from assms(1) have "(LEAST i. f $ i \<noteq> 0) = d"
-  proof (rule Least_equality)
-    fix e assume "f $ e \<noteq> 0"
-    with assms(2) have "\<not>(e < d)" by blast
-    thus "e \<ge> d" by simp
-  qed
-  ultimately show ?thesis unfolding subdegree_def by simp
-qed
+  by (smt (verit) LeastI_ex assms fps_zero_nth linorder_cases not_less_Least subdegree_def)
 
 lemma nth_subdegree_nonzero [simp,intro]: "f \<noteq> 0 \<Longrightarrow> f $ subdegree f \<noteq> 0"
-proof-
-  assume "f \<noteq> 0"
-  hence "subdegree f = (LEAST n. f $ n \<noteq> 0)" by (simp add: subdegree_def)
-  also from \<open>f \<noteq> 0\<close> have "\<exists>n. f$n \<noteq> 0" using fps_nonzero_nth by blast
-  from LeastI_ex[OF this] have "f $ (LEAST n. f $ n \<noteq> 0) \<noteq> 0" .
-  finally show ?thesis .
-qed
+  using fps_nonzero_nth_minimal subdegreeI by blast
 
 lemma nth_less_subdegree_zero [dest]: "n < subdegree f \<Longrightarrow> f $ n = 0"
-proof (cases "f = 0")
-  assume "f \<noteq> 0" and less: "n < subdegree f"
-  note less
-  also from \<open>f \<noteq> 0\<close> have "subdegree f = (LEAST n. f $ n \<noteq> 0)" by (simp add: subdegree_def)
-  finally show "f $ n = 0" using not_less_Least by blast
-qed simp_all
+  by (metis fps_nonzero_nth_minimal fps_zero_nth subdegreeI)
 
 lemma subdegree_geI:
   assumes "f \<noteq> 0" "\<And>i. i < n \<Longrightarrow> f$i = 0"
   shows   "subdegree f \<ge> n"
-proof (rule ccontr)
-  assume "\<not>(subdegree f \<ge> n)"
-  with assms(2) have "f $ subdegree f = 0" by simp
-  moreover from assms(1) have "f $ subdegree f \<noteq> 0" by simp
-  ultimately show False by contradiction
-qed
+  by (meson assms leI nth_subdegree_nonzero)
 
 lemma subdegree_greaterI:
   assumes "f \<noteq> 0" "\<And>i. i \<le> n \<Longrightarrow> f$i = 0"
   shows   "subdegree f > n"
-proof (rule ccontr)
-  assume "\<not>(subdegree f > n)"
-  with assms(2) have "f $ subdegree f = 0" by simp
-  moreover from assms(1) have "f $ subdegree f \<noteq> 0" by simp
-  ultimately show False by contradiction
-qed
+  by (meson assms leI nth_subdegree_nonzero)
 
 lemma subdegree_leI:
   "f $ n \<noteq> 0 \<Longrightarrow> subdegree f \<le> n"
-  by (rule leI) auto
+  using linorder_not_less by blast
 
 lemma subdegree_0 [simp]: "subdegree 0 = 0"
   by (simp add: subdegree_def)
 
 lemma subdegree_1 [simp]: "subdegree 1 = 0"
-  by  (cases "(1::'a) = 0")
-      (auto intro: subdegreeI fps_ext simp: subdegree_def)
+  by (metis fps_one_nth nth_subdegree_nonzero subdegree_0)
 
 lemma subdegree_eq_0_iff: "subdegree f = 0 \<longleftrightarrow> f = 0 \<or> f $ 0 \<noteq> 0"
-proof (cases "f = 0")
-  assume "f \<noteq> 0"
-  thus ?thesis
-    using nth_subdegree_nonzero[OF \<open>f \<noteq> 0\<close>] by (fastforce intro!: subdegreeI)
-qed simp_all
+  using nth_subdegree_nonzero subdegree_leI by fastforce
 
 lemma subdegree_eq_0 [simp]: "f $ 0 \<noteq> 0 \<Longrightarrow> subdegree f = 0"
   by (simp add: subdegree_eq_0_iff)
@@ -247,12 +209,11 @@
 qed simp
 
 lemma subdegree_minus_commute [simp]:
-  "subdegree (f-(g::('a::group_add) fps)) = subdegree (g - f)"
-proof (-, cases "g-f=0")
-  case True
-  have "\<And>n. (f - g) $ n = -((g - f) $ n)" by simp
-  with True have "f - g = 0" by (intro fps_ext) simp
-  with True show ?thesis by simp
+  fixes f :: "'a::group_add fps"
+  shows "subdegree (f-g) = subdegree (g - f)"
+proof (cases "g-f=0")
+  case True then show ?thesis
+    by (metis fps_sub_nth nth_subdegree_nonzero right_minus_eq)
 next
   case False show ?thesis
     using nth_subdegree_nonzero[OF False] by (fastforce intro: subdegreeI)
@@ -273,12 +234,7 @@
   proof-
     assume fg: "f + g = 0"
     have "\<And>n. f $ n = - g $ n"
-    proof-
-      fix n
-      from fg have "(f + g) $ n = 0" by simp
-      hence "f $ n + g $ n - g $ n = - g $ n" by simp
-      thus "f $ n = - g $ n" by simp      
-    qed
+      by (metis add_eq_0_iff equation_minus_iff fg fps_add_nth fps_neg_nth fps_zero_nth)
     with assms show False by (auto intro: fps_ext)
   qed
   thus "f + g \<noteq> 0" by fast
@@ -288,43 +244,38 @@
   assumes "f \<noteq> 0"
   and     "subdegree f < subdegree (g :: 'a::monoid_add fps)"
   shows   "subdegree (f + g) = subdegree f"
-  using   assms
-  by      (auto intro: subdegreeI simp: nth_less_subdegree_zero)
+  using assms by(auto intro: subdegreeI simp: nth_less_subdegree_zero)
 
 lemma subdegree_add_eq2:
   assumes "g \<noteq> 0"
   and     "subdegree g < subdegree (f :: 'a :: monoid_add fps)"
   shows   "subdegree (f + g) = subdegree g"
-  using   assms
-  by      (auto intro: subdegreeI simp: nth_less_subdegree_zero)
+  using assms by (auto intro: subdegreeI simp: nth_less_subdegree_zero)
 
 lemma subdegree_diff_eq1:
   assumes "f \<noteq> 0"
   and     "subdegree f < subdegree (g :: 'a :: group_add fps)"
   shows   "subdegree (f - g) = subdegree f"
-  using   assms
-  by      (auto intro: subdegreeI simp: nth_less_subdegree_zero)
+  using assms by (auto intro: subdegreeI simp: nth_less_subdegree_zero)
 
 lemma subdegree_diff_eq1_cancel:
   assumes "f \<noteq> 0"
   and     "subdegree f < subdegree (g :: 'a :: cancel_comm_monoid_add fps)"
   shows   "subdegree (f - g) = subdegree f"
-  using   assms
-  by      (auto intro: subdegreeI simp: nth_less_subdegree_zero)
+  using assms by (auto intro: subdegreeI simp: nth_less_subdegree_zero)
 
 lemma subdegree_diff_eq2:
   assumes "g \<noteq> 0"
   and     "subdegree g < subdegree (f :: 'a :: group_add fps)"
   shows   "subdegree (f - g) = subdegree g"
-  using   assms
-  by      (auto intro: subdegreeI simp: nth_less_subdegree_zero)
+  using assms by (auto intro: subdegreeI simp: nth_less_subdegree_zero)
 
 lemma subdegree_diff_ge [simp]:
   assumes "f \<noteq> (g :: 'a :: group_add fps)"
   shows   "subdegree (f - g) \<ge> min (subdegree f) (subdegree g)"
 proof-
-  from assms have "f = - (- g) \<Longrightarrow> False" using expand_fps_eq by fastforce
-  hence "f \<noteq> - (- g)" by fast
+  have "f \<noteq> - (- g)"
+    using assms expand_fps_eq by fastforce
   moreover have "f + - g = f - g" by (simp add: fps_ext)
   ultimately show ?thesis
     using subdegree_add_ge[of f "-g"] by simp
@@ -334,8 +285,7 @@
   fixes   f g :: "'a :: comm_monoid_diff fps"
   assumes "f - g \<noteq> 0"
   shows   "subdegree (f - g) \<ge> subdegree f"
-  using   assms
-  by      (auto intro: subdegree_geI simp: nth_less_subdegree_zero)
+  using assms by (auto intro: subdegree_geI simp: nth_less_subdegree_zero)
 
 lemma nth_subdegree_mult_left [simp]:
   fixes f g :: "('a :: {mult_zero,comm_monoid_add}) fps"
--- a/src/HOL/Computational_Algebra/Fundamental_Theorem_Algebra.thy	Mon Feb 20 13:59:16 2023 +0100
+++ b/src/HOL/Computational_Algebra/Fundamental_Theorem_Algebra.thy	Mon Feb 20 13:59:42 2023 +0100
@@ -39,11 +39,9 @@
       using norm_ge_zero[of z] by arith
     have "norm (poly (pCons c cs) z) \<le> norm c + norm (z * poly cs z)"
       using norm_triangle_ineq[of c "z* poly cs z"] by simp
-    also have "\<dots> \<le> norm c + r * m"
+    also have "\<dots> \<le> ?k"
       using mult_mono[OF H th rp norm_ge_zero[of "poly cs z"]]
       by (simp add: norm_mult)
-    also have "\<dots> \<le> ?k"
-      by simp
     finally show ?thesis .
   qed
   with kp show ?case by blast
@@ -63,37 +61,40 @@
     smult h (offset_poly p h) + pCons a (offset_poly p h)"
   by (cases "p = 0 \<and> a = 0") (auto simp add: offset_poly_def)
 
-lemma offset_poly_single: "offset_poly [:a:] h = [:a:]"
+lemma offset_poly_single [simp]: "offset_poly [:a:] h = [:a:]"
   by (simp add: offset_poly_pCons offset_poly_0)
 
 lemma poly_offset_poly: "poly (offset_poly p h) x = poly p (h + x)"
-  apply (induct p)
-  apply (simp add: offset_poly_0)
-  apply (simp add: offset_poly_pCons algebra_simps)
-  done
+  by (induct p) (auto simp add: offset_poly_0 offset_poly_pCons algebra_simps)
 
 lemma offset_poly_eq_0_lemma: "smult c p + pCons a p = 0 \<Longrightarrow> p = 0"
   by (induct p arbitrary: a) (simp, force)
 
-lemma offset_poly_eq_0_iff: "offset_poly p h = 0 \<longleftrightarrow> p = 0"
-  apply (safe intro!: offset_poly_0)
-  apply (induct p)
-  apply simp
-  apply (simp add: offset_poly_pCons)
-  apply (frule offset_poly_eq_0_lemma, simp)
-  done
+lemma offset_poly_eq_0_iff [simp]: "offset_poly p h = 0 \<longleftrightarrow> p = 0"
+proof
+  show "offset_poly p h = 0 \<Longrightarrow> p = 0"
+  proof(induction p)
+    case 0
+    then show ?case by blast
+  next
+    case (pCons a p)
+    then show ?case   
+      by (metis offset_poly_eq_0_lemma offset_poly_pCons offset_poly_single)
+  qed
+qed (simp add: offset_poly_0)
 
-lemma degree_offset_poly: "degree (offset_poly p h) = degree p"
-  apply (induct p)
-  apply (simp add: offset_poly_0)
-  apply (case_tac "p = 0")
-  apply (simp add: offset_poly_0 offset_poly_pCons)
-  apply (simp add: offset_poly_pCons)
-  apply (subst degree_add_eq_right)
-  apply (rule le_less_trans [OF degree_smult_le])
-  apply (simp add: offset_poly_eq_0_iff)
-  apply (simp add: offset_poly_eq_0_iff)
-  done
+lemma degree_offset_poly [simp]: "degree (offset_poly p h) = degree p"
+proof(induction p)
+  case 0
+  then show ?case
+    by (simp add: offset_poly_0)
+next
+  case (pCons a p)
+  have "p \<noteq> 0 \<Longrightarrow> degree (offset_poly (pCons a p) h) = Suc (degree p)"
+    by (metis degree_add_eq_right degree_pCons_eq degree_smult_le le_imp_less_Suc offset_poly_eq_0_iff offset_poly_pCons pCons.IH)
+  then show ?case
+    by simp
+qed
 
 definition "psize p = (if p = 0 then 0 else Suc (degree p))"
 
@@ -103,13 +104,7 @@
 lemma poly_offset:
   fixes p :: "'a::comm_ring_1 poly"
   shows "\<exists>q. psize q = psize p \<and> (\<forall>x. poly q x = poly p (a + x))"
-proof (intro exI conjI)
-  show "psize (offset_poly p a) = psize p"
-    unfolding psize_def
-    by (simp add: offset_poly_eq_0_iff degree_offset_poly)
-  show "\<forall>x. poly (offset_poly p a) x = poly p (a + x)"
-    by (simp add: poly_offset_poly)
-qed
+  by (metis degree_offset_poly offset_poly_eq_0_iff poly_offset_poly psize_def)
 
 text \<open>An alternative useful formulation of completeness of the reals\<close>
 lemma real_sup_exists:
@@ -136,19 +131,17 @@
     by (simp add: cmod_def)
   have False if "cmod (z + 1) \<ge> 1" "cmod (z - 1) \<ge> 1" "cmod (z + \<i>) \<ge> 1" "cmod (z - \<i>) \<ge> 1"
   proof -
-    from that z xy have "2 * x \<le> 1" "2 * x \<ge> -1" "2 * y \<le> 1" "2 * y \<ge> -1"
+    from that z xy have *: "2 * x \<le> 1" "2 * x \<ge> -1" "2 * y \<le> 1" "2 * y \<ge> -1"
       by (simp_all add: cmod_def power2_eq_square algebra_simps)
     then have "\<bar>2 * x\<bar> \<le> 1" "\<bar>2 * y\<bar> \<le> 1"
       by simp_all
     then have "\<bar>2 * x\<bar>\<^sup>2 \<le> 1\<^sup>2" "\<bar>2 * y\<bar>\<^sup>2 \<le> 1\<^sup>2"
-      by - (rule power_mono, simp, simp)+
-    then have th0: "4 * x\<^sup>2 \<le> 1" "4 * y\<^sup>2 \<le> 1"
-      by (simp_all add: power_mult_distrib)
-    from add_mono[OF th0] xy show ?thesis
-      by simp
+      by (metis abs_square_le_1 one_power2 power2_abs)+
+    with xy * show ?thesis
+      by (smt (verit, best) four_x_squared square_le_1)
   qed
   then show ?thesis
-    unfolding linorder_not_le[symmetric] by blast
+    by force
 qed
 
 text \<open>Hence we can always reduce modulus of \<open>1 + b z^n\<close> if nonzero\<close>
@@ -164,14 +157,10 @@
   let ?P = "\<lambda>z n. cmod (1 + b * z ^ n) < 1"
   show "\<exists>z. ?P z n"
   proof cases
-    assume "even n"
-    then have "\<exists>m. n = 2 * m"
-      by presburger
-    then obtain m where m: "n = 2 * m"
-      by blast
-    from n m have "m \<noteq> 0" "m < n"
-      by presburger+
-    with IH[rule_format, of m] obtain z where z: "?P z m"
+    assume "even n" 
+    then obtain m where m: "n = 2 * m" and "m \<noteq> 0" "m < n"
+      using n by auto
+    with IH obtain z where z: "?P z m"
       by blast
     from z have "?P (csqrt z) n"
       by (simp add: m power_mult)
@@ -182,49 +171,66 @@
       by presburger+
     then obtain m where m: "n = Suc (2 * m)"
       by blast
-    have th0: "cmod (complex_of_real (cmod b) / b) = 1"
+    have 0: "cmod (complex_of_real (cmod b) / b) = 1"
       using b by (simp add: norm_divide)
-    from unimodular_reduce_norm[OF th0] \<open>odd n\<close>
     have "\<exists>v. cmod (complex_of_real (cmod b) / b + v^n) < 1"
-      apply (cases "cmod (complex_of_real (cmod b) / b + 1) < 1")
-      apply (rule_tac x="1" in exI)
-      apply simp
-      apply (cases "cmod (complex_of_real (cmod b) / b - 1) < 1")
-      apply (rule_tac x="-1" in exI)
-      apply simp
-      apply (cases "cmod (complex_of_real (cmod b) / b + \<i>) < 1")
-      apply (cases "even m")
-      apply (rule_tac x="\<i>" in exI)
-      apply (simp add: m power_mult)
-      apply (rule_tac x="- \<i>" in exI)
-      apply (simp add: m power_mult)
-      apply (cases "even m")
-      apply (rule_tac x="- \<i>" in exI)
-      apply (simp add: m power_mult)
-      apply (auto simp add: m power_mult)
-      apply (rule_tac x="\<i>" in exI)
-      apply (auto simp add: m power_mult)
-      done
+    proof (cases "cmod (complex_of_real (cmod b) / b + 1) < 1")
+      case True
+      then show ?thesis
+        by (metis power_one)
+    next
+      case F1: False
+      show ?thesis
+      proof (cases "cmod (complex_of_real (cmod b) / b - 1) < 1")
+        case True
+        with \<open>odd n\<close> show ?thesis
+          by (metis add_uminus_conv_diff neg_one_odd_power)
+      next
+        case F2: False
+        show ?thesis
+        proof (cases "cmod (complex_of_real (cmod b) / b + \<i>) < 1")
+          case T1: True
+          show ?thesis
+          proof (cases "even m")
+            case True
+            with T1 show ?thesis
+              by (rule_tac x="\<i>" in exI) (simp add: m power_mult)
+          next
+            case False
+            with T1 show ?thesis 
+              by (rule_tac x="- \<i>" in exI) (simp add: m power_mult)
+          qed
+        next
+          case False
+          with F1 F2 m unimodular_reduce_norm[OF 0] \<open>odd n\<close> show ?thesis
+            apply (cases "even m")
+             apply (rule_tac x="- \<i>" in exI)
+             apply (simp add: power_mult)
+            apply (rule_tac x="\<i>" in exI)
+            apply (auto simp add: m power_mult)
+            done
+        qed
+      qed
+    qed
     then obtain v where v: "cmod (complex_of_real (cmod b) / b + v^n) < 1"
       by blast
     let ?w = "v / complex_of_real (root n (cmod b))"
     from odd_real_root_pow[OF \<open>odd n\<close>, of "cmod b"]
-    have th1: "?w ^ n = v^n / complex_of_real (cmod b)"
+    have 1: "?w ^ n = v^n / complex_of_real (cmod b)"
       by (simp add: power_divide of_real_power[symmetric])
-    have th2:"cmod (complex_of_real (cmod b) / b) = 1"
+    have 2:"cmod (complex_of_real (cmod b) / b) = 1"
       using b by (simp add: norm_divide)
-    then have th3: "cmod (complex_of_real (cmod b) / b) \<ge> 0"
+    then have 3: "cmod (complex_of_real (cmod b) / b) \<ge> 0"
       by simp
-    have th4: "cmod (complex_of_real (cmod b) / b) *
+    have 4: "cmod (complex_of_real (cmod b) / b) *
         cmod (1 + b * (v ^ n / complex_of_real (cmod b))) <
         cmod (complex_of_real (cmod b) / b) * 1"
       apply (simp only: norm_mult[symmetric] distrib_left)
       using b v
-      apply (simp add: th2)
+      apply (simp add: 2)
       done
-    from mult_left_less_imp_less[OF th4 th3]
-    have "?P ?w n" unfolding th1 .
-    then show ?thesis ..
+    show ?thesis
+      by (metis 1 mult_left_less_imp_less[OF 4 3])
   qed
 qed
 
@@ -245,44 +251,21 @@
   obtain g where g: "strict_mono g" "monoseq (\<lambda>n. Im (s (f (g n))))"
     unfolding o_def by blast
   let ?h = "f \<circ> g"
-  from r[rule_format, of 0] have rp: "r \<ge> 0"
-    using norm_ge_zero[of "s 0"] by arith
-  have th: "\<forall>n. r + 1 \<ge> \<bar>Re (s n)\<bar>"
-  proof
-    fix n
-    from abs_Re_le_cmod[of "s n"] r[rule_format, of n]
-    show "\<bar>Re (s n)\<bar> \<le> r + 1" by arith
-  qed
-  have conv1: "convergent (\<lambda>n. Re (s (f n)))"
-    apply (rule Bseq_monoseq_convergent)
-    apply (simp add: Bseq_def)
-    apply (metis gt_ex le_less_linear less_trans order.trans th)
-    apply (rule f(2))
-    done
-  have th: "\<forall>n. r + 1 \<ge> \<bar>Im (s n)\<bar>"
-  proof
-    fix n
-    from abs_Im_le_cmod[of "s n"] r[rule_format, of n]
-    show "\<bar>Im (s n)\<bar> \<le> r + 1"
-      by arith
-  qed
+  have "r \<ge> 0"
+    by (meson norm_ge_zero order_trans r)
+  have "\<forall>n. r + 1 \<ge> \<bar>Re (s n)\<bar>"
+    by (smt (verit, ccfv_threshold) abs_Re_le_cmod r)
+  then have conv1: "convergent (\<lambda>n. Re (s (f n)))"
+    by (metis Bseq_monoseq_convergent f(2) BseqI' real_norm_def)
+  have "\<forall>n. r + 1 \<ge> \<bar>Im (s n)\<bar>"
+    by (smt (verit) abs_Im_le_cmod r)
+  then have conv2: "convergent (\<lambda>n. Im (s (f (g n))))"
+    by (metis Bseq_monoseq_convergent g(2) BseqI' real_norm_def)
 
-  have conv2: "convergent (\<lambda>n. Im (s (f (g n))))"
-    apply (rule Bseq_monoseq_convergent)
-    apply (simp add: Bseq_def)
-    apply (metis gt_ex le_less_linear less_trans order.trans th)
-    apply (rule g(2))
-    done
-
-  from conv1[unfolded convergent_def] obtain x where "LIMSEQ (\<lambda>n. Re (s (f n))) x"
-    by blast
-  then have x: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar>Re (s (f n)) - x\<bar> < r"
-    unfolding LIMSEQ_iff real_norm_def .
-
-  from conv2[unfolded convergent_def] obtain y where "LIMSEQ (\<lambda>n. Im (s (f (g n)))) y"
-    by blast
-  then have y: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar>Im (s (f (g n))) - y\<bar> < r"
-    unfolding LIMSEQ_iff real_norm_def .
+  obtain x where  x: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar>Re (s (f n)) - x\<bar> < r"
+    using conv1[unfolded convergent_def] LIMSEQ_iff real_norm_def by metis 
+  obtain y where  y: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar>Im (s (f (g n))) - y\<bar> < r"
+    using conv2[unfolded convergent_def] LIMSEQ_iff real_norm_def by metis
   let ?w = "Complex x y"
   from f(1) g(1) have hs: "strict_mono ?h"
     unfolding strict_mono_def by auto
@@ -290,7 +273,7 @@
   proof -
     from that have e2: "e/2 > 0"
       by simp
-    from x[rule_format, OF e2] y[rule_format, OF e2]
+    from x y e2
     obtain N1 N2 where N1: "\<forall>n\<ge>N1. \<bar>Re (s (f n)) - x\<bar> < e / 2"
       and N2: "\<forall>n\<ge>N2. \<bar>Im (s (f (g n))) - y\<bar> < e / 2"
       by blast
@@ -298,9 +281,8 @@
     proof -
       from that have nN1: "g n \<ge> N1" and nN2: "n \<ge> N2"
         using seq_suble[OF g(1), of n] by arith+
-      from add_strict_mono[OF N1[rule_format, OF nN1] N2[rule_format, OF nN2]]
       show ?thesis
-        using metric_bound_lemma[of "s (f (g n))" ?w] by simp
+        using metric_bound_lemma[of "s (f (g n))" ?w] N1 N2 nN1 nN2 by fastforce
     qed
     then show ?thesis by blast
   qed
@@ -315,12 +297,7 @@
   shows "\<exists>d >0. \<forall>w. 0 < norm (w - z) \<and> norm (w - z) < d \<longrightarrow> norm (poly p w - poly p z) < e"
 proof -
   obtain q where q: "degree q = degree p" "poly q x = poly p (z + x)" for x
-  proof
-    show "degree (offset_poly p z) = degree p"
-      by (rule degree_offset_poly)
-    show "\<And>x. poly (offset_poly p z) x = poly p (z + x)"
-      by (rule poly_offset_poly)
-  qed
+    using degree_offset_poly poly_offset_poly by blast
   have th: "\<And>w. poly q (w - z) = poly p w"
     using q(2)[of "w - z" for w] by simp
   show ?thesis unfolding th[symmetric]
@@ -333,7 +310,7 @@
     from poly_bound_exists[of 1 "cs"]
     obtain m where m: "m > 0" "norm z \<le> 1 \<Longrightarrow> norm (poly cs z) \<le> m" for z
       by blast
-    from ep m(1) have em0: "e/m > 0"
+    with ep have em0: "e/m > 0"
       by (simp add: field_simps)
     have one0: "1 > (0::real)"
       by arith
@@ -352,9 +329,8 @@
         by (simp add: field_simps)
       from H have th: "norm (w - z) \<le> d"
         by simp
-      from mult_mono[OF th m(2)[OF d1(1)] d1(2) norm_ge_zero] dme
       show "norm (w - z) * norm (poly cs (w - z)) < e"
-        by simp
+        by (smt (verit, del_insts) d1(1) dme m(2) mult_mono' norm_ge_zero th)
     qed
   qed
 qed
@@ -370,37 +346,26 @@
       by (metis norm_ge_zero order.trans)
   next
     case True
-    then have "cmod 0 \<le> r \<and> cmod (poly p 0) = - (- cmod (poly p 0))"
-      by simp
     then have mth1: "\<exists>x z. cmod z \<le> r \<and> cmod (poly p z) = - x"
-      by blast
-    have False if "cmod z \<le> r" "cmod (poly p z) = - x" "\<not> x < 1" for x z
-    proof -
-      from that have "- x < 0 "
-        by arith
-      with that(2) norm_ge_zero[of "poly p z"] show ?thesis
-        by simp
-    qed
-    then have mth2: "\<exists>z. \<forall>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<longrightarrow> x < z"
-      by blast
-    from real_sup_exists[OF mth1 mth2] obtain s where
-      s: "\<forall>y. (\<exists>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<and> y < x) \<longleftrightarrow> y < s"
-      by blast
+      by (metis add.inverse_inverse norm_zero)
+    have False if "cmod (poly p z) = - x" "\<not> x < 1" for x z
+      by (smt (verit, del_insts) norm_ge_zero that)
+    with real_sup_exists[OF mth1] 
+    obtain s where s: "\<forall>y. (\<exists>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<and> y < x) \<longleftrightarrow> y < s"
+      by auto
+
     let ?m = "- s"
-    have s1[unfolded minus_minus]:
-      "(\<exists>z x. cmod z \<le> r \<and> - (- cmod (poly p z)) < y) \<longleftrightarrow> ?m < y" for y
-      using s[rule_format, of "-y"]
-      unfolding minus_less_iff[of y] equation_minus_iff by blast
+    have s1: "(\<exists>z x. cmod z \<le> r \<and> - (- cmod (poly p z)) < y) \<longleftrightarrow> ?m < y" for y
+      by (metis add.inverse_inverse minus_less_iff s)
     from s1[of ?m] have s1m: "\<And>z x. cmod z \<le> r \<Longrightarrow> cmod (poly p z) \<ge> ?m"
       by auto
     have "\<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)" for n
       using s1[rule_format, of "?m + 1/real (Suc n)"] by simp
-    then have th: "\<forall>n. \<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)" ..
-    from choice[OF th] obtain g where
-        g: "\<forall>n. cmod (g n) \<le> r" "\<forall>n. cmod (poly p (g n)) <?m + 1 /real(Suc n)"
-      by blast
+    then obtain g where g: "\<forall>n. cmod (g n) \<le> r" "\<forall>n. cmod (poly p (g n)) <?m + 1 /real(Suc n)"
+      by metis
     from Bolzano_Weierstrass_complex_disc[OF g(1)]
-    obtain f z where fz: "strict_mono (f :: nat \<Rightarrow> nat)" "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. cmod (g (f n) - z) < e"
+    obtain f::"nat \<Rightarrow> nat" and z 
+      where fz: "strict_mono f" "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. cmod (g (f n) - z) < e"
       by blast
     {
       fix w
@@ -413,54 +378,31 @@
         from poly_cont[OF e2, of z p] obtain d where
             d: "d > 0" "\<forall>w. 0<cmod (w - z)\<and> cmod(w - z) < d \<longrightarrow> cmod(poly p w - poly p z) < ?e/2"
           by blast
-        have th1: "cmod(poly p w - poly p z) < ?e / 2" if w: "cmod (w - z) < d" for w
+        have 1: "cmod(poly p w - poly p z) < ?e / 2" if w: "cmod (w - z) < d" for w
           using d(2)[rule_format, of w] w e by (cases "w = z") simp_all
         from fz(2) d(1) obtain N1 where N1: "\<forall>n\<ge>N1. cmod (g (f n) - z) < d"
           by blast
-        from reals_Archimedean2[of "2/?e"] obtain N2 :: nat where N2: "2/?e < real N2"
+        from reals_Archimedean2 obtain N2 :: nat where N2: "2/?e < real N2"
           by blast
-        have th2: "cmod (poly p (g (f (N1 + N2))) - poly p z) < ?e/2"
-          using N1[rule_format, of "N1 + N2"] th1 by simp
-        have th0: "a < e2 \<Longrightarrow> \<bar>b - m\<bar> < e2 \<Longrightarrow> 2 * e2 \<le> \<bar>b - m\<bar> + a \<Longrightarrow> False"
+        have 2: "cmod (poly p (g (f (N1 + N2))) - poly p z) < ?e/2"
+          using N1 1 by auto
+        have 0: "a < e2 \<Longrightarrow> \<bar>b - m\<bar> < e2 \<Longrightarrow> 2 * e2 \<le> \<bar>b - m\<bar> + a \<Longrightarrow> False"
           for a b e2 m :: real
           by arith
-        have ath: "m \<le> x \<Longrightarrow> x < m + e \<Longrightarrow> \<bar>x - m\<bar> < e" for m x e :: real
-          by arith
-        from s1m[OF g(1)[rule_format]] have th31: "?m \<le> cmod(poly p (g (f (N1 + N2))))" .
         from seq_suble[OF fz(1), of "N1 + N2"]
-        have th00: "real (Suc (N1 + N2)) \<le> real (Suc (f (N1 + N2)))"
-          by simp
-        have th000: "0 \<le> (1::real)" "(1::real) \<le> 1" "real (Suc (N1 + N2)) > 0"
-          using N2 by auto
-        from frac_le[OF th000 th00]
-        have th00: "?m + 1 / real (Suc (f (N1 + N2))) \<le> ?m + 1 / real (Suc (N1 + N2))"
-          by simp
-        from g(2)[rule_format, of "f (N1 + N2)"]
-        have th01:"cmod (poly p (g (f (N1 + N2)))) < - s + 1 / real (Suc (f (N1 + N2)))" .
-        from order_less_le_trans[OF th01 th00]
-        have th32: "cmod (poly p (g (f (N1 + N2)))) < ?m + (1/ real(Suc (N1 + N2)))" .
-        from N2 have "2/?e < real (Suc (N1 + N2))"
-          by arith
-        with e2 less_imp_inverse_less[of "2/?e" "real (Suc (N1 + N2))"]
+        have 00: "?m + 1 / real (Suc (f (N1 + N2))) \<le> ?m + 1 / real (Suc (N1 + N2))"
+          by (simp add: frac_le)
+        from N2 e2 less_imp_inverse_less[of "2/?e" "real (Suc (N1 + N2))"]
         have "?e/2 > 1/ real (Suc (N1 + N2))"
           by (simp add: inverse_eq_divide)
-        with ath[OF th31 th32] have thc1: "\<bar>cmod (poly p (g (f (N1 + N2)))) - ?m\<bar> < ?e/2"
-          by arith
-        have ath2: "\<bar>a - b\<bar> \<le> c \<Longrightarrow> \<bar>b - m\<bar> \<le> \<bar>a - m\<bar> + c" for a b c m :: real
-          by arith
-        have th22: "\<bar>cmod (poly p (g (f (N1 + N2)))) - cmod (poly p z)\<bar> \<le>
-            cmod (poly p (g (f (N1 + N2))) - poly p z)"
-          by (simp add: norm_triangle_ineq3)
-        from ath2[OF th22, of ?m]
-        have thc2: "2 * (?e/2) \<le>
-            \<bar>cmod(poly p (g (f (N1 + N2)))) - ?m\<bar> + cmod (poly p (g (f (N1 + N2))) - poly p z)"
-          by simp
-        from th0[OF th2 thc1 thc2] have False .
+        with  order_less_le_trans[OF _ 00]
+        have 1: "\<bar>cmod (poly p (g (f (N1 + N2)))) - ?m\<bar> < ?e/2"
+          using g s1m by (smt (verit))
+        with 0[OF 2] have False
+          by (smt (verit) field_sum_of_halves norm_triangle_ineq3)
       }
       then have "?e = 0"
         by auto
-      then have "cmod (poly p z) = ?m"
-        by simp
       with s1m[OF wr] have "cmod (poly p z) \<le> cmod (poly p w)"
         by simp
     }
@@ -488,39 +430,24 @@
     let ?r = "1 + \<bar>r\<bar>"
     have "d \<le> norm (poly (pCons a (pCons c cs)) z)" if "1 + \<bar>r\<bar> \<le> norm z" for z
     proof -
-      have r0: "r \<le> norm z"
-        using that by arith
-      from r[rule_format, OF r0] have th0: "d + norm a \<le> 1 * norm(poly (pCons c cs) z)"
-        by arith
-      from that have z1: "norm z \<ge> 1"
-        by arith
-      from order_trans[OF th0 mult_right_mono[OF z1 norm_ge_zero[of "poly (pCons c cs) z"]]]
-      have th1: "d \<le> norm(z * poly (pCons c cs) z) - norm a"
-        unfolding norm_mult by (simp add: algebra_simps)
-      from norm_diff_ineq[of "z * poly (pCons c cs) z" a]
-      have th2: "norm (z * poly (pCons c cs) z) - norm a \<le> norm (poly (pCons a (pCons c cs)) z)"
-        by (simp add: algebra_simps)
-      from th1 th2 show ?thesis
-        by arith
+      have "d \<le> norm(z * poly (pCons c cs) z) - norm a"
+        by (smt (verit, best) norm_ge_zero mult_less_cancel_right2 norm_mult r that)
+      with norm_diff_ineq add.commute
+      show ?thesis
+        by (metis order.trans poly_pCons)
     qed
     then show ?thesis by blast
   next
     case True
-    with pCons.prems have c0: "c \<noteq> 0"
-      by simp
     have "d \<le> norm (poly (pCons a (pCons c cs)) z)"
-      if h: "(\<bar>d\<bar> + norm a) / norm c \<le> norm z" for z :: 'a
+      if "(\<bar>d\<bar> + norm a) / norm c \<le> norm z" for z :: 'a
     proof -
-      from c0 have "norm c > 0"
-        by simp
-      from h c0 have th0: "\<bar>d\<bar> + norm a \<le> norm (z * c)"
-        by (simp add: field_simps norm_mult)
-      have ath: "\<And>mzh mazh ma. mzh \<le> mazh + ma \<Longrightarrow> \<bar>d\<bar> + ma \<le> mzh \<Longrightarrow> d \<le> mazh"
-        by arith
-      from norm_diff_ineq[of "z * c" a] have th1: "norm (z * c) \<le> norm (a + z * c) + norm a"
-        by (simp add: algebra_simps)
-      from ath[OF th1 th0] show ?thesis
-        using True by simp
+      have "\<bar>d\<bar> + norm a \<le> norm (z * c)"
+        by (metis that True norm_mult pCons.hyps(1) pos_divide_le_eq zero_less_norm_iff)
+      also have "\<dots> \<le> norm (a + z * c) + norm a"
+        by (simp add: add.commute norm_add_leD)
+      finally show ?thesis
+        using True by auto
     qed
     then show ?thesis by blast
   qed
@@ -540,21 +467,9 @@
     obtain r where r: "cmod (poly (pCons c cs) 0) \<le> cmod (poly (pCons c cs) z)"
       if "r \<le> cmod z" for z
       by blast
-    have ath: "\<And>z r. r \<le> cmod z \<or> cmod z \<le> \<bar>r\<bar>"
-      by arith
-    from poly_minimum_modulus_disc[of "\<bar>r\<bar>" "pCons c cs"]
-    obtain v where v: "cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) w)"
-      if "cmod w \<le> \<bar>r\<bar>" for w
-      by blast
-    have "cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) z)" if z: "r \<le> cmod z" for z
-      using v[of 0] r[OF z] by simp
-    with v ath[of r] show ?thesis
-      by blast
-  next
-    case True
-    with pCons.hyps show ?thesis
-      by simp
-  qed
+    from poly_minimum_modulus_disc[of "\<bar>r\<bar>" "pCons c cs"] show ?thesis
+      by (smt (verit, del_insts) order.trans linorder_linear r)
+  qed (use pCons.hyps in auto)
 qed
 
 text \<open>Constant function (non-syntactic characterization).\<close>
@@ -589,21 +504,15 @@
       apply (rule_tac x="q" in exI)
       apply auto
       done
-  next
-    case False
-    show ?thesis
-      apply (rule exI[where x=0])
-      apply (rule exI[where x=c])
-      apply (auto simp: False)
-      done
-  qed
+  qed force
 qed
 
 lemma poly_decompose:
+  fixes p :: "'a::idom poly"
   assumes nc: "\<not> constant (poly p)"
-  shows "\<exists>k a q. a \<noteq> (0::'a::idom) \<and> k \<noteq> 0 \<and>
+  shows "\<exists>k a q. a \<noteq> 0 \<and> k \<noteq> 0 \<and>
                psize q + k + 1 = psize p \<and>
-              (\<forall>z. poly p z = poly p 0 + z^k * poly (pCons a q) z)"
+              (\<forall>z. poly p z = poly p 0 + z^k * poly (pCons a q) z)" 
   using nc
 proof (induct p)
   case 0
@@ -612,22 +521,15 @@
 next
   case (pCons c cs)
   have "\<not> (\<forall>z. z \<noteq> 0 \<longrightarrow> poly cs z = 0)"
-  proof
-    assume "\<forall>z. z \<noteq> 0 \<longrightarrow> poly cs z = 0"
-    then have "poly (pCons c cs) x = poly (pCons c cs) y" for x y
-      by (cases "x = 0") auto
-    with pCons.prems show False
-      by (auto simp add: constant_def)
-  qed
+    by (smt (verit) constant_def mult_eq_0_iff pCons.prems poly_pCons)
   from poly_decompose_lemma[OF this]
-  show ?case
-    apply clarsimp
-    apply (rule_tac x="k+1" in exI)
-    apply (rule_tac x="a" in exI)
-    apply simp
-    apply (rule_tac x="q" in exI)
-    apply (auto simp add: psize_def split: if_splits)
-    done
+  obtain k a q where *: "a \<noteq> 0 \<and>
+     Suc (psize q + k) = psize cs \<and> (\<forall>z. poly cs z = z ^ k * poly (pCons a q) z)"
+    by blast
+  then have "psize q + k + 2 = psize (pCons c cs)"
+    by (auto simp add: psize_def split: if_splits)
+  then show ?case
+    using "*" by force
 qed
 
 text \<open>Fundamental theorem of algebra\<close>
@@ -651,27 +553,10 @@
     then show ?thesis by blast
   next
     case False
-    from poly_offset[of p c] obtain q where q: "psize q = psize p" "\<forall>x. poly q x = ?p (c + x)"
-      by blast
-    have False if h: "constant (poly q)"
-    proof -
-      from q(2) have th: "\<forall>x. poly q (x - c) = ?p x"
-        by auto
-      have "?p x = ?p y" for x y
-      proof -
-        from th have "?p x = poly q (x - c)"
-          by auto
-        also have "\<dots> = poly q (y - c)"
-          using h unfolding constant_def by blast
-        also have "\<dots> = ?p y"
-          using th by auto
-        finally show ?thesis .
-      qed
-      with less(2) show ?thesis
-        unfolding constant_def by blast
-    qed
+    obtain q where q: "psize q = psize p" "\<forall>x. poly q x = ?p (c + x)"
+      using poly_offset[of p c] by blast
     then have qnc: "\<not> constant (poly q)"
-      by blast
+      by (metis (no_types, opaque_lifting) add.commute constant_def diff_add_cancel less.prems)
     from q(2) have pqc0: "?p c = poly q 0"
       by simp
     from c pqc0 have cq0: "\<forall>w. cmod (poly q 0) \<le> cmod (?p w)"
@@ -683,36 +568,13 @@
       by simp
     let ?r = "smult (inverse ?a0) q"
     have lgqr: "psize q = psize ?r"
-      using a00
-      unfolding psize_def degree_def
-      by (simp add: poly_eq_iff)
-    have False if h: "\<And>x y. poly ?r x = poly ?r y"
-    proof -
-      have "poly q x = poly q y" for x y
-      proof -
-        from qr[rule_format, of x] have "poly q x = poly ?r x * ?a0"
-          by auto
-        also have "\<dots> = poly ?r y * ?a0"
-          using h by simp
-        also have "\<dots> = poly q y"
-          using qr[rule_format, of y] by simp
-        finally show ?thesis .
-      qed
-      with qnc show ?thesis
-        unfolding constant_def by blast
-    qed
-    then have rnc: "\<not> constant (poly ?r)"
-      unfolding constant_def by blast
-    from qr[rule_format, of 0] a00 have r01: "poly ?r 0 = 1"
-      by auto
+      by (simp add: a00 psize_def)
+    have rnc: "\<not> constant (poly ?r)"
+      using constant_def qnc qr by fastforce 
+    have r01: "poly ?r 0 = 1"
+      by (simp add: a00)
     have mrmq_eq: "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w) < cmod ?a0" for w
-    proof -
-      have "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w / ?a0) < 1"
-        using qr[rule_format, of w] a00 by (simp add: divide_inverse ac_simps)
-      also have "\<dots> \<longleftrightarrow> cmod (poly q w) < cmod ?a0"
-        using a00 unfolding norm_divide by (simp add: field_simps)
-      finally show ?thesis .
-    qed
+      by (smt (verit, del_insts) a00 mult_less_cancel_right2 norm_mult qr zero_less_norm_iff)
     from poly_decompose[OF rnc] obtain k a s where
       kas: "a \<noteq> 0" "k \<noteq> 0" "psize s + k + 1 = psize ?r"
         "\<forall>z. poly ?r z = poly ?r 0 + z^k* poly (pCons a s) z" by blast
@@ -721,39 +583,28 @@
       case True
       with kas(3) lgqr[symmetric] q(1) have s0: "s = 0"
         by auto
-      have hth[symmetric]: "cmod (poly ?r w) = cmod (1 + a * w ^ k)" for w
-        using kas(4)[rule_format, of w] s0 r01 by (simp add: algebra_simps)
-      from reduce_poly_simple[OF kas(1,2)] show ?thesis
-        unfolding hth by blast
+      with reduce_poly_simple kas show ?thesis
+        by (metis mult.commute mult.right_neutral poly_1 poly_smult r01 smult_one)
     next
       case False note kn = this
       from kn kas(3) q(1) lgqr have k1n: "k + 1 < psize p"
         by simp
-      have th01: "\<not> constant (poly (pCons 1 (monom a (k - 1))))"
+      have 01: "\<not> constant (poly (pCons 1 (monom a (k - 1))))"
         unfolding constant_def poly_pCons poly_monom
-        using kas(1)
-        apply simp
-        apply (rule exI[where x=0])
-        apply (rule exI[where x=1])
-        apply simp
-        done
-      from kas(1) kas(2) have th02: "k + 1 = psize (pCons 1 (monom a (k - 1)))"
+        by (metis add_cancel_left_right kas(1) mult.commute mult_cancel_right2 power_one)
+      from kas(1) kas(2) have 02: "k + 1 = psize (pCons 1 (monom a (k - 1)))"
         by (simp add: psize_def degree_monom_eq)
-      from less(1) [OF k1n [simplified th02] th01]
+      from less(1) [OF k1n [simplified 02] 01]
       obtain w where w: "1 + w^k * a = 0"
-        unfolding poly_pCons poly_monom
-        using kas(2) by (cases k) (auto simp add: algebra_simps)
+        by (metis kas(2) mult.commute mult.left_commute poly_monom poly_pCons power_eq_if)
       from poly_bound_exists[of "cmod w" s] obtain m where
         m: "m > 0" "\<forall>z. cmod z \<le> cmod w \<longrightarrow> cmod (poly s z) \<le> m" by blast
-      have w0: "w \<noteq> 0"
+      have "w \<noteq> 0"
         using kas(2) w by (auto simp add: power_0_left)
-      from w have "(1 + w ^ k * a) - 1 = 0 - 1"
-        by simp
-      then have wm1: "w^k * a = - 1"
-        by simp
+      from w have wm1: "w^k * a = - 1"
+        by (simp add: add_eq_0_iff)
       have inv0: "0 < inverse (cmod w ^ (k + 1) * m)"
-        using norm_ge_zero[of w] w0 m(1)
-        by (simp add: inverse_eq_divide zero_less_mult_iff)
+        by (simp add: \<open>w \<noteq> 0\<close> m(1))
       with field_lbound_gt_zero[OF zero_less_one] obtain t where
         t: "t > 0" "t < 1" "t < inverse (cmod w ^ (k + 1) * m)" by blast
       let ?ct = "complex_of_real t"
@@ -766,42 +617,29 @@
         cmod (complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w)"
         by metis
       with norm_triangle_ineq[of "complex_of_real (1 - t^k)" "?w^k * ?w * poly s ?w"]
-      have th11: "cmod (1 + ?w^k * (a + ?w * poly s ?w)) \<le> \<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w)"
+      have 11: "cmod (1 + ?w^k * (a + ?w * poly s ?w)) \<le> \<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w)"
         unfolding norm_of_real by simp
       have ath: "\<And>x t::real. 0 \<le> x \<Longrightarrow> x < t \<Longrightarrow> t \<le> 1 \<Longrightarrow> \<bar>1 - t\<bar> + x < 1"
         by arith
-      have "t * cmod w \<le> 1 * cmod w"
-        apply (rule mult_mono)
-        using t(1,2)
-        apply auto
-        done
-      then have tw: "cmod ?w \<le> cmod w"
-        using t(1) by (simp add: norm_mult)
-      from t inv0 have "t * (cmod w ^ (k + 1) * m) < 1"
-        by (simp add: field_simps)
-      with zero_less_power[OF t(1), of k] have th30: "t^k * (t* (cmod w ^ (k + 1) * m)) < t^k * 1"
+      have tw: "cmod ?w \<le> cmod w"
+        by (smt (verit) mult_le_cancel_right2 norm_ge_zero norm_mult norm_of_real t)
+      have "t * (cmod w ^ (k + 1) * m) < 1"
+        by (smt (verit, best) inv0 inverse_positive_iff_positive left_inverse mult_strict_right_mono t(3))
+      with zero_less_power[OF t(1), of k] have 30: "t^k * (t* (cmod w ^ (k + 1) * m)) < t^k * 1"
         by simp
       have "cmod (?w^k * ?w * poly s ?w) = t^k * (t* (cmod w ^ (k + 1) * cmod (poly s ?w)))"
-        using w0 t(1)
-        by (simp add: algebra_simps power_mult_distrib norm_power norm_mult)
-      then have "cmod (?w^k * ?w * poly s ?w) \<le> t^k * (t* (cmod w ^ (k + 1) * m))"
-        using t(1,2) m(2)[rule_format, OF tw] w0
-        by auto
-      with th30 have th120: "cmod (?w^k * ?w * poly s ?w) < t^k"
-        by simp
-      from power_strict_mono[OF t(2), of k] t(1) kas(2) have th121: "t^k \<le> 1"
+        using \<open>w \<noteq> 0\<close> t(1) by (simp add: algebra_simps norm_power norm_mult)
+      with 30 have 120: "cmod (?w^k * ?w * poly s ?w) < t^k"
+        by (smt (verit, ccfv_SIG) m(2) mult_left_mono norm_ge_zero t(1) tw zero_le_power)
+      from power_strict_mono[OF t(2), of k] t(1) kas(2) have 121: "t^k \<le> 1"
         by auto
-      from ath[OF norm_ge_zero[of "?w^k * ?w * poly s ?w"] th120 th121]
-      have th12: "\<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w) < 1" .
-      from th11 th12 have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) < 1"
-        by arith
-      then have "cmod (poly ?r ?w) < 1"
-        unfolding kas(4)[rule_format, of ?w] r01 by simp
+      from ath[OF norm_ge_zero[of "?w^k * ?w * poly s ?w"] 120 121]
+      have 12: "\<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w) < 1" .
       then show ?thesis
-        by blast
+        by (smt (verit) "11" kas(4) poly_pCons r01)
     qed
     with cq0 q(2) show ?thesis
-      unfolding mrmq_eq not_less[symmetric] by auto
+      by (smt (verit) mrmq_eq)
   qed
 qed
 
@@ -825,8 +663,8 @@
     have "\<not> constant (poly (pCons c cs))"
     proof
       assume nc: "constant (poly (pCons c cs))"
-      from nc[unfolded constant_def, rule_format, of 0]
-      have "\<forall>w. w \<noteq> 0 \<longrightarrow> poly cs w = 0" by auto
+      have "\<forall>w. w \<noteq> 0 \<longrightarrow> poly cs w = 0"
+        by (metis add_cancel_right_right constant_def mult_eq_0_iff nc poly_pCons)
       then have "cs = 0"
       proof (induct cs)
         case 0
@@ -844,24 +682,19 @@
             m: "m > 0" "\<forall>z. \<forall>z. cmod z \<le> 1 \<longrightarrow> cmod (poly ds z) \<le> m" by blast
           have dm: "cmod d / m > 0"
             using False m(1) by (simp add: field_simps)
-          from field_lbound_gt_zero[OF dm zero_less_one]
-          obtain x where x: "x > 0" "x < cmod d / m" "x < 1"
-            by blast
+          then obtain x where x: "x > 0" "x < cmod d / m" "x < 1"
+            by (meson field_lbound_gt_zero zero_less_one)
           let ?x = "complex_of_real x"
           from x have cx: "?x \<noteq> 0" "cmod ?x \<le> 1"
             by simp_all
-          from pCons.prems[rule_format, OF cx(1)]
           have cth: "cmod (?x*poly ds ?x) = cmod d"
-            by (simp add: eq_diff_eq[symmetric])
-          from m(2)[rule_format, OF cx(2)] x(1)
-          have th0: "cmod (?x*poly ds ?x) \<le> x*m"
-            by (simp add: norm_mult)
+            by (metis add_eq_0_iff cx(1) norm_minus_cancel pCons.prems poly_pCons)
+          have 0: "cmod (?x*poly ds ?x) \<le> x*m"
+            by (smt (verit) cx(2) m(2) mult_left_mono norm_mult norm_of_real x(1))
           from x(2) m(1) have "x * m < cmod d"
             by (simp add: field_simps)
-          with th0 have "cmod (?x*poly ds ?x) \<noteq> cmod d"
-            by auto
-          with cth show ?thesis
-            by blast
+          with 0 cth show ?thesis
+            by force
         qed
       qed
       then show False
@@ -936,10 +769,7 @@
         next
           case False
           with sne dpn s oa have dsn: "degree s < n"
-            apply auto
-            apply (erule ssubst)
-            apply (simp add: degree_mult_eq degree_linear_power)
-            done
+            by (metis degree_div_less degree_linear_power mult_eq_0_iff n0 nonzero_mult_div_cancel_left not_gr0 pne)
           have "poly r x = 0" if h: "poly s x = 0" for x
           proof -
             have xa: "x \<noteq> a"
@@ -948,10 +778,7 @@
               from h[unfolded this poly_eq_0_iff_dvd] obtain u where u: "s = [:- a, 1:] * u"
                 by (rule dvdE)
               have "p = [:- a, 1:] ^ (Suc ?op) * u"
-                apply (subst s)
-                apply (subst u)
-                apply (simp only: power_Suc ac_simps)
-                done
+                by (metis (no_types, lifting) mult.assoc power_Suc power_commutes s u)
               with ap(2)[unfolded dvd_def] show False
                 by blast
             qed
@@ -962,9 +789,8 @@
             with r xa show ?thesis
               by auto
           qed
-          with IH[rule_format, OF dsn, of s r] False have "s dvd (r ^ (degree s))"
+          with False IH dsn obtain u where u: "r ^ (degree s) = s * u"
             by blast
-          then obtain u where u: "r ^ (degree s) = s * u" ..
           then have u': "\<And>x. poly s x * poly u x = poly r x ^ degree s"
             by (simp only: poly_mult[symmetric] poly_power[symmetric])
           let ?w = "(u * ([:-a,1:] ^ (n - ?op))) * (r ^ (n - degree s))"
@@ -988,16 +814,9 @@
       using a order_root pne by blast
   next
     case False
-    with fundamental_theorem_of_algebra_alt[of p]
-    obtain c where ccs: "c \<noteq> 0" "p = pCons c 0"
-      by blast
-    then have pp: "poly p x = c" for x
-      by simp
-    let ?w = "[:1/c:] * (q ^ n)"
-    from ccs have "(q ^ n) = (p * ?w)"
-      by simp
     then show ?thesis
-      unfolding dvd_def by blast
+      using dpn n0 fundamental_theorem_of_algebra_alt[of p]
+      by fastforce
   qed
 qed
 
@@ -1010,35 +829,18 @@
   then show ?thesis
   proof cases
     case p: 1
-    then have eq: "(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longleftrightarrow> q = 0"
+    then have "(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longleftrightarrow> q = 0"
       by (auto simp add: poly_all_0_iff_0)
-    {
-      assume "p dvd (q ^ (degree p))"
-      then obtain r where r: "q ^ (degree p) = p * r" ..
-      from r p have False by simp
-    }
-    with eq p show ?thesis by blast
+    with p show ?thesis
+      by force
   next
     case dp: 2
-    then obtain k where k: "p = [:k:]" "k \<noteq> 0"
-      by (cases p) (simp split: if_splits)
-    then have th1: "\<forall>x. poly p x \<noteq> 0"
-      by simp
-    from k dp(2) have "q ^ (degree p) = p * [:1/k:]"
-      by simp
-    then have th2: "p dvd (q ^ (degree p))" ..
-    from dp(1) th1 th2 show ?thesis
-      by blast
+    then show ?thesis
+      by (meson dvd_trans is_unit_iff_degree poly_eq_0_iff_dvd unit_imp_dvd)
   next
     case dp: 3
-    have False if dvd: "p dvd (q ^ (Suc n))" and h: "poly p x = 0" "poly q x \<noteq> 0" for x
-    proof -
-      from dvd obtain u where u: "q ^ (Suc n) = p * u" ..
-      from h have "poly (q ^ (Suc n)) x \<noteq> 0"
-        by simp
-      with u h(1) show ?thesis
-        by (simp only: poly_mult) simp
-    qed
+    have False if "p dvd (q ^ (Suc n))" "poly p x = 0" "poly q x \<noteq> 0" for x
+      by (metis dvd_trans poly_eq_0_iff_dvd poly_power power_eq_0_iff that)
     with dp nullstellensatz_lemma[of p q "degree p"] show ?thesis
       by auto
   qed
@@ -1052,22 +854,14 @@
   show ?rhs if ?lhs
   proof -
     from that[unfolded constant_def, rule_format, of _ "0"]
-    have th: "poly p = poly [:poly p 0:]"
+    have "poly p = poly [:poly p 0:]"
       by auto
-    then have "p = [:poly p 0:]"
-      by (simp add: poly_eq_poly_eq_iff)
-    then have "degree p = degree [:poly p 0:]"
-      by simp
     then show ?thesis
-      by simp
+      by (metis degree_pCons_0 poly_eq_poly_eq_iff)
   qed
   show ?lhs if ?rhs
-  proof -
-    from that obtain k where "p = [:k:]"
-      by (cases p) (simp split: if_splits)
-    then show ?thesis
-      unfolding constant_def by auto
-  qed
+    unfolding constant_def
+    by (metis degree_eq_zeroE pcompose_const poly_0 poly_pcompose that)
 qed
 
 text \<open>Arithmetic operations on multivariate polynomials.\<close>
@@ -1099,59 +893,21 @@
   fixes p:: "('a::comm_ring_1) poly"
   assumes pq: "p dvd q"
   shows "p dvd (pCons 0 q)"
-proof -
-  have "pCons 0 q = q * [:0,1:]" by simp
-  then have "q dvd (pCons 0 q)" ..
-  with pq show ?thesis by (rule dvd_trans)
-qed
+  by (metis add_0 dvd_def mult_pCons_right pq smult_0_left)
 
 lemma poly_divides_conv0:
   fixes p:: "'a::field poly"
-  assumes lgpq: "degree q < degree p"
-    and lq: "p \<noteq> 0"
-  shows "p dvd q \<longleftrightarrow> q = 0" (is "?lhs \<longleftrightarrow> ?rhs")
-proof
-  assume ?rhs
-  then have "q = p * 0" by simp
-  then show ?lhs ..
-next
-  assume l: ?lhs
-  show ?rhs
-  proof (cases "q = 0")
-    case True
-    then show ?thesis by simp
-  next
-    assume q0: "q \<noteq> 0"
-    from l q0 have "degree p \<le> degree q"
-      by (rule dvd_imp_degree_le)
-    with lgpq show ?thesis by simp
-  qed
-qed
+  assumes lgpq: "degree q < degree p" and lq: "p \<noteq> 0"
+  shows "p dvd q \<longleftrightarrow> q = 0"
+  using lgpq mod_poly_less by fastforce
 
 lemma poly_divides_conv1:
   fixes p :: "'a::field poly"
   assumes a0: "a \<noteq> 0"
     and pp': "p dvd p'"
     and qrp': "smult a q - p' = r"
-  shows "p dvd q \<longleftrightarrow> p dvd r" (is "?lhs \<longleftrightarrow> ?rhs")
-proof
-  from pp' obtain t where t: "p' = p * t" ..
-  show ?rhs if ?lhs
-  proof -
-    from that obtain u where u: "q = p * u" ..
-    have "r = p * (smult a u - t)"
-      using u qrp' [symmetric] t by (simp add: algebra_simps)
-    then show ?thesis ..
-  qed
-  show ?lhs if ?rhs
-  proof -
-    from that obtain u where u: "r = p * u" ..
-    from u [symmetric] t qrp' [symmetric] a0
-    have "q = p * smult (1/a) (u + t)"
-      by (simp add: algebra_simps)
-    then show ?thesis ..
-  qed
-qed
+  shows "p dvd q \<longleftrightarrow> p dvd r"
+  by (metis a0 diff_add_cancel dvd_add_left_iff dvd_smult_iff pp' qrp')
 
 lemma basic_cqe_conv1:
   "(\<exists>x. poly p x = 0 \<and> poly 0 x \<noteq> 0) \<longleftrightarrow> False"
@@ -1164,14 +920,7 @@
 lemma basic_cqe_conv2:
   assumes l: "p \<noteq> 0"
   shows "\<exists>x. poly (pCons a (pCons b p)) x = (0::complex)"
-proof -
-  have False if "h \<noteq> 0" "t = 0" and "pCons a (pCons b p) = pCons h t" for h t
-    using l that by simp
-  then have th: "\<not> (\<exists> h t. h \<noteq> 0 \<and> t = 0 \<and> pCons a (pCons b p) = pCons h t)"
-    by blast
-  from fundamental_theorem_of_algebra_alt[OF th] show ?thesis
-    by auto
-qed
+  by (meson fundamental_theorem_of_algebra_alt l pCons_eq_0_iff pCons_eq_iff)
 
 lemma  basic_cqe_conv_2b: "(\<exists>x. poly p x \<noteq> (0::complex)) \<longleftrightarrow> p \<noteq> 0"
   by (metis poly_all_0_iff_0)
@@ -1180,13 +929,7 @@
   fixes p q :: "complex poly"
   assumes l: "p \<noteq> 0"
   shows "(\<exists>x. poly (pCons a p) x = 0 \<and> poly q x \<noteq> 0) \<longleftrightarrow> \<not> (pCons a p) dvd (q ^ psize p)"
-proof -
-  from l have dp: "degree (pCons a p) = psize p"
-    by (simp add: psize_def)
-  from nullstellensatz_univariate[of "pCons a p" q] l
-  show ?thesis
-    by (metis dp pCons_eq_0_iff)
-qed
+  by (metis degree_pCons_eq_if l nullstellensatz_univariate pCons_eq_0_iff psize_def)
 
 lemma basic_cqe_conv4:
   fixes p q :: "complex poly"
@@ -1195,10 +938,8 @@
 proof -
   from h have "poly (q ^ n) = poly r"
     by auto
-  then have "(q ^ n) = r"
+  then show "p dvd (q ^ n) \<longleftrightarrow> p dvd r"
     by (simp add: poly_eq_poly_eq_iff)
-  then show "p dvd (q ^ n) \<longleftrightarrow> p dvd r"
-    by simp
 qed
 
 lemma poly_const_conv:
--- a/src/HOL/Filter.thy	Mon Feb 20 13:59:16 2023 +0100
+++ b/src/HOL/Filter.thy	Mon Feb 20 13:59:42 2023 +0100
@@ -1511,7 +1511,21 @@
   fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)" and c :: "'b"
   shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z<c. eventually (\<lambda>x. Z \<ge> f x) F)"
   by (metis filterlim_at_bot filterlim_at_bot_le lt_ex order_le_less_trans)
-    
+
+lemma filterlim_at_top_div_const_nat:
+  assumes "c > 0"
+  shows   "filterlim (\<lambda>x::nat. x div c) at_top at_top"
+  unfolding filterlim_at_top
+proof
+  fix C :: nat
+  have *: "n div c \<ge> C" if "n \<ge> C * c" for n
+    using assms that by (metis div_le_mono div_mult_self_is_m)
+  have "eventually (\<lambda>n. n \<ge> C * c) at_top"
+    by (rule eventually_ge_at_top)
+  thus "eventually (\<lambda>n. n div c \<ge> C) at_top"
+    by eventually_elim (use * in auto)
+qed
+
 lemma filterlim_finite_subsets_at_top:
   "filterlim f (finite_subsets_at_top A) F \<longleftrightarrow>
      (\<forall>X. finite X \<and> X \<subseteq> A \<longrightarrow> eventually (\<lambda>y. finite (f y) \<and> X \<subseteq> f y \<and> f y \<subseteq> A) F)"
--- a/src/HOL/Library/Landau_Symbols.thy	Mon Feb 20 13:59:16 2023 +0100
+++ b/src/HOL/Library/Landau_Symbols.thy	Mon Feb 20 13:59:42 2023 +0100
@@ -1742,6 +1742,10 @@
     by (rule Lim_transform_eventually)
 qed (simp_all add: asymp_equiv_def)
 
+lemma tendsto_imp_asymp_equiv_const:
+  assumes "(f \<longlongrightarrow> c) F" "c \<noteq> 0"
+  shows   "f \<sim>[F] (\<lambda>_. c)"
+  by (rule asymp_equivI' tendsto_eq_intros assms refl)+ (use assms in auto)
 
 lemma asymp_equiv_cong:
   assumes "eventually (\<lambda>x. f1 x = f2 x) F" "eventually (\<lambda>x. g1 x = g2 x) F"
--- a/src/HOL/Library/Multiset_Order.thy	Mon Feb 20 13:59:16 2023 +0100
+++ b/src/HOL/Library/Multiset_Order.thy	Mon Feb 20 13:59:42 2023 +0100
@@ -147,6 +147,48 @@
 lemma irreflp_on_multp\<^sub>H\<^sub>O[simp]: "irreflp_on B (multp\<^sub>H\<^sub>O R)"
     by (simp add: irreflp_onI multp\<^sub>H\<^sub>O_def)
 
+text \<open>The following lemma is a negative result stating that asymmetry of an arbitrary binary
+relation cannot be simply lifted to @{const multp\<^sub>H\<^sub>O}. It suffices to have four distinct values to
+build a counterexample.\<close>
+
+lemma asymp_not_liftable_to_multp\<^sub>H\<^sub>O:
+  fixes a b c d :: 'a
+  assumes "distinct [a, b, c, d]"
+  shows "\<not> (\<forall>(R :: 'a \<Rightarrow> 'a \<Rightarrow> bool). asymp R \<longrightarrow> asymp (multp\<^sub>H\<^sub>O R))"
+proof -
+  define R :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where
+    "R = (\<lambda>x y. x = a \<and> y = c \<or> x = b \<and> y = d \<or> x = c \<and> y = b \<or> x = d \<and> y = a)"
+
+  from assms(1) have "{#a, b#} \<noteq> {#c, d#}"
+    by (metis add_mset_add_single distinct.simps(2) list.set(1) list.simps(15) multi_member_this
+        set_mset_add_mset_insert set_mset_single)
+
+  from assms(1) have "asymp R"
+    by (auto simp: R_def intro: asymp_onI)
+  moreover have "\<not> asymp (multp\<^sub>H\<^sub>O R)"
+    unfolding asymp_on_def Set.ball_simps not_all not_imp not_not
+  proof (intro exI conjI)
+    show "multp\<^sub>H\<^sub>O R {#a, b#} {#c, d#}"
+      unfolding multp\<^sub>H\<^sub>O_def
+      using \<open>{#a, b#} \<noteq> {#c, d#}\<close> R_def assms by auto
+  next
+    show "multp\<^sub>H\<^sub>O R {#c, d#} {#a, b#}"
+      unfolding multp\<^sub>H\<^sub>O_def
+      using \<open>{#a, b#} \<noteq> {#c, d#}\<close> R_def assms by auto
+  qed
+  ultimately show ?thesis
+    unfolding not_all not_imp by auto
+qed
+
+text \<open>However, if the binary relation is both asymmetric and transitive, then @{const multp\<^sub>H\<^sub>O} is
+also asymmetric.\<close>
+
+lemma asymp_multp\<^sub>H\<^sub>O:
+  assumes "asymp R" and "transp R"
+  shows "asymp (multp\<^sub>H\<^sub>O R)"
+  using assms
+  by (metis asymp_on_iff_irreflp_on_if_transp_on irreflp_multp multp_eq_multp\<^sub>H\<^sub>O transp_multp)
+
 lemma totalp_on_multp\<^sub>D\<^sub>M:
   "totalp_on A R \<Longrightarrow> (\<And>M. M \<in> B \<Longrightarrow> set_mset M \<subseteq> A) \<Longrightarrow> totalp_on B (multp\<^sub>D\<^sub>M R)"
   by (smt (verit, ccfv_SIG) count_inI in_mono multp\<^sub>H\<^sub>O_def multp\<^sub>H\<^sub>O_imp_multp\<^sub>D\<^sub>M not_less_iff_gr_or_eq
--- a/src/HOL/Library/Periodic_Fun.thy	Mon Feb 20 13:59:16 2023 +0100
+++ b/src/HOL/Library/Periodic_Fun.thy	Mon Feb 20 13:59:42 2023 +0100
@@ -147,6 +147,26 @@
 lemma cos_eq_periodic_intro:
   assumes "x - y = 2*(of_int k)*pi \<or> x + y = 2*(of_int k)*pi"
   shows "cos x = cos y"
-  by (smt (verit, ccfv_SIG) assms cos_eq_neg_periodic_intro cos_minus_pi cos_periodic_pi)
+  by (smt (verit, best) assms cos_eq_neg_periodic_intro cos_minus_pi cos_periodic_pi)
+
+lemma cos_eq_arccos_Ex:
+  "cos x = y \<longleftrightarrow> -1\<le>y \<and> y\<le>1 \<and> (\<exists>k::int. x = arccos y + 2*k*pi \<or> x = - arccos y + 2*k*pi)" (is "?L=?R")
+proof
+  assume ?R then show "cos x = y"
+    by (metis cos.plus_of_int cos_arccos cos_minus id_apply mult.assoc mult.left_commute of_real_eq_id)
+next
+  assume L: ?L
+  let ?goal = "(\<exists>k::int. x = arccos y + 2*k*pi \<or> x = - arccos y + 2*k*pi)"
+  obtain k::int where k: "-pi < x - k*(2*pi)" "x - k*(2*pi) \<le> pi"
+    using ceiling_divide_lower [of "2*pi" "x-pi"] ceiling_divide_upper [of "2*pi" "x-pi"] 
+    by (simp add: divide_simps algebra_simps) (metis mult.commute)
+  have *: "cos (x - k * 2*pi) = y"
+    using cos.periodic_simps(3)[of x "-k"] L by (auto simp add:field_simps)
+  then have **: ?goal when "x-k*2*pi \<ge> 0"
+    using arccos_cos k that by force
+  then show "-1\<le>y \<and> y\<le>1 \<and> ?goal"
+    using "*" arccos_cos2 k(1) by force
+qed
+
 
 end
--- a/src/HOL/MacLaurin.thy	Mon Feb 20 13:59:16 2023 +0100
+++ b/src/HOL/MacLaurin.thy	Mon Feb 20 13:59:42 2023 +0100
@@ -114,10 +114,8 @@
     qed (simp add: differentiable_difg n)
   next
     case (Suc m')
-    then have "\<exists>t. 0 < t \<and> t < h \<and> DERIV (difg m') t :> 0"
-      by simp
     then obtain t where t: "0 < t" "t < h" "DERIV (difg m') t :> 0"
-      by fast
+      by force
     have "\<exists>t'. 0 < t' \<and> t' < t \<and> DERIV (difg (Suc m')) t' :> 0"
     proof (rule Rolle)
       show "0 < t" by fact
@@ -131,14 +129,11 @@
     with \<open>t < h\<close> show ?case
       by auto
   qed
-  then obtain t where "0 < t" "t < h" "DERIV (difg m) t :> 0"
-    by fast
-  with \<open>m < n\<close> have "difg (Suc m) t = 0"
-    by (simp add: difg_Suc_eq_0)
+  then obtain t where "0 < t" "t < h" "difg (Suc m) t = 0"
+    using \<open>m < n\<close> difg_Suc_eq_0 by force
   show ?thesis
   proof (intro exI conjI)
-    show "0 < t" by fact
-    show "t < h" by fact
+    show "0 < t" "t < h" by fact+
     show "f h = (\<Sum>m<n. diff m 0 / (fact m) * h ^ m) + diff n t / (fact n) * h ^ n"
       using \<open>difg (Suc m) t = 0\<close> by (simp add: m f_h difg_def)
   qed
@@ -157,10 +152,8 @@
 next
   case Suc
   then have "n > 0" by simp
-  from INIT1 this INIT2 DERIV
-  have "\<exists>t>0. t < h \<and> f h = (\<Sum>m<n. diff m 0 / fact m * h ^ m) + diff n t / fact n * h ^ n"
-    by (rule Maclaurin)
-  then show ?thesis by fastforce
+  from Maclaurin [OF INIT1 this INIT2 DERIV]
+  show ?thesis by fastforce
 qed
 
 lemma Maclaurin_minus:
@@ -216,9 +209,7 @@
     then obtain t where "x < t" "t < 0"
       "diff 0 x = (\<Sum>m<n. diff m 0 / fact m * x ^ m) + diff n t / fact n * x ^ n"
       by blast
-    with \<open>x < 0\<close> \<open>diff 0 = f\<close> have "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x t"
-      by simp
-    then show ?thesis ..
+    with \<open>x < 0\<close> \<open>diff 0 = f\<close> show ?thesis by force
   next
     assume "x > 0"
     with \<open>n \<noteq> 0\<close> \<open>diff 0 = f\<close> DERIV have "\<exists>t>0. t < x \<and> diff 0 x = ?f x t"
@@ -247,20 +238,12 @@
   assume "x < 0"
   with assms have "\<exists>t>x. t < 0 \<and> f x = ?f x t"
     by (intro Maclaurin_minus) auto
-  then obtain t where "t > x" "t < 0" "f x = ?f x t"
-    by blast
-  with \<open>x < 0\<close> have "0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t"
-    by simp
-  then show ?thesis ..
+  then show ?thesis by force
 next
   assume "x > 0"
   with assms have "\<exists>t>0. t < x \<and> f x = ?f x t"
     by (intro Maclaurin) auto
-  then obtain t where "t > 0" "t < x" "f x = ?f x t"
-    by blast
-  with \<open>x > 0\<close> have "0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t"
-    by simp
-  then show ?thesis ..
+  then show ?thesis by force
 qed
 
 lemma Maclaurin_zero: "x = 0 \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> (\<Sum>m<n. (diff m 0 / fact m) * x ^ m) = diff 0 0"
@@ -280,22 +263,7 @@
 next
   case False
   show ?thesis
-  proof (cases "x = 0")
-    case True
-    with \<open>n \<noteq> 0\<close> have "(\<Sum>m<n. diff m 0 / (fact m) * x ^ m) = diff 0 0"
-      by (intro Maclaurin_zero) auto
-    with INIT \<open>x = 0\<close> \<open>n \<noteq> 0\<close> have " \<bar>0\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x 0"
-      by force
-    then show ?thesis ..
-  next
-    case False
-    with INIT \<open>n \<noteq> 0\<close> DERIV have "\<exists>t. 0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t"
-      by (intro Maclaurin_all_lt) auto
-    then obtain t where "0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t" ..
-    then have "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x t"
-      by simp
-    then show ?thesis ..
-  qed
+    using DERIV INIT Maclaurin_bi_le by auto
 qed
 
 lemma Maclaurin_all_le_objl:
@@ -324,12 +292,7 @@
   using Maclaurin_exp_le [of x 3] by (auto simp: numeral_3_eq_3 power2_eq_square)
 
 corollary ln_2_less_1: "ln 2 < (1::real)"
-proof -
-  have "2 < 5/(2::real)" by simp
-  also have "5/2 \<le> exp (1::real)" using exp_lower_Taylor_quadratic[of 1, simplified] by simp
-  finally have "exp (ln 2) < exp (1::real)" by simp
-  thus "ln 2 < (1::real)" by (subst (asm) exp_less_cancel_iff) simp
-qed
+  by (smt (verit) ln_eq_minus_one ln_le_minus_one)
 
 subsection \<open>Version for Sine Function\<close>
 
@@ -430,8 +393,8 @@
   proof (rule Maclaurin_all_lt)
     show "\<forall>m x. ((\<lambda>t. cos (t + 1/2 * real m * pi)) has_real_derivative
            cos (x + 1/2 * real (Suc m) * pi)) (at x)"
-      apply (rule allI derivative_eq_intros | simp)+
-      using cos_expansion_lemma by force
+      using cos_expansion_lemma
+      by (intro allI derivative_eq_intros | simp)+
   qed (use False in auto)
   then show ?thesis
     apply (rule ex_forward, simp)
@@ -511,10 +474,10 @@
     using mod_exhaust_less_4 [of m]
     by (auto simp: minus_one_power_iff even_even_mod_4_iff [of m] dest: even_mod_4_div_2 odd_mod_4_div_2)
   show ?thesis
-    unfolding sin_coeff_def
     apply (subst t2)
     apply (rule sin_bound_lemma)
      apply (rule sum.cong[OF refl])
+    unfolding sin_coeff_def
      apply (subst diff_m_0, simp)
     using est
     apply (auto intro: mult_right_mono [where b=1, simplified] mult_right_mono
@@ -559,10 +522,8 @@
       f (b - c + c) =
         (\<Sum>m<n. diff m (0 + c) / fact m * (b - c) ^ m) + diff n (x + c) / fact n * (b - c) ^ n"
      by (rule Maclaurin [THEN exE])
-   then have "c < x + c \<and> x + c < b \<and> f b =
-     (\<Sum>m<n. diff m c / fact m * (b - c) ^ m) + diff n (x + c) / fact n * (b - c) ^ n"
-    by fastforce
-  then show ?thesis by fastforce
+  then show ?thesis
+    by (smt (verit) sum.cong)
 qed
 
 lemma Taylor_down:
@@ -585,10 +546,8 @@
       by auto
     moreover from DERIV_ident and DERIV_const have "DERIV (\<lambda>x. x + c) t :> 1 + 0"
       by (rule DERIV_add)
-    ultimately have "DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c) * (1 + 0)"
-      by (rule DERIV_chain2)
-    then show "DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c)"
-      by simp
+    ultimately show "DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c)"
+      using DERIV_chain2 DERIV_shift by blast
   qed
   ultimately obtain x where
     "a - c < x \<and> x < 0 \<and>
@@ -614,26 +573,15 @@
   note INIT
   moreover have "\<forall>m t. m < n \<and> x \<le> t \<and> t \<le> b \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t"
     using DERIV and INTERV by fastforce
-  moreover note True
-  moreover from INTERV have "c \<le> b"
-    by simp
-  ultimately have "\<exists>t>x. t < c \<and> f x =
-    (\<Sum>m<n. diff m c / (fact m) * (x - c) ^ m) + diff n t / (fact n) * (x - c) ^ n"
-    by (rule Taylor_down)
-  with True show ?thesis by simp
+  ultimately show ?thesis
+    using True INTERV Taylor_down by simp
 next
   case False
   note INIT
   moreover have "\<forall>m t. m < n \<and> a \<le> t \<and> t \<le> x \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t"
     using DERIV and INTERV by fastforce
-  moreover from INTERV have "a \<le> c"
-    by arith
-  moreover from False and INTERV have "c < x"
-    by arith
-  ultimately have "\<exists>t>c. t < x \<and> f x =
-    (\<Sum>m<n. diff m c / (fact m) * (x - c) ^ m) + diff n t / (fact n) * (x - c) ^ n"
-    by (rule Taylor_up)
-  with False show ?thesis by simp
+  ultimately show ?thesis 
+    using Taylor_up INTERV False by simp
 qed
 
 end
--- a/src/Pure/General/logger.scala	Mon Feb 20 13:59:16 2023 +0100
+++ b/src/Pure/General/logger.scala	Mon Feb 20 13:59:42 2023 +0100
@@ -35,7 +35,8 @@
 }
 
 class System_Logger extends Logger {
-  def apply(msg: => String): Unit =
+  def apply(msg: => String): Unit = synchronized {
     if (Platform.is_windows) System.out.println(msg)
     else System.console.writer.println(msg)
+  }
 }
--- a/src/Pure/PIDE/document.scala	Mon Feb 20 13:59:16 2023 +0100
+++ b/src/Pure/PIDE/document.scala	Mon Feb 20 13:59:42 2023 +0100
@@ -371,14 +371,16 @@
 
   object Nodes {
     val empty: Nodes = new Nodes(Graph.empty(Node.Name.Ordering))
+
+    private def init(graph: Graph[Node.Name, Node], name: Node.Name): Graph[Node.Name, Node] =
+      graph.default_node(name, Node.empty)
   }
 
   final class Nodes private(graph: Graph[Node.Name, Node]) {
-    def apply(name: Node.Name): Node =
-      graph.default_node(name, Node.empty).get_node(name)
+    def apply(name: Node.Name): Node = Nodes.init(graph, name).get_node(name)
 
     def is_suppressed(name: Node.Name): Boolean = {
-      val graph1 = graph.default_node(name, Node.empty)
+      val graph1 = Nodes.init(graph, name)
       graph1.is_maximal(name) && graph1.get_node(name).is_empty
     }
 
@@ -391,10 +393,7 @@
     def + (entry: (Node.Name, Node)): Nodes = {
       val (name, node) = entry
       val imports = node.header.imports
-      val graph1 =
-        imports.foldLeft(graph.default_node(name, Node.empty)) {
-          case (g, p) => g.default_node(p, Node.empty)
-        }
+      val graph1 = (name :: imports).foldLeft(graph)(Nodes.init)
       val graph2 =
         graph1.imm_preds(name).foldLeft(graph1) { case (g, dep) => g.del_edge(dep, name) }
       val graph3 = imports.foldLeft(graph2) { case (g, dep) => g.add_edge(dep, name) }
@@ -417,8 +416,8 @@
         if name == file_name
       } yield cmd).toList
 
-    def descendants(names: List[Node.Name]): List[Node.Name] = graph.all_succs(names)
-    def requirements(names: List[Node.Name]): List[Node.Name] = graph.all_preds_rev(names)
+    def descendants(names: List[Node.Name]): List[Node.Name] =
+      names.foldLeft(graph)(Nodes.init).all_succs(names)
     def topological_order: List[Node.Name] = graph.topological_order
 
     override def toString: String = topological_order.mkString("Nodes(", ",", ")")
--- a/src/Pure/Thy/sessions.scala	Mon Feb 20 13:59:16 2023 +0100
+++ b/src/Pure/Thy/sessions.scala	Mon Feb 20 13:59:42 2023 +0100
@@ -1331,6 +1331,18 @@
 
   /** persistent store **/
 
+  /** auxiliary **/
+
+  sealed case class Build_Info(
+    sources: SHA1.Shasum,
+    input_heaps: SHA1.Shasum,
+    output_heap: SHA1.Shasum,
+    return_code: Int,
+    uuid: String
+  ) {
+    def ok: Boolean = return_code == 0
+  }
+
   object Session_Info {
     val session_name = SQL.Column.string("session_name").make_primary_key
 
@@ -1345,7 +1357,7 @@
       List(session_name, session_timing, command_timings, theory_timings,
         ml_statistics, task_statistics, errors)
 
-    // Build.Session_Info
+    // Build_Info
     val sources = SQL.Column.string("sources")
     val input_heaps = SQL.Column.string("input_heaps")
     val output_heap = SQL.Column.string("output_heap")
@@ -1553,7 +1565,7 @@
       session_name: String,
       sources: Sources,
       build_log: Build_Log.Session_Info,
-      build: Build.Session_Info
+      build: Build_Info
     ): Unit = {
       db.transaction {
         write_sources(db, session_name, sources)
@@ -1596,7 +1608,7 @@
     def read_errors(db: SQL.Database, name: String): List[String] =
       Build_Log.uncompress_errors(read_bytes(db, name, Session_Info.errors), cache = cache)
 
-    def read_build(db: SQL.Database, name: String): Option[Build.Session_Info] = {
+    def read_build(db: SQL.Database, name: String): Option[Build_Info] = {
       if (db.tables.contains(Session_Info.table.name)) {
         db.using_statement(Session_Info.table.select(Nil,
           Session_Info.session_name.where_equal(name))) { stmt =>
@@ -1607,7 +1619,7 @@
               try { Option(res.string(Session_Info.uuid)).getOrElse("") }
               catch { case _: SQLException => "" }
             Some(
-              Build.Session_Info(
+              Build_Info(
                 SHA1.fake_shasum(res.string(Session_Info.sources)),
                 SHA1.fake_shasum(res.string(Session_Info.input_heaps)),
                 SHA1.fake_shasum(res.string(Session_Info.output_heap)),
--- a/src/Pure/Tools/build.scala	Mon Feb 20 13:59:16 2023 +0100
+++ b/src/Pure/Tools/build.scala	Mon Feb 20 13:59:42 2023 +0100
@@ -9,22 +9,6 @@
 
 
 object Build {
-  /** auxiliary **/
-
-  /* persistent build info */
-
-  sealed case class Session_Info(
-    sources: SHA1.Shasum,
-    input_heaps: SHA1.Shasum,
-    output_heap: SHA1.Shasum,
-    return_code: Int,
-    uuid: String
-  ) {
-    def ok: Boolean = return_code == 0
-  }
-
-
-
   /** build with results **/
 
   class Results private[Build](
--- a/src/Pure/Tools/build_job.scala	Mon Feb 20 13:59:16 2023 +0100
+++ b/src/Pure/Tools/build_job.scala	Mon Feb 20 13:59:42 2023 +0100
@@ -11,7 +11,373 @@
 import scala.util.matching.Regex
 
 
+trait Build_Job {
+  def session_name: String
+  def numa_node: Option[Int] = None
+  def start(): Unit = ()
+  def terminate(): Unit = ()
+  def is_finished: Boolean = false
+  def join: Process_Result = Process_Result.undefined
+}
+
 object Build_Job {
+  class Build_Session(progress: Progress,
+    session_background: Sessions.Background,
+    store: Sessions.Store,
+    val do_store: Boolean,
+    resources: Resources,
+    session_setup: (String, Session) => Unit,
+    val input_heaps: SHA1.Shasum,
+    override val numa_node: Option[Int]
+  ) extends Build_Job {
+    def session_name: String = session_background.session_name
+    val info: Sessions.Info = session_background.sessions_structure(session_name)
+    val options: Options = NUMA.policy_options(info.options, numa_node)
+
+    val session_sources: Sessions.Sources =
+      Sessions.Sources.load(session_background.base, cache = store.cache.compress)
+
+    private lazy val future_result: Future[Process_Result] =
+      Future.thread("build", uninterruptible = true) {
+        val parent = info.parent.getOrElse("")
+
+        val env =
+          Isabelle_System.settings(
+            List("ISABELLE_ML_DEBUGGER" -> options.bool("ML_debugger").toString))
+
+        val is_pure = Sessions.is_pure(session_name)
+
+        val use_prelude = if (is_pure) Thy_Header.ml_roots.map(_._1) else Nil
+
+        val eval_store =
+          if (do_store) {
+            (if (info.theories.nonEmpty) List("ML_Heap.share_common_data ()") else Nil) :::
+            List("ML_Heap.save_child " +
+              ML_Syntax.print_string_bytes(File.platform_path(store.output_heap(session_name))))
+          }
+          else Nil
+
+        def session_blobs(node_name: Document.Node.Name): List[(Command.Blob, Document.Blobs.Item)] =
+          session_background.base.theory_load_commands.get(node_name.theory) match {
+            case None => Nil
+            case Some(spans) =>
+              val syntax = session_background.base.theory_syntax(node_name)
+              val master_dir = Path.explode(node_name.master_dir)
+              for (span <- spans; file <- span.loaded_files(syntax).files)
+                yield {
+                  val src_path = Path.explode(file)
+                  val blob_name = Document.Node.Name(File.symbolic_path(master_dir + src_path))
+
+                  val bytes = session_sources(blob_name.node).bytes
+                  val text = bytes.text
+                  val chunk = Symbol.Text_Chunk(text)
+
+                  Command.Blob(blob_name, src_path, Some((SHA1.digest(bytes), chunk))) ->
+                    Document.Blobs.Item(bytes, text, chunk, changed = false)
+                }
+          }
+
+        val session =
+          new Session(options, resources) {
+            override val cache: Term.Cache = store.cache
+
+            override def build_blobs_info(node_name: Document.Node.Name): Command.Blobs_Info =
+              Command.Blobs_Info.make(session_blobs(node_name))
+
+            override def build_blobs(node_name: Document.Node.Name): Document.Blobs =
+              Document.Blobs.make(session_blobs(node_name))
+          }
+
+        object Build_Session_Errors {
+          private val promise: Promise[List[String]] = Future.promise
+
+          def result: Exn.Result[List[String]] = promise.join_result
+          def cancel(): Unit = promise.cancel()
+          def apply(errs: List[String]): Unit = {
+            try { promise.fulfill(errs) }
+            catch { case _: IllegalStateException => }
+          }
+        }
+
+        val export_consumer =
+          Export.consumer(store.open_database(session_name, output = true), store.cache,
+            progress = progress)
+
+        val stdout = new StringBuilder(1000)
+        val stderr = new StringBuilder(1000)
+        val command_timings = new mutable.ListBuffer[Properties.T]
+        val theory_timings = new mutable.ListBuffer[Properties.T]
+        val session_timings = new mutable.ListBuffer[Properties.T]
+        val runtime_statistics = new mutable.ListBuffer[Properties.T]
+        val task_statistics = new mutable.ListBuffer[Properties.T]
+
+        def fun(
+          name: String,
+          acc: mutable.ListBuffer[Properties.T],
+          unapply: Properties.T => Option[Properties.T]
+        ): (String, Session.Protocol_Function) = {
+          name -> ((msg: Prover.Protocol_Output) =>
+            unapply(msg.properties) match {
+              case Some(props) => acc += props; true
+              case _ => false
+            })
+        }
+
+        session.init_protocol_handler(new Session.Protocol_Handler {
+            override def exit(): Unit = Build_Session_Errors.cancel()
+
+            private def build_session_finished(msg: Prover.Protocol_Output): Boolean = {
+              val (rc, errors) =
+                try {
+                  val (rc, errs) = {
+                    import XML.Decode._
+                    pair(int, list(x => x))(Symbol.decode_yxml(msg.text))
+                  }
+                  val errors =
+                    for (err <- errs) yield {
+                      val prt = Protocol_Message.expose_no_reports(err)
+                      Pretty.string_of(prt, metric = Symbol.Metric)
+                    }
+                  (rc, errors)
+                }
+                catch { case ERROR(err) => (Process_Result.RC.failure, List(err)) }
+
+              session.protocol_command("Prover.stop", rc.toString)
+              Build_Session_Errors(errors)
+              true
+            }
+
+            private def loading_theory(msg: Prover.Protocol_Output): Boolean =
+              msg.properties match {
+                case Markup.Loading_Theory(Markup.Name(name)) =>
+                  progress.theory(Progress.Theory(name, session = session_name))
+                  false
+                case _ => false
+              }
+
+            private def export_(msg: Prover.Protocol_Output): Boolean =
+              msg.properties match {
+                case Protocol.Export(args) =>
+                  export_consumer.make_entry(session_name, args, msg.chunk)
+                  true
+                case _ => false
+              }
+
+            override val functions: Session.Protocol_Functions =
+              List(
+                Markup.Build_Session_Finished.name -> build_session_finished,
+                Markup.Loading_Theory.name -> loading_theory,
+                Markup.EXPORT -> export_,
+                fun(Markup.Theory_Timing.name, theory_timings, Markup.Theory_Timing.unapply),
+                fun(Markup.Session_Timing.name, session_timings, Markup.Session_Timing.unapply),
+                fun(Markup.Task_Statistics.name, task_statistics, Markup.Task_Statistics.unapply))
+          })
+
+        session.command_timings += Session.Consumer("command_timings") {
+          case Session.Command_Timing(props) =>
+            for {
+              elapsed <- Markup.Elapsed.unapply(props)
+              elapsed_time = Time.seconds(elapsed)
+              if elapsed_time.is_relevant && elapsed_time >= options.seconds("command_timing_threshold")
+            } command_timings += props.filter(Markup.command_timing_property)
+        }
+
+        session.runtime_statistics += Session.Consumer("ML_statistics") {
+          case Session.Runtime_Statistics(props) => runtime_statistics += props
+        }
+
+        session.finished_theories += Session.Consumer[Document.Snapshot]("finished_theories") {
+          case snapshot =>
+            if (!progress.stopped) {
+              def export_(name: String, xml: XML.Body, compress: Boolean = true): Unit = {
+                if (!progress.stopped) {
+                  val theory_name = snapshot.node_name.theory
+                  val args =
+                    Protocol.Export.Args(theory_name = theory_name, name = name, compress = compress)
+                  val body = Bytes(Symbol.encode(YXML.string_of_body(xml)))
+                  export_consumer.make_entry(session_name, args, body)
+                }
+              }
+              def export_text(name: String, text: String, compress: Boolean = true): Unit =
+                export_(name, List(XML.Text(text)), compress = compress)
+
+              for (command <- snapshot.snippet_command) {
+                export_text(Export.DOCUMENT_ID, command.id.toString, compress = false)
+              }
+
+              export_text(Export.FILES,
+                cat_lines(snapshot.node_files.map(name => File.symbolic_path(name.path))),
+                compress = false)
+
+              for ((blob_name, i) <- snapshot.node_files.tail.zipWithIndex) {
+                val xml = snapshot.switch(blob_name).xml_markup()
+                export_(Export.MARKUP + (i + 1), xml)
+              }
+              export_(Export.MARKUP, snapshot.xml_markup())
+              export_(Export.MESSAGES, snapshot.messages.map(_._1))
+            }
+        }
+
+        session.all_messages += Session.Consumer[Any]("build_session_output") {
+          case msg: Prover.Output =>
+            val message = msg.message
+            if (msg.is_system) resources.log(Protocol.message_text(message))
+
+            if (msg.is_stdout) {
+              stdout ++= Symbol.encode(XML.content(message))
+            }
+            else if (msg.is_stderr) {
+              stderr ++= Symbol.encode(XML.content(message))
+            }
+            else if (msg.is_exit) {
+              val err =
+                "Prover terminated" +
+                  (msg.properties match {
+                    case Markup.Process_Result(result) => ": " + result.print_rc
+                    case _ => ""
+                  })
+              Build_Session_Errors(List(err))
+            }
+          case _ =>
+        }
+
+        session_setup(session_name, session)
+
+        val eval_main = Command_Line.ML_tool("Isabelle_Process.init_build ()" :: eval_store)
+
+        val process =
+          Isabelle_Process.start(store, options, session, session_background,
+            logic = parent, raw_ml_system = is_pure,
+            use_prelude = use_prelude, eval_main = eval_main,
+            cwd = info.dir.file, env = env)
+
+        val build_errors =
+          Isabelle_Thread.interrupt_handler(_ => process.terminate()) {
+            Exn.capture { process.await_startup() } match {
+              case Exn.Res(_) =>
+                val resources_yxml = resources.init_session_yxml
+                val encode_options: XML.Encode.T[Options] =
+                  options => session.prover_options(options).encode
+                val args_yxml =
+                  YXML.string_of_body(
+                    {
+                      import XML.Encode._
+                      pair(string, list(pair(encode_options, list(pair(string, properties)))))(
+                        (session_name, info.theories))
+                    })
+                session.protocol_command("build_session", resources_yxml, args_yxml)
+                Build_Session_Errors.result
+              case Exn.Exn(exn) => Exn.Res(List(Exn.message(exn)))
+            }
+          }
+
+        val process_result =
+          Isabelle_Thread.interrupt_handler(_ => process.terminate()) { process.await_shutdown() }
+
+        session.stop()
+
+        val export_errors =
+          export_consumer.shutdown(close = true).map(Output.error_message_text)
+
+        val (document_output, document_errors) =
+          try {
+            if (build_errors.isInstanceOf[Exn.Res[_]] && process_result.ok && info.documents.nonEmpty) {
+              using(Export.open_database_context(store)) { database_context =>
+                val documents =
+                  using(database_context.open_session(session_background)) {
+                    session_context =>
+                      Document_Build.build_documents(
+                        Document_Build.context(session_context, progress = progress),
+                        output_sources = info.document_output,
+                        output_pdf = info.document_output)
+                  }
+                using(database_context.open_database(session_name, output = true))(session_database =>
+                  documents.foreach(_.write(session_database.db, session_name)))
+                (documents.flatMap(_.log_lines), Nil)
+              }
+            }
+            else (Nil, Nil)
+          }
+          catch {
+            case exn: Document_Build.Build_Error => (exn.log_lines, exn.log_errors)
+            case Exn.Interrupt.ERROR(msg) => (Nil, List(msg))
+          }
+
+        val result = {
+          val theory_timing =
+            theory_timings.iterator.flatMap(
+              {
+                case props @ Markup.Name(name) => Some(name -> props)
+                case _ => None
+              }).toMap
+          val used_theory_timings =
+            for { (name, _) <- session_background.base.used_theories }
+              yield theory_timing.getOrElse(name.theory, Markup.Name(name.theory))
+
+          val more_output =
+            Library.trim_line(stdout.toString) ::
+              command_timings.toList.map(Protocol.Command_Timing_Marker.apply) :::
+              used_theory_timings.map(Protocol.Theory_Timing_Marker.apply) :::
+              session_timings.toList.map(Protocol.Session_Timing_Marker.apply) :::
+              runtime_statistics.toList.map(Protocol.ML_Statistics_Marker.apply) :::
+              task_statistics.toList.map(Protocol.Task_Statistics_Marker.apply) :::
+              document_output
+
+          process_result.output(more_output)
+            .error(Library.trim_line(stderr.toString))
+            .errors_rc(export_errors ::: document_errors)
+        }
+
+        build_errors match {
+          case Exn.Res(build_errs) =>
+            val errs = build_errs ::: document_errors
+            if (errs.nonEmpty) {
+              result.error_rc.output(
+                errs.flatMap(s => split_lines(Output.error_message_text(s))) :::
+                  errs.map(Protocol.Error_Message_Marker.apply))
+            }
+            else if (progress.stopped && result.ok) result.copy(rc = Process_Result.RC.interrupt)
+            else result
+          case Exn.Exn(Exn.Interrupt()) =>
+            if (result.ok) result.copy(rc = Process_Result.RC.interrupt)
+            else result
+          case Exn.Exn(exn) => throw exn
+        }
+      }
+
+    override def start(): Unit = future_result
+    override def terminate(): Unit = future_result.cancel()
+    override def is_finished: Boolean = future_result.is_finished
+
+    private val timeout_request: Option[Event_Timer.Request] = {
+      if (info.timeout_ignored) None
+      else Some(Event_Timer.request(Time.now() + info.timeout) { terminate() })
+    }
+
+    override def join: Process_Result = {
+      val result = future_result.join
+
+      val was_timeout =
+        timeout_request match {
+          case None => false
+          case Some(request) => !request.cancel()
+        }
+
+      if (result.ok) result
+      else if (was_timeout) result.error(Output.error_message_text("Timeout")).timeout_rc
+      else if (result.interrupted) result.error(Output.error_message_text("Interrupt"))
+      else result
+    }
+
+    lazy val finish: SHA1.Shasum = {
+      require(is_finished, "Build job not finished: " + quote(session_name))
+      if (join.ok && do_store && store.output_heap(session_name).is_file) {
+        SHA1.shasum(ML_Heap.write_digest(store.output_heap(session_name)), session_name)
+      }
+      else SHA1.no_shasum
+    }
+  }
+
   /* theory markup/messages from session database */
 
   def read_theory(
@@ -234,350 +600,3 @@
       }
     })
 }
-
-class Build_Job(progress: Progress,
-  session_background: Sessions.Background,
-  store: Sessions.Store,
-  val do_store: Boolean,
-  resources: Resources,
-  session_setup: (String, Session) => Unit,
-  val numa_node: Option[Int]
-) {
-  def session_name: String = session_background.session_name
-  val info: Sessions.Info = session_background.sessions_structure(session_name)
-  val options: Options = NUMA.policy_options(info.options, numa_node)
-
-  val session_sources: Sessions.Sources =
-    Sessions.Sources.load(session_background.base, cache = store.cache.compress)
-
-  private val future_result: Future[Process_Result] =
-    Future.thread("build", uninterruptible = true) {
-      val parent = info.parent.getOrElse("")
-
-      val env =
-        Isabelle_System.settings(
-          List("ISABELLE_ML_DEBUGGER" -> options.bool("ML_debugger").toString))
-
-      val is_pure = Sessions.is_pure(session_name)
-
-      val use_prelude = if (is_pure) Thy_Header.ml_roots.map(_._1) else Nil
-
-      val eval_store =
-        if (do_store) {
-          (if (info.theories.nonEmpty) List("ML_Heap.share_common_data ()") else Nil) :::
-          List("ML_Heap.save_child " +
-            ML_Syntax.print_string_bytes(File.platform_path(store.output_heap(session_name))))
-        }
-        else Nil
-
-      def session_blobs(node_name: Document.Node.Name): List[(Command.Blob, Document.Blobs.Item)] =
-        session_background.base.theory_load_commands.get(node_name.theory) match {
-          case None => Nil
-          case Some(spans) =>
-            val syntax = session_background.base.theory_syntax(node_name)
-            val master_dir = Path.explode(node_name.master_dir)
-            for (span <- spans; file <- span.loaded_files(syntax).files)
-              yield {
-                val src_path = Path.explode(file)
-                val blob_name = Document.Node.Name(File.symbolic_path(master_dir + src_path))
-
-                val bytes = session_sources(blob_name.node).bytes
-                val text = bytes.text
-                val chunk = Symbol.Text_Chunk(text)
-
-                Command.Blob(blob_name, src_path, Some((SHA1.digest(bytes), chunk))) ->
-                  Document.Blobs.Item(bytes, text, chunk, changed = false)
-              }
-        }
-
-      val session =
-        new Session(options, resources) {
-          override val cache: Term.Cache = store.cache
-
-          override def build_blobs_info(node_name: Document.Node.Name): Command.Blobs_Info =
-            Command.Blobs_Info.make(session_blobs(node_name))
-
-          override def build_blobs(node_name: Document.Node.Name): Document.Blobs =
-            Document.Blobs.make(session_blobs(node_name))
-        }
-
-      object Build_Session_Errors {
-        private val promise: Promise[List[String]] = Future.promise
-
-        def result: Exn.Result[List[String]] = promise.join_result
-        def cancel(): Unit = promise.cancel()
-        def apply(errs: List[String]): Unit = {
-          try { promise.fulfill(errs) }
-          catch { case _: IllegalStateException => }
-        }
-      }
-
-      val export_consumer =
-        Export.consumer(store.open_database(session_name, output = true), store.cache,
-          progress = progress)
-
-      val stdout = new StringBuilder(1000)
-      val stderr = new StringBuilder(1000)
-      val command_timings = new mutable.ListBuffer[Properties.T]
-      val theory_timings = new mutable.ListBuffer[Properties.T]
-      val session_timings = new mutable.ListBuffer[Properties.T]
-      val runtime_statistics = new mutable.ListBuffer[Properties.T]
-      val task_statistics = new mutable.ListBuffer[Properties.T]
-
-      def fun(
-        name: String,
-        acc: mutable.ListBuffer[Properties.T],
-        unapply: Properties.T => Option[Properties.T]
-      ): (String, Session.Protocol_Function) = {
-        name -> ((msg: Prover.Protocol_Output) =>
-          unapply(msg.properties) match {
-            case Some(props) => acc += props; true
-            case _ => false
-          })
-      }
-
-      session.init_protocol_handler(new Session.Protocol_Handler {
-          override def exit(): Unit = Build_Session_Errors.cancel()
-
-          private def build_session_finished(msg: Prover.Protocol_Output): Boolean = {
-            val (rc, errors) =
-              try {
-                val (rc, errs) = {
-                  import XML.Decode._
-                  pair(int, list(x => x))(Symbol.decode_yxml(msg.text))
-                }
-                val errors =
-                  for (err <- errs) yield {
-                    val prt = Protocol_Message.expose_no_reports(err)
-                    Pretty.string_of(prt, metric = Symbol.Metric)
-                  }
-                (rc, errors)
-              }
-              catch { case ERROR(err) => (Process_Result.RC.failure, List(err)) }
-
-            session.protocol_command("Prover.stop", rc.toString)
-            Build_Session_Errors(errors)
-            true
-          }
-
-          private def loading_theory(msg: Prover.Protocol_Output): Boolean =
-            msg.properties match {
-              case Markup.Loading_Theory(Markup.Name(name)) =>
-                progress.theory(Progress.Theory(name, session = session_name))
-                false
-              case _ => false
-            }
-
-          private def export_(msg: Prover.Protocol_Output): Boolean =
-            msg.properties match {
-              case Protocol.Export(args) =>
-                export_consumer.make_entry(session_name, args, msg.chunk)
-                true
-              case _ => false
-            }
-
-          override val functions: Session.Protocol_Functions =
-            List(
-              Markup.Build_Session_Finished.name -> build_session_finished,
-              Markup.Loading_Theory.name -> loading_theory,
-              Markup.EXPORT -> export_,
-              fun(Markup.Theory_Timing.name, theory_timings, Markup.Theory_Timing.unapply),
-              fun(Markup.Session_Timing.name, session_timings, Markup.Session_Timing.unapply),
-              fun(Markup.Task_Statistics.name, task_statistics, Markup.Task_Statistics.unapply))
-        })
-
-      session.command_timings += Session.Consumer("command_timings") {
-        case Session.Command_Timing(props) =>
-          for {
-            elapsed <- Markup.Elapsed.unapply(props)
-            elapsed_time = Time.seconds(elapsed)
-            if elapsed_time.is_relevant && elapsed_time >= options.seconds("command_timing_threshold")
-          } command_timings += props.filter(Markup.command_timing_property)
-      }
-
-      session.runtime_statistics += Session.Consumer("ML_statistics") {
-        case Session.Runtime_Statistics(props) => runtime_statistics += props
-      }
-
-      session.finished_theories += Session.Consumer[Document.Snapshot]("finished_theories") {
-        case snapshot =>
-          if (!progress.stopped) {
-            def export_(name: String, xml: XML.Body, compress: Boolean = true): Unit = {
-              if (!progress.stopped) {
-                val theory_name = snapshot.node_name.theory
-                val args =
-                  Protocol.Export.Args(theory_name = theory_name, name = name, compress = compress)
-                val body = Bytes(Symbol.encode(YXML.string_of_body(xml)))
-                export_consumer.make_entry(session_name, args, body)
-              }
-            }
-            def export_text(name: String, text: String, compress: Boolean = true): Unit =
-              export_(name, List(XML.Text(text)), compress = compress)
-
-            for (command <- snapshot.snippet_command) {
-              export_text(Export.DOCUMENT_ID, command.id.toString, compress = false)
-            }
-
-            export_text(Export.FILES,
-              cat_lines(snapshot.node_files.map(name => File.symbolic_path(name.path))),
-              compress = false)
-
-            for ((blob_name, i) <- snapshot.node_files.tail.zipWithIndex) {
-              val xml = snapshot.switch(blob_name).xml_markup()
-              export_(Export.MARKUP + (i + 1), xml)
-            }
-            export_(Export.MARKUP, snapshot.xml_markup())
-            export_(Export.MESSAGES, snapshot.messages.map(_._1))
-          }
-      }
-
-      session.all_messages += Session.Consumer[Any]("build_session_output") {
-        case msg: Prover.Output =>
-          val message = msg.message
-          if (msg.is_system) resources.log(Protocol.message_text(message))
-
-          if (msg.is_stdout) {
-            stdout ++= Symbol.encode(XML.content(message))
-          }
-          else if (msg.is_stderr) {
-            stderr ++= Symbol.encode(XML.content(message))
-          }
-          else if (msg.is_exit) {
-            val err =
-              "Prover terminated" +
-                (msg.properties match {
-                  case Markup.Process_Result(result) => ": " + result.print_rc
-                  case _ => ""
-                })
-            Build_Session_Errors(List(err))
-          }
-        case _ =>
-      }
-
-      session_setup(session_name, session)
-
-      val eval_main = Command_Line.ML_tool("Isabelle_Process.init_build ()" :: eval_store)
-
-      val process =
-        Isabelle_Process.start(store, options, session, session_background,
-          logic = parent, raw_ml_system = is_pure,
-          use_prelude = use_prelude, eval_main = eval_main,
-          cwd = info.dir.file, env = env)
-
-      val build_errors =
-        Isabelle_Thread.interrupt_handler(_ => process.terminate()) {
-          Exn.capture { process.await_startup() } match {
-            case Exn.Res(_) =>
-              val resources_yxml = resources.init_session_yxml
-              val encode_options: XML.Encode.T[Options] =
-                options => session.prover_options(options).encode
-              val args_yxml =
-                YXML.string_of_body(
-                  {
-                    import XML.Encode._
-                    pair(string, list(pair(encode_options, list(pair(string, properties)))))(
-                      (session_name, info.theories))
-                  })
-              session.protocol_command("build_session", resources_yxml, args_yxml)
-              Build_Session_Errors.result
-            case Exn.Exn(exn) => Exn.Res(List(Exn.message(exn)))
-          }
-        }
-
-      val process_result =
-        Isabelle_Thread.interrupt_handler(_ => process.terminate()) { process.await_shutdown() }
-
-      session.stop()
-
-      val export_errors =
-        export_consumer.shutdown(close = true).map(Output.error_message_text)
-
-      val (document_output, document_errors) =
-        try {
-          if (build_errors.isInstanceOf[Exn.Res[_]] && process_result.ok && info.documents.nonEmpty) {
-            using(Export.open_database_context(store)) { database_context =>
-              val documents =
-                using(database_context.open_session(session_background)) {
-                  session_context =>
-                    Document_Build.build_documents(
-                      Document_Build.context(session_context, progress = progress),
-                      output_sources = info.document_output,
-                      output_pdf = info.document_output)
-                }
-              using(database_context.open_database(session_name, output = true))(session_database =>
-                documents.foreach(_.write(session_database.db, session_name)))
-              (documents.flatMap(_.log_lines), Nil)
-            }
-          }
-          else (Nil, Nil)
-        }
-        catch {
-          case exn: Document_Build.Build_Error => (exn.log_lines, exn.log_errors)
-          case Exn.Interrupt.ERROR(msg) => (Nil, List(msg))
-        }
-
-      val result = {
-        val theory_timing =
-          theory_timings.iterator.flatMap(
-            {
-              case props @ Markup.Name(name) => Some(name -> props)
-              case _ => None
-            }).toMap
-        val used_theory_timings =
-          for { (name, _) <- session_background.base.used_theories }
-            yield theory_timing.getOrElse(name.theory, Markup.Name(name.theory))
-
-        val more_output =
-          Library.trim_line(stdout.toString) ::
-            command_timings.toList.map(Protocol.Command_Timing_Marker.apply) :::
-            used_theory_timings.map(Protocol.Theory_Timing_Marker.apply) :::
-            session_timings.toList.map(Protocol.Session_Timing_Marker.apply) :::
-            runtime_statistics.toList.map(Protocol.ML_Statistics_Marker.apply) :::
-            task_statistics.toList.map(Protocol.Task_Statistics_Marker.apply) :::
-            document_output
-
-        process_result.output(more_output)
-          .error(Library.trim_line(stderr.toString))
-          .errors_rc(export_errors ::: document_errors)
-      }
-
-      build_errors match {
-        case Exn.Res(build_errs) =>
-          val errs = build_errs ::: document_errors
-          if (errs.nonEmpty) {
-            result.error_rc.output(
-              errs.flatMap(s => split_lines(Output.error_message_text(s))) :::
-                errs.map(Protocol.Error_Message_Marker.apply))
-          }
-          else if (progress.stopped && result.ok) result.copy(rc = Process_Result.RC.interrupt)
-          else result
-        case Exn.Exn(Exn.Interrupt()) =>
-          if (result.ok) result.copy(rc = Process_Result.RC.interrupt)
-          else result
-        case Exn.Exn(exn) => throw exn
-      }
-    }
-
-  def terminate(): Unit = future_result.cancel()
-  def is_finished: Boolean = future_result.is_finished
-
-  private val timeout_request: Option[Event_Timer.Request] = {
-    if (info.timeout_ignored) None
-    else Some(Event_Timer.request(Time.now() + info.timeout) { terminate() })
-  }
-
-  def join: Process_Result = {
-    val result = future_result.join
-
-    val was_timeout =
-      timeout_request match {
-        case None => false
-        case Some(request) => !request.cancel()
-      }
-
-    if (result.ok) result
-    else if (was_timeout) result.error(Output.error_message_text("Timeout")).timeout_rc
-    else if (result.interrupted) result.error(Output.error_message_text("Interrupt"))
-    else result
-  }
-}
--- a/src/Pure/Tools/build_process.scala	Mon Feb 20 13:59:16 2023 +0100
+++ b/src/Pure/Tools/build_process.scala	Mon Feb 20 13:59:42 2023 +0100
@@ -160,13 +160,6 @@
   private val build_deps = build_context.deps
   private val progress = build_context.progress
 
-  // global state
-  private val numa_nodes = new NUMA.Nodes(numa_shuffling)
-  private var build_graph = build_context.sessions_structure.build_graph
-  private var build_order = SortedSet.from(build_graph.keys)(build_context.ordering)
-  private var running = Map.empty[String, (SHA1.Shasum, Build_Job)]
-  private var results = Map.empty[String, Build_Process.Result]
-
   private val log =
     build_options.string("system_log") match {
       case "" => No_Logger
@@ -174,19 +167,65 @@
       case log_file => Logger.make(Some(Path.explode(log_file)))
     }
 
-  private def remove_pending(name: String): Unit = {
-    build_graph = build_graph.del_node(name)
-    build_order = build_order - name
+  // global state
+  private val _numa_nodes = new NUMA.Nodes(numa_shuffling)
+  private var _build_graph = build_context.sessions_structure.build_graph
+  private var _build_order = SortedSet.from(_build_graph.keys)(build_context.ordering)
+  private var _running = Map.empty[String, Build_Job]
+  private var _results = Map.empty[String, Build_Process.Result]
+
+  private def remove_pending(name: String): Unit = synchronized {
+    _build_graph = _build_graph.del_node(name)
+    _build_order = _build_order - name
+  }
+
+  private def next_pending(): Option[String] = synchronized {
+    if (_running.size < (max_jobs max 1)) {
+      _build_order.iterator
+        .dropWhile(name => _running.isDefinedAt(name) || !_build_graph.is_minimal(name))
+        .nextOption()
+    }
+    else None
+  }
+
+  private def next_numa_node(): Option[Int] = synchronized {
+    _numa_nodes.next(used =
+      Set.from(for { job <- _running.valuesIterator; i <- job.numa_node } yield i))
   }
 
-  private def next_pending(): Option[String] =
-    build_order.iterator
-      .dropWhile(name => running.isDefinedAt(name) || !build_graph.is_minimal(name))
-      .nextOption()
+  private def test_running(): Boolean = synchronized { !_build_graph.is_empty }
+
+  private def stop_running(): Unit = synchronized { _running.valuesIterator.foreach(_.terminate()) }
+
+  private def finished_running(): List[Build_Job.Build_Session] = synchronized {
+    List.from(
+      _running.valuesIterator.flatMap {
+        case job: Build_Job.Build_Session if job.is_finished => Some(job)
+        case _ => None
+      })
+  }
+
+  private def job_running(name: String, job: Build_Job): Build_Job = synchronized {
+    _running += (name -> job)
+    job
+  }
 
-  private def used_node(i: Int): Boolean =
-    running.iterator.exists(
-      { case (_, (_, job)) => job.numa_node.isDefined && job.numa_node.get == i })
+  private def remove_running(name: String): Unit = synchronized {
+    _running -= name
+  }
+
+  private def add_result(
+    name: String,
+    current: Boolean,
+    output_heap: SHA1.Shasum,
+    process_result: Process_Result
+  ): Unit = synchronized {
+    _results += (name -> Build_Process.Result(current, output_heap, process_result))
+  }
+
+  private def get_results(names: List[String]): List[Build_Process.Result] = synchronized {
+    names.map(_results.apply)
+  }
 
   private def session_finished(session_name: String, process_result: Process_Result): String =
     "Finished " + session_name + " (" + process_result.timing.message_resources + ")"
@@ -198,14 +237,10 @@
     "Timing " + session_name + " (" + threads + " threads, " + timing.message_factor + ")"
   }
 
-  private def finish_job(session_name: String, input_heaps: SHA1.Shasum, job: Build_Job): Unit = {
+  private def finish_job(job: Build_Job.Build_Session): Unit = {
+    val session_name = job.session_name
     val process_result = job.join
-
-    val output_heap =
-      if (process_result.ok && job.do_store && store.output_heap(session_name).is_file) {
-        SHA1.shasum(ML_Heap.write_digest(store.output_heap(session_name)), session_name)
-      }
-      else SHA1.no_shasum
+    val output_heap = job.finish
 
     val log_lines = process_result.out_lines.filterNot(Protocol_Message.Marker.test)
     val process_result_tail = {
@@ -236,7 +271,7 @@
         build_log =
           if (process_result.timeout) build_log.error("Timeout") else build_log,
         build =
-          Build.Session_Info(build_deps.sources_shasum(session_name), input_heaps,
+          Sessions.Build_Info(build_deps.sources_shasum(session_name), job.input_heaps,
             output_heap, process_result.rc, UUID.random().toString)))
 
     // messages
@@ -251,15 +286,18 @@
       if (!process_result.interrupted) progress.echo(process_result_tail.out)
     }
 
-    remove_pending(session_name)
-    running -= session_name
-    results += (session_name -> Build_Process.Result(false, output_heap, process_result_tail))
+    synchronized {
+      remove_pending(session_name)
+      remove_running(session_name)
+      add_result(session_name, false, output_heap, process_result_tail)
+    }
   }
 
   private def start_job(session_name: String): Unit = {
     val ancestor_results =
-      build_deps.sessions_structure.build_requirements(List(session_name)).
-        filterNot(_ == session_name).map(results(_))
+      get_results(
+        build_deps.sessions_structure.build_requirements(List(session_name)).
+          filterNot(_ == session_name))
     val input_heaps =
       if (ancestor_results.isEmpty) {
         SHA1.shasum_meta_info(SHA1.digest(Path.explode("$POLYML_EXE")))
@@ -289,13 +327,17 @@
     val all_current = current && ancestor_results.forall(_.current)
 
     if (all_current) {
-      remove_pending(session_name)
-      results += (session_name -> Build_Process.Result(true, output_heap, Process_Result.ok))
+      synchronized {
+        remove_pending(session_name)
+        add_result(session_name, true, output_heap, Process_Result.ok)
+      }
     }
     else if (no_build) {
       progress.echo_if(verbose, "Skipping " + session_name + " ...")
-      remove_pending(session_name)
-      results += (session_name -> Build_Process.Result(false, output_heap, Process_Result.error))
+      synchronized {
+        remove_pending(session_name)
+        add_result(session_name, false, output_heap, Process_Result.error)
+      }
     }
     else if (ancestor_results.forall(_.ok) && !progress.stopped) {
       progress.echo((if (do_store) "Building " else "Running ") + session_name + " ...")
@@ -309,16 +351,21 @@
         new Resources(session_background, log = log,
           command_timings = build_context(session_name).old_command_timings)
 
-      val numa_node = numa_nodes.next(used_node)
       val job =
-        new Build_Job(progress, session_background, store, do_store,
-          resources, session_setup, numa_node)
-      running += (session_name -> (input_heaps, job))
+        synchronized {
+          val numa_node = next_numa_node()
+          job_running(session_name,
+            new Build_Job.Build_Session(progress, session_background, store, do_store,
+              resources, session_setup, input_heaps, numa_node))
+        }
+      job.start()
     }
     else {
       progress.echo(session_name + " CANCELLED")
-      remove_pending(session_name)
-      results += (session_name -> Build_Process.Result(false, output_heap, Process_Result.undefined))
+      synchronized {
+        remove_pending(session_name)
+        add_result(session_name, false, output_heap, Process_Result.undefined)
+      }
     }
   }
 
@@ -328,23 +375,17 @@
     }
 
   def run(): Map[String, Build_Process.Result] = {
-    while (!build_graph.is_empty) {
-      if (progress.stopped) {
-        for ((_, (_, job)) <- running) job.terminate()
-      }
+    while (test_running()) {
+      if (progress.stopped) stop_running()
 
-      running.find({ case (_, (_, job)) => job.is_finished }) match {
-        case Some((session_name, (input_heaps, job))) =>
-          finish_job(session_name, input_heaps, job)
-        case None if running.size < (max_jobs max 1) =>
-          next_pending() match {
-            case Some(session_name) => start_job(session_name)
-            case None => sleep()
-          }
+      for (job <- finished_running()) finish_job(job)
+
+      next_pending() match {
+        case Some(session_name) => start_job(session_name)
         case None => sleep()
       }
     }
 
-    results
+    synchronized { _results }
   }
 }