deleting redundant theorems
authorpaulson
Tue, 23 Dec 2003 16:52:49 +0100
changeset 14322 fa78e7eb1dac
parent 14321 55c688d2eefa
child 14323 27724f528f82
deleting redundant theorems
src/HOL/Hyperreal/HTranscendental.ML
src/HOL/Hyperreal/Transcendental.ML
--- a/src/HOL/Hyperreal/HTranscendental.ML	Tue Dec 23 14:46:08 2003 +0100
+++ b/src/HOL/Hyperreal/HTranscendental.ML	Tue Dec 23 16:52:49 2003 +0100
@@ -40,7 +40,7 @@
 
 Goal "0 < x ==> ( *f* sqrt) (x) ~= 0";
 by (forward_tac [hypreal_sqrt_pow2_gt_zero] 1);
-by (auto_tac (claset(),simpset() addsimps [two_eq_Suc_Suc]));
+by (auto_tac (claset(),simpset() addsimps [numeral_2_eq_2]));
 qed "hypreal_sqrt_not_zero";
 
 Goal "0 < x ==> inverse (( *f* sqrt)(x)) ^ 2 = inverse x";
@@ -69,7 +69,7 @@
 by (auto_tac (claset(),simpset() addsimps [mem_infmal_iff RS sym]));
 by (rtac (hypreal_sqrt_gt_zero_pow2 RS subst) 1);
 by (auto_tac (claset() addIs [Infinitesimal_mult] 
-    addSDs [(hypreal_sqrt_gt_zero_pow2 RS ssubst)],simpset() addsimps [two_eq_Suc_Suc]));
+    addSDs [(hypreal_sqrt_gt_zero_pow2 RS ssubst)],simpset() addsimps [numeral_2_eq_2]));
 qed "hypreal_sqrt_approx_zero";
 Addsimps [hypreal_sqrt_approx_zero];
 
@@ -108,13 +108,13 @@
 Goal "( *f* sqrt)(x ^ 2) = abs(x)";
 by (res_inst_tac [("z","x")] eq_Abs_hypreal 1);
 by (auto_tac (claset(),simpset() addsimps [starfun,
-    hypreal_hrabs,hypreal_mult,two_eq_Suc_Suc]));
+    hypreal_hrabs,hypreal_mult,numeral_2_eq_2]));
 qed "hypreal_sqrt_hrabs";
 Addsimps [hypreal_sqrt_hrabs];
 
 Goal "( *f* sqrt)(x*x) = abs(x)";
 by (rtac (hrealpow_two RS subst) 1);
-by (rtac (two_eq_Suc_Suc RS subst) 1);
+by (rtac (numeral_2_eq_2 RS subst) 1);
 by (rtac hypreal_sqrt_hrabs 1);
 qed "hypreal_sqrt_hrabs2";
 Addsimps [hypreal_sqrt_hrabs2];
@@ -151,14 +151,14 @@
 by (auto_tac (claset(),simpset() addsimps [hypreal_le_eq_less_or_eq]));
 by (rtac (HFinite_square_iff RS iffD1) 1);
 by (dtac hypreal_sqrt_gt_zero_pow2 1);
-by (auto_tac (claset(),simpset() addsimps [two_eq_Suc_Suc]));
+by (auto_tac (claset(),simpset() addsimps [numeral_2_eq_2]));
 qed "HFinite_hypreal_sqrt";
 
 Goal "[| 0 <= x; ( *f* sqrt) x : HFinite |] ==> x : HFinite";
 by (auto_tac (claset(),simpset() addsimps [hypreal_le_eq_less_or_eq]));
 by (dtac (HFinite_square_iff RS iffD2) 1);
 by (dtac hypreal_sqrt_gt_zero_pow2 1);
-by (auto_tac (claset(),simpset() addsimps [two_eq_Suc_Suc] delsimps [HFinite_square_iff]));
+by (auto_tac (claset(),simpset() addsimps [numeral_2_eq_2] delsimps [HFinite_square_iff]));
 qed "HFinite_hypreal_sqrt_imp_HFinite";
 
 Goal "0 <= x ==> (( *f* sqrt) x : HFinite) = (x : HFinite)";
@@ -178,14 +178,14 @@
 by (auto_tac (claset(),simpset() addsimps [hypreal_le_eq_less_or_eq]));
 by (rtac (Infinitesimal_square_iff RS iffD2) 1);
 by (dtac hypreal_sqrt_gt_zero_pow2 1);
-by (auto_tac (claset(),simpset() addsimps [two_eq_Suc_Suc]));
+by (auto_tac (claset(),simpset() addsimps [numeral_2_eq_2]));
 qed "Infinitesimal_hypreal_sqrt";
 
 Goal "[| 0 <= x; ( *f* sqrt) x : Infinitesimal |] ==> x : Infinitesimal";
 by (auto_tac (claset(),simpset() addsimps [hypreal_le_eq_less_or_eq]));
 by (dtac (Infinitesimal_square_iff RS iffD1) 1);
 by (dtac hypreal_sqrt_gt_zero_pow2 1);
-by (auto_tac (claset(),simpset() addsimps [two_eq_Suc_Suc] 
+by (auto_tac (claset(),simpset() addsimps [numeral_2_eq_2] 
     delsimps [Infinitesimal_square_iff RS sym]));
 qed "Infinitesimal_hypreal_sqrt_imp_Infinitesimal";
 
@@ -206,14 +206,14 @@
 by (auto_tac (claset(),simpset() addsimps [hypreal_le_eq_less_or_eq]));
 by (rtac (HInfinite_square_iff RS iffD1) 1);
 by (dtac hypreal_sqrt_gt_zero_pow2 1);
-by (auto_tac (claset(),simpset() addsimps [two_eq_Suc_Suc]));
+by (auto_tac (claset(),simpset() addsimps [numeral_2_eq_2]));
 qed "HInfinite_hypreal_sqrt";
 
 Goal "[| 0 <= x; ( *f* sqrt) x : HInfinite |] ==> x : HInfinite";
 by (auto_tac (claset(),simpset() addsimps [hypreal_le_eq_less_or_eq]));
 by (dtac (HInfinite_square_iff RS iffD2) 1);
 by (dtac hypreal_sqrt_gt_zero_pow2 1);
-by (auto_tac (claset(),simpset() addsimps [two_eq_Suc_Suc] 
+by (auto_tac (claset(),simpset() addsimps [numeral_2_eq_2] 
     delsimps [HInfinite_square_iff]));
 qed "HInfinite_hypreal_sqrt_imp_HInfinite";
 
@@ -717,7 +717,7 @@
 Goal "x : Infinitesimal ==> ( *f* cos) x @= 1 - x ^ 2";
 by (rtac (STAR_cos_Infinitesimal RS approx_trans) 1);
 by (auto_tac (claset(),simpset() addsimps [Infinitesimal_approx_minus RS sym,
-    hypreal_diff_def,hypreal_add_assoc RS sym,two_eq_Suc_Suc]));
+    hypreal_diff_def,hypreal_add_assoc RS sym,numeral_2_eq_2]));
 qed "STAR_cos_Infinitesimal_approx";
 
 (* move to NSA *)
@@ -731,7 +731,7 @@
 by (rtac (STAR_cos_Infinitesimal RS approx_trans) 1);
 by (auto_tac (claset() addIs [Infinitesimal_SReal_divide],
     simpset() addsimps [Infinitesimal_approx_minus RS sym,
-    two_eq_Suc_Suc]));
+    numeral_2_eq_2]));
 qed "STAR_cos_Infinitesimal_approx2";
 
 
--- a/src/HOL/Hyperreal/Transcendental.ML	Tue Dec 23 14:46:08 2003 +0100
+++ b/src/HOL/Hyperreal/Transcendental.ML	Tue Dec 23 16:52:49 2003 +0100
@@ -2660,22 +2660,12 @@
 (*-------------------------------------------------------------------------------*)
 
 
-goal Real.thy "2 = Suc (Suc 0)";
-by (Simp_tac 1);
-qed "two_eq_Suc_Suc";
-
-val realpow_num_two = CLAIM "2 = Suc(Suc 0)";
-
-Goal "x ^ 2 = x * (x::real)";
-by (auto_tac (claset(),simpset() addsimps [CLAIM "2 = Suc(Suc 0)"]));
-qed "realpow_two_eq_mult";
-
 Goalw [real_divide_def]
     "0 < x ==> 0 <= x/(sqrt (x * x + y * y))";
 by (ftac ((real_sqrt_sum_squares_ge1 RSN (2,order_less_le_trans)) 
     RS (CLAIM "0 < x ==> 0 < inverse (x::real)")) 1);
 by (rtac (real_mult_order RS order_less_imp_le) 1);
-by (auto_tac (claset(),simpset() addsimps [realpow_num_two]));
+by (auto_tac (claset(),simpset() addsimps [numeral_2_eq_2]));
 qed "lemma_real_divide_sqrt";
 
 Goal "0 < x ==> -(1::real) <= x/(sqrt (x * x + y * y))";
@@ -2699,7 +2689,7 @@
 Goal "x ~= 0 ==> 0 < sqrt(x ^ 2 + y ^ 2)";
 by (cut_inst_tac [("x","x"),("y","0")] linorder_less_linear 1);
 by (auto_tac (claset() addIs [real_sqrt_sum_squares_gt_zero2,
-    real_sqrt_sum_squares_gt_zero1],simpset() addsimps [realpow_num_two]));
+    real_sqrt_sum_squares_gt_zero1],simpset() addsimps [numeral_2_eq_2]));
 qed "real_sqrt_sum_squares_gt_zero3";
 
 Goal "y ~= 0 ==> 0 < sqrt(x ^ 2 + y ^ 2)";
@@ -2748,7 +2738,7 @@
 by (cut_inst_tac [("x","-x"),("y","y")] real_sqrt_sum_squares_ge1 1);
 by (dtac real_le_imp_less_or_eq 1);
 by (Step_tac 1);
-by (asm_full_simp_tac (simpset() addsimps [realpow_num_two]) 1);
+by (asm_full_simp_tac (simpset() addsimps [numeral_2_eq_2]) 1);
 by (dtac (sym RS real_sqrt_sum_squares_eq_cancel) 1);
 by Auto_tac;
 qed "lemma_real_divide_sqrt_ge_minus_one2";
@@ -2855,7 +2845,7 @@
 \     |] ==> sin xa ^ 2 = (y / sqrt (x * x + y * y)) ^ 2";
 by (auto_tac (claset() addIs [lemma_divide_rearrange],simpset() 
     addsimps [realpow_divide,real_sqrt_gt_zero_pow2,
-    realpow_two_eq_mult RS sym]));
+    real_power_two RS sym]));
 qed "lemma_cos_sin_eq";
 
 Goal "[| 0 < x * x + y * y; \
@@ -2863,7 +2853,7 @@
 \     |] ==> cos xa ^ 2 = (x / sqrt (x * x + y * y)) ^ 2";
 by (auto_tac (claset(),
     simpset() addsimps [realpow_divide,
-          real_sqrt_gt_zero_pow2,realpow_two_eq_mult RS sym]));
+          real_sqrt_gt_zero_pow2,real_power_two RS sym]));
 by (rtac (real_add_commute RS subst) 1);
 by (rtac lemma_divide_rearrange 1); 
 by (asm_full_simp_tac (simpset() addsimps []) 1);
@@ -2881,7 +2871,7 @@
 by (rtac lemma_cos_sin_eq 2);
 by (Force_tac 2);
 by (Asm_full_simp_tac 2);
-by (auto_tac (claset(),simpset() addsimps [realpow_two_disj,realpow_num_two] 
+by (auto_tac (claset(),simpset() addsimps [realpow_two_disj,numeral_2_eq_2] 
     delsimps [realpow_Suc]));
 qed "sin_x_y_disj";
 
@@ -2889,9 +2879,9 @@
 by Auto_tac;
 by (dres_inst_tac [("f","%x. x ^ 2")] arg_cong 1);
 by (auto_tac (claset(),simpset() addsimps [realpow_divide,
-    realpow_two_eq_mult RS sym]));
+    real_power_two RS sym]));
 by (forw_inst_tac [("x","x")] real_sum_squares_not_zero2 1);
-by (asm_full_simp_tac (HOL_ss addsimps [realpow_two_eq_mult RS sym]) 1);
+by (asm_full_simp_tac (HOL_ss addsimps [real_power_two RS sym]) 1);
 by (forw_inst_tac [("c1","x ^ 2 + y ^ 2")]
     (real_mult_right_cancel RS iffD2) 1);
 by (assume_tac 1);
@@ -2912,7 +2902,7 @@
 Goalw [real_divide_def] "x ~= 0 ==> x / sqrt (x * x + y * y) ~= 0";
 by (forw_inst_tac [("y3","y")] (real_sqrt_sum_squares_gt_zero3 
     RS real_not_refl2 RS not_sym RS real_inverse_not_zero) 1);
-by (auto_tac (claset(),simpset() addsimps [realpow_two_eq_mult]));
+by (auto_tac (claset(),simpset() addsimps [real_power_two]));
 qed "lemma_cos_not_eq_zero";
 
 Goal "[| x ~= 0; \
@@ -2928,7 +2918,7 @@
 by (Force_tac 2);
 by (Asm_full_simp_tac 2);
 by (auto_tac (claset(),simpset() addsimps [realpow_two_disj,
-    realpow_num_two] delsimps [realpow_Suc]));
+    numeral_2_eq_2] delsimps [realpow_Suc]));
 qed "cos_x_y_disj";
 
 Goal "0 < y ==> - y / sqrt (x * x + y * y) < 0";
@@ -2936,7 +2926,7 @@
 by (auto_tac (claset(),simpset() addsimps [abs_eqI2]));
 by (dres_inst_tac [("y","y")] real_sqrt_sum_squares_gt_zero3 1);
 by (auto_tac (claset(),simpset() addsimps [real_0_less_mult_iff,
-    real_divide_def,realpow_two_eq_mult])); 
+    real_divide_def,real_power_two])); 
 qed "real_sqrt_divide_less_zero";
 
 Goal "[| x ~= 0; 0 < y |] ==> EX r a. x = r * cos a & y = r * sin a";
@@ -2945,7 +2935,7 @@
 by Auto_tac;
 by (dres_inst_tac [("y2","y")] (real_sqrt_sum_squares_gt_zero3 
     RS real_not_refl2 RS not_sym) 1);
-by (auto_tac (claset(),simpset() addsimps [realpow_two_eq_mult]));
+by (auto_tac (claset(),simpset() addsimps [real_power_two]));
 by (rewtac arcos_def);
 by (cut_inst_tac [("x1","x"),("y1","y")] ([cos_x_y_ge_minus_one,cos_x_y_le_one] 
     MRS cos_total) 1);
@@ -2955,7 +2945,7 @@
 by (ftac sin_x_y_disj 1 THEN Blast_tac 1);
 by (dres_inst_tac [("y2","y")] (real_sqrt_sum_squares_gt_zero3 
     RS real_not_refl2 RS not_sym) 1);
-by (auto_tac (claset(),simpset() addsimps [realpow_two_eq_mult]));
+by (auto_tac (claset(),simpset() addsimps [real_power_two]));
 by (dtac sin_ge_zero 1 THEN assume_tac 1);
 by (dres_inst_tac [("x","x")] real_sqrt_divide_less_zero 1 THEN Auto_tac);
 qed "polar_ex1";
@@ -2970,7 +2960,7 @@
 by (res_inst_tac [("x","sqrt(x ^ 2 + y ^ 2)")] exI 1);
 by (res_inst_tac [("x","arcsin(y / sqrt (x * x + y * y))")] exI 1);
 by (auto_tac (claset() addDs [real_sum_squares_cancel2a],
-    simpset() addsimps [realpow_two_eq_mult]));
+    simpset() addsimps [real_power_two]));
 by (rewtac arcsin_def);
 by (cut_inst_tac [("x1","x"),("y1","y")] ([cos_x_y_ge_minus_one1a,
     cos_x_y_le_one2] MRS sin_total) 1);
@@ -3004,8 +2994,8 @@
 
 Goal "abs x <= sqrt (x ^ 2 + y ^ 2)";
 by (res_inst_tac [("n","1")] realpow_increasing 1);
-by (auto_tac (claset(),simpset() addsimps [two_eq_Suc_Suc RS sym]));
-by (simp_tac (simpset() addsimps [two_eq_Suc_Suc]) 1);
+by (auto_tac (claset(),simpset() addsimps [numeral_2_eq_2 RS sym]));
+by (simp_tac (simpset() addsimps [numeral_2_eq_2]) 1);
 qed "real_sqrt_ge_abs1";
 
 Goal "abs y <= sqrt (x ^ 2 + y ^ 2)";
@@ -3027,9 +3017,9 @@
 Goal "1 < sqrt 2";
 by (res_inst_tac [("y","7/5")] order_less_le_trans 1);
 by (res_inst_tac [("n","1")] realpow_increasing 2);
-by (auto_tac (claset(),simpset() addsimps [real_sqrt_gt_zero_pow2,two_eq_Suc_Suc RS sym] 
+by (auto_tac (claset(),simpset() addsimps [real_sqrt_gt_zero_pow2,numeral_2_eq_2 RS sym] 
     delsimps [realpow_Suc]));
-by (simp_tac (simpset() addsimps [two_eq_Suc_Suc]) 1);
+by (simp_tac (simpset() addsimps [numeral_2_eq_2]) 1);
 qed "real_sqrt_two_gt_one";
 Addsimps [real_sqrt_two_gt_one];
 
@@ -3047,7 +3037,7 @@
 by (res_inst_tac [("n","1")] realpow_increasing 1);
 by (auto_tac (claset(),
     simpset() addsimps [real_0_le_divide_iff,realpow_divide,
-    real_sqrt_gt_zero_pow2,two_eq_Suc_Suc RS sym] delsimps [realpow_Suc]));
+    real_sqrt_gt_zero_pow2,numeral_2_eq_2 RS sym] delsimps [realpow_Suc]));
 by (res_inst_tac [("t","u ^ 2")] (real_sum_of_halves RS subst) 1);
 by (rtac real_add_le_mono 1);
 by (auto_tac (claset(),simpset() delsimps [realpow_Suc]));