--- a/src/Doc/Datatypes/Datatypes.thy Thu Jul 10 18:08:21 2014 +0200
+++ b/src/Doc/Datatypes/Datatypes.thy Fri Jul 11 00:55:46 2014 +0200
@@ -87,12 +87,13 @@
The package, like its predecessor, fully adheres to the LCF philosophy
\cite{mgordon79}: The characteristic theorems associated with the specified
(co)datatypes are derived rather than introduced axiomatically.%
-\footnote{If the @{text quick_and_dirty} option is enabled, some of the
-internal constructions and most of the internal proof obligations are skipped.}
-The package's metatheory is described in a pair of papers
-\cite{traytel-et-al-2012,blanchette-et-al-wit}. The central notion is that of a
-\emph{bounded natural functor} (BNF)---a well-behaved type constructor for which
-nested (co)recursion is supported.
+\footnote{However, some of the
+internal constructions and most of the internal proof obligations are skipped
+if the @{text quick_and_dirty} option is enabled.}
+The package is described in number of papers
+\cite{traytel-et-al-2012,blanchette-et-al-wit,blanchette-et-al-2014-impl,panny-et-al-2014}.
+The central notion is that of a \emph{bounded natural functor} (BNF)---a
+well-behaved type constructor for which nested (co)recursion is supported.
This tutorial is organized as follows:
@@ -468,7 +469,7 @@
\label{ssec:datatype-command-syntax} *}
-subsubsection {* \keyw{datatype\_new}
+subsubsection {* \keyw{datatype_new}
\label{sssec:datatype-new} *}
text {*
@@ -574,7 +575,7 @@
*}
-subsubsection {* \keyw{datatype\_compat}
+subsubsection {* \keyw{datatype_compat}
\label{sssec:datatype-compat} *}
text {*
@@ -626,7 +627,7 @@
\end{itemize}
An alternative to @{command datatype_compat} is to use the old package's
-\keyw{rep\_\allowbreak datatype} command. The associated proof obligations must then be
+\keyw{rep_\allowbreak datatype} command. The associated proof obligations must then be
discharged manually.
*}
@@ -700,7 +701,7 @@
\noindent
The full list of named theorems can be obtained as usual by entering the
-command \keyw{print\_theorems} immediately after the datatype definition.
+command \keyw{print_theorems} immediately after the datatype definition.
This list normally excludes low-level theorems that reveal internal
constructions. To make these accessible, add the line
*}
@@ -769,16 +770,16 @@
@{thm list.case(1)[no_vars]} \\
@{thm list.case(2)[no_vars]}
-\item[@{text "t."}\hthm{case\_cong} @{text "[fundef_cong]"}\rm:] ~ \\
+\item[@{text "t."}\hthm{case_cong} @{text "[fundef_cong]"}\rm:] ~ \\
@{thm list.case_cong[no_vars]}
-\item[@{text "t."}\hthm{weak\_case\_cong} @{text "[cong]"}\rm:] ~ \\
+\item[@{text "t."}\hthm{weak_case_cong} @{text "[cong]"}\rm:] ~ \\
@{thm list.weak_case_cong[no_vars]}
\item[@{text "t."}\hthm{split}\rm:] ~ \\
@{thm list.split[no_vars]}
-\item[@{text "t."}\hthm{split\_asm}\rm:] ~ \\
+\item[@{text "t."}\hthm{split_asm}\rm:] ~ \\
@{thm list.split_asm[no_vars]}
\item[@{text "t."}\hthm{splits} = @{text "split split_asm"}]
@@ -808,29 +809,29 @@
@{thm list.collapse(1)[no_vars]} \\
@{thm list.collapse(2)[no_vars]}
-\item[@{text "t."}\hthm{disc\_exclude} @{text "[dest]"}\rm:] ~ \\
+\item[@{text "t."}\hthm{disc_exclude} @{text "[dest]"}\rm:] ~ \\
These properties are missing for @{typ "'a list"} because there is only one
proper discriminator. Had the datatype been introduced with a second
discriminator called @{const nonnull}, they would have read thusly: \\[\jot]
@{prop "null list \<Longrightarrow> \<not> nonnull list"} \\
@{prop "nonnull list \<Longrightarrow> \<not> null list"}
-\item[@{text "t."}\hthm{disc\_exhaust} @{text "[case_names C\<^sub>1 \<dots> C\<^sub>n]"}\rm:] ~ \\
+\item[@{text "t."}\hthm{disc_exhaust} @{text "[case_names C\<^sub>1 \<dots> C\<^sub>n]"}\rm:] ~ \\
@{thm list.disc_exhaust[no_vars]}
-\item[@{text "t."}\hthm{sel\_exhaust} @{text "[case_names C\<^sub>1 \<dots> C\<^sub>n]"}\rm:] ~ \\
+\item[@{text "t."}\hthm{sel_exhaust} @{text "[case_names C\<^sub>1 \<dots> C\<^sub>n]"}\rm:] ~ \\
@{thm list.sel_exhaust[no_vars]}
\item[@{text "t."}\hthm{expand}\rm:] ~ \\
@{thm list.expand[no_vars]}
-\item[@{text "t."}\hthm{sel\_split}\rm:] ~ \\
+\item[@{text "t."}\hthm{sel_split}\rm:] ~ \\
@{thm list.sel_split[no_vars]}
-\item[@{text "t."}\hthm{sel\_split\_asm}\rm:] ~ \\
+\item[@{text "t."}\hthm{sel_split_asm}\rm:] ~ \\
@{thm list.sel_split_asm[no_vars]}
-\item[@{text "t."}\hthm{case\_eq\_if}\rm:] ~ \\
+\item[@{text "t."}\hthm{case_eq_if}\rm:] ~ \\
@{thm list.case_eq_if[no_vars]}
\end{description}
@@ -857,35 +858,35 @@
@{thm list.set(1)[no_vars]} \\
@{thm list.set(2)[no_vars]}
-\item[@{text "t."}\hthm{set\_empty}\rm:] ~ \\
+\item[@{text "t."}\hthm{set_empty}\rm:] ~ \\
@{thm list.set_empty[no_vars]}
-\item[@{text "t."}\hthm{sel\_set}\rm:] ~ \\
+\item[@{text "t."}\hthm{sel_set}\rm:] ~ \\
@{thm list.sel_set[no_vars]}
\item[@{text "t."}\hthm{map} @{text "[simp, code]"}\rm:] ~ \\
@{thm list.map(1)[no_vars]} \\
@{thm list.map(2)[no_vars]}
-\item[@{text "t."}\hthm{disc\_map\_iff} @{text "[simp]"}\rm:] ~ \\
+\item[@{text "t."}\hthm{disc_map_iff} @{text "[simp]"}\rm:] ~ \\
@{thm list.disc_map_iff[no_vars]}
-\item[@{text "t."}\hthm{sel\_map}\rm:] ~ \\
+\item[@{text "t."}\hthm{sel_map}\rm:] ~ \\
@{thm list.sel_map[no_vars]}
-\item[@{text "t."}\hthm{rel\_inject} @{text "[simp]"}\rm:] ~ \\
+\item[@{text "t."}\hthm{rel_inject} @{text "[simp]"}\rm:] ~ \\
@{thm list.rel_inject(1)[no_vars]} \\
@{thm list.rel_inject(2)[no_vars]}
-\item[@{text "t."}\hthm{rel\_distinct} @{text "[simp]"}\rm:] ~ \\
+\item[@{text "t."}\hthm{rel_distinct} @{text "[simp]"}\rm:] ~ \\
@{thm list.rel_distinct(1)[no_vars]} \\
@{thm list.rel_distinct(2)[no_vars]}
-\item[@{text "t."}\hthm{rel\_intros}\rm:] ~ \\
+\item[@{text "t."}\hthm{rel_intros}\rm:] ~ \\
@{thm list.rel_intros(1)[no_vars]} \\
@{thm list.rel_intros(2)[no_vars]}
-\item[@{text "t."}\hthm{rel\_cases} @{text "[consumes 1, case_names t\<^sub>1 \<dots> t\<^sub>m, cases pred]"}\rm:] ~ \\
+\item[@{text "t."}\hthm{rel_cases} @{text "[consumes 1, case_names t\<^sub>1 \<dots> t\<^sub>m, cases pred]"}\rm:] ~ \\
@{thm list.rel_cases[no_vars]}
\end{description}
@@ -901,37 +902,37 @@
\begin{indentblock}
\begin{description}
-\item[@{text "t."}\hthm{set\_map}\rm:] ~ \\
+\item[@{text "t."}\hthm{set_map}\rm:] ~ \\
@{thm list.set_map[no_vars]}
-\item[@{text "t."}\hthm{map\_comp}\rm:] ~ \\
+\item[@{text "t."}\hthm{map_comp}\rm:] ~ \\
@{thm list.map_cong0[no_vars]}
-\item[@{text "t."}\hthm{map\_cong} @{text "[fundef_cong]"}\rm:] ~ \\
+\item[@{text "t."}\hthm{map_cong} @{text "[fundef_cong]"}\rm:] ~ \\
@{thm list.map_cong[no_vars]}
-\item[@{text "t."}\hthm{map\_id}\rm:] ~ \\
+\item[@{text "t."}\hthm{map_id}\rm:] ~ \\
@{thm list.map_id[no_vars]}
-\item[@{text "t."}\hthm{map\_id0}\rm:] ~ \\
+\item[@{text "t."}\hthm{map_id0}\rm:] ~ \\
@{thm list.map_id0[no_vars]}
-\item[@{text "t."}\hthm{map\_ident}\rm:] ~ \\
+\item[@{text "t."}\hthm{map_ident}\rm:] ~ \\
@{thm list.map_ident[no_vars]}
-\item[@{text "t."}\hthm{rel\_compp}\rm:] ~ \\
+\item[@{text "t."}\hthm{rel_compp}\rm:] ~ \\
@{thm list.rel_compp[no_vars]}
-\item[@{text "t."}\hthm{rel\_conversep}\rm:] ~ \\
+\item[@{text "t."}\hthm{rel_conversep}\rm:] ~ \\
@{thm list.rel_conversep[no_vars]}
-\item[@{text "t."}\hthm{rel\_eq}\rm:] ~ \\
+\item[@{text "t."}\hthm{rel_eq}\rm:] ~ \\
@{thm list.rel_eq[no_vars]}
-\item[@{text "t."}\hthm{rel\_flip}\rm:] ~ \\
+\item[@{text "t."}\hthm{rel_flip}\rm:] ~ \\
@{thm list.rel_flip[no_vars]}
-\item[@{text "t."}\hthm{rel\_mono}\rm:] ~ \\
+\item[@{text "t."}\hthm{rel_mono}\rm:] ~ \\
@{thm list.rel_mono[no_vars]}
\end{description}
@@ -955,10 +956,10 @@
Given $m > 1$ mutually recursive datatypes, this induction rule can be used to
prove $m$ properties simultaneously.
-\item[@{text "t."}\hthm{rel\_induct} @{text "[case_names C\<^sub>1 \<dots> C\<^sub>n, induct pred]"}\rm:] ~ \\
+\item[@{text "t."}\hthm{rel_induct} @{text "[case_names C\<^sub>1 \<dots> C\<^sub>n, induct pred]"}\rm:] ~ \\
@{thm list.rel_induct[no_vars]}
-\item[@{text "t\<^sub>1_\<dots>_t\<^sub>m."}\hthm{rel\_induct} @{text "[case_names C\<^sub>1 \<dots> C\<^sub>n]"}\rm:] ~ \\
+\item[@{text "t\<^sub>1_\<dots>_t\<^sub>m."}\hthm{rel_induct} @{text "[case_names C\<^sub>1 \<dots> C\<^sub>n]"}\rm:] ~ \\
Given $m > 1$ mutually recursive datatypes, this induction rule can be used to
prove $m$ properties simultaneously.
@@ -966,7 +967,7 @@
@{thm list.rec(1)[no_vars]} \\
@{thm list.rec(2)[no_vars]}
-\item[@{text "t."}\hthm{rec\_o\_map}\rm:] ~ \\
+\item[@{text "t."}\hthm{rec_o_map}\rm:] ~ \\
@{thm list.rec_o_map[no_vars]}
\item[@{text "t."}\hthm{size} @{text "[simp, code]"}\rm:] ~ \\
@@ -975,7 +976,7 @@
@{thm list.size(3)[no_vars]} \\
@{thm list.size(4)[no_vars]}
-\item[@{text "t."}\hthm{size\_o\_map}\rm:] ~ \\
+\item[@{text "t."}\hthm{size_o_map}\rm:] ~ \\
@{thm list.size_o_map[no_vars]}
\end{description}
@@ -1155,7 +1156,7 @@
\noindent
Pattern matching is only available for the argument on which the recursion takes
place. Fortunately, it is easy to generate pattern-maching equations using the
-\keyw{simps\_of\_case} command provided by the theory
+\keyw{simps_of_case} command provided by the theory
\verb|~~/src/HOL/|\allowbreak\verb|Library/|\allowbreak\verb|Simps_Case_Conv|.
*}
@@ -1569,7 +1570,7 @@
\label{sssec:codatatype-simple-corecursion} *}
text {*
-Noncorecursive codatatypes coincide with the corresponding datatypes, so they
+Non-corecursive codatatypes coincide with the corresponding datatypes, so they
are rarely used in practice. \emph{Corecursive codatatypes} have the same syntax
as recursive datatypes, except for the command name. For example, here is the
definition of lazy lists:
@@ -1748,8 +1749,8 @@
@{thm llist.coinduct[no_vars]}
\item[\begin{tabular}{@ {}l@ {}}
- @{text "t."}\hthm{strong\_coinduct} @{text "[consumes m, case_names t\<^sub>1 \<dots> t\<^sub>m,"} \\
- \phantom{@{text "t."}\hthm{strong\_coinduct} @{text "["}}@{text "case_conclusion D\<^sub>1 \<dots> D\<^sub>n]"}\rm:
+ @{text "t."}\hthm{strong_coinduct} @{text "[consumes m, case_names t\<^sub>1 \<dots> t\<^sub>m,"} \\
+ \phantom{@{text "t."}\hthm{strong_coinduct} @{text "["}}@{text "case_conclusion D\<^sub>1 \<dots> D\<^sub>n]"}\rm:
\end{tabular}] ~ \\
@{thm llist.strong_coinduct[no_vars]}
@@ -1762,9 +1763,10 @@
\item[\begin{tabular}{@ {}l@ {}}
@{text "t\<^sub>1_\<dots>_t\<^sub>m."}\hthm{coinduct} @{text "[case_names t\<^sub>1 \<dots> t\<^sub>m, case_conclusion D\<^sub>1 \<dots> D\<^sub>n]"} \\
- @{text "t\<^sub>1_\<dots>_t\<^sub>m."}\hthm{strong\_coinduct} @{text "[case_names t\<^sub>1 \<dots> t\<^sub>m,"} \\
- \phantom{@{text "t\<^sub>1_\<dots>_t\<^sub>m."}\hthm{strong\_coinduct} @{text "["}}@{text "case_conclusion D\<^sub>1 \<dots> D\<^sub>n]"}\rm: \\
- @{text "t\<^sub>1_\<dots>_t\<^sub>m."}\hthm{rel_coinduct} @{text "[case_names t\<^sub>1 \<dots> t\<^sub>m, case_conclusion D\<^sub>1 \<dots> D\<^sub>n]"} \\
+ @{text "t\<^sub>1_\<dots>_t\<^sub>m."}\hthm{strong_coinduct} @{text "[case_names t\<^sub>1 \<dots> t\<^sub>m,"} \\
+ \phantom{@{text "t\<^sub>1_\<dots>_t\<^sub>m."}\hthm{strong_coinduct} @{text "["}}@{text "case_conclusion D\<^sub>1 \<dots> D\<^sub>n]"}\rm: \\
+ @{text "t\<^sub>1_\<dots>_t\<^sub>m."}\hthm{rel_coinduct} @{text "[case_names t\<^sub>1 \<dots> t\<^sub>m,"} \\
+ \phantom{@{text "t\<^sub>1_\<dots>_t\<^sub>m."}\hthm{rel_coinduct} @{text "["}}@{text "case_conclusion D\<^sub>1 \<dots> D\<^sub>n]"}\rm: \\
\end{tabular}] ~ \\
Given $m > 1$ mutually corecursive codatatypes, these coinduction rules can be
used to prove $m$ properties simultaneously.
@@ -1773,18 +1775,18 @@
@{thm llist.corec(1)[no_vars]} \\
@{thm llist.corec(2)[no_vars]}
-\item[@{text "t."}\hthm{corec\_code} @{text "[code]"}\rm:] ~ \\
+\item[@{text "t."}\hthm{corec_code} @{text "[code]"}\rm:] ~ \\
@{thm llist.corec_code[no_vars]}
-\item[@{text "t."}\hthm{disc\_corec}\rm:] ~ \\
+\item[@{text "t."}\hthm{disc_corec}\rm:] ~ \\
@{thm llist.disc_corec(1)[no_vars]} \\
@{thm llist.disc_corec(2)[no_vars]}
-\item[@{text "t."}\hthm{disc\_corec\_iff} @{text "[simp]"}\rm:] ~ \\
+\item[@{text "t."}\hthm{disc_corec_iff} @{text "[simp]"}\rm:] ~ \\
@{thm llist.disc_corec_iff(1)[no_vars]} \\
@{thm llist.disc_corec_iff(2)[no_vars]}
-\item[@{text "t."}\hthm{sel\_corec} @{text "[simp]"}\rm:] ~ \\
+\item[@{text "t."}\hthm{sel_corec} @{text "[simp]"}\rm:] ~ \\
@{thm llist.sel_corec(1)[no_vars]} \\
@{thm llist.sel_corec(2)[no_vars]}
@@ -1811,7 +1813,7 @@
text {*
Corecursive functions can be specified using the @{command primcorec} and
\keyw{prim\-corec\-ursive} commands, which support primitive corecursion, or
-using the more general \keyw{partial\_function} command. Here, the focus is on
+using the more general \keyw{partial_function} command. Here, the focus is on
the first two. More examples can be found in the directory
\verb|~~/src/HOL/BNF_Examples|.
@@ -1913,7 +1915,7 @@
text {*
\noindent
Pattern matching is not supported by @{command primcorec}. Fortunately, it is
-easy to generate pattern-maching equations using the \keyw{simps\_of\_case}
+easy to generate pattern-maching equations using the \keyw{simps_of_case}
command provided by the theory \verb|~~/src/HOL/Library/Simps_Case_Conv|.
*}
@@ -2455,9 +2457,6 @@
text {* \blankline *}
lift_definition map_fn :: "('a \<Rightarrow> 'b) \<Rightarrow> ('d, 'a) fn \<Rightarrow> ('d, 'b) fn" is "op \<circ>" .
-
-text {* \blankline *}
-
lift_definition set_fn :: "('d, 'a) fn \<Rightarrow> 'a set" is range .
text {* \blankline *}
@@ -2527,7 +2526,7 @@
text {*
\noindent
-Using \keyw{print\_theorems} and @{keyword print_bnfs}, we can contemplate and
+Using \keyw{print_theorems} and @{keyword print_bnfs}, we can contemplate and
show the world what we have achieved.
This particular example does not need any nonemptiness witness, because the
@@ -2537,16 +2536,18 @@
for further examples of BNF registration, some of which feature custom
witnesses.
-The next example declares a BNF axiomatically. The @{command bnf_axiomatization} command
-introduces a type @{text "('a, 'b, 'c) F"}, three set constants, a map
-function, a relator, and a nonemptiness witness that depends only on
+The next example declares a BNF axiomatically. This can be convenient for
+reasoning abstractly about an arbitrary BNF. The @{command bnf_axiomatization}
+command below introduces a type @{text "('a, 'b, 'c) F"}, three set constants,
+a map function, a relator, and a nonemptiness witness that depends only on
@{typ 'a}. (The type @{text "'a \<Rightarrow> ('a, 'b, 'c) F"} of
the witness can be read as an implication: If we have a witness for @{typ 'a},
we can construct a witness for @{text "('a, 'b, 'c) F"}.) The BNF
properties are postulated as axioms.
*}
- bnf_axiomatization (setA: 'a, setB: 'b, setC: 'c) F [wits: "'a \<Rightarrow> ('a, 'b, 'c) F"]
+ bnf_axiomatization (setA: 'a, setB: 'b, setC: 'c) F
+ [wits: "'a \<Rightarrow> ('a, 'b, 'c) F"]
text {* \blankline *}
@@ -2588,7 +2589,7 @@
*}
-subsubsection {* \keyw{bnf\_axiomatization}
+subsubsection {* \keyw{bnf_axiomatization}
\label{sssec:bnf-axiomatization} *}
text {*
@@ -2597,8 +2598,8 @@
\end{matharray}
@{rail \<open>
- @@{command bnf_axiomatization} target? @{syntax tyargs}? name @{syntax wit_types}? \<newline>
- mixfix? @{syntax map_rel}?
+ @@{command bnf_axiomatization} target? @{syntax tyargs}? name \<newline>
+ @{syntax wit_types}? mixfix? @{syntax map_rel}?
;
@{syntax_def wit_types}: '[' 'wits' ':' types ']'
\<close>}
@@ -2625,11 +2626,11 @@
The command is useful to reason abstractly about BNFs. The axioms are safe
because there exists BNFs of arbitrary large arities. Applications must import
the theory @{theory BNF_Axiomatization}, located in the directory
-\verb|~~/src/HOL/Library|, to use this functionality.
+\verb|~~/src/|\allowbreak\verb|HOL/Library|, to use this functionality.
*}
-subsubsection {* \keyw{print\_bnfs}
+subsubsection {* \keyw{print_bnfs}
\label{sssec:print-bnfs} *}
text {*
@@ -2675,7 +2676,7 @@
\label{ssec:ctors-command-syntax} *}
-subsubsection {* \keyw{free\_constructors}
+subsubsection {* \keyw{free_constructors}
\label{sssec:free-constructors} *}
text {*
@@ -2710,9 +2711,9 @@
constructor itself (as a term), and a list of optional names for the selectors.
Section~\ref{ssec:datatype-generated-theorems} lists the generated theorems.
-For technical reasons, the @{text "[fundef_cong]"} attribute is not set on the
-generated @{text case_cong} theorem. It can be added manually using
-\keyw{declare}.
+For bootstrapping reasons, the generally useful @{text "[fundef_cong]"}
+attribute is not set on the generated @{text case_cong} theorem. It can be
+added manually using \keyw{declare}.
*}
--- a/src/Doc/manual.bib Thu Jul 10 18:08:21 2014 +0200
+++ b/src/Doc/manual.bib Fri Jul 11 00:55:46 2014 +0200
@@ -335,8 +335,21 @@
@unpublished{blanchette-et-al-wit,
author = {J. C. Blanchette and A. Popescu and D. Traytel},
title = {Witnessing (Co)datatypes},
- year = 2013,
- note = {\url{http://www21.in.tum.de/~traytel/papers/witness/wit.pdf}}}
+ year = 2014,
+ note = {\url{http://www21.in.tum.de/~blanchet/wit.pdf}}}
+
+@inproceedings{blanchette-et-al-2014-impl,
+ author = "Jasmin Christian Blanchette and Johannes H{\"o}lzl
+ and Andreas Lochbihler and Lorenz Panny and Andrei Popescu and Dmitriy Traytel",
+ title = "Truly Modular (Co)datatypes for {I}sabelle/{HOL}",
+ year = 2014,
+ publisher = "Springer",
+ editor = "Gerwin Klein and Ruben Gamboa",
+ booktitle = "ITP 2014",
+ series = "LNCS",
+ volume = 8558,
+ pages = "93--110"
+}
@inproceedings{why3,
author = {Fran\c{c}ois Bobot and Jean-Christophe Filli\^atre and Claude March\'e and Andrei Paskevich},
@@ -1246,6 +1259,13 @@
%P
+@inproceedings{panny-et-al-2014,
+ author = "Lorenz Panny and Jasmin Christian Blanchette and Dmitriy Traytel",
+ title = "Primitively (co)recursive definitions for {I}sabelle/{HOL}",
+ year = 2014,
+ booktitle = "Isabelle Workshop 2014"
+}
+
% replaces paulin92
@InProceedings{paulin-tlca,
author = {Christine Paulin-Mohring},