--- a/src/ZF/Constructible/AC_in_L.thy Wed Mar 14 00:34:56 2012 +0100
+++ b/src/ZF/Constructible/AC_in_L.thy Wed Mar 14 12:39:04 2012 +0000
@@ -424,14 +424,14 @@
lemma (in Nat_Times_Nat) L_r_type:
"Ord(i) ==> L_r(fn,i) \<subseteq> Lset(i) * Lset(i)"
-apply (induct i rule: trans_induct3_rule)
+apply (induct i rule: trans_induct3)
apply (simp_all add: Lset_succ DPow_r_type well_ord_DPow_r rlimit_def
Transset_subset_DPow [OF Transset_Lset], blast)
done
lemma (in Nat_Times_Nat) well_ord_L_r:
"Ord(i) ==> well_ord(Lset(i), L_r(fn,i))"
-apply (induct i rule: trans_induct3_rule)
+apply (induct i rule: trans_induct3)
apply (simp_all add: well_ord0 Lset_succ L_r_type well_ord_DPow_r
well_ord_rlimit ltD)
done
--- a/src/ZF/Constructible/Normal.thy Wed Mar 14 00:34:56 2012 +0100
+++ b/src/ZF/Constructible/Normal.thy Wed Mar 14 12:39:04 2012 +0000
@@ -243,7 +243,7 @@
by (simp add: Normal_def mono_Ord_def)
lemma Normal_increasing: "[| Ord(i); Normal(F) |] ==> i\<le>F(i)"
-apply (induct i rule: trans_induct3_rule)
+apply (induct i rule: trans_induct3)
apply (simp add: subset_imp_le)
apply (subgoal_tac "F(x) < F(succ(x))")
apply (force intro: lt_trans1)
@@ -383,7 +383,7 @@
lemma Ord_normalize [simp, intro]:
"[| Ord(a); !!x. Ord(x) ==> Ord(F(x)) |] ==> Ord(normalize(F, a))"
-apply (induct a rule: trans_induct3_rule)
+apply (induct a rule: trans_induct3)
apply (simp_all add: ltD def_transrec2 [OF normalize_def])
done
--- a/src/ZF/OrderType.thy Wed Mar 14 00:34:56 2012 +0100
+++ b/src/ZF/OrderType.thy Wed Mar 14 12:39:04 2012 +0000
@@ -631,16 +631,19 @@
text{*Order/monotonicity properties of ordinal addition *}
lemma oadd_le_self2: "Ord(i) ==> i \<le> j++i"
-apply (erule_tac i = i in trans_induct3)
-apply (simp (no_asm_simp) add: Ord_0_le)
-apply (simp (no_asm_simp) add: oadd_succ succ_leI)
-apply (simp (no_asm_simp) add: oadd_Limit)
-apply (rule le_trans)
-apply (rule_tac [2] le_implies_UN_le_UN)
-apply (erule_tac [2] bspec)
- prefer 2 apply assumption
-apply (simp add: Union_eq_UN [symmetric] Limit_Union_eq le_refl Limit_is_Ord)
-done
+proof (induct i rule: trans_induct3)
+ case 0 thus ?case by (simp add: Ord_0_le)
+next
+ case (succ i) thus ?case by (simp add: oadd_succ succ_leI)
+next
+ case (limit l)
+ hence "l = (\<Union>x\<in>l. x)"
+ by (simp add: Union_eq_UN [symmetric] Limit_Union_eq)
+ also have "... \<le> (\<Union>x\<in>l. j++x)"
+ by (rule le_implies_UN_le_UN) (rule limit.hyps)
+ finally have "l \<le> (\<Union>x\<in>l. j++x)" .
+ thus ?case using limit.hyps by (simp add: oadd_Limit)
+qed
lemma oadd_le_mono1: "k \<le> j ==> k++i \<le> j++i"
apply (frule lt_Ord)
@@ -925,15 +928,23 @@
lemma omult_le_self: "[| Ord(i); 0<j |] ==> i \<le> i**j"
by (blast intro: all_lt_imp_le Ord_omult lt_omult1 lt_Ord2)
-lemma omult_le_mono1: "[| k \<le> j; Ord(i) |] ==> k**i \<le> j**i"
-apply (frule lt_Ord)
-apply (frule le_Ord2)
-apply (erule trans_induct3)
-apply (simp (no_asm_simp) add: le_refl Ord_0)
-apply (simp (no_asm_simp) add: omult_succ oadd_le_mono)
-apply (simp (no_asm_simp) add: omult_Limit)
-apply (rule le_implies_UN_le_UN, blast)
-done
+lemma omult_le_mono1:
+ assumes kj: "k \<le> j" and i: "Ord(i)" shows "k**i \<le> j**i"
+proof -
+ have o: "Ord(k)" "Ord(j)" by (rule lt_Ord [OF kj] le_Ord2 [OF kj])+
+ show ?thesis using i
+ proof (induct i rule: trans_induct3)
+ case 0 thus ?case
+ by simp
+ next
+ case (succ i) thus ?case
+ by (simp add: o kj omult_succ oadd_le_mono)
+ next
+ case (limit l)
+ thus ?case
+ by (auto simp add: o kj omult_Limit le_implies_UN_le_UN)
+ qed
+qed
lemma omult_lt_mono2: "[| k<j; 0<i |] ==> i**k < i**j"
apply (rule ltI)
@@ -955,20 +966,30 @@
lemma omult_lt_mono: "[| i' \<le> i; j'<j; 0<i |] ==> i'**j' < i**j"
by (blast intro: lt_trans1 omult_le_mono1 omult_lt_mono2 Ord_succD elim: ltE)
-lemma omult_le_self2: "[| Ord(i); 0<j |] ==> i \<le> j**i"
-apply (frule lt_Ord2)
-apply (erule_tac i = i in trans_induct3)
-apply (simp (no_asm_simp))
-apply (simp (no_asm_simp) add: omult_succ)
-apply (erule lt_trans1)
-apply (rule_tac b = "j**x" in oadd_0 [THEN subst], rule_tac [2] oadd_lt_mono2)
-apply (blast intro: Ord_omult, assumption)
-apply (simp (no_asm_simp) add: omult_Limit)
-apply (rule le_trans)
-apply (rule_tac [2] le_implies_UN_le_UN)
-prefer 2 apply blast
-apply (simp (no_asm_simp) add: Union_eq_UN [symmetric] Limit_Union_eq Limit_is_Ord)
-done
+lemma omult_le_self2:
+ assumes i: "Ord(i)" and j: "0<j" shows "i \<le> j**i"
+proof -
+ have oj: "Ord(j)" by (rule lt_Ord2 [OF j])
+ show ?thesis using i
+ proof (induct i rule: trans_induct3)
+ case 0 thus ?case
+ by simp
+ next
+ case (succ i)
+ have "j \<times>\<times> i ++ 0 < j \<times>\<times> i ++ j"
+ by (rule oadd_lt_mono2 [OF j])
+ with succ.hyps show ?case
+ by (simp add: oj j omult_succ ) (rule lt_trans1)
+ next
+ case (limit l)
+ hence "l = (\<Union>x\<in>l. x)"
+ by (simp add: Union_eq_UN [symmetric] Limit_Union_eq)
+ also have "... \<le> (\<Union>x\<in>l. j**x)"
+ by (rule le_implies_UN_le_UN) (rule limit.hyps)
+ finally have "l \<le> (\<Union>x\<in>l. j**x)" .
+ thus ?case using limit.hyps by (simp add: oj omult_Limit)
+ qed
+qed
text{*Further properties of ordinal multiplication *}
--- a/src/ZF/Ordinal.thy Wed Mar 14 00:34:56 2012 +0100
+++ b/src/ZF/Ordinal.thy Wed Mar 14 12:39:04 2012 +0000
@@ -708,7 +708,7 @@
|] ==> P"
by (drule Ord_cases_disj, blast)
-lemma trans_induct3 [case_names 0 succ limit, consumes 1]:
+lemma trans_induct3_raw:
"[| Ord(i);
P(0);
!!x. [| Ord(x); P(x) |] ==> P(succ(x));
@@ -718,7 +718,7 @@
apply (erule Ord_cases, blast+)
done
-lemmas trans_induct3_rule = trans_induct3 [rule_format, case_names 0 succ limit, consumes 1]
+lemmas trans_induct3 = trans_induct3_raw [rule_format, case_names 0 succ limit, consumes 1]
text{*A set of ordinals is either empty, contains its own union, or its
union is a limit ordinal.*}