--- a/src/HOL/Divides.thy Sun Oct 16 18:22:19 2016 +0200
+++ b/src/HOL/Divides.thy Sun Oct 16 19:18:54 2016 +0200
@@ -28,12 +28,6 @@
text \<open>@{const divide} and @{const modulo}\<close>
-lemma div_mod_equality: "((a div b) * b + a mod b) + c = a + c"
- by (simp add: div_mult_mod_eq)
-
-lemma div_mod_equality2: "(b * (a div b) + a mod b) + c = a + c"
- by (simp add: mult_div_mod_eq)
-
lemma mod_by_0 [simp]: "a mod 0 = a"
using div_mult_mod_eq [of a zero] by simp
@@ -345,6 +339,11 @@
shows "(a div d) div (b div d) = a div b"
using assms by (subst dvd_div_mult2_eq [symmetric]) simp_all
+lemma cancel_div_mod_rules:
+ "((a div b) * b + a mod b) + c = a + c"
+ "(b * (a div b) + a mod b) + c = a + c"
+ by (simp_all add: div_mult_mod_eq mult_div_mod_eq)
+
end
class ring_div = comm_ring_1 + semiring_div
@@ -1042,10 +1041,10 @@
SOME (t, u) => dest_sum t @ dest_sum u
| NONE => [tm]));
- val div_mod_eqs = map mk_meta_eq [@{thm div_mod_equality}, @{thm div_mod_equality2}];
-
- val prove_eq_sums = Arith_Data.prove_conv2 all_tac (Arith_Data.simp_all_tac
- (@{thm add_0_left} :: @{thm add_0_right} :: @{thms ac_simps}))
+ val div_mod_eqs = map mk_meta_eq @{thms cancel_div_mod_rules};
+
+ val prove_eq_sums = Arith_Data.prove_conv2 all_tac
+ (Arith_Data.simp_all_tac @{thms add_0_left add_0_right ac_simps})
)
\<close>
@@ -1806,10 +1805,10 @@
val mk_sum = Arith_Data.mk_sum HOLogic.intT;
val dest_sum = Arith_Data.dest_sum;
- val div_mod_eqs = map mk_meta_eq [@{thm div_mod_equality}, @{thm div_mod_equality2}];
-
- val prove_eq_sums = Arith_Data.prove_conv2 all_tac (Arith_Data.simp_all_tac
- (@{thm diff_conv_add_uminus} :: @{thms add_0_left add_0_right} @ @{thms ac_simps}))
+ val div_mod_eqs = map mk_meta_eq @{thms cancel_div_mod_rules};
+
+ val prove_eq_sums = Arith_Data.prove_conv2 all_tac
+ (Arith_Data.simp_all_tac @{thms diff_conv_add_uminus add_0_left add_0_right ac_simps})
)
\<close>
--- a/src/HOL/Groebner_Basis.thy Sun Oct 16 18:22:19 2016 +0200
+++ b/src/HOL/Groebner_Basis.thy Sun Oct 16 19:18:54 2016 +0200
@@ -51,13 +51,12 @@
\<close> "solve polynomial equations over (semi)rings and ideal membership problems using Groebner bases"
declare dvd_def[algebra]
-declare dvd_eq_mod_eq_0[symmetric, algebra]
+declare mod_eq_0_iff_dvd[algebra]
declare mod_div_trivial[algebra]
declare mod_mod_trivial[algebra]
declare div_by_0[algebra]
declare mod_by_0[algebra]
declare mult_div_mod_eq[algebra]
-declare div_mod_equality2[symmetric, algebra]
declare div_minus_minus[algebra]
declare mod_minus_minus[algebra]
declare div_minus_right[algebra]
--- a/src/HOL/Presburger.thy Sun Oct 16 18:22:19 2016 +0200
+++ b/src/HOL/Presburger.thy Sun Oct 16 19:18:54 2016 +0200
@@ -410,7 +410,7 @@
end
\<close> "Cooper's algorithm for Presburger arithmetic"
-declare dvd_eq_mod_eq_0 [symmetric, presburger]
+declare mod_eq_0_iff_dvd [presburger]
declare mod_by_Suc_0 [presburger]
declare mod_0 [presburger]
declare mod_by_1 [presburger]
@@ -418,13 +418,11 @@
declare div_by_0 [presburger]
declare mod_by_0 [presburger]
declare mod_div_trivial [presburger]
-declare div_mod_equality2 [presburger]
-declare div_mod_equality [presburger]
declare mult_div_mod_eq [presburger]
declare div_mult_mod_eq [presburger]
declare mod_mult_self1 [presburger]
declare mod_mult_self2 [presburger]
-declare mod2_Suc_Suc[presburger]
+declare mod2_Suc_Suc [presburger]
declare not_mod_2_eq_0_eq_1 [presburger]
declare nat_zero_less_power_iff [presburger]