new files HOL/UNITY/Guar.{thy,ML}: theory file gets the instance declaration
authorpaulson
Tue, 31 Aug 1999 15:58:38 +0200
changeset 7400 fbd5582761e6
parent 7399 cf780c2bcccf
child 7401 e355f626b2f9
new files HOL/UNITY/Guar.{thy,ML}: theory file gets the instance declaration for the overloading of <, while .ML file gets proofs about renaming constants
src/HOL/IsaMakefile
src/HOL/UNITY/Guar.ML
src/HOL/UNITY/Guar.thy
--- a/src/HOL/IsaMakefile	Tue Aug 31 15:56:56 1999 +0200
+++ b/src/HOL/IsaMakefile	Tue Aug 31 15:58:38 1999 +0200
@@ -186,6 +186,7 @@
   UNITY/Alloc.ML UNITY/Alloc.thy\
   UNITY/Channel.ML UNITY/Channel.thy UNITY/Common.ML UNITY/Common.thy\
   UNITY/Client.ML UNITY/Client.thy  UNITY/Comp.ML UNITY/Comp.thy\
+  UNITY/Guar.ML UNITY/Guar.thy\
   UNITY/Deadlock.ML UNITY/Deadlock.thy UNITY/FP.ML UNITY/FP.thy\
   UNITY/Union.ML UNITY/Union.thy UNITY/Handshake.ML UNITY/Handshake.thy\
   UNITY/Extend.ML UNITY/Extend.thy\
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/UNITY/Guar.ML	Tue Aug 31 15:58:38 1999 +0200
@@ -0,0 +1,299 @@
+(*  Title:      HOL/UNITY/Guar.ML
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1999  University of Cambridge
+
+Guarantees, etc.
+
+From Chandy and Sanders, "Reasoning About Program Composition"
+*)
+
+(*** existential properties ***)
+
+Goalw [ex_prop_def]
+     "[| ex_prop X; finite GG |] ==> GG Int X ~= {} --> (JN G:GG. G) : X";
+by (etac finite_induct 1);
+by (auto_tac (claset(), simpset() addsimps [Int_insert_left]));
+qed_spec_mp "ex1";
+
+Goalw [ex_prop_def]
+     "ALL GG. finite GG & GG Int X ~= {} --> (JN G:GG. G) : X ==> ex_prop X";
+by (Clarify_tac 1);
+by (dres_inst_tac [("x", "{F,G}")] spec 1);
+by Auto_tac;
+qed "ex2";
+
+(*Chandy & Sanders take this as a definition*)
+Goal "ex_prop X = (ALL GG. finite GG & GG Int X ~= {} --> (JN G:GG. G) : X)";
+by (blast_tac (claset() addIs [ex1,ex2]) 1);
+qed "ex_prop_finite";
+
+(*Their "equivalent definition" given at the end of section 3*)
+Goal "ex_prop X = (ALL G. G:X = (ALL H. G <= H --> H: X))";
+by Auto_tac;
+by (rewrite_goals_tac [ex_prop_def, component_def]);
+by (Blast_tac 1);
+by Safe_tac;
+by (stac Join_commute 2);
+by (ALLGOALS Blast_tac);
+qed "ex_prop_equiv";
+
+
+(*** universal properties ***)
+
+Goalw [uv_prop_def]
+     "[| uv_prop X; finite GG |] ==> GG <= X --> (JN G:GG. G) : X";
+by (etac finite_induct 1);
+by (auto_tac (claset(), simpset() addsimps [Int_insert_left]));
+qed_spec_mp "uv1";
+
+Goalw [uv_prop_def]
+     "ALL GG. finite GG & GG <= X --> (JN G:GG. G) : X  ==> uv_prop X";
+by (rtac conjI 1);
+by (Clarify_tac 2);
+by (dres_inst_tac [("x", "{F,G}")] spec 2);
+by (dres_inst_tac [("x", "{}")] spec 1);
+by Auto_tac;
+qed "uv2";
+
+(*Chandy & Sanders take this as a definition*)
+Goal "uv_prop X = (ALL GG. finite GG & GG <= X --> (JN G:GG. G) : X)";
+by (blast_tac (claset() addIs [uv1,uv2]) 1);
+qed "uv_prop_finite";
+
+
+(*** guarantees ***)
+
+val prems = Goal
+     "(!!G. [| F Join G : X;  Disjoint F G |] ==> F Join G : Y) \
+\     ==> F : X guarantees Y";
+by (simp_tac (simpset() addsimps [guar_def, component_eq]) 1);
+by (blast_tac (claset() addIs prems) 1);
+qed "guaranteesI";
+
+Goalw [guar_def, component_def]
+     "[| F : X guarantees Y;  F Join G : X |] ==> F Join G : Y";
+by (Blast_tac 1);
+qed "guaranteesD";
+
+(*This version of guaranteesD matches more easily in the conclusion*)
+Goalw [guar_def]
+     "[| F : X guarantees Y;  H : X;  F <= H |] ==> H : Y";
+by (Blast_tac 1);
+qed "component_guaranteesD";
+
+(*This equation is more intuitive than the official definition*)
+Goal "(F : X guarantees Y) = \
+\     (ALL G. F Join G : X & Disjoint F G --> F Join G : Y)";
+by (simp_tac (simpset() addsimps [guar_def, component_eq]) 1);
+by (Blast_tac 1);
+qed "guarantees_eq";
+
+Goalw [guar_def]
+     "[| F: X guarantees X'; Y <= X; X' <= Y' |] ==> F: Y guarantees Y'";
+by (Blast_tac 1);
+qed "guarantees_weaken";
+
+Goalw [guar_def]
+     "[| F: X guarantees Y; F <= F' |] ==> F': X guarantees Y";
+by (blast_tac (claset() addIs [component_trans]) 1);
+qed "guarantees_weaken_prog";
+
+Goalw [guar_def] "X <= Y ==> X guarantees Y = UNIV";
+by (Blast_tac 1);
+qed "subset_imp_guarantees_UNIV";
+
+(*Equivalent to subset_imp_guarantees_UNIV but more intuitive*)
+Goalw [guar_def] "X <= Y ==> F : X guarantees Y";
+by (Blast_tac 1);
+qed "subset_imp_guarantees";
+
+(*Remark at end of section 4.1*)
+Goalw [guar_def] "ex_prop Y = (Y = UNIV guarantees Y)";
+by (simp_tac (simpset() addsimps [ex_prop_equiv]) 1);
+by (blast_tac (claset() addEs [equalityE]) 1);
+qed "ex_prop_equiv2";
+
+(** Distributive laws.  Re-orient to perform miniscoping **)
+
+Goalw [guar_def]
+     "(UN i:I. X i) guarantees Y = (INT i:I. X i guarantees Y)";
+by (Blast_tac 1);
+qed "guarantees_UN_left";
+
+Goalw [guar_def]
+    "(X Un Y) guarantees Z = (X guarantees Z) Int (Y guarantees Z)";
+by (Blast_tac 1);
+qed "guarantees_Un_left";
+
+Goalw [guar_def]
+     "X guarantees (INT i:I. Y i) = (INT i:I. X guarantees Y i)";
+by (Blast_tac 1);
+qed "guarantees_INT_right";
+
+Goalw [guar_def]
+    "Z guarantees (X Int Y) = (Z guarantees X) Int (Z guarantees Y)";
+by (Blast_tac 1);
+qed "guarantees_Int_right";
+
+Goalw [guar_def] "(X guarantees Y) = (UNIV guarantees (-X Un Y))";
+by (Blast_tac 1);
+qed "shunting";
+
+Goalw [guar_def] "(X guarantees Y) = -Y guarantees -X";
+by (Blast_tac 1);
+qed "contrapositive";
+
+(** The following two can be expressed using intersection and subset, which
+    is more faithful to the text but looks cryptic.
+**)
+
+Goalw [guar_def]
+    "[| F : V guarantees X;  F : (X Int Y) guarantees Z |]\
+\    ==> F : (V Int Y) guarantees Z";
+by (Blast_tac 1);
+qed "combining1";
+
+Goalw [guar_def]
+    "[| F : V guarantees (X Un Y);  F : Y guarantees Z |]\
+\    ==> F : V guarantees (X Un Z)";
+by (Blast_tac 1);
+qed "combining2";
+
+(** The following two follow Chandy-Sanders, but the use of object-quantifiers
+    does not suit Isabelle... **)
+
+(*Premise should be (!!i. i: I ==> F: X guarantees Y i) *)
+Goalw [guar_def]
+     "ALL i:I. F : X guarantees (Y i) ==> F : X guarantees (INT i:I. Y i)";
+by (Blast_tac 1);
+qed "all_guarantees";
+
+(*Premises should be [| F: X guarantees Y i; i: I |] *)
+Goalw [guar_def]
+     "EX i:I. F : X guarantees (Y i) ==> F : X guarantees (UN i:I. Y i)";
+by (Blast_tac 1);
+qed "ex_guarantees";
+
+(*** Additional guarantees laws, by lcp ***)
+
+Goalw [guar_def]
+    "[| F: U guarantees V;  G: X guarantees Y |] \
+\    ==> F Join G: (U Int X) guarantees (V Int Y)";
+by (simp_tac (simpset() addsimps [Join_component_iff]) 1);
+by (Blast_tac 1);
+qed "guarantees_Join_Int";
+
+Goalw [guar_def]
+    "[| F: U guarantees V;  G: X guarantees Y |]  \
+\    ==> F Join G: (U Un X) guarantees (V Un Y)";
+by (simp_tac (simpset() addsimps [Join_component_iff]) 1);
+by (Blast_tac 1);
+qed "guarantees_Join_Un";
+
+Goal "((JOIN I F) <= H) = (ALL i: I. F i <= H)";
+by (simp_tac (simpset() addsimps [component_eq_subset, Acts_JN]) 1);
+by (Blast_tac 1);
+qed "JN_component_iff";
+
+Goalw [guar_def]
+    "[| ALL i:I. F i : X i guarantees Y i |] \
+\    ==> (JOIN I F) : (INTER I X) guarantees (INTER I Y)";
+by (simp_tac (simpset() addsimps [JN_component_iff]) 1);
+by (Blast_tac 1);
+bind_thm ("guarantees_JN_INT", ballI RS result());
+
+Goalw [guar_def]
+    "[| ALL i:I. F i : X i guarantees Y i |] \
+\    ==> (JOIN I F) : (UNION I X) guarantees (UNION I Y)";
+by (simp_tac (simpset() addsimps [JN_component_iff]) 1);
+by (Blast_tac 1);
+bind_thm ("guarantees_JN_UN", ballI RS result());
+
+
+(*** guarantees laws for breaking down the program, by lcp ***)
+
+Goalw [guar_def]
+    "F: X guarantees Y | G: X guarantees Y ==> F Join G: X guarantees Y";
+by (simp_tac (simpset() addsimps [Join_component_iff]) 1);
+by (Blast_tac 1);
+qed "guarantees_Join_I";
+
+Goalw [guar_def]
+     "[| i : I;  F i: X guarantees Y |] ==> (JN i:I. (F i)) : X guarantees Y";
+by (simp_tac (simpset() addsimps [JN_component_iff]) 1);
+by (Blast_tac 1);
+qed "guarantees_JN_I";
+
+
+(*** well-definedness ***)
+
+Goalw [welldef_def] "F Join G: welldef ==> F: welldef";
+by Auto_tac;
+qed "Join_welldef_D1";
+
+Goalw [welldef_def] "F Join G: welldef ==> G: welldef";
+by Auto_tac;
+qed "Join_welldef_D2";
+
+(*** refinement ***)
+
+Goalw [refines_def] "F refines F wrt X";
+by (Blast_tac 1);
+qed "refines_refl";
+
+Goalw [refines_def]
+     "[| H refines G wrt X;  G refines F wrt X |] ==> H refines F wrt X";
+by Auto_tac;
+qed "refines_trans";
+
+Goalw [strict_ex_prop_def]
+     "strict_ex_prop X \
+\     ==> (ALL H. F Join H : X --> G Join H : X) = (F:X --> G:X)";
+by (Blast_tac 1);
+qed "strict_ex_refine_lemma";
+
+Goalw [strict_ex_prop_def]
+     "strict_ex_prop X \
+\     ==> (ALL H. F Join H : welldef & F Join H : X --> G Join H : X) = \
+\         (F: welldef Int X --> G:X)";
+by Safe_tac;
+by (eres_inst_tac [("x","SKIP"), ("P", "%H. ?PP H --> ?RR H")] allE 1);
+by (auto_tac (claset() addDs [Join_welldef_D1, Join_welldef_D2], simpset()));
+qed "strict_ex_refine_lemma_v";
+
+Goal "[| strict_ex_prop X;  \
+\        ALL H. F Join H : welldef Int X --> G Join H : welldef |] \
+\     ==> (G refines F wrt X) = (G iso_refines F wrt X)";
+by (res_inst_tac [("x","SKIP")] allE 1
+    THEN assume_tac 1);
+by (asm_full_simp_tac
+    (simpset() addsimps [refines_def, iso_refines_def,
+			 strict_ex_refine_lemma_v]) 1);
+qed "ex_refinement_thm";
+
+
+Goalw [strict_uv_prop_def]
+     "strict_uv_prop X \
+\     ==> (ALL H. F Join H : X --> G Join H : X) = (F:X --> G:X)";
+by (Blast_tac 1);
+qed "strict_uv_refine_lemma";
+
+Goalw [strict_uv_prop_def]
+     "strict_uv_prop X \
+\     ==> (ALL H. F Join H : welldef & F Join H : X --> G Join H : X) = \
+\         (F: welldef Int X --> G:X)";
+by Safe_tac;
+by (eres_inst_tac [("x","SKIP"), ("P", "%H. ?PP H --> ?RR H")] allE 1);
+by (auto_tac (claset() addDs [Join_welldef_D1, Join_welldef_D2],
+	      simpset()));
+qed "strict_uv_refine_lemma_v";
+
+Goal "[| strict_uv_prop X;  \
+\        ALL H. F Join H : welldef Int X --> G Join H : welldef |] \
+\     ==> (G refines F wrt X) = (G iso_refines F wrt X)";
+by (res_inst_tac [("x","SKIP")] allE 1
+    THEN assume_tac 1);
+by (asm_full_simp_tac (simpset() addsimps [refines_def, iso_refines_def,
+					   strict_uv_refine_lemma_v]) 1);
+qed "uv_refinement_thm";
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/UNITY/Guar.thy	Tue Aug 31 15:58:38 1999 +0200
@@ -0,0 +1,52 @@
+(*  Title:      HOL/UNITY/Guar.thy
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1999  University of Cambridge
+
+Guarantees, etc.
+
+From Chandy and Sanders, "Reasoning About Program Composition"
+*)
+
+Guar = Comp +
+
+instance program :: (term) order
+                    (component_refl, component_trans, component_antisym,
+                     program_less_le)
+
+constdefs
+
+  (*Existential and Universal properties.  I formalize the two-program
+    case, proving equivalence with Chandy and Sanders's n-ary definitions*)
+
+  ex_prop  :: 'a program set => bool
+   "ex_prop X == ALL F G. F:X | G: X --> (F Join G) : X"
+
+  strict_ex_prop  :: 'a program set => bool
+   "strict_ex_prop X == ALL F G. (F:X | G: X) = (F Join G : X)"
+
+  uv_prop  :: 'a program set => bool
+   "uv_prop X == SKIP : X & (ALL F G. F:X & G: X --> (F Join G) : X)"
+
+  strict_uv_prop  :: 'a program set => bool
+   "strict_uv_prop X == SKIP : X & (ALL F G. (F:X & G: X) = (F Join G : X))"
+
+  (*Ill-defined programs can arise through "Join"*)
+  welldef :: 'a program set  
+   "welldef == {F. Init F ~= {}}"
+
+  guar :: ['a program set, 'a program set] => 'a program set
+   (infixl "guarantees" 55)    (*higher than membership, lower than Co*)
+   "X guarantees Y == {F. ALL H. F <= H --> H:X --> H:Y}"
+
+  refines :: ['a program, 'a program, 'a program set] => bool
+			("(3_ refines _ wrt _)" [10,10,10] 10)
+   "G refines F wrt X ==
+      ALL H. (F Join H) : welldef Int X --> G Join H : welldef Int X"
+
+  iso_refines :: ['a program, 'a program, 'a program set] => bool
+			("(3_ iso'_refines _ wrt _)" [10,10,10] 10)
+   "G iso_refines F wrt X ==
+      F : welldef Int X --> G : welldef Int X"
+
+end