tuned proofs;
authorwenzelm
Mon, 10 Dec 2018 20:35:08 +0100
changeset 69442 fc44536fa505
parent 69441 0bd51c6aaa8b
child 69443 61396b9713d8
tuned proofs;
src/HOL/Library/Multiset.thy
--- a/src/HOL/Library/Multiset.thy	Mon Dec 10 20:20:24 2018 +0100
+++ b/src/HOL/Library/Multiset.thy	Mon Dec 10 20:35:08 2018 +0100
@@ -2615,7 +2615,7 @@
     @ sort_key f [x\<leftarrow>xs. f x > f (xs ! (length xs div 2))]" (is "sort_key f ?lhs = ?rhs")
 proof (rule properties_for_sort_key)
   show "mset ?rhs = mset ?lhs"
-    by (rule multiset_eqI) (auto simp add: mset_filter)
+    by (rule multiset_eqI) auto
   show "sorted (map f ?rhs)"
     by (auto simp add: sorted_append intro: sorted_map_same)
 next
@@ -3388,7 +3388,7 @@
   by simp
 
 lemma [code]: "filter_mset f (mset xs) = mset (filter f xs)"
-  by (simp add: mset_filter)
+  by simp
 
 lemma [code]: "mset xs - mset ys = mset (fold remove1 ys xs)"
   by (rule sym, induct ys arbitrary: xs) (simp_all add: diff_add diff_right_commute diff_diff_add)