--- a/src/HOL/Complete_Lattice.thy Thu Jul 14 00:16:41 2011 +0200
+++ b/src/HOL/Complete_Lattice.thy Thu Jul 14 00:20:43 2011 +0200
@@ -6,14 +6,6 @@
imports Set
begin
-lemma ball_conj_distrib:
- "(\<forall>x\<in>A. P x \<and> Q x) \<longleftrightarrow> ((\<forall>x\<in>A. P x) \<and> (\<forall>x\<in>A. Q x))"
- by blast
-
-lemma bex_disj_distrib:
- "(\<exists>x\<in>A. P x \<or> Q x) \<longleftrightarrow> ((\<exists>x\<in>A. P x) \<or> (\<exists>x\<in>A. Q x))"
- by blast
-
notation
less_eq (infix "\<sqsubseteq>" 50) and
less (infix "\<sqsubset>" 50) and
--- a/src/HOL/Set.thy Thu Jul 14 00:16:41 2011 +0200
+++ b/src/HOL/Set.thy Thu Jul 14 00:20:43 2011 +0200
@@ -416,6 +416,14 @@
lemma ball_one_point2 [simp]: "(ALL x:A. a = x --> P x) = (a:A --> P a)"
by blast
+lemma ball_conj_distrib:
+ "(\<forall>x\<in>A. P x \<and> Q x) \<longleftrightarrow> ((\<forall>x\<in>A. P x) \<and> (\<forall>x\<in>A. Q x))"
+ by blast
+
+lemma bex_disj_distrib:
+ "(\<exists>x\<in>A. P x \<or> Q x) \<longleftrightarrow> ((\<exists>x\<in>A. P x) \<or> (\<exists>x\<in>A. Q x))"
+ by blast
+
text {* Congruence rules *}
@@ -535,7 +543,7 @@
lemma empty_def:
"{} = {x. False}"
- by (simp add: bot_fun_def bot_bool_def Collect_def)
+ by (simp add: bot_fun_def Collect_def)
lemma empty_iff [simp]: "(c : {}) = False"
by (simp add: empty_def)
@@ -568,7 +576,7 @@
lemma UNIV_def:
"UNIV = {x. True}"
- by (simp add: top_fun_def top_bool_def Collect_def)
+ by (simp add: top_fun_def Collect_def)
lemma UNIV_I [simp]: "x : UNIV"
by (simp add: UNIV_def)
@@ -627,7 +635,7 @@
subsubsection {* Set complement *}
lemma Compl_iff [simp]: "(c \<in> -A) = (c \<notin> A)"
- by (simp add: mem_def fun_Compl_def bool_Compl_def)
+ by (simp add: mem_def fun_Compl_def)
lemma ComplI [intro!]: "(c \<in> A ==> False) ==> c \<in> -A"
by (unfold mem_def fun_Compl_def bool_Compl_def) blast
@@ -638,7 +646,7 @@
right side of the notional turnstile ... *}
lemma ComplD [dest!]: "c : -A ==> c~:A"
- by (simp add: mem_def fun_Compl_def bool_Compl_def)
+ by (simp add: mem_def fun_Compl_def)
lemmas ComplE = ComplD [elim_format]
@@ -658,7 +666,7 @@
lemma Int_def:
"A \<inter> B = {x. x \<in> A \<and> x \<in> B}"
- by (simp add: inf_fun_def inf_bool_def Collect_def mem_def)
+ by (simp add: inf_fun_def Collect_def mem_def)
lemma Int_iff [simp]: "(c : A Int B) = (c:A & c:B)"
by (unfold Int_def) blast
@@ -692,7 +700,7 @@
lemma Un_def:
"A \<union> B = {x. x \<in> A \<or> x \<in> B}"
- by (simp add: sup_fun_def sup_bool_def Collect_def mem_def)
+ by (simp add: sup_fun_def Collect_def mem_def)
lemma Un_iff [simp]: "(c : A Un B) = (c:A | c:B)"
by (unfold Un_def) blast
@@ -724,7 +732,7 @@
subsubsection {* Set difference *}
lemma Diff_iff [simp]: "(c : A - B) = (c:A & c~:B)"
- by (simp add: mem_def fun_diff_def bool_diff_def)
+ by (simp add: mem_def fun_diff_def)
lemma DiffI [intro!]: "c : A ==> c ~: B ==> c : A - B"
by simp