--- a/src/HOL/IsaMakefile Wed Jun 01 08:07:28 2011 +0200
+++ b/src/HOL/IsaMakefile Wed Jun 01 09:10:13 2011 +0200
@@ -467,7 +467,8 @@
Library/Quotient_List.thy Library/Quotient_Option.thy \
Library/Quotient_Product.thy Library/Quotient_Sum.thy \
Library/Quotient_Syntax.thy Library/Quotient_Type.thy \
- Library/RBT.thy Library/RBT_Impl.thy Library/README.html \
+ Library/RBT.thy Library/RBT_Impl.thy Library/RBT_Mapping.thy \
+ Library/README.html \
Library/Set_Algebras.thy Library/State_Monad.thy Library/Ramsey.thy \
Library/Reflection.thy Library/SML_Quickcheck.thy \
Library/Sublist_Order.thy Library/Sum_of_Squares.thy \
--- a/src/HOL/Library/Library.thy Wed Jun 01 08:07:28 2011 +0200
+++ b/src/HOL/Library/Library.thy Wed Jun 01 09:10:13 2011 +0200
@@ -52,7 +52,7 @@
Quotient_Type
Ramsey
Reflection
- RBT
+ RBT_Mapping
Set_Algebras
SML_Quickcheck
State_Monad
--- a/src/HOL/Library/RBT.thy Wed Jun 01 08:07:28 2011 +0200
+++ b/src/HOL/Library/RBT.thy Wed Jun 01 09:10:13 2011 +0200
@@ -4,7 +4,7 @@
(*<*)
theory RBT
-imports Main RBT_Impl Mapping
+imports Main RBT_Impl
begin
subsection {* Type definition *}
@@ -171,189 +171,4 @@
by (simp add: keys_def RBT_Impl.keys_def distinct_entries)
-subsection {* Implementation of mappings *}
-
-definition Mapping :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> ('a, 'b) mapping" where
- "Mapping t = Mapping.Mapping (lookup t)"
-
-code_datatype Mapping
-
-lemma lookup_Mapping [simp, code]:
- "Mapping.lookup (Mapping t) = lookup t"
- by (simp add: Mapping_def)
-
-lemma empty_Mapping [code]:
- "Mapping.empty = Mapping empty"
- by (rule mapping_eqI) simp
-
-lemma is_empty_Mapping [code]:
- "Mapping.is_empty (Mapping t) \<longleftrightarrow> is_empty t"
- by (simp add: rbt_eq_iff Mapping.is_empty_empty Mapping_def)
-
-lemma insert_Mapping [code]:
- "Mapping.update k v (Mapping t) = Mapping (insert k v t)"
- by (rule mapping_eqI) simp
-
-lemma delete_Mapping [code]:
- "Mapping.delete k (Mapping t) = Mapping (delete k t)"
- by (rule mapping_eqI) simp
-
-lemma map_entry_Mapping [code]:
- "Mapping.map_entry k f (Mapping t) = Mapping (map_entry k f t)"
- by (rule mapping_eqI) simp
-
-lemma keys_Mapping [code]:
- "Mapping.keys (Mapping t) = set (keys t)"
- by (simp add: keys_def Mapping_def Mapping.keys_def lookup_def lookup_keys)
-
-lemma ordered_keys_Mapping [code]:
- "Mapping.ordered_keys (Mapping t) = keys t"
- by (rule sorted_distinct_set_unique) (simp_all add: ordered_keys_def keys_Mapping)
-
-lemma Mapping_size_card_keys: (*FIXME*)
- "Mapping.size m = card (Mapping.keys m)"
- by (simp add: Mapping.size_def Mapping.keys_def)
-
-lemma size_Mapping [code]:
- "Mapping.size (Mapping t) = length (keys t)"
- by (simp add: Mapping_size_card_keys keys_Mapping distinct_card)
-
-lemma tabulate_Mapping [code]:
- "Mapping.tabulate ks f = Mapping (bulkload (List.map (\<lambda>k. (k, f k)) ks))"
- by (rule mapping_eqI) (simp add: map_of_map_restrict)
-
-lemma bulkload_Mapping [code]:
- "Mapping.bulkload vs = Mapping (bulkload (List.map (\<lambda>n. (n, vs ! n)) [0..<length vs]))"
- by (rule mapping_eqI) (simp add: map_of_map_restrict fun_eq_iff)
-
-lemma equal_Mapping [code]:
- "HOL.equal (Mapping t1) (Mapping t2) \<longleftrightarrow> entries t1 = entries t2"
- by (simp add: equal Mapping_def entries_lookup)
-
-lemma [code nbe]:
- "HOL.equal (x :: (_, _) mapping) x \<longleftrightarrow> True"
- by (fact equal_refl)
-
-
-hide_const (open) impl_of lookup empty insert delete
- entries keys bulkload map_entry map fold
-(*>*)
-
-text {*
- This theory defines abstract red-black trees as an efficient
- representation of finite maps, backed by the implementation
- in @{theory RBT_Impl}.
-*}
-
-subsection {* Data type and invariant *}
-
-text {*
- The type @{typ "('k, 'v) RBT_Impl.rbt"} denotes red-black trees with
- keys of type @{typ "'k"} and values of type @{typ "'v"}. To function
- properly, the key type musorted belong to the @{text "linorder"}
- class.
-
- A value @{term t} of this type is a valid red-black tree if it
- satisfies the invariant @{text "is_rbt t"}. The abstract type @{typ
- "('k, 'v) rbt"} always obeys this invariant, and for this reason you
- should only use this in our application. Going back to @{typ "('k,
- 'v) RBT_Impl.rbt"} may be necessary in proofs if not yet proven
- properties about the operations must be established.
-
- The interpretation function @{const "RBT.lookup"} returns the partial
- map represented by a red-black tree:
- @{term_type[display] "RBT.lookup"}
-
- This function should be used for reasoning about the semantics of the RBT
- operations. Furthermore, it implements the lookup functionality for
- the data structure: It is executable and the lookup is performed in
- $O(\log n)$.
-*}
-
-subsection {* Operations *}
-
-text {*
- Currently, the following operations are supported:
-
- @{term_type [display] "RBT.empty"}
- Returns the empty tree. $O(1)$
-
- @{term_type [display] "RBT.insert"}
- Updates the map at a given position. $O(\log n)$
-
- @{term_type [display] "RBT.delete"}
- Deletes a map entry at a given position. $O(\log n)$
-
- @{term_type [display] "RBT.entries"}
- Return a corresponding key-value list for a tree.
-
- @{term_type [display] "RBT.bulkload"}
- Builds a tree from a key-value list.
-
- @{term_type [display] "RBT.map_entry"}
- Maps a single entry in a tree.
-
- @{term_type [display] "RBT.map"}
- Maps all values in a tree. $O(n)$
-
- @{term_type [display] "RBT.fold"}
- Folds over all entries in a tree. $O(n)$
-*}
-
-
-subsection {* Invariant preservation *}
-
-text {*
- \noindent
- @{thm Empty_is_rbt}\hfill(@{text "Empty_is_rbt"})
-
- \noindent
- @{thm insert_is_rbt}\hfill(@{text "insert_is_rbt"})
-
- \noindent
- @{thm delete_is_rbt}\hfill(@{text "delete_is_rbt"})
-
- \noindent
- @{thm bulkload_is_rbt}\hfill(@{text "bulkload_is_rbt"})
-
- \noindent
- @{thm map_entry_is_rbt}\hfill(@{text "map_entry_is_rbt"})
-
- \noindent
- @{thm map_is_rbt}\hfill(@{text "map_is_rbt"})
-
- \noindent
- @{thm union_is_rbt}\hfill(@{text "union_is_rbt"})
-*}
-
-
-subsection {* Map Semantics *}
-
-text {*
- \noindent
- \underline{@{text "lookup_empty"}}
- @{thm [display] lookup_empty}
- \vspace{1ex}
-
- \noindent
- \underline{@{text "lookup_insert"}}
- @{thm [display] lookup_insert}
- \vspace{1ex}
-
- \noindent
- \underline{@{text "lookup_delete"}}
- @{thm [display] lookup_delete}
- \vspace{1ex}
-
- \noindent
- \underline{@{text "lookup_bulkload"}}
- @{thm [display] lookup_bulkload}
- \vspace{1ex}
-
- \noindent
- \underline{@{text "lookup_map"}}
- @{thm [display] lookup_map}
- \vspace{1ex}
-*}
-
end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/RBT_Mapping.thy Wed Jun 01 09:10:13 2011 +0200
@@ -0,0 +1,195 @@
+(* Author: Florian Haftmann, TU Muenchen *)
+
+header {* Implementation of mappings with Red-Black Trees *}
+
+(*<*)
+theory RBT_Mapping
+imports RBT Mapping
+begin
+
+subsection {* Implementation of mappings *}
+
+definition Mapping :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> ('a, 'b) mapping" where
+ "Mapping t = Mapping.Mapping (lookup t)"
+
+code_datatype Mapping
+
+lemma lookup_Mapping [simp, code]:
+ "Mapping.lookup (Mapping t) = lookup t"
+ by (simp add: Mapping_def)
+
+lemma empty_Mapping [code]:
+ "Mapping.empty = Mapping empty"
+ by (rule mapping_eqI) simp
+
+lemma is_empty_Mapping [code]:
+ "Mapping.is_empty (Mapping t) \<longleftrightarrow> is_empty t"
+ by (simp add: rbt_eq_iff Mapping.is_empty_empty Mapping_def)
+
+lemma insert_Mapping [code]:
+ "Mapping.update k v (Mapping t) = Mapping (insert k v t)"
+ by (rule mapping_eqI) simp
+
+lemma delete_Mapping [code]:
+ "Mapping.delete k (Mapping t) = Mapping (delete k t)"
+ by (rule mapping_eqI) simp
+
+lemma map_entry_Mapping [code]:
+ "Mapping.map_entry k f (Mapping t) = Mapping (map_entry k f t)"
+ by (rule mapping_eqI) simp
+
+lemma keys_Mapping [code]:
+ "Mapping.keys (Mapping t) = set (keys t)"
+ by (simp add: RBT.keys_def Mapping_def Mapping.keys_def lookup_def lookup_keys)
+
+lemma ordered_keys_Mapping [code]:
+ "Mapping.ordered_keys (Mapping t) = keys t"
+ by (rule sorted_distinct_set_unique) (simp_all add: ordered_keys_def keys_Mapping)
+
+lemma Mapping_size_card_keys: (*FIXME*)
+ "Mapping.size m = card (Mapping.keys m)"
+ by (simp add: Mapping.size_def Mapping.keys_def)
+
+lemma size_Mapping [code]:
+ "Mapping.size (Mapping t) = length (keys t)"
+ by (simp add: Mapping_size_card_keys keys_Mapping distinct_card)
+
+lemma tabulate_Mapping [code]:
+ "Mapping.tabulate ks f = Mapping (bulkload (List.map (\<lambda>k. (k, f k)) ks))"
+ by (rule mapping_eqI) (simp add: map_of_map_restrict)
+
+lemma bulkload_Mapping [code]:
+ "Mapping.bulkload vs = Mapping (bulkload (List.map (\<lambda>n. (n, vs ! n)) [0..<length vs]))"
+ by (rule mapping_eqI) (simp add: map_of_map_restrict fun_eq_iff)
+
+lemma equal_Mapping [code]:
+ "HOL.equal (Mapping t1) (Mapping t2) \<longleftrightarrow> entries t1 = entries t2"
+ by (simp add: equal Mapping_def entries_lookup)
+
+lemma [code nbe]:
+ "HOL.equal (x :: (_, _) mapping) x \<longleftrightarrow> True"
+ by (fact equal_refl)
+
+
+hide_const (open) impl_of lookup empty insert delete
+ entries keys bulkload map_entry map fold
+(*>*)
+
+text {*
+ This theory defines abstract red-black trees as an efficient
+ representation of finite maps, backed by the implementation
+ in @{theory RBT_Impl}.
+*}
+
+subsection {* Data type and invariant *}
+
+text {*
+ The type @{typ "('k, 'v) RBT_Impl.rbt"} denotes red-black trees with
+ keys of type @{typ "'k"} and values of type @{typ "'v"}. To function
+ properly, the key type musorted belong to the @{text "linorder"}
+ class.
+
+ A value @{term t} of this type is a valid red-black tree if it
+ satisfies the invariant @{text "is_rbt t"}. The abstract type @{typ
+ "('k, 'v) rbt"} always obeys this invariant, and for this reason you
+ should only use this in our application. Going back to @{typ "('k,
+ 'v) RBT_Impl.rbt"} may be necessary in proofs if not yet proven
+ properties about the operations must be established.
+
+ The interpretation function @{const "RBT.lookup"} returns the partial
+ map represented by a red-black tree:
+ @{term_type[display] "RBT.lookup"}
+
+ This function should be used for reasoning about the semantics of the RBT
+ operations. Furthermore, it implements the lookup functionality for
+ the data structure: It is executable and the lookup is performed in
+ $O(\log n)$.
+*}
+
+subsection {* Operations *}
+
+text {*
+ Currently, the following operations are supported:
+
+ @{term_type [display] "RBT.empty"}
+ Returns the empty tree. $O(1)$
+
+ @{term_type [display] "RBT.insert"}
+ Updates the map at a given position. $O(\log n)$
+
+ @{term_type [display] "RBT.delete"}
+ Deletes a map entry at a given position. $O(\log n)$
+
+ @{term_type [display] "RBT.entries"}
+ Return a corresponding key-value list for a tree.
+
+ @{term_type [display] "RBT.bulkload"}
+ Builds a tree from a key-value list.
+
+ @{term_type [display] "RBT.map_entry"}
+ Maps a single entry in a tree.
+
+ @{term_type [display] "RBT.map"}
+ Maps all values in a tree. $O(n)$
+
+ @{term_type [display] "RBT.fold"}
+ Folds over all entries in a tree. $O(n)$
+*}
+
+
+subsection {* Invariant preservation *}
+
+text {*
+ \noindent
+ @{thm Empty_is_rbt}\hfill(@{text "Empty_is_rbt"})
+
+ \noindent
+ @{thm insert_is_rbt}\hfill(@{text "insert_is_rbt"})
+
+ \noindent
+ @{thm delete_is_rbt}\hfill(@{text "delete_is_rbt"})
+
+ \noindent
+ @{thm bulkload_is_rbt}\hfill(@{text "bulkload_is_rbt"})
+
+ \noindent
+ @{thm map_entry_is_rbt}\hfill(@{text "map_entry_is_rbt"})
+
+ \noindent
+ @{thm map_is_rbt}\hfill(@{text "map_is_rbt"})
+
+ \noindent
+ @{thm union_is_rbt}\hfill(@{text "union_is_rbt"})
+*}
+
+
+subsection {* Map Semantics *}
+
+text {*
+ \noindent
+ \underline{@{text "lookup_empty"}}
+ @{thm [display] lookup_empty}
+ \vspace{1ex}
+
+ \noindent
+ \underline{@{text "lookup_insert"}}
+ @{thm [display] lookup_insert}
+ \vspace{1ex}
+
+ \noindent
+ \underline{@{text "lookup_delete"}}
+ @{thm [display] lookup_delete}
+ \vspace{1ex}
+
+ \noindent
+ \underline{@{text "lookup_bulkload"}}
+ @{thm [display] lookup_bulkload}
+ \vspace{1ex}
+
+ \noindent
+ \underline{@{text "lookup_map"}}
+ @{thm [display] lookup_map}
+ \vspace{1ex}
+*}
+
+end
\ No newline at end of file