*** empty log message ***
authorwenzelm
Wed, 05 May 1999 18:08:01 +0200
changeset 6594 fe2f5024f89e
parent 6593 62204772812f
child 6595 fc06a79e1f09
*** empty log message ***
doc-src/HOL/Makefile
doc-src/HOL/logics-HOL.bbl
doc-src/HOL/logics-HOL.ind
doc-src/HOL/logics-HOL.rao
--- a/doc-src/HOL/Makefile	Wed May 05 18:07:38 1999 +0200
+++ b/doc-src/HOL/Makefile	Wed May 05 18:08:01 1999 +0200
@@ -1,34 +1,29 @@
-#  $Id$
-#########################################################################
-#									#
-#	Makefile for the report "Isabelle's Logics: HOL"		#
-#									#
-#########################################################################
+#
+# $Id$
+#
+
+## targets
+
+default: dvi
+dist: dvi
 
 
-FILES =  logics-HOL.tex ../Logics/syntax.tex HOL.tex \
+## dependencies
+
+include ../Makefile.in
+
+NAME = logics-HOL
+FILES = logics-HOL.tex ../Logics/syntax.tex HOL.tex \
 	 ../rail.sty ../proof.sty ../iman.sty ../extra.sty
 
-logics-HOL.dvi.gz:   $(FILES) 
-	test -r isabelle_hol.eps || ln -s ../gfx/isabelle_hol.eps .
-	-rm logics-HOL.dvi*
-	latex logics-HOL
-	rail logics-HOL
-	bibtex logics-HOL
-	latex logics-HOL
-	latex logics-HOL
-	../sedindex logics-HOL
-	latex logics-HOL
-	gzip -f logics-HOL.dvi
+dvi: $(NAME).dvi
 
-dist:   $(FILES) 
-	test -r isabelle_hol.eps || ln -s ../gfx/isabelle_hol.eps .
-	-rm logics-HOL.dvi*
-	latex logics-HOL
-	latex logics-HOL
-	../sedindex logics-HOL
-	latex logics-HOL
-
-clean:
-	@rm *.aux *.log *.toc *.idx *.rai
-
+$(NAME).dvi: $(FILES) isabelle_hol.eps
+	touch $(NAME).ind
+	$(LATEX) $(NAME)
+	$(RAIL) $(NAME)
+	$(BIBTEX) $(NAME)
+	$(LATEX) $(NAME)
+	$(LATEX) $(NAME)
+	$(SEDINDEX) $(NAME)
+	$(LATEX) $(NAME)
--- a/doc-src/HOL/logics-HOL.bbl	Wed May 05 18:07:38 1999 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,123 +0,0 @@
-\begin{thebibliography}{10}
-
-\bibitem{andrews86}
-Peter Andrews.
-\newblock {\em An Introduction to Mathematical Logic and Type Theory: to Truth
-  through Proof}.
-\newblock Computer Science and Applied Mathematics. Academic Press, 1986.
-
-\bibitem{church40}
-Alonzo Church.
-\newblock A formulation of the simple theory of types.
-\newblock {\em J. Symb. Logic}, 5:56--68, 1940.
-
-\bibitem{frost93}
-Jacob Frost.
-\newblock A case study of co-induction in {Isabelle HOL}.
-\newblock Technical Report 308, Computer Laboratory, University of Cambridge,
-  August 1993.
-
-\bibitem{mgordon-hol}
-M.~J.~C. Gordon and T.~F. Melham.
-\newblock {\em Introduction to {HOL}: A Theorem Proving Environment for Higher
-  Order Logic}.
-\newblock Cambridge University Press, 1993.
-
-\bibitem{mw81}
-Zohar Manna and Richard Waldinger.
-\newblock Deductive synthesis of the unification algorithm.
-\newblock {\em Science of Computer Programming}, 1(1):5--48, 1981.
-
-\bibitem{milner78}
-Robin Milner.
-\newblock A theory of type polymorphism in programming.
-\newblock {\em J. Comp.\ Sys.\ Sci.}, 17:348--375, 1978.
-
-\bibitem{milner-coind}
-Robin Milner and Mads Tofte.
-\newblock Co-induction in relational semantics.
-\newblock {\em Theoretical Computer Science}, 87:209--220, 1991.
-
-\bibitem{nipkow-W}
-Wolfgang Naraschewski and Tobias Nipkow.
-\newblock Type inference verified: Algorithm {W} in {Isabelle/HOL}.
-\newblock In E.~Gim\'enez and C.~Paulin-Mohring, editors, {\em Types for Proofs
-  and Programs: Intl. Workshop TYPES '96}, volume 1512 of {\em Lect.\ Notes in
-  Comp.\ Sci.}, pages 317--332. Springer-Verlag, 1998.
-
-\bibitem{NaraschewskiW-TPHOLs98}
-Wolfgang Naraschewski and Markus Wenzel.
-\newblock Object-oriented verification based on record subtyping in
-  higher-order logic.
-\newblock In {\em Theorem Proving in Higher Order Logics (TPHOLs'98)}, volume
-  1479 of {\em Lect.\ Notes in Comp.\ Sci.} Springer-Verlag, 1998.
-
-\bibitem{Nipkow-CR}
-Tobias Nipkow.
-\newblock More {Church-Rosser} proofs (in {Isabelle/HOL}).
-\newblock In M.~McRobbie and J.K. Slaney, editors, {\em Automated Deduction ---
-  CADE-13}, volume 1104 of {\em Lect.\ Notes in Comp.\ Sci.}, pages 733--747.
-  Springer-Verlag, 1996.
-
-\bibitem{nipkow-IMP}
-Tobias Nipkow.
-\newblock Winskel is (almost) right: Towards a mechanized semantics textbook.
-\newblock {\em Formal Aspects Comput.}, 10:171--186, 1998.
-
-\bibitem{paulson85}
-Lawrence~C. Paulson.
-\newblock Verifying the unification algorithm in {LCF}.
-\newblock {\em Science of Computer Programming}, 5:143--170, 1985.
-
-\bibitem{paulson-CADE}
-Lawrence~C. Paulson.
-\newblock A fixedpoint approach to implementing (co)inductive definitions.
-\newblock In Alan Bundy, editor, {\em Automated Deduction --- {CADE}-12
-  International Conference}, LNAI 814, pages 148--161. Springer, 1994.
-
-\bibitem{paulson-set-II}
-Lawrence~C. Paulson.
-\newblock Set theory for verification: {II}. {Induction} and recursion.
-\newblock {\em J. Auto. Reas.}, 15(2):167--215, 1995.
-
-\bibitem{paulson-coind}
-Lawrence~C. Paulson.
-\newblock Mechanizing coinduction and corecursion in higher-order logic.
-\newblock {\em J. Logic and Comput.}, 7(2):175--204, March 1997.
-
-\bibitem{paulson-jcs}
-Lawrence~C. Paulson.
-\newblock The inductive approach to verifying cryptographic protocols.
-\newblock {\em J. Comput. Secur.}, 6:85--128, 1998.
-
-\bibitem{paulson-COLOG}
-Lawrence~C. Paulson.
-\newblock A formulation of the simple theory of types (for {Isabelle}).
-\newblock In P.~Martin-L\"of and G.~Mints, editors, {\em COLOG-88:
-  International Conference on Computer Logic}, LNCS 417, pages 246--274,
-  Tallinn, Published 1990. Estonian Academy of Sciences, Springer.
-
-\bibitem{pelletier86}
-F.~J. Pelletier.
-\newblock Seventy-five problems for testing automatic theorem provers.
-\newblock {\em J. Auto. Reas.}, 2:191--216, 1986.
-\newblock Errata, JAR 4 (1988), 235--236 and JAR 18 (1997), 135.
-
-\bibitem{plaisted90}
-David~A. Plaisted.
-\newblock A sequent-style model elimination strategy and a positive refinement.
-\newblock {\em J. Auto. Reas.}, 6(4):389--402, 1990.
-
-\bibitem{slind-tfl}
-Konrad Slind.
-\newblock Function definition in higher order logic.
-\newblock In J.~von Wright, J.~Grundy, and J.~Harrison, editors, {\em Theorem
-  Proving in Higher Order Logics}, volume 1125 of {\em Lect.\ Notes in Comp.\
-  Sci.}, pages 381--397. Springer-Verlag, 1996.
-
-\bibitem{winskel93}
-Glynn Winskel.
-\newblock {\em The Formal Semantics of Programming Languages}.
-\newblock MIT Press, 1993.
-
-\end{thebibliography}
--- a/doc-src/HOL/logics-HOL.ind	Wed May 05 18:07:38 1999 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,439 +0,0 @@
-\begin{theindex}
-
-  \item {\tt !} symbol, 4, 6, 13, 14, 26
-  \item {\tt[]} symbol, 26
-  \item {\tt\#} symbol, 26
-  \item {\tt\&} symbol, 4
-  \item {\tt *} symbol, 5, 23
-  \item {\tt *} type, 21
-  \item {\tt +} symbol, 5, 23
-  \item {\tt +} type, 21
-  \item {\tt -} symbol, 5, 23
-  \item {\tt -->} symbol, 4
-  \item {\tt :} symbol, 12
-  \item {\tt <} constant, 24
-  \item {\tt <} symbol, 23
-  \item {\tt <=} constant, 24
-  \item {\tt <=} symbol, 12
-  \item {\tt =} symbol, 4
-  \item {\tt ?} symbol, 4, 6, 13, 14
-  \item {\tt ?!} symbol, 4
-  \item {\tt\at} symbol, 4, 26
-  \item {\tt ``} symbol, 12
-  \item \verb'{}' symbol, 12
-  \item {\tt |} symbol, 4
-
-  \indexspace
-
-  \item {\tt 0} constant, 23
-
-  \indexspace
-
-  \item {\tt Addsplits}, \bold{20}
-  \item {\tt addsplits}, \bold{20}, 25, 37
-  \item {\tt ALL} symbol, 4, 6, 13, 14
-  \item {\tt All} constant, 4
-  \item {\tt All_def} theorem, 8
-  \item {\tt all_dupE} theorem, 10
-  \item {\tt allE} theorem, 10
-  \item {\tt allI} theorem, 10
-  \item {\tt and_def} theorem, 8
-  \item {\tt arg_cong} theorem, 9
-  \item {\tt Arith} theory, 24
-  \item {\tt arith_tac}, 25
-
-  \indexspace
-
-  \item {\tt Ball} constant, 12, 14
-  \item {\tt Ball_def} theorem, 15
-  \item {\tt ballE} theorem, 16
-  \item {\tt ballI} theorem, 16
-  \item {\tt Bex} constant, 12, 14
-  \item {\tt Bex_def} theorem, 15
-  \item {\tt bexCI} theorem, 14, 16
-  \item {\tt bexE} theorem, 16
-  \item {\tt bexI} theorem, 14, 16
-  \item {\textit {bool}} type, 5
-  \item {\tt box_equals} theorem, 9, 11
-  \item {\tt bspec} theorem, 16
-  \item {\tt butlast} constant, 26
-
-  \indexspace
-
-  \item {\tt case} symbol, 7, 24, 25, 37
-  \item {\tt case_tac}, \bold{11}
-  \item {\tt ccontr} theorem, 10
-  \item {\tt classical} theorem, 10
-  \item {\tt coinductive}, 49--51
-  \item {\tt Collect} constant, 12, 14
-  \item {\tt Collect_mem_eq} theorem, 14, 15
-  \item {\tt CollectD} theorem, 16, 54
-  \item {\tt CollectE} theorem, 16
-  \item {\tt CollectI} theorem, 16, 55
-  \item {\tt Compl} constant, 12
-  \item {\tt Compl_def} theorem, 15
-  \item {\tt Compl_disjoint} theorem, 18
-  \item {\tt Compl_Int} theorem, 18
-  \item {\tt Compl_partition} theorem, 18
-  \item {\tt Compl_Un} theorem, 18
-  \item {\tt ComplD} theorem, 17
-  \item {\tt ComplI} theorem, 17
-  \item {\tt concat} constant, 26
-  \item {\tt cong} theorem, 9
-  \item {\tt conj_cong}, 19
-  \item {\tt conjE} theorem, 9
-  \item {\tt conjI} theorem, 9
-  \item {\tt conjunct1} theorem, 9
-  \item {\tt conjunct2} theorem, 9
-  \item {\tt context}, 55
-
-  \indexspace
-
-  \item {\tt datatype}, 34--42
-  \item {\tt Delsplits}, \bold{20}
-  \item {\tt delsplits}, \bold{20}
-  \item {\tt disjCI} theorem, 10
-  \item {\tt disjE} theorem, 9
-  \item {\tt disjI1} theorem, 9
-  \item {\tt disjI2} theorem, 9
-  \item {\tt div} symbol, 23
-  \item {\tt div_geq} theorem, 24
-  \item {\tt div_less} theorem, 24
-  \item {\tt Divides} theory, 24
-  \item {\tt double_complement} theorem, 18
-  \item {\tt drop} constant, 26
-  \item {\tt dropWhile} constant, 26
-
-  \indexspace
-
-  \item {\tt empty_def} theorem, 15
-  \item {\tt emptyE} theorem, 17
-  \item {\tt Eps} constant, 4, 6
-  \item {\tt equalityCE} theorem, 14, 16, 54, 55
-  \item {\tt equalityD1} theorem, 16
-  \item {\tt equalityD2} theorem, 16
-  \item {\tt equalityE} theorem, 16
-  \item {\tt equalityI} theorem, 16
-  \item {\tt EX} symbol, 4, 6, 13, 14
-  \item {\tt Ex} constant, 4
-  \item {\tt EX!} symbol, 4
-  \item {\tt Ex1} constant, 4
-  \item {\tt Ex1_def} theorem, 8
-  \item {\tt ex1E} theorem, 10
-  \item {\tt ex1I} theorem, 10
-  \item {\tt Ex_def} theorem, 8
-  \item {\tt exCI} theorem, 10
-  \item {\tt excluded_middle} theorem, 10
-  \item {\tt exE} theorem, 10
-  \item {\tt exhaust_tac}, \bold{38}
-  \item {\tt exI} theorem, 10
-  \item {\tt Exp} theory, 53
-  \item {\tt ext} theorem, 7, 8
-
-  \indexspace
-
-  \item {\tt False} constant, 4
-  \item {\tt False_def} theorem, 8
-  \item {\tt FalseE} theorem, 9
-  \item {\tt filter} constant, 26
-  \item {\tt foldl} constant, 26
-  \item {\tt fst} constant, 21
-  \item {\tt fst_conv} theorem, 21
-  \item {\tt Fun} theory, 19
-  \item {\textit {fun}} type, 5
-  \item {\tt fun_cong} theorem, 9
-
-  \indexspace
-
-  \item {\tt hd} constant, 26
-  \item higher-order logic, 3--55
-  \item {\tt HOL} theory, 3
-  \item {\sc hol} system, 3, 6
-  \item {\tt HOL_basic_ss}, \bold{19}
-  \item {\tt HOL_cs}, \bold{20}
-  \item {\tt HOL_quantifiers}, \bold{6}, 14
-  \item {\tt HOL_ss}, \bold{19}
-  \item {\tt hyp_subst_tac}, 19
-
-  \indexspace
-
-  \item {\tt If} constant, 4
-  \item {\tt if_def} theorem, 8
-  \item {\tt if_not_P} theorem, 10
-  \item {\tt if_P} theorem, 10
-  \item {\tt iff} theorem, 7, 8
-  \item {\tt iffCE} theorem, 10, 14
-  \item {\tt iffD1} theorem, 9
-  \item {\tt iffD2} theorem, 9
-  \item {\tt iffE} theorem, 9
-  \item {\tt iffI} theorem, 9
-  \item {\tt image_def} theorem, 15
-  \item {\tt imageE} theorem, 17
-  \item {\tt imageI} theorem, 17
-  \item {\tt impCE} theorem, 10
-  \item {\tt impE} theorem, 9
-  \item {\tt impI} theorem, 7
-  \item {\tt in} symbol, 5
-  \item {\textit {ind}} type, 22
-  \item {\tt induct_tac}, 24, \bold{38}
-  \item {\tt inductive}, 49--51
-  \item {\tt inj} constant, 19
-  \item {\tt inj_def} theorem, 19
-  \item {\tt inj_Inl} theorem, 23
-  \item {\tt inj_Inr} theorem, 23
-  \item {\tt inj_on} constant, 19
-  \item {\tt inj_on_def} theorem, 19
-  \item {\tt inj_Suc} theorem, 23
-  \item {\tt Inl} constant, 23
-  \item {\tt Inl_not_Inr} theorem, 23
-  \item {\tt Inr} constant, 23
-  \item {\tt insert} constant, 12
-  \item {\tt insert_def} theorem, 15
-  \item {\tt insertE} theorem, 17
-  \item {\tt insertI1} theorem, 17
-  \item {\tt insertI2} theorem, 17
-  \item {\tt INT} symbol, 12--14
-  \item {\tt Int} symbol, 12
-  \item {\tt Int_absorb} theorem, 18
-  \item {\tt Int_assoc} theorem, 18
-  \item {\tt Int_commute} theorem, 18
-  \item {\tt INT_D} theorem, 17
-  \item {\tt Int_def} theorem, 15
-  \item {\tt INT_E} theorem, 17
-  \item {\tt Int_greatest} theorem, 18
-  \item {\tt INT_I} theorem, 17
-  \item {\tt Int_Inter_image} theorem, 18
-  \item {\tt Int_lower1} theorem, 18
-  \item {\tt Int_lower2} theorem, 18
-  \item {\tt Int_Un_distrib} theorem, 18
-  \item {\tt Int_Union} theorem, 18
-  \item {\tt IntD1} theorem, 17
-  \item {\tt IntD2} theorem, 17
-  \item {\tt IntE} theorem, 17
-  \item {\tt INTER} constant, 12
-  \item {\tt Inter} constant, 12
-  \item {\tt INTER1} constant, 12
-  \item {\tt INTER1_def} theorem, 15
-  \item {\tt INTER_def} theorem, 15
-  \item {\tt Inter_def} theorem, 15
-  \item {\tt Inter_greatest} theorem, 18
-  \item {\tt Inter_lower} theorem, 18
-  \item {\tt Inter_Un_distrib} theorem, 18
-  \item {\tt InterD} theorem, 17
-  \item {\tt InterE} theorem, 17
-  \item {\tt InterI} theorem, 17
-  \item {\tt IntI} theorem, 17
-  \item {\tt inv} constant, 19
-  \item {\tt inv_def} theorem, 19
-
-  \indexspace
-
-  \item {\tt last} constant, 26
-  \item {\tt LEAST} constant, 5, 6, 24
-  \item {\tt Least} constant, 4
-  \item {\tt Least_def} theorem, 8
-  \item {\tt length} constant, 26
-  \item {\tt less_induct} theorem, 25
-  \item {\tt Let} constant, 4, 7
-  \item {\tt let} symbol, 5, 7
-  \item {\tt Let_def} theorem, 7, 8
-  \item {\tt LFilter} theory, 53
-  \item {\tt List} theory, 25, 26
-  \item {\textit{list}} type, 25
-  \item {\tt LList} theory, 52
-
-  \indexspace
-
-  \item {\tt map} constant, 26
-  \item {\tt max} constant, 5, 24
-  \item {\tt mem} symbol, 26
-  \item {\tt mem_Collect_eq} theorem, 14, 15
-  \item {\tt min} constant, 5, 24
-  \item {\tt minus} class, 5
-  \item {\tt mod} symbol, 23
-  \item {\tt mod_geq} theorem, 24
-  \item {\tt mod_less} theorem, 24
-  \item {\tt mono} constant, 5
-  \item {\tt mp} theorem, 7
-  \item {\tt mutual_induct_tac}, \bold{38}
-
-  \indexspace
-
-  \item {\tt n_not_Suc_n} theorem, 23
-  \item {\tt Nat} theory, 24
-  \item {\textit {nat}} type, 23, 24
-  \item {\textit{nat}} type, 22--25
-  \item {\tt nat_induct} theorem, 23
-  \item {\tt nat_rec} constant, 24
-  \item {\tt NatDef} theory, 22
-  \item {\tt Not} constant, 4
-  \item {\tt not_def} theorem, 8
-  \item {\tt not_sym} theorem, 9
-  \item {\tt notE} theorem, 9
-  \item {\tt notI} theorem, 9
-  \item {\tt notnotD} theorem, 10
-  \item {\tt null} constant, 26
-
-  \indexspace
-
-  \item {\tt o} symbol, 4, 15
-  \item {\tt o_def} theorem, 8
-  \item {\tt of} symbol, 7
-  \item {\tt or_def} theorem, 8
-  \item {\tt Ord} theory, 5
-  \item {\tt ord} class, 5, 6, 24
-  \item {\tt order} class, 5, 24
-
-  \indexspace
-
-  \item {\tt Pair} constant, 21
-  \item {\tt Pair_eq} theorem, 21
-  \item {\tt Pair_inject} theorem, 21
-  \item {\tt PairE} theorem, 21
-  \item {\tt plus} class, 5
-  \item {\tt Pow} constant, 12
-  \item {\tt Pow_def} theorem, 15
-  \item {\tt PowD} theorem, 17
-  \item {\tt PowI} theorem, 17
-  \item {\tt primrec}, 43--46
-  \item {\tt primrec} symbol, 24
-  \item priorities, 1
-  \item {\tt Prod} theory, 21
-  \item {\tt prop_cs}, \bold{20}
-
-  \indexspace
-
-  \item {\tt qed_spec_mp}, 41
-
-  \indexspace
-
-  \item {\tt range} constant, 12, 54
-  \item {\tt range_def} theorem, 15
-  \item {\tt rangeE} theorem, 17, 54
-  \item {\tt rangeI} theorem, 17
-  \item {\tt recdef}, 46--49
-  \item {\tt record}, 31
-  \item {\tt record_split_tac}, 33, 34
-  \item recursion
-    \subitem general, 46--49
-    \subitem primitive, 43--46
-  \item recursive functions, \see{recursion}{42}
-  \item {\tt refl} theorem, 7
-  \item {\tt res_inst_tac}, 6
-  \item {\tt rev} constant, 26
-
-  \indexspace
-
-  \item search
-    \subitem best-first, 55
-  \item {\tt select_equality} theorem, 8, 10
-  \item {\tt selectI} theorem, 7, 8
-  \item {\tt Set} theory, 11, 14
-  \item {\tt set} constant, 26
-  \item {\tt set} type, 11
-  \item {\tt set_diff_def} theorem, 15
-  \item {\tt show_sorts}, 6
-  \item {\tt show_types}, 6
-  \item {\tt Sigma} constant, 21
-  \item {\tt Sigma_def} theorem, 21
-  \item {\tt SigmaE} theorem, 21
-  \item {\tt SigmaI} theorem, 21
-  \item simplification
-    \subitem of conjunctions, 19
-  \item {\tt size} constant, 38
-  \item {\tt snd} constant, 21
-  \item {\tt snd_conv} theorem, 21
-  \item {\tt spec} theorem, 10
-  \item {\tt split} constant, 21
-  \item {\tt split} theorem, 21
-  \item {\tt split_all_tac}, \bold{22}
-  \item {\tt split_if} theorem, 10, 20
-  \item {\tt split_list_case} theorem, 25
-  \item {\tt split_split} theorem, 21
-  \item {\tt split_sum_case} theorem, 23
-  \item {\tt ssubst} theorem, 9, 11
-  \item {\tt stac}, \bold{19}
-  \item {\tt strip_tac}, \bold{11}
-  \item {\tt subset_def} theorem, 15
-  \item {\tt subset_refl} theorem, 16
-  \item {\tt subset_trans} theorem, 16
-  \item {\tt subsetCE} theorem, 14, 16
-  \item {\tt subsetD} theorem, 14, 16
-  \item {\tt subsetI} theorem, 16
-  \item {\tt subst} theorem, 7
-  \item {\tt Suc} constant, 23
-  \item {\tt Suc_not_Zero} theorem, 23
-  \item {\tt Sum} theory, 22
-  \item {\tt sum_case} constant, 23
-  \item {\tt sum_case_Inl} theorem, 23
-  \item {\tt sum_case_Inr} theorem, 23
-  \item {\tt sumE} theorem, 23
-  \item {\tt surj} constant, 15, 19
-  \item {\tt surj_def} theorem, 19
-  \item {\tt surjective_pairing} theorem, 21
-  \item {\tt surjective_sum} theorem, 23
-  \item {\tt swap} theorem, 10
-  \item {\tt swap_res_tac}, 55
-  \item {\tt sym} theorem, 9
-
-  \indexspace
-
-  \item {\tt take} constant, 26
-  \item {\tt takeWhile} constant, 26
-  \item {\tt term} class, 5
-  \item {\tt times} class, 5
-  \item {\tt tl} constant, 26
-  \item tracing
-    \subitem of unification, 6
-  \item {\tt trans} theorem, 9
-  \item {\tt True} constant, 4
-  \item {\tt True_def} theorem, 8
-  \item {\tt True_or_False} theorem, 7, 8
-  \item {\tt TrueI} theorem, 9
-  \item {\tt Trueprop} constant, 4
-  \item type definition, \bold{28}
-  \item {\tt typedef}, 25
-
-  \indexspace
-
-  \item {\tt UN} symbol, 12--14
-  \item {\tt Un} symbol, 12
-  \item {\tt Un1} theorem, 14
-  \item {\tt Un2} theorem, 14
-  \item {\tt Un_absorb} theorem, 18
-  \item {\tt Un_assoc} theorem, 18
-  \item {\tt Un_commute} theorem, 18
-  \item {\tt Un_def} theorem, 15
-  \item {\tt UN_E} theorem, 17
-  \item {\tt UN_I} theorem, 17
-  \item {\tt Un_Int_distrib} theorem, 18
-  \item {\tt Un_Inter} theorem, 18
-  \item {\tt Un_least} theorem, 18
-  \item {\tt Un_Union_image} theorem, 18
-  \item {\tt Un_upper1} theorem, 18
-  \item {\tt Un_upper2} theorem, 18
-  \item {\tt UnCI} theorem, 14, 17
-  \item {\tt UnE} theorem, 17
-  \item {\tt UnI1} theorem, 17
-  \item {\tt UnI2} theorem, 17
-  \item unification
-    \subitem incompleteness of, 6
-  \item {\tt Unify.trace_types}, 6
-  \item {\tt UNION} constant, 12
-  \item {\tt Union} constant, 12
-  \item {\tt UNION1} constant, 12
-  \item {\tt UNION1_def} theorem, 15
-  \item {\tt UNION_def} theorem, 15
-  \item {\tt Union_def} theorem, 15
-  \item {\tt Union_least} theorem, 18
-  \item {\tt Union_Un_distrib} theorem, 18
-  \item {\tt Union_upper} theorem, 18
-  \item {\tt UnionE} theorem, 17
-  \item {\tt UnionI} theorem, 17
-  \item {\tt unit_eq} theorem, 22
-
-  \indexspace
-
-  \item {\tt ZF} theory, 3
-
-\end{theindex}
--- a/doc-src/HOL/logics-HOL.rao	Wed May 05 18:07:38 1999 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,122 +0,0 @@
-% This file was generated by 'rail' from 'logics-HOL.rai'
-\rail@i {1}{ typedef : 'typedef' ( () | '(' name ')') type '=' set witness; \par type : typevarlist name ( () | '(' infix ')' ); set : string; witness : () | '(' id ')'; }
-\rail@o {1}{
-\rail@begin{2}{typedef}
-\rail@term{typedef}[]
-\rail@bar
-\rail@nextbar{1}
-\rail@term{(}[]
-\rail@nont{name}[]
-\rail@term{)}[]
-\rail@endbar
-\rail@nont{type}[]
-\rail@term{=}[]
-\rail@nont{set}[]
-\rail@nont{witness}[]
-\rail@end
-\rail@begin{2}{type}
-\rail@nont{typevarlist}[]
-\rail@nont{name}[]
-\rail@bar
-\rail@nextbar{1}
-\rail@term{(}[]
-\rail@nont{infix}[]
-\rail@term{)}[]
-\rail@endbar
-\rail@end
-\rail@begin{1}{set}
-\rail@nont{string}[]
-\rail@end
-\rail@begin{2}{witness}
-\rail@bar
-\rail@nextbar{1}
-\rail@term{(}[]
-\rail@nont{id}[]
-\rail@term{)}[]
-\rail@endbar
-\rail@end
-}
-\rail@i {2}{ record : 'record' typevarlist name '=' parent (field +); \par parent : ( () | type '+'); field : name '::' type; }
-\rail@o {2}{
-\rail@begin{2}{record}
-\rail@term{record}[]
-\rail@nont{typevarlist}[]
-\rail@nont{name}[]
-\rail@term{=}[]
-\rail@nont{parent}[]
-\rail@plus
-\rail@nont{field}[]
-\rail@nextplus{1}
-\rail@endplus
-\rail@end
-\rail@begin{2}{parent}
-\rail@bar
-\rail@nextbar{1}
-\rail@nont{type}[]
-\rail@term{+}[]
-\rail@endbar
-\rail@end
-\rail@begin{1}{field}
-\rail@nont{name}[]
-\rail@term{::}[]
-\rail@nont{type}[]
-\rail@end
-}
-\rail@i {3}{ datatype : 'datatype' typedecls; \par typedecls: ( newtype '=' (cons + '|') ) + 'and' ; newtype : typevarlist id ( () | '(' infix ')' ) ; cons : name (argtype *) ( () | ( '(' mixfix ')' ) ) ; argtype : id | tid | ('(' typevarlist id ')') ; }
-\rail@o {3}{
-\rail@begin{1}{datatype}
-\rail@term{datatype}[]
-\rail@nont{typedecls}[]
-\rail@end
-\rail@begin{3}{typedecls}
-\rail@plus
-\rail@nont{newtype}[]
-\rail@term{=}[]
-\rail@plus
-\rail@nont{cons}[]
-\rail@nextplus{1}
-\rail@cterm{|}[]
-\rail@endplus
-\rail@nextplus{2}
-\rail@cterm{and}[]
-\rail@endplus
-\rail@end
-\rail@begin{2}{newtype}
-\rail@nont{typevarlist}[]
-\rail@nont{id}[]
-\rail@bar
-\rail@nextbar{1}
-\rail@term{(}[]
-\rail@nont{infix}[]
-\rail@term{)}[]
-\rail@endbar
-\rail@end
-\rail@begin{3}{cons}
-\rail@nont{name}[]
-\rail@bar
-\rail@nextbar{1}
-\rail@plus
-\rail@nont{argtype}[]
-\rail@nextplus{2}
-\rail@endplus
-\rail@endbar
-\rail@bar
-\rail@nextbar{1}
-\rail@term{(}[]
-\rail@nont{mixfix}[]
-\rail@term{)}[]
-\rail@endbar
-\rail@end
-\rail@begin{3}{argtype}
-\rail@bar
-\rail@nont{id}[]
-\rail@nextbar{1}
-\rail@nont{tid}[]
-\rail@nextbar{2}
-\rail@term{(}[]
-\rail@nont{typevarlist}[]
-\rail@nont{id}[]
-\rail@term{)}[]
-\rail@endbar
-\rail@end
-}