Moved definition of normal forms to new NormalForm theory.
--- a/src/HOL/Lambda/WeakNorm.thy Thu Sep 06 11:41:04 2007 +0200
+++ b/src/HOL/Lambda/WeakNorm.thy Thu Sep 06 11:44:21 2007 +0200
@@ -7,7 +7,7 @@
header {* Weak normalization for simply-typed lambda calculus *}
theory WeakNorm
-imports Type Pretty_Int
+imports Type NormalForm Pretty_Int
begin
text {*
@@ -16,165 +16,6 @@
*}
-subsection {* Terms in normal form *}
-
-definition
- listall :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool" where
- "listall P xs \<equiv> (\<forall>i. i < length xs \<longrightarrow> P (xs ! i))"
-
-declare listall_def [extraction_expand]
-
-theorem listall_nil: "listall P []"
- by (simp add: listall_def)
-
-theorem listall_nil_eq [simp]: "listall P [] = True"
- by (iprover intro: listall_nil)
-
-theorem listall_cons: "P x \<Longrightarrow> listall P xs \<Longrightarrow> listall P (x # xs)"
- apply (simp add: listall_def)
- apply (rule allI impI)+
- apply (case_tac i)
- apply simp+
- done
-
-theorem listall_cons_eq [simp]: "listall P (x # xs) = (P x \<and> listall P xs)"
- apply (rule iffI)
- prefer 2
- apply (erule conjE)
- apply (erule listall_cons)
- apply assumption
- apply (unfold listall_def)
- apply (rule conjI)
- apply (erule_tac x=0 in allE)
- apply simp
- apply simp
- apply (rule allI)
- apply (erule_tac x="Suc i" in allE)
- apply simp
- done
-
-lemma listall_conj1: "listall (\<lambda>x. P x \<and> Q x) xs \<Longrightarrow> listall P xs"
- by (induct xs) simp_all
-
-lemma listall_conj2: "listall (\<lambda>x. P x \<and> Q x) xs \<Longrightarrow> listall Q xs"
- by (induct xs) simp_all
-
-lemma listall_app: "listall P (xs @ ys) = (listall P xs \<and> listall P ys)"
- apply (induct xs)
- apply (rule iffI, simp, simp)
- apply (rule iffI, simp, simp)
- done
-
-lemma listall_snoc [simp]: "listall P (xs @ [x]) = (listall P xs \<and> P x)"
- apply (rule iffI)
- apply (simp add: listall_app)+
- done
-
-lemma listall_cong [cong, extraction_expand]:
- "xs = ys \<Longrightarrow> listall P xs = listall P ys"
- -- {* Currently needed for strange technical reasons *}
- by (unfold listall_def) simp
-
-inductive NF :: "dB \<Rightarrow> bool"
-where
- App: "listall NF ts \<Longrightarrow> NF (Var x \<degree>\<degree> ts)"
-| Abs: "NF t \<Longrightarrow> NF (Abs t)"
-monos listall_def
-
-lemma nat_eq_dec: "\<And>n::nat. m = n \<or> m \<noteq> n"
- apply (induct m)
- apply (case_tac n)
- apply (case_tac [3] n)
- apply (simp only: nat.simps, iprover?)+
- done
-
-lemma nat_le_dec: "\<And>n::nat. m < n \<or> \<not> (m < n)"
- apply (induct m)
- apply (case_tac n)
- apply (case_tac [3] n)
- apply (simp del: simp_thms, iprover?)+
- done
-
-lemma App_NF_D: assumes NF: "NF (Var n \<degree>\<degree> ts)"
- shows "listall NF ts" using NF
- by cases simp_all
-
-
-subsection {* Properties of @{text NF} *}
-
-lemma Var_NF: "NF (Var n)"
- apply (subgoal_tac "NF (Var n \<degree>\<degree> [])")
- apply simp
- apply (rule NF.App)
- apply simp
- done
-
-lemma subst_terms_NF: "listall NF ts \<Longrightarrow>
- listall (\<lambda>t. \<forall>i j. NF (t[Var i/j])) ts \<Longrightarrow>
- listall NF (map (\<lambda>t. t[Var i/j]) ts)"
- by (induct ts) simp_all
-
-lemma subst_Var_NF: "NF t \<Longrightarrow> NF (t[Var i/j])"
- apply (induct arbitrary: i j set: NF)
- apply simp
- apply (frule listall_conj1)
- apply (drule listall_conj2)
- apply (drule_tac i=i and j=j in subst_terms_NF)
- apply assumption
- apply (rule_tac m=x and n=j in nat_eq_dec [THEN disjE, standard])
- apply simp
- apply (erule NF.App)
- apply (rule_tac m=j and n=x in nat_le_dec [THEN disjE, standard])
- apply simp
- apply (iprover intro: NF.App)
- apply simp
- apply (iprover intro: NF.App)
- apply simp
- apply (iprover intro: NF.Abs)
- done
-
-lemma app_Var_NF: "NF t \<Longrightarrow> \<exists>t'. t \<degree> Var i \<rightarrow>\<^sub>\<beta>\<^sup>* t' \<and> NF t'"
- apply (induct set: NF)
- apply (simplesubst app_last) --{*Using @{text subst} makes extraction fail*}
- apply (rule exI)
- apply (rule conjI)
- apply (rule rtranclp.rtrancl_refl)
- apply (rule NF.App)
- apply (drule listall_conj1)
- apply (simp add: listall_app)
- apply (rule Var_NF)
- apply (rule exI)
- apply (rule conjI)
- apply (rule rtranclp.rtrancl_into_rtrancl)
- apply (rule rtranclp.rtrancl_refl)
- apply (rule beta)
- apply (erule subst_Var_NF)
- done
-
-lemma lift_terms_NF: "listall NF ts \<Longrightarrow>
- listall (\<lambda>t. \<forall>i. NF (lift t i)) ts \<Longrightarrow>
- listall NF (map (\<lambda>t. lift t i) ts)"
- by (induct ts) simp_all
-
-lemma lift_NF: "NF t \<Longrightarrow> NF (lift t i)"
- apply (induct arbitrary: i set: NF)
- apply (frule listall_conj1)
- apply (drule listall_conj2)
- apply (drule_tac i=i in lift_terms_NF)
- apply assumption
- apply (rule_tac m=x and n=i in nat_le_dec [THEN disjE, standard])
- apply simp
- apply (rule NF.App)
- apply assumption
- apply simp
- apply (rule NF.App)
- apply assumption
- apply simp
- apply (rule NF.Abs)
- apply simp
- done
-
-
subsection {* Main theorems *}
lemma norm_list: