author | huffman |
Wed, 09 May 2007 18:25:21 +0200 | |
changeset 22888 | ff6559234a89 |
parent 22887 | 2a3e9c7b894c |
child 22889 | f3bb32a68f16 |
--- a/src/HOL/Hyperreal/HyperDef.thy Wed May 09 07:53:08 2007 +0200 +++ b/src/HOL/Hyperreal/HyperDef.thy Wed May 09 18:25:21 2007 +0200 @@ -562,4 +562,9 @@ lemma hyperpow_hypnat_of_nat: "\<And>x. x pow hypnat_of_nat n = x ^ n" by transfer (rule refl) +lemma of_hypreal_hyperpow: + "\<And>x n. of_hypreal (x pow n) = + (of_hypreal x::'a::{real_algebra_1,recpower} star) pow n" +by transfer (rule of_real_power) + end