rename lub_fun -> is_lub_fun, thelub_fun -> lub_fun
authorhuffman
Mon, 06 Dec 2010 10:08:33 -0800
changeset 41030 ff7d177128ef
parent 41029 f7d8cfa6e7fc
child 41031 9883d1417ce1
rename lub_fun -> is_lub_fun, thelub_fun -> lub_fun
NEWS
src/HOL/HOLCF/Cfun.thy
src/HOL/HOLCF/Fun_Cpo.thy
--- a/NEWS	Mon Dec 06 08:59:58 2010 -0800
+++ b/NEWS	Mon Dec 06 10:08:33 2010 -0800
@@ -524,6 +524,8 @@
   unique_lub      ~> is_lub_unique
   is_ub_lub       ~> is_lub_rangeD1
   lub_bin_chain   ~> is_lub_bin_chain
+  lub_fun         ~> is_lub_fun
+  thelub_fun      ~> lub_fun
   thelub_Pair     ~> lub_Pair
   lub_cprod       ~> is_lub_prod
   thelub_cprod    ~> lub_prod
--- a/src/HOL/HOLCF/Cfun.thy	Mon Dec 06 08:59:58 2010 -0800
+++ b/src/HOL/HOLCF/Cfun.thy	Mon Dec 06 10:08:33 2010 -0800
@@ -260,7 +260,7 @@
     \<Longrightarrow> (\<Squnion>i. \<Lambda> x. F i x) = (\<Lambda> x. \<Squnion>i. F i x)"
 apply (simp add: lub_cfun)
 apply (simp add: Abs_cfun_inverse2)
-apply (simp add: thelub_fun ch2ch_lambda)
+apply (simp add: lub_fun ch2ch_lambda)
 done
 
 lemmas lub_distribs = lub_APP lub_LAM
--- a/src/HOL/HOLCF/Fun_Cpo.thy	Mon Dec 06 08:59:58 2010 -0800
+++ b/src/HOL/HOLCF/Fun_Cpo.thy	Mon Dec 06 10:08:33 2010 -0800
@@ -57,19 +57,13 @@
 lemma ch2ch_lambda: "(\<And>x. chain (\<lambda>i. S i x)) \<Longrightarrow> chain S"
 by (simp add: chain_def below_fun_def)
 
-text {* upper bounds of function chains yield upper bound in the po range *}
-
-lemma ub2ub_fun:
-  "range S <| u \<Longrightarrow> range (\<lambda>i. S i x) <| u x"
-by (auto simp add: is_ub_def below_fun_def)
-
 text {* Type @{typ "'a::type => 'b::cpo"} is chain complete *}
 
 lemma is_lub_lambda:
   "(\<And>x. range (\<lambda>i. Y i x) <<| f x) \<Longrightarrow> range Y <<| f"
 unfolding is_lub_def is_ub_def below_fun_def by simp
 
-lemma lub_fun:
+lemma is_lub_fun:
   "chain (S::nat \<Rightarrow> 'a::type \<Rightarrow> 'b::cpo)
     \<Longrightarrow> range S <<| (\<lambda>x. \<Squnion>i. S i x)"
 apply (rule is_lub_lambda)
@@ -77,13 +71,13 @@
 apply (erule ch2ch_fun)
 done
 
-lemma thelub_fun:
+lemma lub_fun:
   "chain (S::nat \<Rightarrow> 'a::type \<Rightarrow> 'b::cpo)
     \<Longrightarrow> (\<Squnion>i. S i) = (\<lambda>x. \<Squnion>i. S i x)"
-by (rule lub_fun [THEN lub_eqI])
+by (rule is_lub_fun [THEN lub_eqI])
 
 instance "fun"  :: (type, cpo) cpo
-by intro_classes (rule exI, erule lub_fun)
+by intro_classes (rule exI, erule is_lub_fun)
 
 subsection {* Chain-finiteness of function space *}
 
@@ -135,12 +129,12 @@
 text {* The lub of a chain of monotone functions is monotone. *}
 
 lemma adm_monofun: "adm monofun"
-by (rule admI, simp add: thelub_fun fun_chain_iff monofun_def lub_mono)
+by (rule admI, simp add: lub_fun fun_chain_iff monofun_def lub_mono)
 
 text {* The lub of a chain of continuous functions is continuous. *}
 
 lemma adm_cont: "adm cont"
-by (rule admI, simp add: thelub_fun fun_chain_iff)
+by (rule admI, simp add: lub_fun fun_chain_iff)
 
 text {* Function application preserves monotonicity and continuity. *}
 
@@ -150,7 +144,7 @@
 lemma cont2cont_fun: "cont f \<Longrightarrow> cont (\<lambda>x. f x y)"
 apply (rule contI2)
 apply (erule cont2mono [THEN mono2mono_fun])
-apply (simp add: cont2contlubE thelub_fun ch2ch_cont)
+apply (simp add: cont2contlubE lub_fun ch2ch_cont)
 done
 
 lemma cont_fun: "cont (\<lambda>f. f x)"
@@ -174,6 +168,6 @@
 lemma contlub_lambda:
   "(\<And>x::'a::type. chain (\<lambda>i. S i x::'b::cpo))
     \<Longrightarrow> (\<lambda>x. \<Squnion>i. S i x) = (\<Squnion>i. (\<lambda>x. S i x))"
-by (simp add: thelub_fun ch2ch_lambda)
+by (simp add: lub_fun ch2ch_lambda)
 
 end