Theory PropLog
section ‹Meta-theory of propositional logic›
theory PropLog imports ZF begin
text ‹
Datatype definition of propositional logic formulae and inductive
definition of the propositional tautologies.
Inductive definition of propositional logic. Soundness and
completeness w.r.t.\ truth-tables.
Prove: If ‹H |= p› then ‹G |= p› where ‹G ∈
Fin(H)›
›
subsection ‹The datatype of propositions›
consts
propn :: i
datatype propn =
Fls
| Var ("n ∈ nat") (‹#_› [100] 100)
| Imp ("p ∈ propn", "q ∈ propn") (infixr ‹=>› 90)
subsection ‹The proof system›
consts thms :: "i => i"
abbreviation
thms_syntax :: "[i,i] => o" (infixl ‹|-› 50)
where "H |- p == p ∈ thms(H)"
inductive
domains "thms(H)" ⊆ "propn"
intros
H: "[| p ∈ H; p ∈ propn |] ==> H |- p"
K: "[| p ∈ propn; q ∈ propn |] ==> H |- p=>q=>p"
S: "[| p ∈ propn; q ∈ propn; r ∈ propn |]
==> H |- (p=>q=>r) => (p=>q) => p=>r"
DN: "p ∈ propn ==> H |- ((p=>Fls) => Fls) => p"
MP: "[| H |- p=>q; H |- p; p ∈ propn; q ∈ propn |] ==> H |- q"
type_intros "propn.intros"
declare propn.intros [simp]
subsection ‹The semantics›
subsubsection ‹Semantics of propositional logic.›
consts
is_true_fun :: "[i,i] => i"
primrec
"is_true_fun(Fls, t) = 0"
"is_true_fun(Var(v), t) = (if v ∈ t then 1 else 0)"
"is_true_fun(p=>q, t) = (if is_true_fun(p,t) = 1 then is_true_fun(q,t) else 1)"
definition
is_true :: "[i,i] => o" where
"is_true(p,t) == is_true_fun(p,t) = 1"
lemma is_true_Fls [simp]: "is_true(Fls,t) ⟷ False"
by (simp add: is_true_def)
lemma is_true_Var [simp]: "is_true(#v,t) ⟷ v ∈ t"
by (simp add: is_true_def)
lemma is_true_Imp [simp]: "is_true(p=>q,t) ⟷ (is_true(p,t)⟶is_true(q,t))"
by (simp add: is_true_def)
subsubsection ‹Logical consequence›
text ‹
For every valuation, if all elements of ‹H› are true then so
is ‹p›.
›
definition
logcon :: "[i,i] => o" (infixl ‹|=› 50) where
"H |= p == ∀t. (∀q ∈ H. is_true(q,t)) ⟶ is_true(p,t)"
text ‹
A finite set of hypotheses from ‹t› and the ‹Var›s in
‹p›.
›
consts
hyps :: "[i,i] => i"
primrec
"hyps(Fls, t) = 0"
"hyps(Var(v), t) = (if v ∈ t then {#v} else {#v=>Fls})"
"hyps(p=>q, t) = hyps(p,t) ∪ hyps(q,t)"
subsection ‹Proof theory of propositional logic›
lemma thms_mono: "G ⊆ H ==> thms(G) ⊆ thms(H)"
apply (unfold thms.defs)
apply (rule lfp_mono)
apply (rule thms.bnd_mono)+
apply (assumption | rule univ_mono basic_monos)+
done
lemmas thms_in_pl = thms.dom_subset [THEN subsetD]
inductive_cases ImpE: "p=>q ∈ propn"
lemma thms_MP: "[| H |- p=>q; H |- p |] ==> H |- q"
apply (rule thms.MP)
apply (erule asm_rl thms_in_pl thms_in_pl [THEN ImpE])+
done
lemma thms_I: "p ∈ propn ==> H |- p=>p"
apply (rule thms.S [THEN thms_MP, THEN thms_MP])
apply (rule_tac [5] thms.K)
apply (rule_tac [4] thms.K)
apply simp_all
done
subsubsection ‹Weakening, left and right›
lemma weaken_left: "[| G ⊆ H; G|-p |] ==> H|-p"
by (erule thms_mono [THEN subsetD])
lemma weaken_left_cons: "H |- p ==> cons(a,H) |- p"
by (erule subset_consI [THEN weaken_left])
lemmas weaken_left_Un1 = Un_upper1 [THEN weaken_left]
lemmas weaken_left_Un2 = Un_upper2 [THEN weaken_left]
lemma weaken_right: "[| H |- q; p ∈ propn |] ==> H |- p=>q"
by (simp_all add: thms.K [THEN thms_MP] thms_in_pl)
subsubsection ‹The deduction theorem›
theorem deduction: "[| cons(p,H) |- q; p ∈ propn |] ==> H |- p=>q"
apply (erule thms.induct)
apply (blast intro: thms_I thms.H [THEN weaken_right])
apply (blast intro: thms.K [THEN weaken_right])
apply (blast intro: thms.S [THEN weaken_right])
apply (blast intro: thms.DN [THEN weaken_right])
apply (blast intro: thms.S [THEN thms_MP [THEN thms_MP]])
done
subsubsection ‹The cut rule›
lemma cut: "[| H|-p; cons(p,H) |- q |] ==> H |- q"
apply (rule deduction [THEN thms_MP])
apply (simp_all add: thms_in_pl)
done
lemma thms_FlsE: "[| H |- Fls; p ∈ propn |] ==> H |- p"
apply (rule thms.DN [THEN thms_MP])
apply (rule_tac [2] weaken_right)
apply (simp_all add: propn.intros)
done
lemma thms_notE: "[| H |- p=>Fls; H |- p; q ∈ propn |] ==> H |- q"
by (erule thms_MP [THEN thms_FlsE])
subsubsection ‹Soundness of the rules wrt truth-table semantics›
theorem soundness: "H |- p ==> H |= p"
apply (unfold logcon_def)
apply (induct set: thms)
apply auto
done
subsection ‹Completeness›
subsubsection ‹Towards the completeness proof›
lemma Fls_Imp: "[| H |- p=>Fls; q ∈ propn |] ==> H |- p=>q"
apply (frule thms_in_pl)
apply (rule deduction)
apply (rule weaken_left_cons [THEN thms_notE])
apply (blast intro: thms.H elim: ImpE)+
done
lemma Imp_Fls: "[| H |- p; H |- q=>Fls |] ==> H |- (p=>q)=>Fls"
apply (frule thms_in_pl)
apply (frule thms_in_pl [of concl: "q=>Fls"])
apply (rule deduction)
apply (erule weaken_left_cons [THEN thms_MP])
apply (rule consI1 [THEN thms.H, THEN thms_MP])
apply (blast intro: weaken_left_cons elim: ImpE)+
done
lemma hyps_thms_if:
"p ∈ propn ==> hyps(p,t) |- (if is_true(p,t) then p else p=>Fls)"
apply simp
apply (induct_tac p)
apply (simp_all add: thms_I thms.H)
apply (safe elim!: Fls_Imp [THEN weaken_left_Un1] Fls_Imp [THEN weaken_left_Un2])
apply (blast intro: weaken_left_Un1 weaken_left_Un2 weaken_right Imp_Fls)+
done
lemma logcon_thms_p: "[| p ∈ propn; 0 |= p |] ==> hyps(p,t) |- p"
apply (drule hyps_thms_if)
apply (simp add: logcon_def)
done
text ‹
For proving certain theorems in our new propositional logic.
›
lemmas propn_SIs = propn.intros deduction
and propn_Is = thms_in_pl thms.H thms.H [THEN thms_MP]
text ‹
The excluded middle in the form of an elimination rule.
›
lemma thms_excluded_middle:
"[| p ∈ propn; q ∈ propn |] ==> H |- (p=>q) => ((p=>Fls)=>q) => q"
apply (rule deduction [THEN deduction])
apply (rule thms.DN [THEN thms_MP])
apply (best intro!: propn_SIs intro: propn_Is)+
done
lemma thms_excluded_middle_rule:
"[| cons(p,H) |- q; cons(p=>Fls,H) |- q; p ∈ propn |] ==> H |- q"
apply (rule thms_excluded_middle [THEN thms_MP, THEN thms_MP])
apply (blast intro!: propn_SIs intro: propn_Is)+
done
subsubsection ‹Completeness -- lemmas for reducing the set of assumptions›
text ‹
For the case \<^prop>‹hyps(p,t)-cons(#v,Y) |- p› we also have \<^prop>‹hyps(p,t)-{#v} ⊆ hyps(p, t-{v})›.
›
lemma hyps_Diff:
"p ∈ propn ==> hyps(p, t-{v}) ⊆ cons(#v=>Fls, hyps(p,t)-{#v})"
by (induct set: propn) auto
text ‹
For the case \<^prop>‹hyps(p,t)-cons(#v => Fls,Y) |- p› we also have
\<^prop>‹hyps(p,t)-{#v=>Fls} ⊆ hyps(p, cons(v,t))›.
›
lemma hyps_cons:
"p ∈ propn ==> hyps(p, cons(v,t)) ⊆ cons(#v, hyps(p,t)-{#v=>Fls})"
by (induct set: propn) auto
text ‹Two lemmas for use with ‹weaken_left››
lemma cons_Diff_same: "B-C ⊆ cons(a, B-cons(a,C))"
by blast
lemma cons_Diff_subset2: "cons(a, B-{c}) - D ⊆ cons(a, B-cons(c,D))"
by blast
text ‹
The set \<^term>‹hyps(p,t)› is finite, and elements have the form
\<^term>‹#v› or \<^term>‹#v=>Fls›; could probably prove the stronger
\<^prop>‹hyps(p,t) ∈ Fin(hyps(p,0) ∪ hyps(p,nat))›.
›
lemma hyps_finite: "p ∈ propn ==> hyps(p,t) ∈ Fin(⋃v ∈ nat. {#v, #v=>Fls})"
by (induct set: propn) auto
lemmas Diff_weaken_left = Diff_mono [OF _ subset_refl, THEN weaken_left]
text ‹
Induction on the finite set of assumptions \<^term>‹hyps(p,t0)›. We
may repeatedly subtract assumptions until none are left!
›
lemma completeness_0_lemma [rule_format]:
"[| p ∈ propn; 0 |= p |] ==> ∀t. hyps(p,t) - hyps(p,t0) |- p"
apply (frule hyps_finite)
apply (erule Fin_induct)
apply (simp add: logcon_thms_p Diff_0)
txt ‹inductive step›
apply safe
txt ‹Case \<^prop>‹hyps(p,t)-cons(#v,Y) |- p››
apply (rule thms_excluded_middle_rule)
apply (erule_tac [3] propn.intros)
apply (blast intro: cons_Diff_same [THEN weaken_left])
apply (blast intro: cons_Diff_subset2 [THEN weaken_left]
hyps_Diff [THEN Diff_weaken_left])
txt ‹Case \<^prop>‹hyps(p,t)-cons(#v => Fls,Y) |- p››
apply (rule thms_excluded_middle_rule)
apply (erule_tac [3] propn.intros)
apply (blast intro: cons_Diff_subset2 [THEN weaken_left]
hyps_cons [THEN Diff_weaken_left])
apply (blast intro: cons_Diff_same [THEN weaken_left])
done
subsubsection ‹Completeness theorem›
lemma completeness_0: "[| p ∈ propn; 0 |= p |] ==> 0 |- p"
apply (rule Diff_cancel [THEN subst])
apply (blast intro: completeness_0_lemma)
done
lemma logcon_Imp: "[| cons(p,H) |= q |] ==> H |= p=>q"
by (simp add: logcon_def)
lemma completeness:
"H ∈ Fin(propn) ==> p ∈ propn ⟹ H |= p ⟹ H |- p"
apply (induct arbitrary: p set: Fin)
apply (safe intro!: completeness_0)
apply (rule weaken_left_cons [THEN thms_MP])
apply (blast intro!: logcon_Imp propn.intros)
apply (blast intro: propn_Is)
done
theorem thms_iff: "H ∈ Fin(propn) ==> H |- p ⟷ H |= p ∧ p ∈ propn"
by (blast intro: soundness completeness thms_in_pl)
end