--- a/ex/PropLog.thy Tue Sep 06 10:54:46 1994 +0200
+++ b/ex/PropLog.thy Tue Sep 06 10:56:54 1994 +0200
@@ -1,4 +1,4 @@
-(* Title: HOL/ex/pl.thy
+(* Title: HOL/ex/PropLog.thy
ID: $Id$
Author: Tobias Nipkow
Copyright 1994 TU Muenchen
@@ -28,24 +28,8 @@
DN "H |- ((p->false) -> false) -> p"
MP "[| H |- p->q; H |- p |] ==> H |- q"
-rules
-
- (** Proof theory for propositional logic
-
- axK_def "axK == {x . ? p q. x = p->q->p}"
- axS_def "axS == {x . ? p q r. x = (p->q->r) -> (p->q) -> p->r}"
- axDN_def "axDN == {x . ? p. x = ((p->false) -> false) -> p}"
-
- (*the use of subsets simplifies the proof of monotonicity*)
- ruleMP_def "ruleMP(X) == {q. ? p:X. p->q : X}"
-
- thms_def
- "thms(H) == lfp(%X. H Un axK Un axS Un axDN Un ruleMP(X))"
-
- conseq_def "H |- p == p : thms(H)"
-**)
- sat_def "H |= p == (!tt. (!q:H. tt[q]) --> tt[p])"
-
+defs
+ sat_def "H |= p == (!tt. (!q:H. tt[q]) --> tt[p])"
eval_def "tt[p] == eval2(p,tt)"
primrec eval2 pl