0
|
1 |
(* Title: ZF/epsilon.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1993 University of Cambridge
|
|
5 |
|
|
6 |
For epsilon.thy. Epsilon induction and recursion
|
|
7 |
*)
|
|
8 |
|
|
9 |
open Epsilon;
|
|
10 |
|
|
11 |
(*** Basic closure properties ***)
|
|
12 |
|
|
13 |
goalw Epsilon.thy [eclose_def] "A <= eclose(A)";
|
|
14 |
by (rtac (nat_rec_0 RS equalityD2 RS subset_trans) 1);
|
|
15 |
br (nat_0I RS UN_upper) 1;
|
|
16 |
val arg_subset_eclose = result();
|
|
17 |
|
|
18 |
val arg_into_eclose = arg_subset_eclose RS subsetD;
|
|
19 |
|
|
20 |
goalw Epsilon.thy [eclose_def,Transset_def] "Transset(eclose(A))";
|
|
21 |
by (rtac (subsetI RS ballI) 1);
|
|
22 |
by (etac UN_E 1);
|
|
23 |
by (rtac (nat_succI RS UN_I) 1);
|
|
24 |
by (assume_tac 1);
|
|
25 |
by (etac (nat_rec_succ RS ssubst) 1);
|
|
26 |
by (etac UnionI 1);
|
|
27 |
by (assume_tac 1);
|
|
28 |
val Transset_eclose = result();
|
|
29 |
|
|
30 |
(* x : eclose(A) ==> x <= eclose(A) *)
|
|
31 |
val eclose_subset =
|
|
32 |
standard (rewrite_rule [Transset_def] Transset_eclose RS bspec);
|
|
33 |
|
|
34 |
(* [| A : eclose(B); c : A |] ==> c : eclose(B) *)
|
|
35 |
val ecloseD = standard (eclose_subset RS subsetD);
|
|
36 |
|
|
37 |
val arg_in_eclose_sing = arg_subset_eclose RS singleton_subsetD;
|
|
38 |
val arg_into_eclose_sing = arg_in_eclose_sing RS ecloseD;
|
|
39 |
|
|
40 |
(* This is epsilon-induction for eclose(A); see also eclose_induct_down...
|
|
41 |
[| a: eclose(A); !!x. [| x: eclose(A); ALL y:x. P(y) |] ==> P(x)
|
|
42 |
|] ==> P(a)
|
|
43 |
*)
|
|
44 |
val eclose_induct = standard (Transset_eclose RSN (2, Transset_induct));
|
|
45 |
|
|
46 |
(*Epsilon induction*)
|
|
47 |
val prems = goal Epsilon.thy
|
|
48 |
"[| !!x. ALL y:x. P(y) ==> P(x) |] ==> P(a)";
|
|
49 |
by (rtac (arg_in_eclose_sing RS eclose_induct) 1);
|
|
50 |
by (eresolve_tac prems 1);
|
|
51 |
val eps_induct = result();
|
|
52 |
|
|
53 |
(*Perform epsilon-induction on i. *)
|
|
54 |
fun eps_ind_tac a =
|
|
55 |
EVERY' [res_inst_tac [("a",a)] eps_induct,
|
|
56 |
rename_last_tac a ["1"]];
|
|
57 |
|
|
58 |
|
|
59 |
(*** Leastness of eclose ***)
|
|
60 |
|
|
61 |
(** eclose(A) is the least transitive set including A as a subset. **)
|
|
62 |
|
|
63 |
goalw Epsilon.thy [Transset_def]
|
|
64 |
"!!X A n. [| Transset(X); A<=X; n: nat |] ==> \
|
|
65 |
\ nat_rec(n, A, %m r. Union(r)) <= X";
|
|
66 |
by (etac nat_induct 1);
|
|
67 |
by (ASM_SIMP_TAC (ZF_ss addrews [nat_rec_0]) 1);
|
|
68 |
by (ASM_SIMP_TAC (ZF_ss addrews [nat_rec_succ]) 1);
|
|
69 |
by (fast_tac ZF_cs 1);
|
|
70 |
val eclose_least_lemma = result();
|
|
71 |
|
|
72 |
goalw Epsilon.thy [eclose_def]
|
|
73 |
"!!X A. [| Transset(X); A<=X |] ==> eclose(A) <= X";
|
|
74 |
br (eclose_least_lemma RS UN_least) 1;
|
|
75 |
by (REPEAT (assume_tac 1));
|
|
76 |
val eclose_least = result();
|
|
77 |
|
|
78 |
(*COMPLETELY DIFFERENT induction principle from eclose_induct!!*)
|
|
79 |
val [major,base,step] = goal Epsilon.thy
|
|
80 |
"[| a: eclose(b); \
|
|
81 |
\ !!y. [| y: b |] ==> P(y); \
|
|
82 |
\ !!y z. [| y: eclose(b); P(y); z: y |] ==> P(z) \
|
|
83 |
\ |] ==> P(a)";
|
|
84 |
by (rtac (major RSN (3, eclose_least RS subsetD RS CollectD2)) 1);
|
|
85 |
by (rtac (CollectI RS subsetI) 2);
|
|
86 |
by (etac (arg_subset_eclose RS subsetD) 2);
|
|
87 |
by (etac base 2);
|
|
88 |
by (rewtac Transset_def);
|
|
89 |
by (fast_tac (ZF_cs addEs [step,ecloseD]) 1);
|
|
90 |
val eclose_induct_down = result();
|
|
91 |
|
|
92 |
goal Epsilon.thy "!!X. Transset(X) ==> eclose(X) = X";
|
|
93 |
be ([eclose_least, arg_subset_eclose] MRS equalityI) 1;
|
|
94 |
br subset_refl 1;
|
|
95 |
val Transset_eclose_eq_arg = result();
|
|
96 |
|
|
97 |
|
|
98 |
(*** Epsilon recursion ***)
|
|
99 |
|
|
100 |
(*Unused...*)
|
|
101 |
goal Epsilon.thy "!!A B C. [| A: eclose(B); B: eclose(C) |] ==> A: eclose(C)";
|
|
102 |
by (rtac ([Transset_eclose, eclose_subset] MRS eclose_least RS subsetD) 1);
|
|
103 |
by (REPEAT (assume_tac 1));
|
|
104 |
val mem_eclose_trans = result();
|
|
105 |
|
|
106 |
(*Variant of the previous lemma in a useable form for the sequel*)
|
|
107 |
goal Epsilon.thy
|
|
108 |
"!!A B C. [| A: eclose({B}); B: eclose({C}) |] ==> A: eclose({C})";
|
|
109 |
by (rtac ([Transset_eclose, singleton_subsetI] MRS eclose_least RS subsetD) 1);
|
|
110 |
by (REPEAT (assume_tac 1));
|
|
111 |
val mem_eclose_sing_trans = result();
|
|
112 |
|
|
113 |
goalw Epsilon.thy [Transset_def]
|
|
114 |
"!!i j. [| Transset(i); j:i |] ==> Memrel(i)-``{j} = j";
|
|
115 |
by (fast_tac (eq_cs addSIs [MemrelI] addSEs [MemrelE]) 1);
|
|
116 |
val under_Memrel = result();
|
|
117 |
|
|
118 |
(* j : eclose(A) ==> Memrel(eclose(A)) -`` j = j *)
|
|
119 |
val under_Memrel_eclose = Transset_eclose RS under_Memrel;
|
|
120 |
|
|
121 |
val wfrec_ssubst = standard (wf_Memrel RS wfrec RS ssubst);
|
|
122 |
|
|
123 |
val [kmemj,jmemi] = goal Epsilon.thy
|
|
124 |
"[| k:eclose({j}); j:eclose({i}) |] ==> \
|
|
125 |
\ wfrec(Memrel(eclose({i})), k, H) = wfrec(Memrel(eclose({j})), k, H)";
|
|
126 |
by (rtac (kmemj RS eclose_induct) 1);
|
|
127 |
by (rtac wfrec_ssubst 1);
|
|
128 |
by (rtac wfrec_ssubst 1);
|
|
129 |
by (ASM_SIMP_TAC (wf_ss addrews [under_Memrel_eclose,
|
|
130 |
jmemi RSN (2,mem_eclose_sing_trans)]) 1);
|
|
131 |
val wfrec_eclose_eq = result();
|
|
132 |
|
|
133 |
val [prem] = goal Epsilon.thy
|
|
134 |
"k: i ==> wfrec(Memrel(eclose({i})),k,H) = wfrec(Memrel(eclose({k})),k,H)";
|
|
135 |
by (rtac (arg_in_eclose_sing RS wfrec_eclose_eq) 1);
|
|
136 |
by (rtac (prem RS arg_into_eclose_sing) 1);
|
|
137 |
val wfrec_eclose_eq2 = result();
|
|
138 |
|
|
139 |
goalw Epsilon.thy [transrec_def]
|
|
140 |
"transrec(a,H) = H(a, lam x:a. transrec(x,H))";
|
|
141 |
by (rtac wfrec_ssubst 1);
|
|
142 |
by (SIMP_TAC (wf_ss addrews [wfrec_eclose_eq2,
|
|
143 |
arg_in_eclose_sing, under_Memrel_eclose]) 1);
|
|
144 |
val transrec = result();
|
|
145 |
|
|
146 |
(*Avoids explosions in proofs; resolve it with a meta-level definition.*)
|
|
147 |
val rew::prems = goal Epsilon.thy
|
|
148 |
"[| !!x. f(x)==transrec(x,H) |] ==> f(a) = H(a, lam x:a. f(x))";
|
|
149 |
by (rewtac rew);
|
|
150 |
by (REPEAT (resolve_tac (prems@[transrec]) 1));
|
|
151 |
val def_transrec = result();
|
|
152 |
|
|
153 |
val prems = goal Epsilon.thy
|
|
154 |
"[| !!x u. [| x:eclose({a}); u: Pi(x,B) |] ==> H(x,u) : B(x) \
|
|
155 |
\ |] ==> transrec(a,H) : B(a)";
|
|
156 |
by (res_inst_tac [("i", "a")] (arg_in_eclose_sing RS eclose_induct) 1);
|
|
157 |
by (rtac (transrec RS ssubst) 1);
|
|
158 |
by (REPEAT (ares_tac (prems @ [lam_type]) 1 ORELSE etac bspec 1));
|
|
159 |
val transrec_type = result();
|
|
160 |
|
|
161 |
goal Epsilon.thy "!!i. Ord(i) ==> eclose({i}) <= succ(i)";
|
|
162 |
by (etac (Ord_is_Transset RS Transset_succ RS eclose_least) 1);
|
|
163 |
by (rtac (succI1 RS singleton_subsetI) 1);
|
|
164 |
val eclose_sing_Ord = result();
|
|
165 |
|
|
166 |
val prems = goal Epsilon.thy
|
|
167 |
"[| j: i; Ord(i); \
|
|
168 |
\ !!x u. [| x: i; u: Pi(x,B) |] ==> H(x,u) : B(x) \
|
|
169 |
\ |] ==> transrec(j,H) : B(j)";
|
|
170 |
by (rtac transrec_type 1);
|
|
171 |
by (resolve_tac prems 1);
|
|
172 |
by (rtac (Ord_in_Ord RS eclose_sing_Ord RS subsetD RS succE) 1);
|
|
173 |
by (DEPTH_SOLVE (ares_tac prems 1 ORELSE eresolve_tac [ssubst,Ord_trans] 1));
|
|
174 |
val Ord_transrec_type = result();
|
|
175 |
|
|
176 |
(*Congruence*)
|
|
177 |
val prems = goalw Epsilon.thy [transrec_def,Memrel_def]
|
|
178 |
"[| a=a'; !!x u. H(x,u)=H'(x,u) |] ==> transrec(a,H)=transrec(a',H')";
|
|
179 |
val transrec_ss =
|
|
180 |
ZF_ss addcongs ([wfrec_cong] @ mk_congs Epsilon.thy ["eclose"])
|
|
181 |
addrews (prems RL [sym]);
|
|
182 |
by (SIMP_TAC transrec_ss 1);
|
|
183 |
val transrec_cong = result();
|
|
184 |
|
|
185 |
(*** Rank ***)
|
|
186 |
|
|
187 |
val ord_ss = ZF_ss addcongs (mk_congs Ord.thy ["Ord"]);
|
|
188 |
|
|
189 |
(*NOT SUITABLE FOR REWRITING -- RECURSIVE!*)
|
|
190 |
goal Epsilon.thy "rank(a) = (UN y:a. succ(rank(y)))";
|
|
191 |
by (rtac (rank_def RS def_transrec RS ssubst) 1);
|
|
192 |
by (SIMP_TAC ZF_ss 1);
|
|
193 |
val rank = result();
|
|
194 |
|
|
195 |
goal Epsilon.thy "Ord(rank(a))";
|
|
196 |
by (eps_ind_tac "a" 1);
|
|
197 |
by (rtac (rank RS ssubst) 1);
|
|
198 |
by (rtac (Ord_succ RS Ord_UN) 1);
|
|
199 |
by (etac bspec 1);
|
|
200 |
by (assume_tac 1);
|
|
201 |
val Ord_rank = result();
|
|
202 |
|
|
203 |
val [major] = goal Epsilon.thy "Ord(i) ==> rank(i) = i";
|
|
204 |
by (rtac (major RS trans_induct) 1);
|
|
205 |
by (rtac (rank RS ssubst) 1);
|
|
206 |
by (ASM_SIMP_TAC (ord_ss addrews [Ord_equality]) 1);
|
|
207 |
val rank_of_Ord = result();
|
|
208 |
|
|
209 |
val [prem] = goal Epsilon.thy "a:b ==> rank(a) : rank(b)";
|
|
210 |
by (res_inst_tac [("a1","b")] (rank RS ssubst) 1);
|
|
211 |
by (rtac (prem RS UN_I) 1);
|
|
212 |
by (rtac succI1 1);
|
|
213 |
val rank_lt = result();
|
|
214 |
|
|
215 |
val [major] = goal Epsilon.thy "a: eclose(b) ==> rank(a) : rank(b)";
|
|
216 |
by (rtac (major RS eclose_induct_down) 1);
|
|
217 |
by (etac rank_lt 1);
|
|
218 |
by (etac (rank_lt RS Ord_trans) 1);
|
|
219 |
by (assume_tac 1);
|
|
220 |
by (rtac Ord_rank 1);
|
|
221 |
val eclose_rank_lt = result();
|
|
222 |
|
|
223 |
goal Epsilon.thy "!!a b. a<=b ==> rank(a) <= rank(b)";
|
|
224 |
by (rtac (rank RS ssubst) 1);
|
|
225 |
by (rtac (rank RS ssubst) 1);
|
|
226 |
by (etac UN_mono 1);
|
|
227 |
by (rtac subset_refl 1);
|
|
228 |
val rank_mono = result();
|
|
229 |
|
|
230 |
goal Epsilon.thy "rank(Pow(a)) = succ(rank(a))";
|
|
231 |
by (rtac (rank RS trans) 1);
|
|
232 |
by (rtac equalityI 1);
|
|
233 |
by (fast_tac ZF_cs 2);
|
|
234 |
by (rtac UN_least 1);
|
|
235 |
by (etac (PowD RS rank_mono RS Ord_succ_mono) 1);
|
|
236 |
by (rtac Ord_rank 1);
|
|
237 |
by (rtac Ord_rank 1);
|
|
238 |
val rank_Pow = result();
|
|
239 |
|
|
240 |
goal Epsilon.thy "rank(0) = 0";
|
|
241 |
by (rtac (rank RS trans) 1);
|
|
242 |
by (fast_tac (ZF_cs addSIs [equalityI]) 1);
|
|
243 |
val rank_0 = result();
|
|
244 |
|
|
245 |
goal Epsilon.thy "rank(succ(x)) = succ(rank(x))";
|
|
246 |
by (rtac (rank RS trans) 1);
|
|
247 |
br ([UN_least, succI1 RS UN_upper] MRS equalityI) 1;
|
|
248 |
be succE 1;
|
|
249 |
by (fast_tac ZF_cs 1);
|
|
250 |
by (REPEAT (ares_tac [Ord_succ_mono,Ord_rank,OrdmemD,rank_lt] 1));
|
|
251 |
val rank_succ = result();
|
|
252 |
|
|
253 |
goal Epsilon.thy "rank(Union(A)) = (UN x:A. rank(x))";
|
|
254 |
by (rtac equalityI 1);
|
|
255 |
by (rtac (rank_mono RS UN_least) 2);
|
|
256 |
by (etac Union_upper 2);
|
|
257 |
by (rtac (rank RS ssubst) 1);
|
|
258 |
by (rtac UN_least 1);
|
|
259 |
by (etac UnionE 1);
|
|
260 |
by (rtac subset_trans 1);
|
|
261 |
by (etac (RepFunI RS Union_upper) 2);
|
|
262 |
by (etac (rank_lt RS Ord_succ_subsetI) 1);
|
|
263 |
by (rtac Ord_rank 1);
|
|
264 |
val rank_Union = result();
|
|
265 |
|
|
266 |
goal Epsilon.thy "rank(eclose(a)) = rank(a)";
|
|
267 |
by (rtac equalityI 1);
|
|
268 |
by (rtac (arg_subset_eclose RS rank_mono) 2);
|
|
269 |
by (res_inst_tac [("a1","eclose(a)")] (rank RS ssubst) 1);
|
|
270 |
by (rtac UN_least 1);
|
|
271 |
by (etac ([eclose_rank_lt, Ord_rank] MRS Ord_succ_subsetI) 1);
|
|
272 |
val rank_eclose = result();
|
|
273 |
|
|
274 |
(* [| i: j; j: rank(a) |] ==> i: rank(a) *)
|
|
275 |
val rank_trans = Ord_rank RSN (3, Ord_trans);
|
|
276 |
|
|
277 |
goalw Epsilon.thy [Pair_def] "rank(a) : rank(<a,b>)";
|
|
278 |
by (rtac (consI1 RS rank_lt RS Ord_trans) 1);
|
|
279 |
by (rtac (consI1 RS consI2 RS rank_lt) 1);
|
|
280 |
by (rtac Ord_rank 1);
|
|
281 |
val rank_pair1 = result();
|
|
282 |
|
|
283 |
goalw Epsilon.thy [Pair_def] "rank(b) : rank(<a,b>)";
|
|
284 |
by (rtac (consI1 RS consI2 RS rank_lt RS Ord_trans) 1);
|
|
285 |
by (rtac (consI1 RS consI2 RS rank_lt) 1);
|
|
286 |
by (rtac Ord_rank 1);
|
|
287 |
val rank_pair2 = result();
|
|
288 |
|
|
289 |
goalw (merge_theories(Epsilon.thy,Sum.thy)) [Inl_def] "rank(a) : rank(Inl(a))";
|
|
290 |
by (rtac rank_pair2 1);
|
|
291 |
val rank_Inl = result();
|
|
292 |
|
|
293 |
goalw (merge_theories(Epsilon.thy,Sum.thy)) [Inr_def] "rank(a) : rank(Inr(a))";
|
|
294 |
by (rtac rank_pair2 1);
|
|
295 |
val rank_Inr = result();
|
|
296 |
|
|
297 |
val [major] = goal Epsilon.thy "i: rank(a) ==> (EX x:a. i<=rank(x))";
|
|
298 |
by (resolve_tac ([major] RL [rank RS subst] RL [UN_E]) 1);
|
|
299 |
by (rtac bexI 1);
|
|
300 |
by (etac member_succD 1);
|
|
301 |
by (rtac Ord_rank 1);
|
|
302 |
by (assume_tac 1);
|
|
303 |
val rank_implies_mem = result();
|
|
304 |
|
|
305 |
|
|
306 |
(*** Corollaries of leastness ***)
|
|
307 |
|
|
308 |
goal Epsilon.thy "!!A B. A:B ==> eclose(A)<=eclose(B)";
|
|
309 |
by (rtac (Transset_eclose RS eclose_least) 1);
|
|
310 |
by (etac (arg_into_eclose RS eclose_subset) 1);
|
|
311 |
val mem_eclose_subset = result();
|
|
312 |
|
|
313 |
goal Epsilon.thy "!!A B. A<=B ==> eclose(A) <= eclose(B)";
|
|
314 |
by (rtac (Transset_eclose RS eclose_least) 1);
|
|
315 |
by (etac subset_trans 1);
|
|
316 |
by (rtac arg_subset_eclose 1);
|
|
317 |
val eclose_mono = result();
|
|
318 |
|
|
319 |
(** Idempotence of eclose **)
|
|
320 |
|
|
321 |
goal Epsilon.thy "eclose(eclose(A)) = eclose(A)";
|
|
322 |
by (rtac equalityI 1);
|
|
323 |
by (rtac ([Transset_eclose, subset_refl] MRS eclose_least) 1);
|
|
324 |
by (rtac arg_subset_eclose 1);
|
|
325 |
val eclose_idem = result();
|