src/ZF/Epsilon.ML
changeset 0 a5a9c433f639
child 6 8ce8c4d13d4d
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/Epsilon.ML	Thu Sep 16 12:20:38 1993 +0200
@@ -0,0 +1,325 @@
+(*  Title: 	ZF/epsilon.ML
+    ID:         $Id$
+    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1993  University of Cambridge
+
+For epsilon.thy.  Epsilon induction and recursion
+*)
+
+open Epsilon;
+
+(*** Basic closure properties ***)
+
+goalw Epsilon.thy [eclose_def] "A <= eclose(A)";
+by (rtac (nat_rec_0 RS equalityD2 RS subset_trans) 1);
+br (nat_0I RS UN_upper) 1;
+val arg_subset_eclose = result();
+
+val arg_into_eclose = arg_subset_eclose RS subsetD;
+
+goalw Epsilon.thy [eclose_def,Transset_def] "Transset(eclose(A))";
+by (rtac (subsetI RS ballI) 1);
+by (etac UN_E 1);
+by (rtac (nat_succI RS UN_I) 1);
+by (assume_tac 1);
+by (etac (nat_rec_succ RS ssubst) 1);
+by (etac UnionI 1);
+by (assume_tac 1);
+val Transset_eclose = result();
+
+(* x : eclose(A) ==> x <= eclose(A) *)
+val eclose_subset = 
+    standard (rewrite_rule [Transset_def] Transset_eclose RS bspec);
+
+(* [| A : eclose(B); c : A |] ==> c : eclose(B) *)
+val ecloseD = standard (eclose_subset RS subsetD);
+
+val arg_in_eclose_sing = arg_subset_eclose RS singleton_subsetD;
+val arg_into_eclose_sing = arg_in_eclose_sing RS ecloseD;
+
+(* This is epsilon-induction for eclose(A); see also eclose_induct_down...
+   [| a: eclose(A);  !!x. [| x: eclose(A); ALL y:x. P(y) |] ==> P(x) 
+   |] ==> P(a) 
+*)
+val eclose_induct = standard (Transset_eclose RSN (2, Transset_induct));
+
+(*Epsilon induction*)
+val prems = goal Epsilon.thy
+    "[| !!x. ALL y:x. P(y) ==> P(x) |]  ==>  P(a)";
+by (rtac (arg_in_eclose_sing RS eclose_induct) 1);
+by (eresolve_tac prems 1);
+val eps_induct = result();
+
+(*Perform epsilon-induction on i. *)
+fun eps_ind_tac a = 
+    EVERY' [res_inst_tac [("a",a)] eps_induct,
+	    rename_last_tac a ["1"]];
+
+
+(*** Leastness of eclose ***)
+
+(** eclose(A) is the least transitive set including A as a subset. **)
+
+goalw Epsilon.thy [Transset_def]
+    "!!X A n. [| Transset(X);  A<=X;  n: nat |] ==> \
+\             nat_rec(n, A, %m r. Union(r)) <= X";
+by (etac nat_induct 1);
+by (ASM_SIMP_TAC (ZF_ss addrews [nat_rec_0]) 1);
+by (ASM_SIMP_TAC (ZF_ss addrews [nat_rec_succ]) 1);
+by (fast_tac ZF_cs 1);
+val eclose_least_lemma = result();
+
+goalw Epsilon.thy [eclose_def]
+     "!!X A. [| Transset(X);  A<=X |] ==> eclose(A) <= X";
+br (eclose_least_lemma RS UN_least) 1;
+by (REPEAT (assume_tac 1));
+val eclose_least = result();
+
+(*COMPLETELY DIFFERENT induction principle from eclose_induct!!*)
+val [major,base,step] = goal Epsilon.thy
+    "[| a: eclose(b);						\
+\       !!y.   [| y: b |] ==> P(y);				\
+\       !!y z. [| y: eclose(b);  P(y);  z: y |] ==> P(z)	\
+\    |] ==> P(a)";
+by (rtac (major RSN (3, eclose_least RS subsetD RS CollectD2)) 1);
+by (rtac (CollectI RS subsetI) 2);
+by (etac (arg_subset_eclose RS subsetD) 2);
+by (etac base 2);
+by (rewtac Transset_def);
+by (fast_tac (ZF_cs addEs [step,ecloseD]) 1);
+val eclose_induct_down = result();
+
+goal Epsilon.thy "!!X. Transset(X) ==> eclose(X) = X";
+be ([eclose_least, arg_subset_eclose] MRS equalityI) 1;
+br subset_refl 1;
+val Transset_eclose_eq_arg = result();
+
+
+(*** Epsilon recursion ***)
+
+(*Unused...*)
+goal Epsilon.thy "!!A B C. [| A: eclose(B);  B: eclose(C) |] ==> A: eclose(C)";
+by (rtac ([Transset_eclose, eclose_subset] MRS eclose_least RS subsetD) 1);
+by (REPEAT (assume_tac 1));
+val mem_eclose_trans = result();
+
+(*Variant of the previous lemma in a useable form for the sequel*)
+goal Epsilon.thy
+    "!!A B C. [| A: eclose({B});  B: eclose({C}) |] ==> A: eclose({C})";
+by (rtac ([Transset_eclose, singleton_subsetI] MRS eclose_least RS subsetD) 1);
+by (REPEAT (assume_tac 1));
+val mem_eclose_sing_trans = result();
+
+goalw Epsilon.thy [Transset_def]
+    "!!i j. [| Transset(i);  j:i |] ==> Memrel(i)-``{j} = j";
+by (fast_tac (eq_cs addSIs [MemrelI] addSEs [MemrelE]) 1);
+val under_Memrel = result();
+
+(* j : eclose(A) ==> Memrel(eclose(A)) -`` j = j *)
+val under_Memrel_eclose = Transset_eclose RS under_Memrel;
+
+val wfrec_ssubst = standard (wf_Memrel RS wfrec RS ssubst);
+
+val [kmemj,jmemi] = goal Epsilon.thy
+    "[| k:eclose({j});  j:eclose({i}) |] ==> \
+\    wfrec(Memrel(eclose({i})), k, H) = wfrec(Memrel(eclose({j})), k, H)";
+by (rtac (kmemj RS eclose_induct) 1);
+by (rtac wfrec_ssubst 1);
+by (rtac wfrec_ssubst 1);
+by (ASM_SIMP_TAC (wf_ss addrews [under_Memrel_eclose,
+				 jmemi RSN (2,mem_eclose_sing_trans)]) 1);
+val wfrec_eclose_eq = result();
+
+val [prem] = goal Epsilon.thy
+    "k: i ==> wfrec(Memrel(eclose({i})),k,H) = wfrec(Memrel(eclose({k})),k,H)";
+by (rtac (arg_in_eclose_sing RS wfrec_eclose_eq) 1);
+by (rtac (prem RS arg_into_eclose_sing) 1);
+val wfrec_eclose_eq2 = result();
+
+goalw Epsilon.thy [transrec_def]
+    "transrec(a,H) = H(a, lam x:a. transrec(x,H))";
+by (rtac wfrec_ssubst 1);
+by (SIMP_TAC (wf_ss addrews [wfrec_eclose_eq2,
+			     arg_in_eclose_sing, under_Memrel_eclose]) 1);
+val transrec = result();
+
+(*Avoids explosions in proofs; resolve it with a meta-level definition.*)
+val rew::prems = goal Epsilon.thy
+    "[| !!x. f(x)==transrec(x,H) |] ==> f(a) = H(a, lam x:a. f(x))";
+by (rewtac rew);
+by (REPEAT (resolve_tac (prems@[transrec]) 1));
+val def_transrec = result();
+
+val prems = goal Epsilon.thy
+    "[| !!x u. [| x:eclose({a});  u: Pi(x,B) |] ==> H(x,u) : B(x)   \
+\    |]  ==> transrec(a,H) : B(a)";
+by (res_inst_tac [("i", "a")] (arg_in_eclose_sing RS eclose_induct) 1);
+by (rtac (transrec RS ssubst) 1);
+by (REPEAT (ares_tac (prems @ [lam_type]) 1 ORELSE etac bspec 1));
+val transrec_type = result();
+
+goal Epsilon.thy "!!i. Ord(i) ==> eclose({i}) <= succ(i)";
+by (etac (Ord_is_Transset RS Transset_succ RS eclose_least) 1);
+by (rtac (succI1 RS singleton_subsetI) 1);
+val eclose_sing_Ord = result();
+
+val prems = goal Epsilon.thy
+    "[| j: i;  Ord(i);  \
+\       !!x u. [| x: i;  u: Pi(x,B) |] ==> H(x,u) : B(x)   \
+\    |]  ==> transrec(j,H) : B(j)";
+by (rtac transrec_type 1);
+by (resolve_tac prems 1);
+by (rtac (Ord_in_Ord RS eclose_sing_Ord RS subsetD RS succE) 1);
+by (DEPTH_SOLVE (ares_tac prems 1 ORELSE eresolve_tac [ssubst,Ord_trans] 1));
+val Ord_transrec_type = result();
+
+(*Congruence*)
+val prems = goalw Epsilon.thy [transrec_def,Memrel_def]
+    "[| a=a';  !!x u. H(x,u)=H'(x,u) |]  ==> transrec(a,H)=transrec(a',H')";
+val transrec_ss = 
+    ZF_ss addcongs ([wfrec_cong] @ mk_congs Epsilon.thy ["eclose"])
+	  addrews (prems RL [sym]);
+by (SIMP_TAC transrec_ss 1);
+val transrec_cong = result();
+
+(*** Rank ***)
+
+val ord_ss = ZF_ss addcongs (mk_congs Ord.thy ["Ord"]);
+
+(*NOT SUITABLE FOR REWRITING -- RECURSIVE!*)
+goal Epsilon.thy "rank(a) = (UN y:a. succ(rank(y)))";
+by (rtac (rank_def RS def_transrec RS ssubst) 1);
+by (SIMP_TAC ZF_ss 1);
+val rank = result();
+
+goal Epsilon.thy "Ord(rank(a))";
+by (eps_ind_tac "a" 1);
+by (rtac (rank RS ssubst) 1);
+by (rtac (Ord_succ RS Ord_UN) 1);
+by (etac bspec 1);
+by (assume_tac 1);
+val Ord_rank = result();
+
+val [major] = goal Epsilon.thy "Ord(i) ==> rank(i) = i";
+by (rtac (major RS trans_induct) 1);
+by (rtac (rank RS ssubst) 1);
+by (ASM_SIMP_TAC (ord_ss addrews [Ord_equality]) 1);
+val rank_of_Ord = result();
+
+val [prem] = goal Epsilon.thy "a:b ==> rank(a) : rank(b)";
+by (res_inst_tac [("a1","b")] (rank RS ssubst) 1);
+by (rtac (prem RS UN_I) 1);
+by (rtac succI1 1);
+val rank_lt = result();
+
+val [major] = goal Epsilon.thy "a: eclose(b) ==> rank(a) : rank(b)";
+by (rtac (major RS eclose_induct_down) 1);
+by (etac rank_lt 1);
+by (etac (rank_lt RS Ord_trans) 1);
+by (assume_tac 1);
+by (rtac Ord_rank 1);
+val eclose_rank_lt = result();
+
+goal Epsilon.thy "!!a b. a<=b ==> rank(a) <= rank(b)";
+by (rtac (rank RS ssubst) 1);
+by (rtac (rank RS ssubst) 1);
+by (etac UN_mono 1);
+by (rtac subset_refl 1);
+val rank_mono = result();
+
+goal Epsilon.thy "rank(Pow(a)) = succ(rank(a))";
+by (rtac (rank RS trans) 1);
+by (rtac equalityI 1);
+by (fast_tac ZF_cs 2);
+by (rtac UN_least 1);
+by (etac (PowD RS rank_mono RS Ord_succ_mono) 1);
+by (rtac Ord_rank 1);
+by (rtac Ord_rank 1);
+val rank_Pow = result();
+
+goal Epsilon.thy "rank(0) = 0";
+by (rtac (rank RS trans) 1);
+by (fast_tac (ZF_cs addSIs [equalityI]) 1);
+val rank_0 = result();
+
+goal Epsilon.thy "rank(succ(x)) = succ(rank(x))";
+by (rtac (rank RS trans) 1);
+br ([UN_least, succI1 RS UN_upper] MRS equalityI) 1;
+be succE 1;
+by (fast_tac ZF_cs 1);
+by (REPEAT (ares_tac [Ord_succ_mono,Ord_rank,OrdmemD,rank_lt] 1));
+val rank_succ = result();
+
+goal Epsilon.thy "rank(Union(A)) = (UN x:A. rank(x))";
+by (rtac equalityI 1);
+by (rtac (rank_mono RS UN_least) 2);
+by (etac Union_upper 2);
+by (rtac (rank RS ssubst) 1);
+by (rtac UN_least 1);
+by (etac UnionE 1);
+by (rtac subset_trans 1);
+by (etac (RepFunI RS Union_upper) 2);
+by (etac (rank_lt RS Ord_succ_subsetI) 1);
+by (rtac Ord_rank 1);
+val rank_Union = result();
+
+goal Epsilon.thy "rank(eclose(a)) = rank(a)";
+by (rtac equalityI 1);
+by (rtac (arg_subset_eclose RS rank_mono) 2);
+by (res_inst_tac [("a1","eclose(a)")] (rank RS ssubst) 1);
+by (rtac UN_least 1);
+by (etac ([eclose_rank_lt, Ord_rank] MRS Ord_succ_subsetI) 1);
+val rank_eclose = result();
+
+(*  [| i: j; j: rank(a) |] ==> i: rank(a)  *)
+val rank_trans = Ord_rank RSN (3, Ord_trans);
+
+goalw Epsilon.thy [Pair_def] "rank(a) : rank(<a,b>)";
+by (rtac (consI1 RS rank_lt RS Ord_trans) 1);
+by (rtac (consI1 RS consI2 RS rank_lt) 1);
+by (rtac Ord_rank 1);
+val rank_pair1 = result();
+
+goalw Epsilon.thy [Pair_def] "rank(b) : rank(<a,b>)";
+by (rtac (consI1 RS consI2 RS rank_lt RS Ord_trans) 1);
+by (rtac (consI1 RS consI2 RS rank_lt) 1);
+by (rtac Ord_rank 1);
+val rank_pair2 = result();
+
+goalw (merge_theories(Epsilon.thy,Sum.thy)) [Inl_def] "rank(a) : rank(Inl(a))";
+by (rtac rank_pair2 1);
+val rank_Inl = result();
+
+goalw (merge_theories(Epsilon.thy,Sum.thy)) [Inr_def] "rank(a) : rank(Inr(a))";
+by (rtac rank_pair2 1);
+val rank_Inr = result();
+
+val [major] = goal Epsilon.thy "i: rank(a) ==> (EX x:a. i<=rank(x))";
+by (resolve_tac ([major] RL [rank RS subst] RL [UN_E]) 1);
+by (rtac bexI 1);
+by (etac member_succD 1);
+by (rtac Ord_rank 1);
+by (assume_tac 1);
+val rank_implies_mem = result();
+
+
+(*** Corollaries of leastness ***)
+
+goal Epsilon.thy "!!A B. A:B ==> eclose(A)<=eclose(B)";
+by (rtac (Transset_eclose RS eclose_least) 1);
+by (etac (arg_into_eclose RS eclose_subset) 1);
+val mem_eclose_subset = result();
+
+goal Epsilon.thy "!!A B. A<=B ==> eclose(A) <= eclose(B)";
+by (rtac (Transset_eclose RS eclose_least) 1);
+by (etac subset_trans 1);
+by (rtac arg_subset_eclose 1);
+val eclose_mono = result();
+
+(** Idempotence of eclose **)
+
+goal Epsilon.thy "eclose(eclose(A)) = eclose(A)";
+by (rtac equalityI 1);
+by (rtac ([Transset_eclose, subset_refl] MRS eclose_least) 1);
+by (rtac arg_subset_eclose 1);
+val eclose_idem = result();