0
|
1 |
(* Title: ZF/fixedpt.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1992 University of Cambridge
|
|
5 |
|
|
6 |
For fixedpt.thy. Least and greatest fixed points; the Knaster-Tarski Theorem
|
|
7 |
|
|
8 |
Proved in the lattice of subsets of D, namely Pow(D), with Inter as glb
|
|
9 |
*)
|
|
10 |
|
|
11 |
open Fixedpt;
|
|
12 |
|
|
13 |
(*** Monotone operators ***)
|
|
14 |
|
|
15 |
val prems = goalw Fixedpt.thy [bnd_mono_def]
|
|
16 |
"[| h(D)<=D; \
|
|
17 |
\ !!W X. [| W<=D; X<=D; W<=X |] ==> h(W) <= h(X) \
|
|
18 |
\ |] ==> bnd_mono(D,h)";
|
|
19 |
by (REPEAT (ares_tac (prems@[conjI,allI,impI]) 1
|
|
20 |
ORELSE etac subset_trans 1));
|
|
21 |
val bnd_monoI = result();
|
|
22 |
|
|
23 |
val [major] = goalw Fixedpt.thy [bnd_mono_def] "bnd_mono(D,h) ==> h(D) <= D";
|
|
24 |
by (rtac (major RS conjunct1) 1);
|
|
25 |
val bnd_monoD1 = result();
|
|
26 |
|
|
27 |
val major::prems = goalw Fixedpt.thy [bnd_mono_def]
|
|
28 |
"[| bnd_mono(D,h); W<=X; X<=D |] ==> h(W) <= h(X)";
|
|
29 |
by (rtac (major RS conjunct2 RS spec RS spec RS mp RS mp) 1);
|
|
30 |
by (REPEAT (resolve_tac prems 1));
|
|
31 |
val bnd_monoD2 = result();
|
|
32 |
|
|
33 |
val [major,minor] = goal Fixedpt.thy
|
|
34 |
"[| bnd_mono(D,h); X<=D |] ==> h(X) <= D";
|
|
35 |
by (rtac (major RS bnd_monoD2 RS subset_trans) 1);
|
|
36 |
by (rtac (major RS bnd_monoD1) 3);
|
|
37 |
by (rtac minor 1);
|
|
38 |
by (rtac subset_refl 1);
|
|
39 |
val bnd_mono_subset = result();
|
|
40 |
|
|
41 |
goal Fixedpt.thy "!!A B. [| bnd_mono(D,h); A <= D; B <= D |] ==> \
|
|
42 |
\ h(A) Un h(B) <= h(A Un B)";
|
|
43 |
by (REPEAT (ares_tac [Un_upper1, Un_upper2, Un_least] 1
|
|
44 |
ORELSE etac bnd_monoD2 1));
|
|
45 |
val bnd_mono_Un = result();
|
|
46 |
|
|
47 |
(*Useful??*)
|
|
48 |
goal Fixedpt.thy "!!A B. [| bnd_mono(D,h); A <= D; B <= D |] ==> \
|
|
49 |
\ h(A Int B) <= h(A) Int h(B)";
|
|
50 |
by (REPEAT (ares_tac [Int_lower1, Int_lower2, Int_greatest] 1
|
|
51 |
ORELSE etac bnd_monoD2 1));
|
|
52 |
val bnd_mono_Int = result();
|
|
53 |
|
|
54 |
(**** Proof of Knaster-Tarski Theorem for the lfp ****)
|
|
55 |
|
|
56 |
(*lfp is contained in each pre-fixedpoint*)
|
|
57 |
val prems = goalw Fixedpt.thy [lfp_def]
|
|
58 |
"[| h(A) <= A; A<=D |] ==> lfp(D,h) <= A";
|
|
59 |
by (rtac (PowI RS CollectI RS Inter_lower) 1);
|
|
60 |
by (REPEAT (resolve_tac prems 1));
|
|
61 |
val lfp_lowerbound = result();
|
|
62 |
|
|
63 |
(*Unfolding the defn of Inter dispenses with the premise bnd_mono(D,h)!*)
|
|
64 |
goalw Fixedpt.thy [lfp_def,Inter_def] "lfp(D,h) <= D";
|
|
65 |
by (fast_tac ZF_cs 1);
|
|
66 |
val lfp_subset = result();
|
|
67 |
|
|
68 |
(*Used in datatype package*)
|
|
69 |
val [rew] = goal Fixedpt.thy "A==lfp(D,h) ==> A <= D";
|
|
70 |
by (rewtac rew);
|
|
71 |
by (rtac lfp_subset 1);
|
|
72 |
val def_lfp_subset = result();
|
|
73 |
|
|
74 |
val subset0_cs = FOL_cs
|
|
75 |
addSIs [ballI, InterI, CollectI, PowI, empty_subsetI]
|
|
76 |
addIs [bexI, UnionI, ReplaceI, RepFunI]
|
|
77 |
addSEs [bexE, make_elim PowD, UnionE, ReplaceE, RepFunE,
|
|
78 |
CollectE, emptyE]
|
|
79 |
addEs [rev_ballE, InterD, make_elim InterD, subsetD];
|
|
80 |
|
|
81 |
val subset_cs = subset0_cs
|
|
82 |
addSIs [subset_refl,cons_subsetI,subset_consI,Union_least,UN_least,Un_least,
|
|
83 |
Inter_greatest,Int_greatest,RepFun_subset]
|
|
84 |
addSIs [Un_upper1,Un_upper2,Int_lower1,Int_lower2]
|
|
85 |
addIs [Union_upper,Inter_lower]
|
|
86 |
addSEs [cons_subsetE];
|
|
87 |
|
|
88 |
val prems = goalw Fixedpt.thy [lfp_def]
|
|
89 |
"[| h(D) <= D; !!X. [| h(X) <= X; X<=D |] ==> A<=X |] ==> \
|
|
90 |
\ A <= lfp(D,h)";
|
|
91 |
br (Pow_top RS CollectI RS Inter_greatest) 1;
|
|
92 |
by (REPEAT (ares_tac prems 1 ORELSE eresolve_tac [CollectE,PowD] 1));
|
|
93 |
val lfp_greatest = result();
|
|
94 |
|
|
95 |
val hmono::prems = goal Fixedpt.thy
|
|
96 |
"[| bnd_mono(D,h); h(A)<=A; A<=D |] ==> h(lfp(D,h)) <= A";
|
|
97 |
by (rtac (hmono RS bnd_monoD2 RS subset_trans) 1);
|
|
98 |
by (rtac lfp_lowerbound 1);
|
|
99 |
by (REPEAT (resolve_tac prems 1));
|
|
100 |
val lfp_lemma1 = result();
|
|
101 |
|
|
102 |
val [hmono] = goal Fixedpt.thy
|
|
103 |
"bnd_mono(D,h) ==> h(lfp(D,h)) <= lfp(D,h)";
|
|
104 |
by (rtac (bnd_monoD1 RS lfp_greatest) 1);
|
|
105 |
by (rtac lfp_lemma1 2);
|
|
106 |
by (REPEAT (ares_tac [hmono] 1));
|
|
107 |
val lfp_lemma2 = result();
|
|
108 |
|
|
109 |
val [hmono] = goal Fixedpt.thy
|
|
110 |
"bnd_mono(D,h) ==> lfp(D,h) <= h(lfp(D,h))";
|
|
111 |
by (rtac lfp_lowerbound 1);
|
|
112 |
by (rtac (hmono RS bnd_monoD2) 1);
|
|
113 |
by (rtac (hmono RS lfp_lemma2) 1);
|
|
114 |
by (rtac (hmono RS bnd_mono_subset) 2);
|
|
115 |
by (REPEAT (rtac lfp_subset 1));
|
|
116 |
val lfp_lemma3 = result();
|
|
117 |
|
|
118 |
val prems = goal Fixedpt.thy
|
|
119 |
"bnd_mono(D,h) ==> lfp(D,h) = h(lfp(D,h))";
|
|
120 |
by (REPEAT (resolve_tac (prems@[equalityI,lfp_lemma2,lfp_lemma3]) 1));
|
|
121 |
val lfp_Tarski = result();
|
|
122 |
|
|
123 |
(*Definition form, to control unfolding*)
|
|
124 |
val [rew,mono] = goal Fixedpt.thy
|
|
125 |
"[| A==lfp(D,h); bnd_mono(D,h) |] ==> A = h(A)";
|
|
126 |
by (rewtac rew);
|
|
127 |
by (rtac (mono RS lfp_Tarski) 1);
|
|
128 |
val def_lfp_Tarski = result();
|
|
129 |
|
|
130 |
(*** General induction rule for least fixedpoints ***)
|
|
131 |
|
|
132 |
val [hmono,indstep] = goal Fixedpt.thy
|
|
133 |
"[| bnd_mono(D,h); !!x. x : h(Collect(lfp(D,h),P)) ==> P(x) \
|
|
134 |
\ |] ==> h(Collect(lfp(D,h),P)) <= Collect(lfp(D,h),P)";
|
|
135 |
by (rtac subsetI 1);
|
|
136 |
by (rtac CollectI 1);
|
|
137 |
by (etac indstep 2);
|
|
138 |
by (rtac (hmono RS lfp_lemma2 RS subsetD) 1);
|
|
139 |
by (rtac (hmono RS bnd_monoD2 RS subsetD) 1);
|
|
140 |
by (REPEAT (ares_tac [Collect_subset, lfp_subset] 1));
|
|
141 |
val Collect_is_pre_fixedpt = result();
|
|
142 |
|
|
143 |
(*This rule yields an induction hypothesis in which the components of a
|
|
144 |
data structure may be assumed to be elements of lfp(D,h)*)
|
|
145 |
val prems = goal Fixedpt.thy
|
|
146 |
"[| bnd_mono(D,h); a : lfp(D,h); \
|
|
147 |
\ !!x. x : h(Collect(lfp(D,h),P)) ==> P(x) \
|
|
148 |
\ |] ==> P(a)";
|
|
149 |
by (rtac (Collect_is_pre_fixedpt RS lfp_lowerbound RS subsetD RS CollectD2) 1);
|
|
150 |
by (rtac (lfp_subset RS (Collect_subset RS subset_trans)) 3);
|
|
151 |
by (REPEAT (ares_tac prems 1));
|
|
152 |
val induct = result();
|
|
153 |
|
|
154 |
(*Definition form, to control unfolding*)
|
|
155 |
val rew::prems = goal Fixedpt.thy
|
|
156 |
"[| A == lfp(D,h); bnd_mono(D,h); a:A; \
|
|
157 |
\ !!x. x : h(Collect(A,P)) ==> P(x) \
|
|
158 |
\ |] ==> P(a)";
|
|
159 |
by (rtac induct 1);
|
|
160 |
by (REPEAT (ares_tac (map (rewrite_rule [rew]) prems) 1));
|
|
161 |
val def_induct = result();
|
|
162 |
|
|
163 |
(*This version is useful when "A" is not a subset of D;
|
|
164 |
second premise could simply be h(D Int A) <= D or !!X. X<=D ==> h(X)<=D *)
|
|
165 |
val [hsub,hmono] = goal Fixedpt.thy
|
|
166 |
"[| h(D Int A) <= A; bnd_mono(D,h) |] ==> lfp(D,h) <= A";
|
|
167 |
by (rtac (lfp_lowerbound RS subset_trans) 1);
|
|
168 |
by (rtac (hmono RS bnd_mono_subset RS Int_greatest) 1);
|
|
169 |
by (REPEAT (resolve_tac [hsub,Int_lower1,Int_lower2] 1));
|
|
170 |
val lfp_Int_lowerbound = result();
|
|
171 |
|
|
172 |
(*Monotonicity of lfp, where h precedes i under a domain-like partial order
|
|
173 |
monotonicity of h is not strictly necessary; h must be bounded by D*)
|
|
174 |
val [hmono,imono,subhi] = goal Fixedpt.thy
|
|
175 |
"[| bnd_mono(D,h); bnd_mono(E,i); \
|
|
176 |
\ !!X. X<=D ==> h(X) <= i(X) |] ==> lfp(D,h) <= lfp(E,i)";
|
|
177 |
br (bnd_monoD1 RS lfp_greatest) 1;
|
|
178 |
br imono 1;
|
|
179 |
by (rtac (hmono RSN (2, lfp_Int_lowerbound)) 1);
|
|
180 |
by (rtac (Int_lower1 RS subhi RS subset_trans) 1);
|
|
181 |
by (rtac (imono RS bnd_monoD2 RS subset_trans) 1);
|
|
182 |
by (REPEAT (ares_tac [Int_lower2] 1));
|
|
183 |
val lfp_mono = result();
|
|
184 |
|
|
185 |
(*This (unused) version illustrates that monotonicity is not really needed,
|
|
186 |
but both lfp's must be over the SAME set D; Inter is anti-monotonic!*)
|
|
187 |
val [isubD,subhi] = goal Fixedpt.thy
|
|
188 |
"[| i(D) <= D; !!X. X<=D ==> h(X) <= i(X) |] ==> lfp(D,h) <= lfp(D,i)";
|
|
189 |
br lfp_greatest 1;
|
|
190 |
br isubD 1;
|
|
191 |
by (rtac lfp_lowerbound 1);
|
|
192 |
be (subhi RS subset_trans) 1;
|
|
193 |
by (REPEAT (assume_tac 1));
|
|
194 |
val lfp_mono2 = result();
|
|
195 |
|
|
196 |
|
|
197 |
(**** Proof of Knaster-Tarski Theorem for the gfp ****)
|
|
198 |
|
|
199 |
(*gfp contains each post-fixedpoint that is contained in D*)
|
|
200 |
val prems = goalw Fixedpt.thy [gfp_def]
|
|
201 |
"[| A <= h(A); A<=D |] ==> A <= gfp(D,h)";
|
|
202 |
by (rtac (PowI RS CollectI RS Union_upper) 1);
|
|
203 |
by (REPEAT (resolve_tac prems 1));
|
|
204 |
val gfp_upperbound = result();
|
|
205 |
|
|
206 |
goalw Fixedpt.thy [gfp_def] "gfp(D,h) <= D";
|
|
207 |
by (fast_tac ZF_cs 1);
|
|
208 |
val gfp_subset = result();
|
|
209 |
|
|
210 |
(*Used in datatype package*)
|
|
211 |
val [rew] = goal Fixedpt.thy "A==gfp(D,h) ==> A <= D";
|
|
212 |
by (rewtac rew);
|
|
213 |
by (rtac gfp_subset 1);
|
|
214 |
val def_gfp_subset = result();
|
|
215 |
|
|
216 |
val hmono::prems = goalw Fixedpt.thy [gfp_def]
|
|
217 |
"[| bnd_mono(D,h); !!X. [| X <= h(X); X<=D |] ==> X<=A |] ==> \
|
|
218 |
\ gfp(D,h) <= A";
|
|
219 |
by (fast_tac (subset_cs addIs ((hmono RS bnd_monoD1)::prems)) 1);
|
|
220 |
val gfp_least = result();
|
|
221 |
|
|
222 |
val hmono::prems = goal Fixedpt.thy
|
|
223 |
"[| bnd_mono(D,h); A<=h(A); A<=D |] ==> A <= h(gfp(D,h))";
|
|
224 |
by (rtac (hmono RS bnd_monoD2 RSN (2,subset_trans)) 1);
|
|
225 |
by (rtac gfp_subset 3);
|
|
226 |
by (rtac gfp_upperbound 2);
|
|
227 |
by (REPEAT (resolve_tac prems 1));
|
|
228 |
val gfp_lemma1 = result();
|
|
229 |
|
|
230 |
val [hmono] = goal Fixedpt.thy
|
|
231 |
"bnd_mono(D,h) ==> gfp(D,h) <= h(gfp(D,h))";
|
|
232 |
by (rtac gfp_least 1);
|
|
233 |
by (rtac gfp_lemma1 2);
|
|
234 |
by (REPEAT (ares_tac [hmono] 1));
|
|
235 |
val gfp_lemma2 = result();
|
|
236 |
|
|
237 |
val [hmono] = goal Fixedpt.thy
|
|
238 |
"bnd_mono(D,h) ==> h(gfp(D,h)) <= gfp(D,h)";
|
|
239 |
by (rtac gfp_upperbound 1);
|
|
240 |
by (rtac (hmono RS bnd_monoD2) 1);
|
|
241 |
by (rtac (hmono RS gfp_lemma2) 1);
|
|
242 |
by (REPEAT (rtac ([hmono, gfp_subset] MRS bnd_mono_subset) 1));
|
|
243 |
val gfp_lemma3 = result();
|
|
244 |
|
|
245 |
val prems = goal Fixedpt.thy
|
|
246 |
"bnd_mono(D,h) ==> gfp(D,h) = h(gfp(D,h))";
|
|
247 |
by (REPEAT (resolve_tac (prems@[equalityI,gfp_lemma2,gfp_lemma3]) 1));
|
|
248 |
val gfp_Tarski = result();
|
|
249 |
|
|
250 |
(*Definition form, to control unfolding*)
|
|
251 |
val [rew,mono] = goal Fixedpt.thy
|
|
252 |
"[| A==gfp(D,h); bnd_mono(D,h) |] ==> A = h(A)";
|
|
253 |
by (rewtac rew);
|
|
254 |
by (rtac (mono RS gfp_Tarski) 1);
|
|
255 |
val def_gfp_Tarski = result();
|
|
256 |
|
|
257 |
|
|
258 |
(*** Coinduction rules for greatest fixed points ***)
|
|
259 |
|
|
260 |
(*weak version*)
|
|
261 |
goal Fixedpt.thy "!!X h. [| a: X; X <= h(X); X <= D |] ==> a : gfp(D,h)";
|
|
262 |
by (REPEAT (ares_tac [gfp_upperbound RS subsetD] 1));
|
|
263 |
val weak_coinduct = result();
|
|
264 |
|
|
265 |
val [subs_h,subs_D,mono] = goal Fixedpt.thy
|
|
266 |
"[| X <= h(X Un gfp(D,h)); X <= D; bnd_mono(D,h) |] ==> \
|
|
267 |
\ X Un gfp(D,h) <= h(X Un gfp(D,h))";
|
|
268 |
by (rtac (subs_h RS Un_least) 1);
|
|
269 |
by (rtac (mono RS gfp_lemma2 RS subset_trans) 1);
|
|
270 |
by (rtac (Un_upper2 RS subset_trans) 1);
|
|
271 |
by (rtac ([mono, subs_D, gfp_subset] MRS bnd_mono_Un) 1);
|
|
272 |
val coinduct_lemma = result();
|
|
273 |
|
|
274 |
(*strong version*)
|
|
275 |
goal Fixedpt.thy
|
|
276 |
"!!X D. [| bnd_mono(D,h); a: X; X <= h(X Un gfp(D,h)); X <= D |] ==> \
|
|
277 |
\ a : gfp(D,h)";
|
|
278 |
by (rtac (coinduct_lemma RSN (2, weak_coinduct)) 1);
|
|
279 |
by (REPEAT (ares_tac [gfp_subset, UnI1, Un_least] 1));
|
|
280 |
val coinduct = result();
|
|
281 |
|
|
282 |
(*Definition form, to control unfolding*)
|
|
283 |
val rew::prems = goal Fixedpt.thy
|
|
284 |
"[| A == gfp(D,h); bnd_mono(D,h); a: X; X <= h(X Un A); X <= D |] ==> \
|
|
285 |
\ a : A";
|
|
286 |
by (rewtac rew);
|
|
287 |
by (rtac coinduct 1);
|
|
288 |
by (REPEAT (ares_tac (map (rewrite_rule [rew]) prems) 1));
|
|
289 |
val def_coinduct = result();
|
|
290 |
|
|
291 |
(*Lemma used immediately below!*)
|
|
292 |
val [subsA,XimpP] = goal ZF.thy
|
|
293 |
"[| X <= A; !!z. z:X ==> P(z) |] ==> X <= Collect(A,P)";
|
|
294 |
by (rtac (subsA RS subsetD RS CollectI RS subsetI) 1);
|
|
295 |
by (assume_tac 1);
|
|
296 |
by (etac XimpP 1);
|
|
297 |
val subset_Collect = result();
|
|
298 |
|
|
299 |
(*The version used in the induction/coinduction package*)
|
|
300 |
val prems = goal Fixedpt.thy
|
|
301 |
"[| A == gfp(D, %w. Collect(D,P(w))); bnd_mono(D, %w. Collect(D,P(w))); \
|
|
302 |
\ a: X; X <= D; !!z. z: X ==> P(X Un A, z) |] ==> \
|
|
303 |
\ a : A";
|
|
304 |
by (rtac def_coinduct 1);
|
|
305 |
by (REPEAT (ares_tac (subset_Collect::prems) 1));
|
|
306 |
val def_Collect_coinduct = result();
|
|
307 |
|
|
308 |
(*Monotonicity of gfp!*)
|
|
309 |
val [hmono,subde,subhi] = goal Fixedpt.thy
|
|
310 |
"[| bnd_mono(D,h); D <= E; \
|
|
311 |
\ !!X. X<=D ==> h(X) <= i(X) |] ==> gfp(D,h) <= gfp(E,i)";
|
|
312 |
by (rtac gfp_upperbound 1);
|
|
313 |
by (rtac (hmono RS gfp_lemma2 RS subset_trans) 1);
|
|
314 |
by (rtac (gfp_subset RS subhi) 1);
|
|
315 |
by (rtac ([gfp_subset, subde] MRS subset_trans) 1);
|
|
316 |
val gfp_mono = result();
|
|
317 |
|