| author | wenzelm | 
| Thu, 12 May 2016 10:16:52 +0200 | |
| changeset 63084 | 0054992a86b7 | 
| parent 61890 | f6ded81f5690 | 
| permissions | -rw-r--r-- | 
| 47602 | 1 | (* Author: Tobias Nipkow *) | 
| 2 | ||
| 3 | theory Abs_Int1_parity_ITP | |
| 4 | imports Abs_Int1_ITP | |
| 46345 | 5 | begin | 
| 6 | ||
| 7 | subsection "Parity Analysis" | |
| 8 | ||
| 58310 | 9 | datatype parity = Even | Odd | Either | 
| 46345 | 10 | |
| 11 | text{* Instantiation of class @{class preord} with type @{typ parity}: *}
 | |
| 12 | ||
| 13 | instantiation parity :: preord | |
| 14 | begin | |
| 15 | ||
| 16 | text{* First the definition of the interface function @{text"\<sqsubseteq>"}. Note that
 | |
| 17 | the header of the definition must refer to the ascii name @{const le} of the
 | |
| 18 | constants as @{text le_parity} and the definition is named @{text
 | |
| 19 | le_parity_def}. Inside the definition the symbolic names can be used. *} | |
| 20 | ||
| 21 | definition le_parity where | |
| 22 | "x \<sqsubseteq> y = (y = Either \<or> x=y)" | |
| 23 | ||
| 24 | text{* Now the instance proof, i.e.\ the proof that the definition fulfills
 | |
| 25 | the axioms (assumptions) of the class. The initial proof-step generates the | |
| 26 | necessary proof obligations. *} | |
| 27 | ||
| 28 | instance | |
| 29 | proof | |
| 30 | fix x::parity show "x \<sqsubseteq> x" by(auto simp: le_parity_def) | |
| 31 | next | |
| 32 | fix x y z :: parity assume "x \<sqsubseteq> y" "y \<sqsubseteq> z" thus "x \<sqsubseteq> z" | |
| 33 | by(auto simp: le_parity_def) | |
| 34 | qed | |
| 35 | ||
| 36 | end | |
| 37 | ||
| 38 | text{* Instantiation of class @{class SL_top} with type @{typ parity}: *}
 | |
| 39 | ||
| 40 | instantiation parity :: SL_top | |
| 41 | begin | |
| 42 | ||
| 43 | ||
| 44 | definition join_parity where | |
| 45 | "x \<squnion> y = (if x \<sqsubseteq> y then y else if y \<sqsubseteq> x then x else Either)" | |
| 46 | ||
| 47 | definition Top_parity where | |
| 48 | "\<top> = Either" | |
| 49 | ||
| 50 | text{* Now the instance proof. This time we take a lazy shortcut: we do not
 | |
| 51 | write out the proof obligations but use the @{text goali} primitive to refer
 | |
| 52 | to the assumptions of subgoal i and @{text "case?"} to refer to the
 | |
| 53 | conclusion of subgoal i. The class axioms are presented in the same order as | |
| 54 | in the class definition. *} | |
| 55 | ||
| 56 | instance | |
| 57 | proof | |
| 58 | case goal1 (*join1*) show ?case by(auto simp: le_parity_def join_parity_def) | |
| 59 | next | |
| 60 | case goal2 (*join2*) show ?case by(auto simp: le_parity_def join_parity_def) | |
| 61 | next | |
| 62 | case goal3 (*join least*) thus ?case by(auto simp: le_parity_def join_parity_def) | |
| 63 | next | |
| 64 | case goal4 (*Top*) show ?case by(auto simp: le_parity_def Top_parity_def) | |
| 65 | qed | |
| 66 | ||
| 67 | end | |
| 68 | ||
| 69 | ||
| 70 | text{* Now we define the functions used for instantiating the abstract
 | |
| 71 | interpretation locales. Note that the Isabelle terminology is | |
| 72 | \emph{interpretation}, not \emph{instantiation} of locales, but we use
 | |
| 73 | instantiation to avoid confusion with abstract interpretation. *} | |
| 74 | ||
| 75 | fun \<gamma>_parity :: "parity \<Rightarrow> val set" where | |
| 76 | "\<gamma>_parity Even = {i. i mod 2 = 0}" |
 | |
| 77 | "\<gamma>_parity Odd  = {i. i mod 2 = 1}" |
 | |
| 78 | "\<gamma>_parity Either = UNIV" | |
| 79 | ||
| 80 | fun num_parity :: "val \<Rightarrow> parity" where | |
| 81 | "num_parity i = (if i mod 2 = 0 then Even else Odd)" | |
| 82 | ||
| 83 | fun plus_parity :: "parity \<Rightarrow> parity \<Rightarrow> parity" where | |
| 84 | "plus_parity Even Even = Even" | | |
| 85 | "plus_parity Odd Odd = Even" | | |
| 86 | "plus_parity Even Odd = Odd" | | |
| 87 | "plus_parity Odd Even = Odd" | | |
| 88 | "plus_parity Either y = Either" | | |
| 89 | "plus_parity x Either = Either" | |
| 90 | ||
| 91 | text{* First we instantiate the abstract value interface and prove that the
 | |
| 92 | functions on type @{typ parity} have all the necessary properties: *}
 | |
| 93 | ||
| 94 | interpretation Val_abs | |
| 95 | where \<gamma> = \<gamma>_parity and num' = num_parity and plus' = plus_parity | |
| 96 | proof txt{* of the locale axioms *}
 | |
| 97 | fix a b :: parity | |
| 98 | assume "a \<sqsubseteq> b" thus "\<gamma>_parity a \<subseteq> \<gamma>_parity b" | |
| 99 | by(auto simp: le_parity_def) | |
| 100 | next txt{* The rest in the lazy, implicit way *}
 | |
| 101 | case goal2 show ?case by(auto simp: Top_parity_def) | |
| 102 | next | |
| 103 | case goal3 show ?case by auto | |
| 104 | next | |
| 105 |   txt{* Warning: this subproof refers to the names @{text a1} and @{text a2}
 | |
| 106 | from the statement of the axiom. *} | |
| 107 | case goal4 thus ?case | |
| 108 | proof(cases a1 a2 rule: parity.exhaust[case_product parity.exhaust]) | |
| 109 | qed (auto simp add:mod_add_eq) | |
| 110 | qed | |
| 111 | ||
| 112 | text{* Instantiating the abstract interpretation locale requires no more
 | |
| 113 | proofs (they happened in the instatiation above) but delivers the | |
| 114 | instantiated abstract interpreter which we call AI: *} | |
| 115 | ||
| 61890 
f6ded81f5690
abandoned attempt to unify sublocale and interpretation into global theories
 haftmann parents: 
61671diff
changeset | 116 | global_interpretation Abs_Int | 
| 46345 | 117 | where \<gamma> = \<gamma>_parity and num' = num_parity and plus' = plus_parity | 
| 61671 
20d4cd2ceab2
prefer "rewrites" and "defines" to note rewrite morphisms
 haftmann parents: 
58310diff
changeset | 118 | defines aval_parity = aval' and step_parity = step' and AI_parity = AI | 
| 46355 
42a01315d998
removed accidental dependance of abstract interpreter on gamma
 nipkow parents: 
46346diff
changeset | 119 | .. | 
| 46345 | 120 | |
| 121 | ||
| 122 | subsubsection "Tests" | |
| 123 | ||
| 124 | definition "test1_parity = | |
| 52046 
bc01725d7918
replaced `;' by `;;' to disambiguate syntax; unexpected slight increase in build time
 nipkow parents: 
47602diff
changeset | 125 | ''x'' ::= N 1;; | 
| 46345 | 126 | WHILE Less (V ''x'') (N 100) DO ''x'' ::= Plus (V ''x'') (N 2)" | 
| 127 | ||
| 128 | value "show_acom_opt (AI_parity test1_parity)" | |
| 129 | ||
| 130 | definition "test2_parity = | |
| 52046 
bc01725d7918
replaced `;' by `;;' to disambiguate syntax; unexpected slight increase in build time
 nipkow parents: 
47602diff
changeset | 131 | ''x'' ::= N 1;; | 
| 46345 | 132 | WHILE Less (V ''x'') (N 100) DO ''x'' ::= Plus (V ''x'') (N 3)" | 
| 133 | ||
| 134 | value "show_acom ((step_parity \<top> ^^1) (anno None test2_parity))" | |
| 135 | value "show_acom ((step_parity \<top> ^^2) (anno None test2_parity))" | |
| 136 | value "show_acom ((step_parity \<top> ^^3) (anno None test2_parity))" | |
| 137 | value "show_acom ((step_parity \<top> ^^4) (anno None test2_parity))" | |
| 138 | value "show_acom ((step_parity \<top> ^^5) (anno None test2_parity))" | |
| 139 | value "show_acom_opt (AI_parity test2_parity)" | |
| 140 | ||
| 141 | ||
| 142 | subsubsection "Termination" | |
| 143 | ||
| 61890 
f6ded81f5690
abandoned attempt to unify sublocale and interpretation into global theories
 haftmann parents: 
61671diff
changeset | 144 | global_interpretation Abs_Int_mono | 
| 46345 | 145 | where \<gamma> = \<gamma>_parity and num' = num_parity and plus' = plus_parity | 
| 146 | proof | |
| 147 | case goal1 thus ?case | |
| 148 | proof(cases a1 a2 b1 b2 | |
| 149 | rule: parity.exhaust[case_product parity.exhaust[case_product parity.exhaust[case_product parity.exhaust]]]) (* FIXME - UGLY! *) | |
| 150 | qed (auto simp add:le_parity_def) | |
| 151 | qed | |
| 152 | ||
| 153 | ||
| 154 | definition m_parity :: "parity \<Rightarrow> nat" where | |
| 155 | "m_parity x = (if x=Either then 0 else 1)" | |
| 156 | ||
| 157 | lemma measure_parity: | |
| 158 |   "(strict{(x::parity,y). x \<sqsubseteq> y})^-1 \<subseteq> measure m_parity"
 | |
| 159 | by(auto simp add: m_parity_def le_parity_def) | |
| 160 | ||
| 161 | lemma measure_parity_eq: | |
| 162 | "\<forall>x y::parity. x \<sqsubseteq> y \<and> y \<sqsubseteq> x \<longrightarrow> m_parity x = m_parity y" | |
| 163 | by(auto simp add: m_parity_def le_parity_def) | |
| 164 | ||
| 165 | lemma AI_parity_Some: "\<exists>c'. AI_parity c = Some c'" | |
| 166 | by(rule AI_Some_measure[OF measure_parity measure_parity_eq]) | |
| 167 | ||
| 168 | end |