author | nipkow |
Thu, 19 Apr 2012 17:32:30 +0200 | |
changeset 47602 | 3d44790b5ab0 |
parent 46355 | src/HOL/IMP/Abs_Int0_parity.thy@42a01315d998 |
child 52046 | bc01725d7918 |
permissions | -rw-r--r-- |
47602 | 1 |
(* Author: Tobias Nipkow *) |
2 |
||
3 |
theory Abs_Int1_parity_ITP |
|
4 |
imports Abs_Int1_ITP |
|
46345 | 5 |
begin |
6 |
||
7 |
subsection "Parity Analysis" |
|
8 |
||
9 |
datatype parity = Even | Odd | Either |
|
10 |
||
11 |
text{* Instantiation of class @{class preord} with type @{typ parity}: *} |
|
12 |
||
13 |
instantiation parity :: preord |
|
14 |
begin |
|
15 |
||
16 |
text{* First the definition of the interface function @{text"\<sqsubseteq>"}. Note that |
|
17 |
the header of the definition must refer to the ascii name @{const le} of the |
|
18 |
constants as @{text le_parity} and the definition is named @{text |
|
19 |
le_parity_def}. Inside the definition the symbolic names can be used. *} |
|
20 |
||
21 |
definition le_parity where |
|
22 |
"x \<sqsubseteq> y = (y = Either \<or> x=y)" |
|
23 |
||
24 |
text{* Now the instance proof, i.e.\ the proof that the definition fulfills |
|
25 |
the axioms (assumptions) of the class. The initial proof-step generates the |
|
26 |
necessary proof obligations. *} |
|
27 |
||
28 |
instance |
|
29 |
proof |
|
30 |
fix x::parity show "x \<sqsubseteq> x" by(auto simp: le_parity_def) |
|
31 |
next |
|
32 |
fix x y z :: parity assume "x \<sqsubseteq> y" "y \<sqsubseteq> z" thus "x \<sqsubseteq> z" |
|
33 |
by(auto simp: le_parity_def) |
|
34 |
qed |
|
35 |
||
36 |
end |
|
37 |
||
38 |
text{* Instantiation of class @{class SL_top} with type @{typ parity}: *} |
|
39 |
||
40 |
instantiation parity :: SL_top |
|
41 |
begin |
|
42 |
||
43 |
||
44 |
definition join_parity where |
|
45 |
"x \<squnion> y = (if x \<sqsubseteq> y then y else if y \<sqsubseteq> x then x else Either)" |
|
46 |
||
47 |
definition Top_parity where |
|
48 |
"\<top> = Either" |
|
49 |
||
50 |
text{* Now the instance proof. This time we take a lazy shortcut: we do not |
|
51 |
write out the proof obligations but use the @{text goali} primitive to refer |
|
52 |
to the assumptions of subgoal i and @{text "case?"} to refer to the |
|
53 |
conclusion of subgoal i. The class axioms are presented in the same order as |
|
54 |
in the class definition. *} |
|
55 |
||
56 |
instance |
|
57 |
proof |
|
58 |
case goal1 (*join1*) show ?case by(auto simp: le_parity_def join_parity_def) |
|
59 |
next |
|
60 |
case goal2 (*join2*) show ?case by(auto simp: le_parity_def join_parity_def) |
|
61 |
next |
|
62 |
case goal3 (*join least*) thus ?case by(auto simp: le_parity_def join_parity_def) |
|
63 |
next |
|
64 |
case goal4 (*Top*) show ?case by(auto simp: le_parity_def Top_parity_def) |
|
65 |
qed |
|
66 |
||
67 |
end |
|
68 |
||
69 |
||
70 |
text{* Now we define the functions used for instantiating the abstract |
|
71 |
interpretation locales. Note that the Isabelle terminology is |
|
72 |
\emph{interpretation}, not \emph{instantiation} of locales, but we use |
|
73 |
instantiation to avoid confusion with abstract interpretation. *} |
|
74 |
||
75 |
fun \<gamma>_parity :: "parity \<Rightarrow> val set" where |
|
76 |
"\<gamma>_parity Even = {i. i mod 2 = 0}" | |
|
77 |
"\<gamma>_parity Odd = {i. i mod 2 = 1}" | |
|
78 |
"\<gamma>_parity Either = UNIV" |
|
79 |
||
80 |
fun num_parity :: "val \<Rightarrow> parity" where |
|
81 |
"num_parity i = (if i mod 2 = 0 then Even else Odd)" |
|
82 |
||
83 |
fun plus_parity :: "parity \<Rightarrow> parity \<Rightarrow> parity" where |
|
84 |
"plus_parity Even Even = Even" | |
|
85 |
"plus_parity Odd Odd = Even" | |
|
86 |
"plus_parity Even Odd = Odd" | |
|
87 |
"plus_parity Odd Even = Odd" | |
|
88 |
"plus_parity Either y = Either" | |
|
89 |
"plus_parity x Either = Either" |
|
90 |
||
91 |
text{* First we instantiate the abstract value interface and prove that the |
|
92 |
functions on type @{typ parity} have all the necessary properties: *} |
|
93 |
||
94 |
interpretation Val_abs |
|
95 |
where \<gamma> = \<gamma>_parity and num' = num_parity and plus' = plus_parity |
|
96 |
proof txt{* of the locale axioms *} |
|
97 |
fix a b :: parity |
|
98 |
assume "a \<sqsubseteq> b" thus "\<gamma>_parity a \<subseteq> \<gamma>_parity b" |
|
99 |
by(auto simp: le_parity_def) |
|
100 |
next txt{* The rest in the lazy, implicit way *} |
|
101 |
case goal2 show ?case by(auto simp: Top_parity_def) |
|
102 |
next |
|
103 |
case goal3 show ?case by auto |
|
104 |
next |
|
105 |
txt{* Warning: this subproof refers to the names @{text a1} and @{text a2} |
|
106 |
from the statement of the axiom. *} |
|
107 |
case goal4 thus ?case |
|
108 |
proof(cases a1 a2 rule: parity.exhaust[case_product parity.exhaust]) |
|
109 |
qed (auto simp add:mod_add_eq) |
|
110 |
qed |
|
111 |
||
112 |
text{* Instantiating the abstract interpretation locale requires no more |
|
113 |
proofs (they happened in the instatiation above) but delivers the |
|
114 |
instantiated abstract interpreter which we call AI: *} |
|
115 |
||
116 |
interpretation Abs_Int |
|
117 |
where \<gamma> = \<gamma>_parity and num' = num_parity and plus' = plus_parity |
|
46346
10c18630612a
removed duplicate definitions that made locale inconsistent
nipkow
parents:
46345
diff
changeset
|
118 |
defines aval_parity is aval' and step_parity is step' and AI_parity is AI |
46355
42a01315d998
removed accidental dependance of abstract interpreter on gamma
nipkow
parents:
46346
diff
changeset
|
119 |
.. |
46345 | 120 |
|
121 |
||
122 |
subsubsection "Tests" |
|
123 |
||
124 |
definition "test1_parity = |
|
125 |
''x'' ::= N 1; |
|
126 |
WHILE Less (V ''x'') (N 100) DO ''x'' ::= Plus (V ''x'') (N 2)" |
|
127 |
||
128 |
value "show_acom_opt (AI_parity test1_parity)" |
|
129 |
||
130 |
definition "test2_parity = |
|
131 |
''x'' ::= N 1; |
|
132 |
WHILE Less (V ''x'') (N 100) DO ''x'' ::= Plus (V ''x'') (N 3)" |
|
133 |
||
134 |
value "show_acom ((step_parity \<top> ^^1) (anno None test2_parity))" |
|
135 |
value "show_acom ((step_parity \<top> ^^2) (anno None test2_parity))" |
|
136 |
value "show_acom ((step_parity \<top> ^^3) (anno None test2_parity))" |
|
137 |
value "show_acom ((step_parity \<top> ^^4) (anno None test2_parity))" |
|
138 |
value "show_acom ((step_parity \<top> ^^5) (anno None test2_parity))" |
|
139 |
value "show_acom_opt (AI_parity test2_parity)" |
|
140 |
||
141 |
||
142 |
subsubsection "Termination" |
|
143 |
||
144 |
interpretation Abs_Int_mono |
|
145 |
where \<gamma> = \<gamma>_parity and num' = num_parity and plus' = plus_parity |
|
146 |
proof |
|
147 |
case goal1 thus ?case |
|
148 |
proof(cases a1 a2 b1 b2 |
|
149 |
rule: parity.exhaust[case_product parity.exhaust[case_product parity.exhaust[case_product parity.exhaust]]]) (* FIXME - UGLY! *) |
|
150 |
qed (auto simp add:le_parity_def) |
|
151 |
qed |
|
152 |
||
153 |
||
154 |
definition m_parity :: "parity \<Rightarrow> nat" where |
|
155 |
"m_parity x = (if x=Either then 0 else 1)" |
|
156 |
||
157 |
lemma measure_parity: |
|
158 |
"(strict{(x::parity,y). x \<sqsubseteq> y})^-1 \<subseteq> measure m_parity" |
|
159 |
by(auto simp add: m_parity_def le_parity_def) |
|
160 |
||
161 |
lemma measure_parity_eq: |
|
162 |
"\<forall>x y::parity. x \<sqsubseteq> y \<and> y \<sqsubseteq> x \<longrightarrow> m_parity x = m_parity y" |
|
163 |
by(auto simp add: m_parity_def le_parity_def) |
|
164 |
||
165 |
lemma AI_parity_Some: "\<exists>c'. AI_parity c = Some c'" |
|
166 |
by(rule AI_Some_measure[OF measure_parity measure_parity_eq]) |
|
167 |
||
168 |
end |