| author | haftmann | 
| Sat, 19 May 2007 11:33:21 +0200 | |
| changeset 23017 | 00c0e4c42396 | 
| parent 22845 | 5f9138bcb3d7 | 
| child 23396 | 6d72ababc58f | 
| permissions | -rw-r--r-- | 
| 19829 | 1 | (* ID: $Id$ | 
| 2 | Authors: Klaus Aehlig, Tobias Nipkow | |
| 20807 | 3 | *) | 
| 19829 | 4 | |
| 21059 | 5 | header {* Test of normalization function *}
 | 
| 19829 | 6 | |
| 7 | theory NormalForm | |
| 8 | imports Main | |
| 9 | begin | |
| 10 | ||
| 21117 | 11 | lemma "True" by normalization | 
| 12 | lemma "x = x" by normalization | |
| 19971 | 13 | lemma "p \<longrightarrow> True" by normalization | 
| 20523 
36a59e5d0039
Major update to function package, including new syntax and the (only theoretical)
 krauss parents: 
20352diff
changeset | 14 | declare disj_assoc [code func] | 
| 20595 | 15 | lemma "((P | Q) | R) = (P | (Q | R))" by normalization | 
| 22845 | 16 | declare disj_assoc [code func del] | 
| 19971 | 17 | lemma "0 + (n::nat) = n" by normalization | 
| 20595 | 18 | lemma "0 + Suc n = Suc n" by normalization | 
| 19 | lemma "Suc n + Suc m = n + Suc (Suc m)" by normalization | |
| 19971 | 20 | lemma "~((0::nat) < (0::nat))" by normalization | 
| 21 | ||
| 19829 | 22 | datatype n = Z | S n | 
| 23 | consts | |
| 20842 | 24 | add :: "n \<Rightarrow> n \<Rightarrow> n" | 
| 25 | add2 :: "n \<Rightarrow> n \<Rightarrow> n" | |
| 26 | mul :: "n \<Rightarrow> n \<Rightarrow> n" | |
| 27 | mul2 :: "n \<Rightarrow> n \<Rightarrow> n" | |
| 28 | exp :: "n \<Rightarrow> n \<Rightarrow> n" | |
| 19829 | 29 | primrec | 
| 20842 | 30 | "add Z = id" | 
| 31 | "add (S m) = S o add m" | |
| 19829 | 32 | primrec | 
| 20842 | 33 | "add2 Z n = n" | 
| 34 | "add2 (S m) n = S(add2 m n)" | |
| 19829 | 35 | |
| 36 | lemma [code]: "add2 (add2 n m) k = add2 n (add2 m k)" | |
| 20842 | 37 | by(induct n) auto | 
| 38 | lemma [code]: "add2 n (S m) = S (add2 n m)" | |
| 39 | by(induct n) auto | |
| 19829 | 40 | lemma [code]: "add2 n Z = n" | 
| 20842 | 41 | by(induct n) auto | 
| 19971 | 42 | |
| 43 | lemma "add2 (add2 n m) k = add2 n (add2 m k)" by normalization | |
| 44 | lemma "add2 (add2 (S n) (S m)) (S k) = S(S(S(add2 n (add2 m k))))" by normalization | |
| 45 | lemma "add2 (add2 (S n) (add2 (S m) Z)) (S k) = S(S(S(add2 n (add2 m k))))" by normalization | |
| 19829 | 46 | |
| 47 | primrec | |
| 20842 | 48 | "mul Z = (%n. Z)" | 
| 49 | "mul (S m) = (%n. add (mul m n) n)" | |
| 19829 | 50 | primrec | 
| 20842 | 51 | "mul2 Z n = Z" | 
| 52 | "mul2 (S m) n = add2 n (mul2 m n)" | |
| 19829 | 53 | primrec | 
| 20842 | 54 | "exp m Z = S Z" | 
| 55 | "exp m (S n) = mul (exp m n) m" | |
| 19829 | 56 | |
| 19971 | 57 | lemma "mul2 (S(S(S(S(S Z))))) (S(S(S Z))) = S(S(S(S(S(S(S(S(S(S(S(S(S(S(S Z))))))))))))))" by normalization | 
| 58 | lemma "mul (S(S(S(S(S Z))))) (S(S(S Z))) = S(S(S(S(S(S(S(S(S(S(S(S(S(S(S Z))))))))))))))" by normalization | |
| 59 | lemma "exp (S(S Z)) (S(S(S(S Z)))) = exp (S(S(S(S Z)))) (S(S Z))" by normalization | |
| 60 | ||
| 61 | lemma "(let ((x,y),(u,v)) = ((Z,Z),(Z,Z)) in add (add x y) (add u v)) = Z" by normalization | |
| 20842 | 62 | lemma "split (%x y. x) (a, b) = a" by normalization | 
| 19971 | 63 | lemma "(%((x,y),(u,v)). add (add x y) (add u v)) ((Z,Z),(Z,Z)) = Z" by normalization | 
| 64 | ||
| 65 | lemma "case Z of Z \<Rightarrow> True | S x \<Rightarrow> False" by normalization | |
| 19829 | 66 | |
| 20842 | 67 | lemma "[] @ [] = []" by normalization | 
| 68 | lemma "[] @ xs = xs" by normalization | |
| 21460 | 69 | normal_form "[a, b, c] @ xs = a # b # c # xs" | 
| 70 | normal_form "map f [x,y,z::'x] = [f x, f y, f z]" | |
| 21156 | 71 | normal_form "map (%f. f True) [id, g, Not] = [True, g True, False]" | 
| 72 | normal_form "map (%f. f True) ([id, g, Not] @ fs) = [True, g True, False] @ map (%f. f True) fs" | |
| 21460 | 73 | normal_form "rev [a, b, c] = [c, b, a]" | 
| 21156 | 74 | normal_form "rev (a#b#cs) = rev cs @ [b, a]" | 
| 19829 | 75 | normal_form "map (%F. F [a,b,c::'x]) (map map [f,g,h])" | 
| 76 | normal_form "map (%F. F ([a,b,c] @ ds)) (map map ([f,g,h]@fs))" | |
| 77 | normal_form "map (%F. F [Z,S Z,S(S Z)]) (map map [S,add (S Z),mul (S(S Z)),id])" | |
| 78 | normal_form "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) [None, Some ()]" | |
| 79 | normal_form "case xs of [] \<Rightarrow> True | x#xs \<Rightarrow> False" | |
| 80 | normal_form "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) xs" | |
| 81 | normal_form "let x = y::'x in [x,x]" | |
| 82 | normal_form "Let y (%x. [x,x])" | |
| 83 | normal_form "case n of Z \<Rightarrow> True | S x \<Rightarrow> False" | |
| 84 | normal_form "(%(x,y). add x y) (S z,S z)" | |
| 85 | normal_form "filter (%x. x) ([True,False,x]@xs)" | |
| 86 | normal_form "filter Not ([True,False,x]@xs)" | |
| 87 | ||
| 21460 | 88 | normal_form "[x,y,z] @ [a,b,c] = [x, y, z, a, b ,c]" | 
| 89 | normal_form "(%(xs, ys). xs @ ys) ([a, b, c], [d, e, f]) = [a, b, c, d, e, f]" | |
| 21156 | 90 | normal_form "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) [None, Some ()] = [False, True]" | 
| 19829 | 91 | |
| 20842 | 92 | lemma "last [a, b, c] = c" | 
| 93 | by normalization | |
| 94 | lemma "last ([a, b, c] @ xs) = (if null xs then c else last xs)" | |
| 95 | by normalization | |
| 19829 | 96 | |
| 20842 | 97 | lemma "(2::int) + 3 - 1 + (- k) * 2 = 4 + - k * 2" by normalization | 
| 98 | lemma "(-4::int) * 2 = -8" by normalization | |
| 99 | lemma "abs ((-4::int) + 2 * 1) = 2" by normalization | |
| 100 | lemma "(2::int) + 3 = 5" by normalization | |
| 101 | lemma "(2::int) + 3 * (- 4) * (- 1) = 14" by normalization | |
| 102 | lemma "(2::int) + 3 * (- 4) * 1 + 0 = -10" by normalization | |
| 103 | lemma "(2::int) < 3" by normalization | |
| 104 | lemma "(2::int) <= 3" by normalization | |
| 105 | lemma "abs ((-4::int) + 2 * 1) = 2" by normalization | |
| 106 | lemma "4 - 42 * abs (3 + (-7\<Colon>int)) = -164" by normalization | |
| 107 | lemma "(if (0\<Colon>nat) \<le> (x\<Colon>nat) then 0\<Colon>nat else x) = 0" by normalization | |
| 22394 | 108 | lemma "4 = Suc (Suc (Suc (Suc 0)))" by normalization | 
| 109 | lemma "nat 4 = Suc (Suc (Suc (Suc 0)))" by normalization | |
| 20922 | 110 | |
| 21059 | 111 | normal_form "Suc 0 \<in> set ms" | 
| 20922 | 112 | |
| 21987 | 113 | normal_form "f" | 
| 114 | normal_form "f x" | |
| 115 | normal_form "(f o g) x" | |
| 116 | normal_form "(f o id) x" | |
| 117 | normal_form "\<lambda>x. x" | |
| 118 | ||
| 19829 | 119 | end |