author  nipkow 
Fri, 15 Jun 2007 09:09:06 +0200  
changeset 23396  6d72ababc58f 
parent 22845  5f9138bcb3d7 
child 25100  fe9632d914c7 
permissions  rwrr 
19829  1 
(* ID: $Id$ 
2 
Authors: Klaus Aehlig, Tobias Nipkow 

20807  3 
*) 
19829  4 

21059  5 
header {* Test of normalization function *} 
19829  6 

7 
theory NormalForm 

8 
imports Main 

9 
begin 

10 

21117  11 
lemma "True" by normalization 
12 
lemma "x = x" by normalization 

19971  13 
lemma "p \<longrightarrow> True" by normalization 
20523
36a59e5d0039
Major update to function package, including new syntax and the (only theoretical)
krauss
parents:
20352
diff
changeset

14 
declare disj_assoc [code func] 
20595  15 
lemma "((P  Q)  R) = (P  (Q  R))" by normalization 
22845  16 
declare disj_assoc [code func del] 
19971  17 
lemma "0 + (n::nat) = n" by normalization 
20595  18 
lemma "0 + Suc n = Suc n" by normalization 
19 
lemma "Suc n + Suc m = n + Suc (Suc m)" by normalization 

19971  20 
lemma "~((0::nat) < (0::nat))" by normalization 
21 

19829  22 
datatype n = Z  S n 
23 
consts 

20842  24 
add :: "n \<Rightarrow> n \<Rightarrow> n" 
25 
add2 :: "n \<Rightarrow> n \<Rightarrow> n" 

26 
mul :: "n \<Rightarrow> n \<Rightarrow> n" 

27 
mul2 :: "n \<Rightarrow> n \<Rightarrow> n" 

28 
exp :: "n \<Rightarrow> n \<Rightarrow> n" 

19829  29 
primrec 
20842  30 
"add Z = id" 
31 
"add (S m) = S o add m" 

19829  32 
primrec 
20842  33 
"add2 Z n = n" 
34 
"add2 (S m) n = S(add2 m n)" 

19829  35 

36 
lemma [code]: "add2 (add2 n m) k = add2 n (add2 m k)" 

20842  37 
by(induct n) auto 
38 
lemma [code]: "add2 n (S m) = S (add2 n m)" 

39 
by(induct n) auto 

19829  40 
lemma [code]: "add2 n Z = n" 
20842  41 
by(induct n) auto 
19971  42 

43 
lemma "add2 (add2 n m) k = add2 n (add2 m k)" by normalization 

44 
lemma "add2 (add2 (S n) (S m)) (S k) = S(S(S(add2 n (add2 m k))))" by normalization 

45 
lemma "add2 (add2 (S n) (add2 (S m) Z)) (S k) = S(S(S(add2 n (add2 m k))))" by normalization 

19829  46 

47 
primrec 

20842  48 
"mul Z = (%n. Z)" 
49 
"mul (S m) = (%n. add (mul m n) n)" 

19829  50 
primrec 
20842  51 
"mul2 Z n = Z" 
52 
"mul2 (S m) n = add2 n (mul2 m n)" 

19829  53 
primrec 
20842  54 
"exp m Z = S Z" 
55 
"exp m (S n) = mul (exp m n) m" 

19829  56 

19971  57 
lemma "mul2 (S(S(S(S(S Z))))) (S(S(S Z))) = S(S(S(S(S(S(S(S(S(S(S(S(S(S(S Z))))))))))))))" by normalization 
58 
lemma "mul (S(S(S(S(S Z))))) (S(S(S Z))) = S(S(S(S(S(S(S(S(S(S(S(S(S(S(S Z))))))))))))))" by normalization 

59 
lemma "exp (S(S Z)) (S(S(S(S Z)))) = exp (S(S(S(S Z)))) (S(S Z))" by normalization 

60 

61 
lemma "(let ((x,y),(u,v)) = ((Z,Z),(Z,Z)) in add (add x y) (add u v)) = Z" by normalization 

20842  62 
lemma "split (%x y. x) (a, b) = a" by normalization 
19971  63 
lemma "(%((x,y),(u,v)). add (add x y) (add u v)) ((Z,Z),(Z,Z)) = Z" by normalization 
64 

65 
lemma "case Z of Z \<Rightarrow> True  S x \<Rightarrow> False" by normalization 

19829  66 

20842  67 
lemma "[] @ [] = []" by normalization 
68 
lemma "[] @ xs = xs" by normalization 

21460  69 
normal_form "[a, b, c] @ xs = a # b # c # xs" 
70 
normal_form "map f [x,y,z::'x] = [f x, f y, f z]" 

21156  71 
normal_form "map (%f. f True) [id, g, Not] = [True, g True, False]" 
72 
normal_form "map (%f. f True) ([id, g, Not] @ fs) = [True, g True, False] @ map (%f. f True) fs" 

21460  73 
normal_form "rev [a, b, c] = [c, b, a]" 
21156  74 
normal_form "rev (a#b#cs) = rev cs @ [b, a]" 
19829  75 
normal_form "map (%F. F [a,b,c::'x]) (map map [f,g,h])" 
76 
normal_form "map (%F. F ([a,b,c] @ ds)) (map map ([f,g,h]@fs))" 

77 
normal_form "map (%F. F [Z,S Z,S(S Z)]) (map map [S,add (S Z),mul (S(S Z)),id])" 

78 
normal_form "map (%x. case x of None \<Rightarrow> False  Some y \<Rightarrow> True) [None, Some ()]" 

79 
normal_form "case xs of [] \<Rightarrow> True  x#xs \<Rightarrow> False" 

80 
normal_form "map (%x. case x of None \<Rightarrow> False  Some y \<Rightarrow> True) xs" 

81 
normal_form "let x = y::'x in [x,x]" 

82 
normal_form "Let y (%x. [x,x])" 

83 
normal_form "case n of Z \<Rightarrow> True  S x \<Rightarrow> False" 

84 
normal_form "(%(x,y). add x y) (S z,S z)" 

85 
normal_form "filter (%x. x) ([True,False,x]@xs)" 

86 
normal_form "filter Not ([True,False,x]@xs)" 

87 

21460  88 
normal_form "[x,y,z] @ [a,b,c] = [x, y, z, a, b ,c]" 
89 
normal_form "(%(xs, ys). xs @ ys) ([a, b, c], [d, e, f]) = [a, b, c, d, e, f]" 

21156  90 
normal_form "map (%x. case x of None \<Rightarrow> False  Some y \<Rightarrow> True) [None, Some ()] = [False, True]" 
19829  91 

20842  92 
lemma "last [a, b, c] = c" 
93 
by normalization 

94 
lemma "last ([a, b, c] @ xs) = (if null xs then c else last xs)" 

95 
by normalization 

19829  96 

20842  97 
lemma "(2::int) + 3  1 + ( k) * 2 = 4 +  k * 2" by normalization 
98 
lemma "(4::int) * 2 = 8" by normalization 

99 
lemma "abs ((4::int) + 2 * 1) = 2" by normalization 

100 
lemma "(2::int) + 3 = 5" by normalization 

101 
lemma "(2::int) + 3 * ( 4) * ( 1) = 14" by normalization 

102 
lemma "(2::int) + 3 * ( 4) * 1 + 0 = 10" by normalization 

103 
lemma "(2::int) < 3" by normalization 

104 
lemma "(2::int) <= 3" by normalization 

105 
lemma "abs ((4::int) + 2 * 1) = 2" by normalization 

106 
lemma "4  42 * abs (3 + (7\<Colon>int)) = 164" by normalization 

107 
lemma "(if (0\<Colon>nat) \<le> (x\<Colon>nat) then 0\<Colon>nat else x) = 0" by normalization 

22394  108 
lemma "4 = Suc (Suc (Suc (Suc 0)))" by normalization 
109 
lemma "nat 4 = Suc (Suc (Suc (Suc 0)))" by normalization 

20922  110 

21059  111 
normal_form "Suc 0 \<in> set ms" 
20922  112 

21987  113 
normal_form "f" 
114 
normal_form "f x" 

115 
normal_form "(f o g) x" 

116 
normal_form "(f o id) x" 

117 
normal_form "\<lambda>x. x" 

118 

23396  119 
(* Church numerals: *) 
120 

121 
normal_form "(%m n f x. m f (n f x)) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))" 

122 
normal_form "(%m n f x. m (n f) x) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))" 

123 
normal_form "(%m n. n m) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))" 

124 

19829  125 
end 