src/HOL/Analysis/Set_Integral.thy
author wenzelm
Fri, 24 Sep 2021 22:23:26 +0200
changeset 74362 0135a0c77b64
parent 73536 5131c388a9b0
child 77322 9c295f84d55f
permissions -rw-r--r--
tuned proofs --- avoid 'guess';
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
63627
6ddb43c6b711 rename HOL-Multivariate_Analysis to HOL-Analysis.
hoelzl
parents: 63626
diff changeset
     1
(*  Title:      HOL/Analysis/Set_Integral.thy
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
     2
    Author:     Jeremy Avigad (CMU), Johannes Hölzl (TUM), Luke Serafin (CMU)
64283
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
     3
    Author:  Sébastien Gouëzel   sebastien.gouezel@univ-rennes1.fr
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     4
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     5
Notation and useful facts for working with integrals over a set.
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     6
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     7
TODO: keep all these? Need unicode translations as well.
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     8
*)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     9
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    10
theory Set_Integral
64283
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
    11
  imports Radon_Nikodym
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    12
begin
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    13
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
    14
(*
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    15
    Notation
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    16
*)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    17
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69737
diff changeset
    18
definition\<^marker>\<open>tag important\<close> "set_borel_measurable M A f \<equiv> (\<lambda>x. indicator A x *\<^sub>R f x) \<in> borel_measurable M"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    19
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69737
diff changeset
    20
definition\<^marker>\<open>tag important\<close>  "set_integrable M A f \<equiv> integrable M (\<lambda>x. indicator A x *\<^sub>R f x)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    21
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69737
diff changeset
    22
definition\<^marker>\<open>tag important\<close>  "set_lebesgue_integral M A f \<equiv> lebesgue_integral M (\<lambda>x. indicator A x *\<^sub>R f x)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    23
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    24
syntax
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
    25
  "_ascii_set_lebesgue_integral" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'a measure \<Rightarrow> real \<Rightarrow> real"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
    26
  ("(4LINT (_):(_)/|(_)./ _)" [0,60,110,61] 60)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    27
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    28
translations
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
    29
  "LINT x:A|M. f" == "CONST set_lebesgue_integral M A (\<lambda>x. f)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    30
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    31
(*
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    32
    Notation for integration wrt lebesgue measure on the reals:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    33
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    34
      LBINT x. f
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    35
      LBINT x : A. f
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    36
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    37
    TODO: keep all these? Need unicode.
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    38
*)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    39
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    40
syntax
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
    41
  "_lebesgue_borel_integral" :: "pttrn \<Rightarrow> real \<Rightarrow> real"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
    42
  ("(2LBINT _./ _)" [0,60] 60)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    43
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    44
syntax
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
    45
  "_set_lebesgue_borel_integral" :: "pttrn \<Rightarrow> real set \<Rightarrow> real \<Rightarrow> real"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
    46
  ("(3LBINT _:_./ _)" [0,60,61] 60)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    47
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
    48
(*
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
    49
    Basic properties
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    50
*)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    51
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    52
(*
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61880
diff changeset
    53
lemma indicator_abs_eq: "\<And>A x. \<bar>indicator A x\<bar> = ((indicator A x) :: real)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    54
  by (auto simp add: indicator_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    55
*)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    56
68721
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
    57
lemma set_integrable_cong:
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
    58
  assumes "M = M'" "A = A'" "\<And>x. x \<in> A \<Longrightarrow> f x = f' x"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
    59
  shows   "set_integrable M A f = set_integrable M' A' f'"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
    60
proof -
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
    61
  have "(\<lambda>x. indicator A x *\<^sub>R f x) = (\<lambda>x. indicator A' x *\<^sub>R f' x)"
73536
5131c388a9b0 simplified definition
haftmann
parents: 73253
diff changeset
    62
    using assms by (auto simp: indicator_def of_bool_def)
68721
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
    63
  thus ?thesis by (simp add: set_integrable_def assms)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
    64
qed
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
    65
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    66
lemma set_borel_measurable_sets:
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    67
  fixes f :: "_ \<Rightarrow> _::real_normed_vector"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    68
  assumes "set_borel_measurable M X f" "B \<in> sets borel" "X \<in> sets M"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    69
  shows "f -` B \<inter> X \<in> sets M"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    70
proof -
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    71
  have "f \<in> borel_measurable (restrict_space M X)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
    72
    using assms unfolding set_borel_measurable_def by (subst borel_measurable_restrict_space_iff) auto
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    73
  then have "f -` B \<inter> space (restrict_space M X) \<in> sets (restrict_space M X)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    74
    by (rule measurable_sets) fact
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    75
  with \<open>X \<in> sets M\<close> show ?thesis
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    76
    by (subst (asm) sets_restrict_space_iff) (auto simp: space_restrict_space)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    77
qed
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    78
67977
557ea2740125 Probability builds with new definitions
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
    79
lemma set_lebesgue_integral_zero [simp]: "set_lebesgue_integral M A (\<lambda>x. 0) = 0"
557ea2740125 Probability builds with new definitions
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
    80
  by (auto simp: set_lebesgue_integral_def)
557ea2740125 Probability builds with new definitions
paulson <lp15@cam.ac.uk>
parents: 67974
diff changeset
    81
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    82
lemma set_lebesgue_integral_cong:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    83
  assumes "A \<in> sets M" and "\<forall>x. x \<in> A \<longrightarrow> f x = g x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    84
  shows "(LINT x:A|M. f x) = (LINT x:A|M. g x)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
    85
  unfolding set_lebesgue_integral_def
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
    86
  using assms
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
    87
  by (metis indicator_simps(2) real_vector.scale_zero_left)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    88
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    89
lemma set_lebesgue_integral_cong_AE:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    90
  assumes [measurable]: "A \<in> sets M" "f \<in> borel_measurable M" "g \<in> borel_measurable M"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    91
  assumes "AE x \<in> A in M. f x = g x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    92
  shows "LINT x:A|M. f x = LINT x:A|M. g x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    93
proof-
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    94
  have "AE x in M. indicator A x *\<^sub>R f x = indicator A x *\<^sub>R g x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    95
    using assms by auto
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
    96
  thus ?thesis
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
    97
  unfolding set_lebesgue_integral_def by (intro integral_cong_AE) auto
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    98
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    99
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   100
lemma set_integrable_cong_AE:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   101
    "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow>
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
   102
    AE x \<in> A in M. f x = g x \<Longrightarrow> A \<in> sets M \<Longrightarrow>
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   103
    set_integrable M A f = set_integrable M A g"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   104
  unfolding set_integrable_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   105
  by (rule integrable_cong_AE) auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   106
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
   107
lemma set_integrable_subset:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   108
  fixes M A B and f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
   109
  assumes "set_integrable M A f" "B \<in> sets M" "B \<subseteq> A"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   110
  shows "set_integrable M B f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   111
proof -
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   112
  have "set_integrable M B (\<lambda>x. indicator A x *\<^sub>R f x)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   113
    using assms integrable_mult_indicator set_integrable_def by blast
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 60615
diff changeset
   114
  with \<open>B \<subseteq> A\<close> show ?thesis
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   115
    unfolding set_integrable_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   116
    by (simp add: indicator_inter_arith[symmetric] Int_absorb2)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   117
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   118
67339
d91b9d22305b HOL-Analysis: add set_integrable_restrict_space
hoelzl
parents: 66456
diff changeset
   119
lemma set_integrable_restrict_space:
d91b9d22305b HOL-Analysis: add set_integrable_restrict_space
hoelzl
parents: 66456
diff changeset
   120
  fixes f :: "'a \<Rightarrow> 'b::{banach, second_countable_topology}"
d91b9d22305b HOL-Analysis: add set_integrable_restrict_space
hoelzl
parents: 66456
diff changeset
   121
  assumes f: "set_integrable M S f" and T: "T \<in> sets (restrict_space M S)"
d91b9d22305b HOL-Analysis: add set_integrable_restrict_space
hoelzl
parents: 66456
diff changeset
   122
  shows "set_integrable M T f"
d91b9d22305b HOL-Analysis: add set_integrable_restrict_space
hoelzl
parents: 66456
diff changeset
   123
proof -
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   124
  obtain T' where T_eq: "T = S \<inter> T'" and "T' \<in> sets M" 
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   125
    using T by (auto simp: sets_restrict_space)
67339
d91b9d22305b HOL-Analysis: add set_integrable_restrict_space
hoelzl
parents: 66456
diff changeset
   126
  have \<open>integrable M (\<lambda>x. indicator T' x *\<^sub>R (indicator S x *\<^sub>R f x))\<close>
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   127
    using \<open>T' \<in> sets M\<close> f integrable_mult_indicator set_integrable_def by blast
67339
d91b9d22305b HOL-Analysis: add set_integrable_restrict_space
hoelzl
parents: 66456
diff changeset
   128
  then show ?thesis
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   129
    unfolding set_integrable_def
67339
d91b9d22305b HOL-Analysis: add set_integrable_restrict_space
hoelzl
parents: 66456
diff changeset
   130
    unfolding T_eq indicator_inter_arith by (simp add: ac_simps)
d91b9d22305b HOL-Analysis: add set_integrable_restrict_space
hoelzl
parents: 66456
diff changeset
   131
qed
d91b9d22305b HOL-Analysis: add set_integrable_restrict_space
hoelzl
parents: 66456
diff changeset
   132
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   133
(* TODO: integral_cmul_indicator should be named set_integral_const *)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   134
(* TODO: borel_integrable_atLeastAtMost should be named something like set_integrable_Icc_isCont *)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   135
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   136
lemma set_integral_scaleR_right [simp]: "LINT t:A|M. a *\<^sub>R f t = a *\<^sub>R (LINT t:A|M. f t)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   137
  unfolding set_lebesgue_integral_def
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents: 63627
diff changeset
   138
  by (subst integral_scaleR_right[symmetric]) (auto intro!: Bochner_Integration.integral_cong)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   139
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
   140
lemma set_integral_mult_right [simp]:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   141
  fixes a :: "'a::{real_normed_field, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   142
  shows "LINT t:A|M. a * f t = a * (LINT t:A|M. f t)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   143
  unfolding set_lebesgue_integral_def
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents: 63627
diff changeset
   144
  by (subst integral_mult_right_zero[symmetric]) auto
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   145
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
   146
lemma set_integral_mult_left [simp]:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   147
  fixes a :: "'a::{real_normed_field, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   148
  shows "LINT t:A|M. f t * a = (LINT t:A|M. f t) * a"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   149
  unfolding set_lebesgue_integral_def
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents: 63627
diff changeset
   150
  by (subst integral_mult_left_zero[symmetric]) auto
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   151
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
   152
lemma set_integral_divide_zero [simp]:
59867
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59358
diff changeset
   153
  fixes a :: "'a::{real_normed_field, field, second_countable_topology}"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   154
  shows "LINT t:A|M. f t / a = (LINT t:A|M. f t) / a"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   155
  unfolding set_lebesgue_integral_def
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents: 63627
diff changeset
   156
  by (subst integral_divide_zero[symmetric], intro Bochner_Integration.integral_cong)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   157
     (auto split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   158
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   159
lemma set_integrable_scaleR_right [simp, intro]:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   160
  shows "(a \<noteq> 0 \<Longrightarrow> set_integrable M A f) \<Longrightarrow> set_integrable M A (\<lambda>t. a *\<^sub>R f t)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   161
  unfolding set_integrable_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   162
  unfolding scaleR_left_commute by (rule integrable_scaleR_right)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   163
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   164
lemma set_integrable_scaleR_left [simp, intro]:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   165
  fixes a :: "_ :: {banach, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   166
  shows "(a \<noteq> 0 \<Longrightarrow> set_integrable M A f) \<Longrightarrow> set_integrable M A (\<lambda>t. f t *\<^sub>R a)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   167
  unfolding set_integrable_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   168
  using integrable_scaleR_left[of a M "\<lambda>x. indicator A x *\<^sub>R f x"] by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   169
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   170
lemma set_integrable_mult_right [simp, intro]:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   171
  fixes a :: "'a::{real_normed_field, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   172
  shows "(a \<noteq> 0 \<Longrightarrow> set_integrable M A f) \<Longrightarrow> set_integrable M A (\<lambda>t. a * f t)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   173
  unfolding set_integrable_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   174
  using integrable_mult_right[of a M "\<lambda>x. indicator A x *\<^sub>R f x"] by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   175
70721
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
   176
lemma set_integrable_mult_right_iff [simp]:
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
   177
  fixes a :: "'a::{real_normed_field, second_countable_topology}"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
   178
  assumes "a \<noteq> 0"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
   179
  shows "set_integrable M A (\<lambda>t. a * f t) \<longleftrightarrow> set_integrable M A f"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
   180
proof
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
   181
  assume "set_integrable M A (\<lambda>t. a * f t)"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
   182
  then have "set_integrable M A (\<lambda>t. 1/a * (a * f t))"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
   183
    using set_integrable_mult_right by blast
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
   184
  then show "set_integrable M A f"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
   185
    using assms by auto
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
   186
qed auto
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
   187
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   188
lemma set_integrable_mult_left [simp, intro]:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   189
  fixes a :: "'a::{real_normed_field, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   190
  shows "(a \<noteq> 0 \<Longrightarrow> set_integrable M A f) \<Longrightarrow> set_integrable M A (\<lambda>t. f t * a)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   191
  unfolding set_integrable_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   192
  using integrable_mult_left[of a M "\<lambda>x. indicator A x *\<^sub>R f x"] by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   193
70721
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
   194
lemma set_integrable_mult_left_iff [simp]:
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
   195
  fixes a :: "'a::{real_normed_field, second_countable_topology}"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
   196
  assumes "a \<noteq> 0"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
   197
  shows "set_integrable M A (\<lambda>t. f t * a) \<longleftrightarrow> set_integrable M A f"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
   198
  using assms by (subst set_integrable_mult_right_iff [symmetric]) (auto simp: mult.commute)
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
   199
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   200
lemma set_integrable_divide [simp, intro]:
59867
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59358
diff changeset
   201
  fixes a :: "'a::{real_normed_field, field, second_countable_topology}"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   202
  assumes "a \<noteq> 0 \<Longrightarrow> set_integrable M A f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   203
  shows "set_integrable M A (\<lambda>t. f t / a)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   204
proof -
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   205
  have "integrable M (\<lambda>x. indicator A x *\<^sub>R f x / a)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   206
    using assms unfolding set_integrable_def by (rule integrable_divide_zero)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   207
  also have "(\<lambda>x. indicator A x *\<^sub>R f x / a) = (\<lambda>x. indicator A x *\<^sub>R (f x / a))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   208
    by (auto split: split_indicator)
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   209
  finally show ?thesis 
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   210
    unfolding set_integrable_def .
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   211
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   212
70721
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
   213
lemma set_integrable_mult_divide_iff [simp]:
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
   214
  fixes a :: "'a::{real_normed_field, second_countable_topology}"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
   215
  assumes "a \<noteq> 0"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
   216
  shows "set_integrable M A (\<lambda>t. f t / a) \<longleftrightarrow> set_integrable M A f"
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
   217
  by (simp add: divide_inverse assms)
47258727fa42 A few new theorems, tidying up and deletion of obsolete material
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
   218
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   219
lemma set_integral_add [simp, intro]:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   220
  fixes f g :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   221
  assumes "set_integrable M A f" "set_integrable M A g"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   222
  shows "set_integrable M A (\<lambda>x. f x + g x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   223
    and "LINT x:A|M. f x + g x = (LINT x:A|M. f x) + (LINT x:A|M. g x)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   224
  using assms unfolding set_integrable_def set_lebesgue_integral_def by (simp_all add: scaleR_add_right)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   225
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   226
lemma set_integral_diff [simp, intro]:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   227
  assumes "set_integrable M A f" "set_integrable M A g"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   228
  shows "set_integrable M A (\<lambda>x. f x - g x)" and "LINT x:A|M. f x - g x =
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   229
    (LINT x:A|M. f x) - (LINT x:A|M. g x)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   230
  using assms unfolding set_integrable_def set_lebesgue_integral_def by (simp_all add: scaleR_diff_right)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   231
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   232
lemma set_integral_uminus: "set_integrable M A f \<Longrightarrow> LINT x:A|M. - f x = - (LINT x:A|M. f x)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   233
  unfolding set_integrable_def set_lebesgue_integral_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   234
  by (subst integral_minus[symmetric]) simp_all
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   235
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   236
lemma set_integral_complex_of_real:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   237
  "LINT x:A|M. complex_of_real (f x) = of_real (LINT x:A|M. f x)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   238
  unfolding set_lebesgue_integral_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   239
  by (subst integral_complex_of_real[symmetric])
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents: 63627
diff changeset
   240
     (auto intro!: Bochner_Integration.integral_cong split: split_indicator)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   241
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   242
lemma set_integral_mono:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   243
  fixes f g :: "_ \<Rightarrow> real"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   244
  assumes "set_integrable M A f" "set_integrable M A g"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   245
    "\<And>x. x \<in> A \<Longrightarrow> f x \<le> g x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   246
  shows "(LINT x:A|M. f x) \<le> (LINT x:A|M. g x)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   247
  using assms unfolding set_integrable_def set_lebesgue_integral_def
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   248
  by (auto intro: integral_mono split: split_indicator)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   249
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
   250
lemma set_integral_mono_AE:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   251
  fixes f g :: "_ \<Rightarrow> real"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   252
  assumes "set_integrable M A f" "set_integrable M A g"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   253
    "AE x \<in> A in M. f x \<le> g x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   254
  shows "(LINT x:A|M. f x) \<le> (LINT x:A|M. g x)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   255
  using assms unfolding set_integrable_def set_lebesgue_integral_def
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   256
  by (auto intro: integral_mono_AE split: split_indicator)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   257
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   258
lemma set_integrable_abs: "set_integrable M A f \<Longrightarrow> set_integrable M A (\<lambda>x. \<bar>f x\<bar> :: real)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   259
  using integrable_abs[of M "\<lambda>x. f x * indicator A x"]unfolding set_integrable_def by (simp add: abs_mult ac_simps)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   260
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   261
lemma set_integrable_abs_iff:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   262
  fixes f :: "_ \<Rightarrow> real"
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
   263
  shows "set_borel_measurable M A f \<Longrightarrow> set_integrable M A (\<lambda>x. \<bar>f x\<bar>) = set_integrable M A f"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   264
  unfolding set_integrable_def set_borel_measurable_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   265
  by (subst (2) integrable_abs_iff[symmetric]) (simp_all add: abs_mult ac_simps)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   266
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   267
lemma set_integrable_abs_iff':
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   268
  fixes f :: "_ \<Rightarrow> real"
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
   269
  shows "f \<in> borel_measurable M \<Longrightarrow> A \<in> sets M \<Longrightarrow>
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   270
    set_integrable M A (\<lambda>x. \<bar>f x\<bar>) = set_integrable M A f"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   271
  by (simp add: set_borel_measurable_def set_integrable_abs_iff)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   272
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   273
lemma set_integrable_discrete_difference:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   274
  fixes f :: "'a \<Rightarrow> 'b::{banach, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   275
  assumes "countable X"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   276
  assumes diff: "(A - B) \<union> (B - A) \<subseteq> X"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   277
  assumes "\<And>x. x \<in> X \<Longrightarrow> emeasure M {x} = 0" "\<And>x. x \<in> X \<Longrightarrow> {x} \<in> sets M"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   278
  shows "set_integrable M A f \<longleftrightarrow> set_integrable M B f"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   279
  unfolding set_integrable_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   280
proof (rule integrable_discrete_difference[where X=X])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   281
  show "\<And>x. x \<in> space M \<Longrightarrow> x \<notin> X \<Longrightarrow> indicator A x *\<^sub>R f x = indicator B x *\<^sub>R f x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   282
    using diff by (auto split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   283
qed fact+
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   284
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   285
lemma set_integral_discrete_difference:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   286
  fixes f :: "'a \<Rightarrow> 'b::{banach, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   287
  assumes "countable X"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   288
  assumes diff: "(A - B) \<union> (B - A) \<subseteq> X"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   289
  assumes "\<And>x. x \<in> X \<Longrightarrow> emeasure M {x} = 0" "\<And>x. x \<in> X \<Longrightarrow> {x} \<in> sets M"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   290
  shows "set_lebesgue_integral M A f = set_lebesgue_integral M B f"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   291
  unfolding set_lebesgue_integral_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   292
proof (rule integral_discrete_difference[where X=X])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   293
  show "\<And>x. x \<in> space M \<Longrightarrow> x \<notin> X \<Longrightarrow> indicator A x *\<^sub>R f x = indicator B x *\<^sub>R f x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   294
    using diff by (auto split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   295
qed fact+
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   296
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   297
lemma set_integrable_Un:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   298
  fixes f g :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   299
  assumes f_A: "set_integrable M A f" and f_B:  "set_integrable M B f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   300
    and [measurable]: "A \<in> sets M" "B \<in> sets M"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   301
  shows "set_integrable M (A \<union> B) f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   302
proof -
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   303
  have "set_integrable M (A - B) f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   304
    using f_A by (rule set_integrable_subset) auto
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   305
  with f_B have "integrable M (\<lambda>x. indicator (A - B) x *\<^sub>R f x + indicator B x *\<^sub>R f x)"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   306
    unfolding set_integrable_def using integrable_add by blast
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   307
  then show ?thesis
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   308
    unfolding set_integrable_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   309
    by (rule integrable_cong[THEN iffD1, rotated 2]) (auto split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   310
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   311
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   312
lemma set_integrable_empty [simp]: "set_integrable M {} f"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   313
  by (auto simp: set_integrable_def)
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   314
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   315
lemma set_integrable_UN:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   316
  fixes f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   317
  assumes "finite I" "\<And>i. i\<in>I \<Longrightarrow> set_integrable M (A i) f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   318
    "\<And>i. i\<in>I \<Longrightarrow> A i \<in> sets M"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   319
  shows "set_integrable M (\<Union>i\<in>I. A i) f"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   320
  using assms
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   321
  by (induct I) (auto simp: set_integrable_Un sets.finite_UN)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   322
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   323
lemma set_integral_Un:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   324
  fixes f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   325
  assumes "A \<inter> B = {}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   326
  and "set_integrable M A f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   327
  and "set_integrable M B f"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   328
shows "LINT x:A\<union>B|M. f x = (LINT x:A|M. f x) + (LINT x:B|M. f x)"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   329
  using assms
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   330
  unfolding set_integrable_def set_lebesgue_integral_def
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   331
  by (auto simp add: indicator_union_arith indicator_inter_arith[symmetric] scaleR_add_left)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   332
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   333
lemma set_integral_cong_set:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   334
  fixes f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   335
  assumes "set_borel_measurable M A f" "set_borel_measurable M B f"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   336
    and ae: "AE x in M. x \<in> A \<longleftrightarrow> x \<in> B"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   337
  shows "LINT x:B|M. f x = LINT x:A|M. f x"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   338
  unfolding set_lebesgue_integral_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   339
proof (rule integral_cong_AE)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   340
  show "AE x in M. indicator B x *\<^sub>R f x = indicator A x *\<^sub>R f x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   341
    using ae by (auto simp: subset_eq split: split_indicator)
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   342
qed (use assms in \<open>auto simp: set_borel_measurable_def\<close>)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   343
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69566
diff changeset
   344
proposition set_borel_measurable_subset:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   345
  fixes f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   346
  assumes [measurable]: "set_borel_measurable M A f" "B \<in> sets M" and "B \<subseteq> A"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   347
  shows "set_borel_measurable M B f"
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69566
diff changeset
   348
proof-
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   349
  have "set_borel_measurable M B (\<lambda>x. indicator A x *\<^sub>R f x)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   350
    using assms unfolding set_borel_measurable_def
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   351
    using borel_measurable_indicator borel_measurable_scaleR by blast 
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   352
  moreover have "(\<lambda>x. indicator B x *\<^sub>R indicator A x *\<^sub>R f x) = (\<lambda>x. indicator B x *\<^sub>R f x)"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 60615
diff changeset
   353
    using \<open>B \<subseteq> A\<close> by (auto simp: fun_eq_iff split: split_indicator)
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   354
  ultimately show ?thesis 
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   355
    unfolding set_borel_measurable_def by simp
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   356
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   357
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   358
lemma set_integral_Un_AE:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   359
  fixes f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   360
  assumes ae: "AE x in M. \<not> (x \<in> A \<and> x \<in> B)" and [measurable]: "A \<in> sets M" "B \<in> sets M"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   361
  and "set_integrable M A f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   362
  and "set_integrable M B f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   363
  shows "LINT x:A\<union>B|M. f x = (LINT x:A|M. f x) + (LINT x:B|M. f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   364
proof -
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   365
  have f: "set_integrable M (A \<union> B) f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   366
    by (intro set_integrable_Un assms)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   367
  then have f': "set_borel_measurable M (A \<union> B) f"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   368
    using integrable_iff_bounded set_borel_measurable_def set_integrable_def by blast
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   369
  have "LINT x:A\<union>B|M. f x = LINT x:(A - A \<inter> B) \<union> (B - A \<inter> B)|M. f x"
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
   370
  proof (rule set_integral_cong_set)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   371
    show "AE x in M. (x \<in> A - A \<inter> B \<union> (B - A \<inter> B)) = (x \<in> A \<union> B)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   372
      using ae by auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   373
    show "set_borel_measurable M (A - A \<inter> B \<union> (B - A \<inter> B)) f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   374
      using f' by (rule set_borel_measurable_subset) auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   375
  qed fact
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   376
  also have "\<dots> = (LINT x:(A - A \<inter> B)|M. f x) + (LINT x:(B - A \<inter> B)|M. f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   377
    by (auto intro!: set_integral_Un set_integrable_subset[OF f])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   378
  also have "\<dots> = (LINT x:A|M. f x) + (LINT x:B|M. f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   379
    using ae
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67339
diff changeset
   380
    by (intro arg_cong2[where f="(+)"] set_integral_cong_set)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   381
       (auto intro!: set_borel_measurable_subset[OF f'])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   382
  finally show ?thesis .
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   383
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   384
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69566
diff changeset
   385
lemma set_integral_finite_Union:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   386
  fixes f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   387
  assumes "finite I" "disjoint_family_on A I"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   388
    and "\<And>i. i \<in> I \<Longrightarrow> set_integrable M (A i) f" "\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets M"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   389
  shows "(LINT x:(\<Union>i\<in>I. A i)|M. f x) = (\<Sum>i\<in>I. LINT x:A i|M. f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   390
  using assms
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69566
diff changeset
   391
proof induction
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   392
  case (insert x F)
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 69173
diff changeset
   393
  then have "A x \<inter> \<Union>(A ` F) = {}"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   394
    by (meson disjoint_family_on_insert)
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   395
  with insert show ?case
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   396
    by (simp add: set_integral_Un set_integrable_Un set_integrable_UN disjoint_family_on_insert)
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   397
qed (simp add: set_lebesgue_integral_def)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   398
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   399
(* TODO: find a better name? *)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   400
lemma pos_integrable_to_top:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   401
  fixes l::real
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   402
  assumes "\<And>i. A i \<in> sets M" "mono A"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   403
  assumes nneg: "\<And>x i. x \<in> A i \<Longrightarrow> 0 \<le> f x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   404
  and intgbl: "\<And>i::nat. set_integrable M (A i) f"
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   405
  and lim: "(\<lambda>i::nat. LINT x:A i|M. f x) \<longlonglongrightarrow> l"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   406
shows "set_integrable M (\<Union>i. A i) f"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   407
    unfolding set_integrable_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   408
  apply (rule integrable_monotone_convergence[where f = "\<lambda>i::nat. \<lambda>x. indicator (A i) x *\<^sub>R f x" and x = l])
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   409
  apply (rule intgbl [unfolded set_integrable_def])
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   410
  prefer 3 apply (rule lim [unfolded set_lebesgue_integral_def])
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   411
  apply (rule AE_I2)
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 60615
diff changeset
   412
  using \<open>mono A\<close> apply (auto simp: mono_def nneg split: split_indicator) []
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   413
proof (rule AE_I2)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   414
  { fix x assume "x \<in> space M"
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   415
    show "(\<lambda>i. indicator (A i) x *\<^sub>R f x) \<longlonglongrightarrow> indicator (\<Union>i. A i) x *\<^sub>R f x"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   416
    proof cases
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   417
      assume "\<exists>i. x \<in> A i"
74362
0135a0c77b64 tuned proofs --- avoid 'guess';
wenzelm
parents: 73536
diff changeset
   418
      then obtain i where "x \<in> A i" ..
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   419
      then have *: "eventually (\<lambda>i. x \<in> A i) sequentially"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 60615
diff changeset
   420
        using \<open>x \<in> A i\<close> \<open>mono A\<close> by (auto simp: eventually_sequentially mono_def)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   421
      show ?thesis
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
   422
        apply (intro tendsto_eventually)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   423
        using *
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   424
        apply eventually_elim
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   425
        apply (auto split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   426
        done
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   427
    qed auto }
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   428
  then show "(\<lambda>x. indicator (\<Union>i. A i) x *\<^sub>R f x) \<in> borel_measurable M"
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62083
diff changeset
   429
    apply (rule borel_measurable_LIMSEQ_real)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   430
    apply assumption
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   431
    using intgbl set_integrable_def by blast
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   432
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   433
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   434
(* Proof from Royden Real Analysis, p. 91. *)
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69566
diff changeset
   435
lemma lebesgue_integral_countable_add:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   436
  fixes f :: "_ \<Rightarrow> 'a :: {banach, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   437
  assumes meas[intro]: "\<And>i::nat. A i \<in> sets M"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   438
    and disj: "\<And>i j. i \<noteq> j \<Longrightarrow> A i \<inter> A j = {}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   439
    and intgbl: "set_integrable M (\<Union>i. A i) f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   440
  shows "LINT x:(\<Union>i. A i)|M. f x = (\<Sum>i. (LINT x:(A i)|M. f x))"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   441
    unfolding set_lebesgue_integral_def
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69737
diff changeset
   442
proof (subst integral_suminf[symmetric])
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   443
  show int_A: "integrable M (\<lambda>x. indicat_real (A i) x *\<^sub>R f x)" for i
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   444
    using intgbl unfolding set_integrable_def [symmetric]
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   445
    by (rule set_integrable_subset) auto
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   446
  { fix x assume "x \<in> space M"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   447
    have "(\<lambda>i. indicator (A i) x *\<^sub>R f x) sums (indicator (\<Union>i. A i) x *\<^sub>R f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   448
      by (intro sums_scaleR_left indicator_sums) fact }
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   449
  note sums = this
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   450
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   451
  have norm_f: "\<And>i. set_integrable M (A i) (\<lambda>x. norm (f x))"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   452
    using int_A[THEN integrable_norm] unfolding set_integrable_def by auto
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   453
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   454
  show "AE x in M. summable (\<lambda>i. norm (indicator (A i) x *\<^sub>R f x))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   455
    using disj by (intro AE_I2) (auto intro!: summable_mult2 sums_summable[OF indicator_sums])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   456
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   457
  show "summable (\<lambda>i. LINT x|M. norm (indicator (A i) x *\<^sub>R f x))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   458
  proof (rule summableI_nonneg_bounded)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   459
    fix n
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   460
    show "0 \<le> LINT x|M. norm (indicator (A n) x *\<^sub>R f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   461
      using norm_f by (auto intro!: integral_nonneg_AE)
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
   462
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   463
    have "(\<Sum>i<n. LINT x|M. norm (indicator (A i) x *\<^sub>R f x)) = (\<Sum>i<n. LINT x:A i|M. norm (f x))"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   464
      by (simp add: abs_mult set_lebesgue_integral_def)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   465
    also have "\<dots> = set_lebesgue_integral M (\<Union>i<n. A i) (\<lambda>x. norm (f x))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   466
      using norm_f
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   467
      by (subst set_integral_finite_Union) (auto simp: disjoint_family_on_def disj)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   468
    also have "\<dots> \<le> set_lebesgue_integral M (\<Union>i. A i) (\<lambda>x. norm (f x))"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   469
      using intgbl[unfolded set_integrable_def, THEN integrable_norm] norm_f
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   470
      unfolding set_lebesgue_integral_def set_integrable_def
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   471
      apply (intro integral_mono set_integrable_UN[of "{..<n}", unfolded set_integrable_def])
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   472
          apply (auto split: split_indicator)
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   473
      done
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   474
    finally show "(\<Sum>i<n. LINT x|M. norm (indicator (A i) x *\<^sub>R f x)) \<le>
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   475
      set_lebesgue_integral M (\<Union>i. A i) (\<lambda>x. norm (f x))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   476
      by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   477
  qed
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 69173
diff changeset
   478
  show "LINT x|M. indicator (\<Union>(A ` UNIV)) x *\<^sub>R f x = LINT x|M. (\<Sum>i. indicator (A i) x *\<^sub>R f x)"
63886
685fb01256af move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents: 63627
diff changeset
   479
    apply (rule Bochner_Integration.integral_cong[OF refl])
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   480
    apply (subst suminf_scaleR_left[OF sums_summable[OF indicator_sums, OF disj], symmetric])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   481
    using sums_unique[OF indicator_sums[OF disj]]
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   482
    apply auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   483
    done
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   484
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   485
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   486
lemma set_integral_cont_up:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   487
  fixes f :: "_ \<Rightarrow> 'a :: {banach, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   488
  assumes [measurable]: "\<And>i. A i \<in> sets M" and A: "incseq A"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   489
  and intgbl: "set_integrable M (\<Union>i. A i) f"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   490
shows "(\<lambda>i. LINT x:(A i)|M. f x) \<longlonglongrightarrow> LINT x:(\<Union>i. A i)|M. f x"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   491
  unfolding set_lebesgue_integral_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   492
proof (intro integral_dominated_convergence[where w="\<lambda>x. indicator (\<Union>i. A i) x *\<^sub>R norm (f x)"])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   493
  have int_A: "\<And>i. set_integrable M (A i) f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   494
    using intgbl by (rule set_integrable_subset) auto
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   495
  show "\<And>i. (\<lambda>x. indicator (A i) x *\<^sub>R f x) \<in> borel_measurable M"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   496
    using int_A integrable_iff_bounded set_integrable_def by blast
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 69173
diff changeset
   497
  show "(\<lambda>x. indicator (\<Union>(A ` UNIV)) x *\<^sub>R f x) \<in> borel_measurable M"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   498
    using integrable_iff_bounded intgbl set_integrable_def by blast
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   499
  show "integrable M (\<lambda>x. indicator (\<Union>i. A i) x *\<^sub>R norm (f x))"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   500
    using int_A intgbl integrable_norm unfolding set_integrable_def 
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   501
    by fastforce
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   502
  { fix x i assume "x \<in> A i"
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   503
    with A have "(\<lambda>xa. indicator (A xa) x::real) \<longlonglongrightarrow> 1 \<longleftrightarrow> (\<lambda>xa. 1::real) \<longlonglongrightarrow> 1"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   504
      by (intro filterlim_cong refl)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   505
         (fastforce simp: eventually_sequentially incseq_def subset_eq intro!: exI[of _ i]) }
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   506
  then show "AE x in M. (\<lambda>i. indicator (A i) x *\<^sub>R f x) \<longlonglongrightarrow> indicator (\<Union>i. A i) x *\<^sub>R f x"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   507
    by (intro AE_I2 tendsto_intros) (auto split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   508
qed (auto split: split_indicator)
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
   509
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   510
(* Can the int0 hypothesis be dropped? *)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   511
lemma set_integral_cont_down:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   512
  fixes f :: "_ \<Rightarrow> 'a :: {banach, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   513
  assumes [measurable]: "\<And>i. A i \<in> sets M" and A: "decseq A"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   514
  and int0: "set_integrable M (A 0) f"
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   515
  shows "(\<lambda>i::nat. LINT x:(A i)|M. f x) \<longlonglongrightarrow> LINT x:(\<Inter>i. A i)|M. f x"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   516
  unfolding set_lebesgue_integral_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   517
proof (rule integral_dominated_convergence)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   518
  have int_A: "\<And>i. set_integrable M (A i) f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   519
    using int0 by (rule set_integrable_subset) (insert A, auto simp: decseq_def)
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   520
  have "integrable M (\<lambda>c. norm (indicat_real (A 0) c *\<^sub>R f c))"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   521
    by (metis (no_types) int0 integrable_norm set_integrable_def)
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   522
  then show "integrable M (\<lambda>x. indicator (A 0) x *\<^sub>R norm (f x))"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   523
    by force
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   524
  have "set_integrable M (\<Inter>i. A i) f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   525
    using int0 by (rule set_integrable_subset) (insert A, auto simp: decseq_def)
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 69173
diff changeset
   526
  with int_A show "(\<lambda>x. indicat_real (\<Inter>(A ` UNIV)) x *\<^sub>R f x) \<in> borel_measurable M"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   527
                  "\<And>i. (\<lambda>x. indicat_real (A i) x *\<^sub>R f x) \<in> borel_measurable M"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   528
    by (auto simp: set_integrable_def)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   529
  show "\<And>i. AE x in M. norm (indicator (A i) x *\<^sub>R f x) \<le> indicator (A 0) x *\<^sub>R norm (f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   530
    using A by (auto split: split_indicator simp: decseq_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   531
  { fix x i assume "x \<in> space M" "x \<notin> A i"
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   532
    with A have "(\<lambda>i. indicator (A i) x::real) \<longlonglongrightarrow> 0 \<longleftrightarrow> (\<lambda>i. 0::real) \<longlonglongrightarrow> 0"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   533
      by (intro filterlim_cong refl)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   534
         (auto split: split_indicator simp: eventually_sequentially decseq_def intro!: exI[of _ i]) }
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   535
  then show "AE x in M. (\<lambda>i. indicator (A i) x *\<^sub>R f x) \<longlonglongrightarrow> indicator (\<Inter>i. A i) x *\<^sub>R f x"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   536
    by (intro AE_I2 tendsto_intros) (auto split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   537
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   538
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   539
lemma set_integral_at_point:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   540
  fixes a :: real
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   541
  assumes "set_integrable M {a} f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   542
  and [simp]: "{a} \<in> sets M" and "(emeasure M) {a} \<noteq> \<infinity>"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   543
  shows "(LINT x:{a} | M. f x) = f a * measure M {a}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   544
proof-
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   545
  have "set_lebesgue_integral M {a} f = set_lebesgue_integral M {a} (%x. f a)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   546
    by (intro set_lebesgue_integral_cong) simp_all
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   547
  then show ?thesis using assms
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   548
    unfolding set_lebesgue_integral_def by simp
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   549
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   550
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   551
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   552
abbreviation complex_integrable :: "'a measure \<Rightarrow> ('a \<Rightarrow> complex) \<Rightarrow> bool" where
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   553
  "complex_integrable M f \<equiv> integrable M f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   554
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   555
abbreviation complex_lebesgue_integral :: "'a measure \<Rightarrow> ('a \<Rightarrow> complex) \<Rightarrow> complex" ("integral\<^sup>C") where
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   556
  "integral\<^sup>C M f == integral\<^sup>L M f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   557
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   558
syntax
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   559
  "_complex_lebesgue_integral" :: "pttrn \<Rightarrow> complex \<Rightarrow> 'a measure \<Rightarrow> complex"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   560
 ("\<integral>\<^sup>C _. _ \<partial>_" [60,61] 110)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   561
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   562
translations
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   563
  "\<integral>\<^sup>Cx. f \<partial>M" == "CONST complex_lebesgue_integral M (\<lambda>x. f)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   564
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   565
syntax
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   566
  "_ascii_complex_lebesgue_integral" :: "pttrn \<Rightarrow> 'a measure \<Rightarrow> real \<Rightarrow> real"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   567
  ("(3CLINT _|_. _)" [0,110,60] 60)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   568
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   569
translations
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   570
  "CLINT x|M. f" == "CONST complex_lebesgue_integral M (\<lambda>x. f)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   571
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   572
lemma complex_integrable_cnj [simp]:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   573
  "complex_integrable M (\<lambda>x. cnj (f x)) \<longleftrightarrow> complex_integrable M f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   574
proof
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   575
  assume "complex_integrable M (\<lambda>x. cnj (f x))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   576
  then have "complex_integrable M (\<lambda>x. cnj (cnj (f x)))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   577
    by (rule integrable_cnj)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   578
  then show "complex_integrable M f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   579
    by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   580
qed simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   581
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   582
lemma complex_of_real_integrable_eq:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   583
  "complex_integrable M (\<lambda>x. complex_of_real (f x)) \<longleftrightarrow> integrable M f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   584
proof
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   585
  assume "complex_integrable M (\<lambda>x. complex_of_real (f x))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   586
  then have "integrable M (\<lambda>x. Re (complex_of_real (f x)))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   587
    by (rule integrable_Re)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   588
  then show "integrable M f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   589
    by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   590
qed simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   591
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   592
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   593
abbreviation complex_set_integrable :: "'a measure \<Rightarrow> 'a set \<Rightarrow> ('a \<Rightarrow> complex) \<Rightarrow> bool" where
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   594
  "complex_set_integrable M A f \<equiv> set_integrable M A f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   595
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   596
abbreviation complex_set_lebesgue_integral :: "'a measure \<Rightarrow> 'a set \<Rightarrow> ('a \<Rightarrow> complex) \<Rightarrow> complex" where
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   597
  "complex_set_lebesgue_integral M A f \<equiv> set_lebesgue_integral M A f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   598
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   599
syntax
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   600
"_ascii_complex_set_lebesgue_integral" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'a measure \<Rightarrow> real \<Rightarrow> real"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   601
("(4CLINT _:_|_. _)" [0,60,110,61] 60)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   602
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   603
translations
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   604
"CLINT x:A|M. f" == "CONST complex_set_lebesgue_integral M A (\<lambda>x. f)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   605
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   606
lemma set_measurable_continuous_on_ivl:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   607
  assumes "continuous_on {a..b} (f :: real \<Rightarrow> real)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   608
  shows "set_borel_measurable borel {a..b} f"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   609
  unfolding set_borel_measurable_def
66164
2d79288b042c New theorems and much tidying up of the old ones
paulson <lp15@cam.ac.uk>
parents: 64911
diff changeset
   610
  by (rule borel_measurable_continuous_on_indicator[OF _ assms]) simp
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   611
64283
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   612
64911
f0e07600de47 isabelle update_cartouches -c -t;
wenzelm
parents: 64284
diff changeset
   613
text\<open>This notation is from Sébastien Gouëzel: His use is not directly in line with the
f0e07600de47 isabelle update_cartouches -c -t;
wenzelm
parents: 64284
diff changeset
   614
notations in this file, they are more in line with sum, and more readable he thinks.\<close>
64283
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   615
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   616
abbreviation "set_nn_integral M A f \<equiv> nn_integral M (\<lambda>x. f x * indicator A x)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   617
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   618
syntax
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   619
"_set_nn_integral" :: "pttrn => 'a set => 'a measure => ereal => ereal"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   620
("(\<integral>\<^sup>+((_)\<in>(_)./ _)/\<partial>_)" [0,60,110,61] 60)
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   621
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   622
"_set_lebesgue_integral" :: "pttrn => 'a set => 'a measure => ereal => ereal"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   623
("(\<integral>((_)\<in>(_)./ _)/\<partial>_)" [0,60,110,61] 60)
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   624
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   625
translations
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   626
"\<integral>\<^sup>+x \<in> A. f \<partial>M" == "CONST set_nn_integral M A (\<lambda>x. f)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   627
"\<integral>x \<in> A. f \<partial>M" == "CONST set_lebesgue_integral M A (\<lambda>x. f)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   628
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   629
lemma nn_integral_disjoint_pair:
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   630
  assumes [measurable]: "f \<in> borel_measurable M"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   631
          "B \<in> sets M" "C \<in> sets M"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   632
          "B \<inter> C = {}"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   633
  shows "(\<integral>\<^sup>+x \<in> B \<union> C. f x \<partial>M) = (\<integral>\<^sup>+x \<in> B. f x \<partial>M) + (\<integral>\<^sup>+x \<in> C. f x \<partial>M)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   634
proof -
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   635
  have mes: "\<And>D. D \<in> sets M \<Longrightarrow> (\<lambda>x. f x * indicator D x) \<in> borel_measurable M" by simp
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   636
  have pos: "\<And>D. AE x in M. f x * indicator D x \<ge> 0" using assms(2) by auto
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   637
  have "\<And>x. f x * indicator (B \<union> C) x = f x * indicator B x + f x * indicator C x" using assms(4)
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   638
    by (auto split: split_indicator)
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   639
  then have "(\<integral>\<^sup>+x. f x * indicator (B \<union> C) x \<partial>M) = (\<integral>\<^sup>+x. f x * indicator B x + f x * indicator C x \<partial>M)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   640
    by simp
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   641
  also have "... = (\<integral>\<^sup>+x. f x * indicator B x \<partial>M) + (\<integral>\<^sup>+x. f x * indicator C x \<partial>M)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   642
    by (rule nn_integral_add) (auto simp add: assms mes pos)
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   643
  finally show ?thesis by simp
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   644
qed
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   645
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   646
lemma nn_integral_disjoint_pair_countspace:
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   647
  assumes "B \<inter> C = {}"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   648
  shows "(\<integral>\<^sup>+x \<in> B \<union> C. f x \<partial>count_space UNIV) = (\<integral>\<^sup>+x \<in> B. f x \<partial>count_space UNIV) + (\<integral>\<^sup>+x \<in> C. f x \<partial>count_space UNIV)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   649
by (rule nn_integral_disjoint_pair) (simp_all add: assms)
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   650
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   651
lemma nn_integral_null_delta:
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   652
  assumes "A \<in> sets M" "B \<in> sets M"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   653
          "(A - B) \<union> (B - A) \<in> null_sets M"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   654
  shows "(\<integral>\<^sup>+x \<in> A. f x \<partial>M) = (\<integral>\<^sup>+x \<in> B. f x \<partial>M)"
73536
5131c388a9b0 simplified definition
haftmann
parents: 73253
diff changeset
   655
proof (rule nn_integral_cong_AE)
64283
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   656
  have *: "AE a in M. a \<notin> (A - B) \<union> (B - A)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   657
    using assms(3) AE_not_in by blast
73536
5131c388a9b0 simplified definition
haftmann
parents: 73253
diff changeset
   658
  then show \<open>AE x in M. f x * indicator A x = f x * indicator B x\<close>
64283
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   659
    by auto
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   660
qed
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   661
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69566
diff changeset
   662
proposition nn_integral_disjoint_family:
64283
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   663
  assumes [measurable]: "f \<in> borel_measurable M" "\<And>(n::nat). B n \<in> sets M"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   664
      and "disjoint_family B"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   665
  shows "(\<integral>\<^sup>+x \<in> (\<Union>n. B n). f x \<partial>M) = (\<Sum>n. (\<integral>\<^sup>+x \<in> B n. f x \<partial>M))"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   666
proof -
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   667
  have "(\<integral>\<^sup>+ x. (\<Sum>n. f x * indicator (B n) x) \<partial>M) = (\<Sum>n. (\<integral>\<^sup>+ x. f x * indicator (B n) x \<partial>M))"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   668
    by (rule nn_integral_suminf) simp
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   669
  moreover have "(\<Sum>n. f x * indicator (B n) x) = f x * indicator (\<Union>n. B n) x" for x
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   670
  proof (cases)
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   671
    assume "x \<in> (\<Union>n. B n)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   672
    then obtain n where "x \<in> B n" by blast
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   673
    have a: "finite {n}" by simp
64911
f0e07600de47 isabelle update_cartouches -c -t;
wenzelm
parents: 64284
diff changeset
   674
    have "\<And>i. i \<noteq> n \<Longrightarrow> x \<notin> B i" using \<open>x \<in> B n\<close> assms(3) disjoint_family_on_def
64283
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   675
      by (metis IntI UNIV_I empty_iff)
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   676
    then have "\<And>i. i \<notin> {n} \<Longrightarrow> indicator (B i) x = (0::ennreal)" using indicator_def by simp
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   677
    then have b: "\<And>i. i \<notin> {n} \<Longrightarrow> f x * indicator (B i) x = (0::ennreal)" by simp
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   678
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   679
    define h where "h = (\<lambda>i. f x * indicator (B i) x)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   680
    then have "\<And>i. i \<notin> {n} \<Longrightarrow> h i = 0" using b by simp
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   681
    then have "(\<Sum>i. h i) = (\<Sum>i\<in>{n}. h i)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   682
      by (metis sums_unique[OF sums_finite[OF a]])
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   683
    then have "(\<Sum>i. h i) = h n" by simp
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   684
    then have "(\<Sum>n. f x * indicator (B n) x) = f x * indicator (B n) x" using h_def by simp
64911
f0e07600de47 isabelle update_cartouches -c -t;
wenzelm
parents: 64284
diff changeset
   685
    then have "(\<Sum>n. f x * indicator (B n) x) = f x" using \<open>x \<in> B n\<close> indicator_def by simp
f0e07600de47 isabelle update_cartouches -c -t;
wenzelm
parents: 64284
diff changeset
   686
    then show ?thesis using \<open>x \<in> (\<Union>n. B n)\<close> by auto
64283
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   687
  next
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   688
    assume "x \<notin> (\<Union>n. B n)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   689
    then have "\<And>n. f x * indicator (B n) x = 0" by simp
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   690
    have "(\<Sum>n. f x * indicator (B n) x) = 0"
64911
f0e07600de47 isabelle update_cartouches -c -t;
wenzelm
parents: 64284
diff changeset
   691
      by (simp add: \<open>\<And>n. f x * indicator (B n) x = 0\<close>)
f0e07600de47 isabelle update_cartouches -c -t;
wenzelm
parents: 64284
diff changeset
   692
    then show ?thesis using \<open>x \<notin> (\<Union>n. B n)\<close> by auto
64283
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   693
  qed
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   694
  ultimately show ?thesis by simp
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   695
qed
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   696
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   697
lemma nn_set_integral_add:
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   698
  assumes [measurable]: "f \<in> borel_measurable M" "g \<in> borel_measurable M"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   699
          "A \<in> sets M"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   700
  shows "(\<integral>\<^sup>+x \<in> A. (f x + g x) \<partial>M) = (\<integral>\<^sup>+x \<in> A. f x \<partial>M) + (\<integral>\<^sup>+x \<in> A. g x \<partial>M)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   701
proof -
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   702
  have "(\<integral>\<^sup>+x \<in> A. (f x + g x) \<partial>M) = (\<integral>\<^sup>+x. (f x * indicator A x + g x * indicator A x) \<partial>M)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   703
    by (auto simp add: indicator_def intro!: nn_integral_cong)
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   704
  also have "... = (\<integral>\<^sup>+x. f x * indicator A x \<partial>M) + (\<integral>\<^sup>+x. g x * indicator A x \<partial>M)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   705
    apply (rule nn_integral_add) using assms(1) assms(2) by auto
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   706
  finally show ?thesis by simp
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   707
qed
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   708
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   709
lemma nn_set_integral_cong:
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   710
  assumes "AE x in M. f x = g x"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   711
  shows "(\<integral>\<^sup>+x \<in> A. f x \<partial>M) = (\<integral>\<^sup>+x \<in> A. g x \<partial>M)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   712
apply (rule nn_integral_cong_AE) using assms(1) by auto
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   713
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   714
lemma nn_set_integral_set_mono:
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   715
  "A \<subseteq> B \<Longrightarrow> (\<integral>\<^sup>+ x \<in> A. f x \<partial>M) \<le> (\<integral>\<^sup>+ x \<in> B. f x \<partial>M)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   716
by (auto intro!: nn_integral_mono split: split_indicator)
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   717
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   718
lemma nn_set_integral_mono:
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   719
  assumes [measurable]: "f \<in> borel_measurable M" "g \<in> borel_measurable M"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   720
          "A \<in> sets M"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   721
      and "AE x\<in>A in M. f x \<le> g x"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   722
  shows "(\<integral>\<^sup>+x \<in> A. f x \<partial>M) \<le> (\<integral>\<^sup>+x \<in> A. g x \<partial>M)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   723
by (auto intro!: nn_integral_mono_AE split: split_indicator simp: assms)
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   724
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   725
lemma nn_set_integral_space [simp]:
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   726
  shows "(\<integral>\<^sup>+ x \<in> space M. f x \<partial>M) = (\<integral>\<^sup>+x. f x \<partial>M)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   727
by (metis (mono_tags, lifting) indicator_simps(1) mult.right_neutral nn_integral_cong)
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   728
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   729
lemma nn_integral_count_compose_inj:
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   730
  assumes "inj_on g A"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   731
  shows "(\<integral>\<^sup>+x \<in> A. f (g x) \<partial>count_space UNIV) = (\<integral>\<^sup>+y \<in> g`A. f y \<partial>count_space UNIV)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   732
proof -
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   733
  have "(\<integral>\<^sup>+x \<in> A. f (g x) \<partial>count_space UNIV) = (\<integral>\<^sup>+x. f (g x) \<partial>count_space A)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   734
    by (auto simp add: nn_integral_count_space_indicator[symmetric])
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   735
  also have "... = (\<integral>\<^sup>+y. f y \<partial>count_space (g`A))"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   736
    by (simp add: assms nn_integral_bij_count_space inj_on_imp_bij_betw)
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   737
  also have "... = (\<integral>\<^sup>+y \<in> g`A. f y \<partial>count_space UNIV)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   738
    by (auto simp add: nn_integral_count_space_indicator[symmetric])
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   739
  finally show ?thesis by simp
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   740
qed
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   741
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   742
lemma nn_integral_count_compose_bij:
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   743
  assumes "bij_betw g A B"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   744
  shows "(\<integral>\<^sup>+x \<in> A. f (g x) \<partial>count_space UNIV) = (\<integral>\<^sup>+y \<in> B. f y \<partial>count_space UNIV)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   745
proof -
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   746
  have "inj_on g A" using assms bij_betw_def by auto
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   747
  then have "(\<integral>\<^sup>+x \<in> A. f (g x) \<partial>count_space UNIV) = (\<integral>\<^sup>+y \<in> g`A. f y \<partial>count_space UNIV)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   748
    by (rule nn_integral_count_compose_inj)
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   749
  then show ?thesis using assms by (simp add: bij_betw_def)
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   750
qed
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   751
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   752
lemma set_integral_null_delta:
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   753
  fixes f::"_ \<Rightarrow> _ :: {banach, second_countable_topology}"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   754
  assumes [measurable]: "integrable M f" "A \<in> sets M" "B \<in> sets M"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   755
    and null: "(A - B) \<union> (B - A) \<in> null_sets M"
64283
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   756
  shows "(\<integral>x \<in> A. f x \<partial>M) = (\<integral>x \<in> B. f x \<partial>M)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   757
proof (rule set_integral_cong_set)
64283
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   758
  have *: "AE a in M. a \<notin> (A - B) \<union> (B - A)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   759
    using null AE_not_in by blast
64283
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   760
  then show "AE x in M. (x \<in> B) = (x \<in> A)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   761
    by auto
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   762
qed (simp_all add: set_borel_measurable_def)
64283
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   763
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   764
lemma set_integral_space:
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   765
  assumes "integrable M f"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   766
  shows "(\<integral>x \<in> space M. f x \<partial>M) = (\<integral>x. f x \<partial>M)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   767
  by (metis (no_types, lifting) indicator_simps(1) integral_cong scaleR_one set_lebesgue_integral_def)
64283
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   768
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   769
lemma null_if_pos_func_has_zero_nn_int:
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   770
  fixes f::"'a \<Rightarrow> ennreal"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   771
  assumes [measurable]: "f \<in> borel_measurable M" "A \<in> sets M"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   772
    and "AE x\<in>A in M. f x > 0" "(\<integral>\<^sup>+x\<in>A. f x \<partial>M) = 0"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   773
  shows "A \<in> null_sets M"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   774
proof -
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   775
  have "AE x in M. f x * indicator A x = 0"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   776
    by (subst nn_integral_0_iff_AE[symmetric], auto simp add: assms(4))
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   777
  then have "AE x\<in>A in M. False" using assms(3) by auto
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   778
  then show "A \<in> null_sets M" using assms(2) by (simp add: AE_iff_null_sets)
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   779
qed
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   780
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   781
lemma null_if_pos_func_has_zero_int:
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   782
  assumes [measurable]: "integrable M f" "A \<in> sets M"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   783
      and "AE x\<in>A in M. f x > 0" "(\<integral>x\<in>A. f x \<partial>M) = (0::real)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   784
  shows "A \<in> null_sets M"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   785
proof -
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   786
  have "AE x in M. indicator A x * f x = 0"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   787
    apply (subst integral_nonneg_eq_0_iff_AE[symmetric])
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   788
    using assms integrable_mult_indicator[OF \<open>A \<in> sets M\<close> assms(1)]
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   789
    by (auto simp: set_lebesgue_integral_def)
64283
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   790
  then have "AE x\<in>A in M. f x = 0" by auto
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   791
  then have "AE x\<in>A in M. False" using assms(3) by auto
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   792
  then show "A \<in> null_sets M" using assms(2) by (simp add: AE_iff_null_sets)
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   793
qed
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   794
64911
f0e07600de47 isabelle update_cartouches -c -t;
wenzelm
parents: 64284
diff changeset
   795
text\<open>The next lemma is a variant of \<open>density_unique\<close>. Note that it uses the notation
f0e07600de47 isabelle update_cartouches -c -t;
wenzelm
parents: 64284
diff changeset
   796
for nonnegative set integrals introduced earlier.\<close>
64283
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   797
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   798
lemma (in sigma_finite_measure) density_unique2:
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   799
  assumes [measurable]: "f \<in> borel_measurable M" "f' \<in> borel_measurable M"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   800
  assumes density_eq: "\<And>A. A \<in> sets M \<Longrightarrow> (\<integral>\<^sup>+ x \<in> A. f x \<partial>M) = (\<integral>\<^sup>+ x \<in> A. f' x \<partial>M)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   801
  shows "AE x in M. f x = f' x"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   802
proof (rule density_unique)
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   803
  show "density M f = density M f'"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   804
    by (intro measure_eqI) (auto simp: emeasure_density intro!: density_eq)
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   805
qed (auto simp add: assms)
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   806
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   807
64911
f0e07600de47 isabelle update_cartouches -c -t;
wenzelm
parents: 64284
diff changeset
   808
text \<open>The next lemma implies the same statement for Banach-space valued functions
64283
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   809
using Hahn-Banach theorem and linear forms. Since they are not yet easily available, I
64911
f0e07600de47 isabelle update_cartouches -c -t;
wenzelm
parents: 64284
diff changeset
   810
only formulate it for real-valued functions.\<close>
64283
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   811
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   812
lemma density_unique_real:
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   813
  fixes f f'::"_ \<Rightarrow> real"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   814
  assumes M[measurable]: "integrable M f" "integrable M f'"
64283
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   815
  assumes density_eq: "\<And>A. A \<in> sets M \<Longrightarrow> (\<integral>x \<in> A. f x \<partial>M) = (\<integral>x \<in> A. f' x \<partial>M)"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   816
  shows "AE x in M. f x = f' x"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   817
proof -
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   818
  define A where "A = {x \<in> space M. f x < f' x}"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   819
  then have [measurable]: "A \<in> sets M" by simp
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   820
  have "(\<integral>x \<in> A. (f' x - f x) \<partial>M) = (\<integral>x \<in> A. f' x \<partial>M) - (\<integral>x \<in> A. f x \<partial>M)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   821
    using \<open>A \<in> sets M\<close> M integrable_mult_indicator set_integrable_def by blast
64283
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   822
  then have "(\<integral>x \<in> A. (f' x - f x) \<partial>M) = 0" using assms(3) by simp
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   823
  then have "A \<in> null_sets M"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   824
    using A_def null_if_pos_func_has_zero_int[where ?f = "\<lambda>x. f' x - f x" and ?A = A] assms by auto
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   825
  then have "AE x in M. x \<notin> A" by (simp add: AE_not_in)
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   826
  then have *: "AE x in M. f' x \<le> f x" unfolding A_def by auto
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   827
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   828
  define B where "B = {x \<in> space M. f' x < f x}"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   829
  then have [measurable]: "B \<in> sets M" by simp
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   830
  have "(\<integral>x \<in> B. (f x - f' x) \<partial>M) = (\<integral>x \<in> B. f x \<partial>M) - (\<integral>x \<in> B. f' x \<partial>M)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   831
    using \<open>B \<in> sets M\<close> M integrable_mult_indicator set_integrable_def by blast
64283
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   832
  then have "(\<integral>x \<in> B. (f x - f' x) \<partial>M) = 0" using assms(3) by simp
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   833
  then have "B \<in> null_sets M"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   834
    using B_def null_if_pos_func_has_zero_int[where ?f = "\<lambda>x. f x - f' x" and ?A = B] assms by auto
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   835
  then have "AE x in M. x \<notin> B" by (simp add: AE_not_in)
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   836
  then have "AE x in M. f' x \<ge> f x" unfolding B_def by auto
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   837
  then show ?thesis using * by auto
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   838
qed
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 63958
diff changeset
   839
69566
c41954ee87cf more antiquotations -- less LaTeX macros;
wenzelm
parents: 69313
diff changeset
   840
text \<open>The next lemma shows that \<open>L\<^sup>1\<close> convergence of a sequence of functions follows from almost
64284
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   841
everywhere convergence and the weaker condition of the convergence of the integrated norms (or even
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   842
just the nontrivial inequality about them). Useful in a lot of contexts! This statement (or its
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   843
variations) are known as Scheffe lemma.
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   844
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   845
The formalization is more painful as one should jump back and forth between reals and ereals and justify
64911
f0e07600de47 isabelle update_cartouches -c -t;
wenzelm
parents: 64284
diff changeset
   846
all the time positivity or integrability (thankfully, measurability is handled more or less automatically).\<close>
64284
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   847
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69566
diff changeset
   848
proposition Scheffe_lemma1:
64284
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   849
  assumes "\<And>n. integrable M (F n)" "integrable M f"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   850
          "AE x in M. (\<lambda>n. F n x) \<longlonglongrightarrow> f x"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   851
          "limsup (\<lambda>n. \<integral>\<^sup>+ x. norm(F n x) \<partial>M) \<le> (\<integral>\<^sup>+ x. norm(f x) \<partial>M)"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   852
  shows "(\<lambda>n. \<integral>\<^sup>+ x. norm(F n x - f x) \<partial>M) \<longlonglongrightarrow> 0"
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69566
diff changeset
   853
proof -
64284
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   854
  have [measurable]: "\<And>n. F n \<in> borel_measurable M" "f \<in> borel_measurable M"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   855
    using assms(1) assms(2) by simp_all
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   856
  define G where "G = (\<lambda>n x. norm(f x) + norm(F n x) - norm(F n x - f x))"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   857
  have [measurable]: "\<And>n. G n \<in> borel_measurable M" unfolding G_def by simp
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   858
  have G_pos[simp]: "\<And>n x. G n x \<ge> 0"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   859
    unfolding G_def by (metis ge_iff_diff_ge_0 norm_minus_commute norm_triangle_ineq4)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   860
  have finint: "(\<integral>\<^sup>+ x. norm(f x) \<partial>M) \<noteq> \<infinity>"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   861
    using has_bochner_integral_implies_finite_norm[OF has_bochner_integral_integrable[OF \<open>integrable M f\<close>]]
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   862
    by simp
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   863
  then have fin2: "2 * (\<integral>\<^sup>+ x. norm(f x) \<partial>M) \<noteq> \<infinity>"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   864
    by (auto simp: ennreal_mult_eq_top_iff)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   865
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   866
  {
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   867
    fix x assume *: "(\<lambda>n. F n x) \<longlonglongrightarrow> f x"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   868
    then have "(\<lambda>n. norm(F n x)) \<longlonglongrightarrow> norm(f x)" using tendsto_norm by blast
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   869
    moreover have "(\<lambda>n. norm(F n x - f x)) \<longlonglongrightarrow> 0" using * Lim_null tendsto_norm_zero_iff by fastforce
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   870
    ultimately have a: "(\<lambda>n. norm(F n x) - norm(F n x - f x)) \<longlonglongrightarrow> norm(f x)" using tendsto_diff by fastforce
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   871
    have "(\<lambda>n. norm(f x) + (norm(F n x) - norm(F n x - f x))) \<longlonglongrightarrow> norm(f x) + norm(f x)"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   872
      by (rule tendsto_add) (auto simp add: a)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   873
    moreover have "\<And>n. G n x = norm(f x) + (norm(F n x) - norm(F n x - f x))" unfolding G_def by simp
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   874
    ultimately have "(\<lambda>n. G n x) \<longlonglongrightarrow> 2 * norm(f x)" by simp
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   875
    then have "(\<lambda>n. ennreal(G n x)) \<longlonglongrightarrow> ennreal(2 * norm(f x))" by simp
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   876
    then have "liminf (\<lambda>n. ennreal(G n x)) = ennreal(2 * norm(f x))"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   877
      using sequentially_bot tendsto_iff_Liminf_eq_Limsup by blast
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   878
  }
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   879
  then have "AE x in M. liminf (\<lambda>n. ennreal(G n x)) = ennreal(2 * norm(f x))" using assms(3) by auto
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   880
  then have "(\<integral>\<^sup>+ x. liminf (\<lambda>n. ennreal (G n x)) \<partial>M) = (\<integral>\<^sup>+ x. 2 * ennreal(norm(f x)) \<partial>M)"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   881
    by (simp add: nn_integral_cong_AE ennreal_mult)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   882
  also have "... = 2 * (\<integral>\<^sup>+ x. norm(f x) \<partial>M)" by (rule nn_integral_cmult) auto
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   883
  finally have int_liminf: "(\<integral>\<^sup>+ x. liminf (\<lambda>n. ennreal (G n x)) \<partial>M) = 2 * (\<integral>\<^sup>+ x. norm(f x) \<partial>M)"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   884
    by simp
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   885
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   886
  have "(\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M) = (\<integral>\<^sup>+x. norm(f x) \<partial>M) + (\<integral>\<^sup>+x. norm(F n x) \<partial>M)" for n
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   887
    by (rule nn_integral_add) (auto simp add: assms)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   888
  then have "limsup (\<lambda>n. (\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M)) =
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   889
      limsup (\<lambda>n. (\<integral>\<^sup>+x. norm(f x) \<partial>M) + (\<integral>\<^sup>+x. norm(F n x) \<partial>M))"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   890
    by simp
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   891
  also have "... = (\<integral>\<^sup>+x. norm(f x) \<partial>M) + limsup (\<lambda>n. (\<integral>\<^sup>+x. norm(F n x) \<partial>M))"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   892
    by (rule Limsup_const_add, auto simp add: finint)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   893
  also have "... \<le> (\<integral>\<^sup>+x. norm(f x) \<partial>M) + (\<integral>\<^sup>+x. norm(f x) \<partial>M)"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   894
    using assms(4) by (simp add: add_left_mono)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   895
  also have "... = 2 * (\<integral>\<^sup>+x. norm(f x) \<partial>M)"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   896
    unfolding one_add_one[symmetric] distrib_right by simp
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   897
  ultimately have a: "limsup (\<lambda>n. (\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M)) \<le>
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   898
    2 * (\<integral>\<^sup>+x. norm(f x) \<partial>M)" by simp
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   899
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   900
  have le: "ennreal (norm (F n x - f x)) \<le> ennreal (norm (f x)) + ennreal (norm (F n x))" for n x
68403
223172b97d0b reorient -> split; documented split
nipkow
parents: 68046
diff changeset
   901
    by (simp add: norm_minus_commute norm_triangle_ineq4 ennreal_minus flip: ennreal_plus)
64284
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   902
  then have le2: "(\<integral>\<^sup>+ x. ennreal (norm (F n x - f x)) \<partial>M) \<le> (\<integral>\<^sup>+ x. ennreal (norm (f x)) + ennreal (norm (F n x)) \<partial>M)" for n
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   903
    by (rule nn_integral_mono)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   904
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   905
  have "2 * (\<integral>\<^sup>+ x. norm(f x) \<partial>M) = (\<integral>\<^sup>+ x. liminf (\<lambda>n. ennreal (G n x)) \<partial>M)"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   906
    by (simp add: int_liminf)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   907
  also have "\<dots> \<le> liminf (\<lambda>n. (\<integral>\<^sup>+x. G n x \<partial>M))"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   908
    by (rule nn_integral_liminf) auto
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   909
  also have "liminf (\<lambda>n. (\<integral>\<^sup>+x. G n x \<partial>M)) =
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   910
    liminf (\<lambda>n. (\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M) - (\<integral>\<^sup>+x. norm(F n x - f x) \<partial>M))"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   911
  proof (intro arg_cong[where f=liminf] ext)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   912
    fix n
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   913
    have "\<And>x. ennreal(G n x) = ennreal(norm(f x)) + ennreal(norm(F n x)) - ennreal(norm(F n x - f x))"
68403
223172b97d0b reorient -> split; documented split
nipkow
parents: 68046
diff changeset
   914
      unfolding G_def by (simp add: ennreal_minus flip: ennreal_plus)
64284
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   915
    moreover have "(\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) - ennreal(norm(F n x - f x)) \<partial>M)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   916
            = (\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M) - (\<integral>\<^sup>+x. norm(F n x - f x) \<partial>M)"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   917
    proof (rule nn_integral_diff)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   918
      from le show "AE x in M. ennreal (norm (F n x - f x)) \<le> ennreal (norm (f x)) + ennreal (norm (F n x))"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   919
        by simp
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   920
      from le2 have "(\<integral>\<^sup>+x. ennreal (norm (F n x - f x)) \<partial>M) < \<infinity>" using assms(1) assms(2)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   921
        by (metis has_bochner_integral_implies_finite_norm integrable.simps Bochner_Integration.integrable_diff)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   922
      then show "(\<integral>\<^sup>+x. ennreal (norm (F n x - f x)) \<partial>M) \<noteq> \<infinity>" by simp
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   923
    qed (auto simp add: assms)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   924
    ultimately show "(\<integral>\<^sup>+x. G n x \<partial>M) = (\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M) - (\<integral>\<^sup>+x. norm(F n x - f x) \<partial>M)"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   925
      by simp
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   926
  qed
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   927
  finally have "2 * (\<integral>\<^sup>+ x. norm(f x) \<partial>M) + limsup (\<lambda>n. (\<integral>\<^sup>+x. norm(F n x - f x) \<partial>M)) \<le>
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   928
    liminf (\<lambda>n. (\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M) - (\<integral>\<^sup>+x. norm(F n x - f x) \<partial>M)) +
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   929
    limsup (\<lambda>n. (\<integral>\<^sup>+x. norm(F n x - f x) \<partial>M))"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   930
    by (intro add_mono) auto
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   931
  also have "\<dots> \<le> (limsup (\<lambda>n. \<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M) - limsup (\<lambda>n. \<integral>\<^sup>+x. norm (F n x - f x) \<partial>M)) +
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   932
    limsup (\<lambda>n. (\<integral>\<^sup>+x. norm(F n x - f x) \<partial>M))"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   933
    by (intro add_mono liminf_minus_ennreal le2) auto
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   934
  also have "\<dots> = limsup (\<lambda>n. (\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M))"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   935
    by (intro diff_add_cancel_ennreal Limsup_mono always_eventually allI le2)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   936
  also have "\<dots> \<le> 2 * (\<integral>\<^sup>+x. norm(f x) \<partial>M)"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   937
    by fact
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   938
  finally have "limsup (\<lambda>n. (\<integral>\<^sup>+x. norm(F n x - f x) \<partial>M)) = 0"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   939
    using fin2 by simp
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   940
  then show ?thesis
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   941
    by (rule tendsto_0_if_Limsup_eq_0_ennreal)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   942
qed
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   943
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69566
diff changeset
   944
proposition Scheffe_lemma2:
64284
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   945
  fixes F::"nat \<Rightarrow> 'a \<Rightarrow> 'b::{banach, second_countable_topology}"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   946
  assumes "\<And> n::nat. F n \<in> borel_measurable M" "integrable M f"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   947
          "AE x in M. (\<lambda>n. F n x) \<longlonglongrightarrow> f x"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   948
          "\<And>n. (\<integral>\<^sup>+ x. norm(F n x) \<partial>M) \<le> (\<integral>\<^sup>+ x. norm(f x) \<partial>M)"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   949
  shows "(\<lambda>n. \<integral>\<^sup>+ x. norm(F n x - f x) \<partial>M) \<longlonglongrightarrow> 0"
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69566
diff changeset
   950
proof (rule Scheffe_lemma1)
64284
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   951
  fix n::nat
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   952
  have "(\<integral>\<^sup>+ x. norm(f x) \<partial>M) < \<infinity>" using assms(2) by (metis has_bochner_integral_implies_finite_norm integrable.cases)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   953
  then have "(\<integral>\<^sup>+ x. norm(F n x) \<partial>M) < \<infinity>" using assms(4)[of n] by auto
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   954
  then show "integrable M (F n)" by (subst integrable_iff_bounded, simp add: assms(1)[of n])
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   955
qed (auto simp add: assms Limsup_bounded)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
   956
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69566
diff changeset
   957
lemma tendsto_set_lebesgue_integral_at_right:
68721
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   958
  fixes a b :: real and f :: "real \<Rightarrow> 'a :: {banach,second_countable_topology}"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   959
  assumes "a < b" and sets: "\<And>a'. a' \<in> {a<..b} \<Longrightarrow> {a'..b} \<in> sets M"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   960
      and "set_integrable M {a<..b} f"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   961
  shows   "((\<lambda>a'. set_lebesgue_integral M {a'..b} f) \<longlongrightarrow>
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   962
             set_lebesgue_integral M {a<..b} f) (at_right a)"
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69566
diff changeset
   963
proof (rule tendsto_at_right_sequentially[OF assms(1)], goal_cases)
68721
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   964
  case (1 S)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   965
  have eq: "(\<Union>n. {S n..b}) = {a<..b}"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   966
  proof safe
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   967
    fix x n assume "x \<in> {S n..b}"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   968
    with 1(1,2)[of n] show "x \<in> {a<..b}" by auto
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   969
  next
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   970
    fix x assume "x \<in> {a<..b}"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   971
    with order_tendstoD[OF \<open>S \<longlonglongrightarrow> a\<close>, of x] show "x \<in> (\<Union>n. {S n..b})"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   972
      by (force simp: eventually_at_top_linorder dest: less_imp_le)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   973
  qed
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   974
  have "(\<lambda>n. set_lebesgue_integral M {S n..b} f) \<longlonglongrightarrow> set_lebesgue_integral M (\<Union>n. {S n..b}) f"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   975
    by (rule set_integral_cont_up) (insert assms 1, auto simp: eq incseq_def decseq_def less_imp_le)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   976
  with eq show ?case by simp
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   977
qed
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   978
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   979
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   980
text \<open>
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   981
  The next lemmas relate convergence of integrals over an interval to
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   982
  improper integrals.
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   983
\<close>
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69566
diff changeset
   984
lemma tendsto_set_lebesgue_integral_at_left:
68721
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   985
  fixes a b :: real and f :: "real \<Rightarrow> 'a :: {banach,second_countable_topology}"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   986
  assumes "a < b" and sets: "\<And>b'. b' \<in> {a..<b} \<Longrightarrow> {a..b'} \<in> sets M"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   987
      and "set_integrable M {a..<b} f"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   988
  shows   "((\<lambda>b'. set_lebesgue_integral M {a..b'} f) \<longlongrightarrow>
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   989
             set_lebesgue_integral M {a..<b} f) (at_left b)"
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69566
diff changeset
   990
proof (rule tendsto_at_left_sequentially[OF assms(1)], goal_cases)
68721
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   991
  case (1 S)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   992
  have eq: "(\<Union>n. {a..S n}) = {a..<b}"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   993
  proof safe
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   994
    fix x n assume "x \<in> {a..S n}"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   995
    with 1(1,2)[of n] show "x \<in> {a..<b}" by auto
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   996
  next
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   997
    fix x assume "x \<in> {a..<b}"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   998
    with order_tendstoD[OF \<open>S \<longlonglongrightarrow> b\<close>, of x] show "x \<in> (\<Union>n. {a..S n})"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
   999
      by (force simp: eventually_at_top_linorder dest: less_imp_le)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1000
  qed
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1001
  have "(\<lambda>n. set_lebesgue_integral M {a..S n} f) \<longlonglongrightarrow> set_lebesgue_integral M (\<Union>n. {a..S n}) f"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1002
    by (rule set_integral_cont_up) (insert assms 1, auto simp: eq incseq_def decseq_def less_imp_le)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1003
  with eq show ?case by simp
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1004
qed
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1005
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69566
diff changeset
  1006
proposition tendsto_set_lebesgue_integral_at_top:
68721
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1007
  fixes f :: "real \<Rightarrow> 'a::{banach, second_countable_topology}"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1008
  assumes sets: "\<And>b. b \<ge> a \<Longrightarrow> {a..b} \<in> sets M"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1009
      and int: "set_integrable M {a..} f"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1010
  shows "((\<lambda>b. set_lebesgue_integral M {a..b} f) \<longlongrightarrow> set_lebesgue_integral M {a..} f) at_top"
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69566
diff changeset
  1011
proof (rule tendsto_at_topI_sequentially)
68721
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1012
  fix X :: "nat \<Rightarrow> real" assume "filterlim X at_top sequentially"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1013
  show "(\<lambda>n. set_lebesgue_integral M {a..X n} f) \<longlonglongrightarrow> set_lebesgue_integral M {a..} f"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1014
    unfolding set_lebesgue_integral_def
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1015
  proof (rule integral_dominated_convergence)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1016
    show "integrable M (\<lambda>x. indicat_real {a..} x *\<^sub>R norm (f x))"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1017
      using integrable_norm[OF int[unfolded set_integrable_def]] by simp
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1018
    show "AE x in M. (\<lambda>n. indicator {a..X n} x *\<^sub>R f x) \<longlonglongrightarrow> indicat_real {a..} x *\<^sub>R f x"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1019
    proof
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1020
      fix x
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1021
      from \<open>filterlim X at_top sequentially\<close>
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1022
      have "eventually (\<lambda>n. x \<le> X n) sequentially"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1023
        unfolding filterlim_at_top_ge[where c=x] by auto
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1024
      then show "(\<lambda>n. indicator {a..X n} x *\<^sub>R f x) \<longlonglongrightarrow> indicat_real {a..} x *\<^sub>R f x"
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1025
        by (intro tendsto_eventually) (auto split: split_indicator elim!: eventually_mono)
68721
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1026
    qed
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1027
    fix n show "AE x in M. norm (indicator {a..X n} x *\<^sub>R f x) \<le> 
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1028
                             indicator {a..} x *\<^sub>R norm (f x)"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1029
      by (auto split: split_indicator)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1030
  next
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1031
    from int show "(\<lambda>x. indicat_real {a..} x *\<^sub>R f x) \<in> borel_measurable M"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1032
      by (simp add: set_integrable_def)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1033
  next
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1034
    fix n :: nat
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1035
    from sets have "{a..X n} \<in> sets M" by (cases "X n \<ge> a") auto
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1036
    with int have "set_integrable M {a..X n} f"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1037
      by (rule set_integrable_subset) auto
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1038
    thus "(\<lambda>x. indicat_real {a..X n} x *\<^sub>R f x) \<in> borel_measurable M"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1039
      by (simp add: set_integrable_def)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1040
  qed
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1041
qed
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1042
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69566
diff changeset
  1043
proposition tendsto_set_lebesgue_integral_at_bot:
68721
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1044
  fixes f :: "real \<Rightarrow> 'a::{banach, second_countable_topology}"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1045
  assumes sets: "\<And>a. a \<le> b \<Longrightarrow> {a..b} \<in> sets M"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1046
      and int: "set_integrable M {..b} f"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1047
    shows "((\<lambda>a. set_lebesgue_integral M {a..b} f) \<longlongrightarrow> set_lebesgue_integral M {..b} f) at_bot"
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69566
diff changeset
  1048
proof (rule tendsto_at_botI_sequentially)
68721
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1049
  fix X :: "nat \<Rightarrow> real" assume "filterlim X at_bot sequentially"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1050
  show "(\<lambda>n. set_lebesgue_integral M {X n..b} f) \<longlonglongrightarrow> set_lebesgue_integral M {..b} f"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1051
    unfolding set_lebesgue_integral_def
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1052
  proof (rule integral_dominated_convergence)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1053
    show "integrable M (\<lambda>x. indicat_real {..b} x *\<^sub>R norm (f x))"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1054
      using integrable_norm[OF int[unfolded set_integrable_def]] by simp
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1055
    show "AE x in M. (\<lambda>n. indicator {X n..b} x *\<^sub>R f x) \<longlonglongrightarrow> indicat_real {..b} x *\<^sub>R f x"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1056
    proof
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1057
      fix x
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1058
      from \<open>filterlim X at_bot sequentially\<close>
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1059
      have "eventually (\<lambda>n. x \<ge> X n) sequentially"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1060
        unfolding filterlim_at_bot_le[where c=x] by auto
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1061
      then show "(\<lambda>n. indicator {X n..b} x *\<^sub>R f x) \<longlonglongrightarrow> indicat_real {..b} x *\<^sub>R f x"
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1062
        by (intro tendsto_eventually) (auto split: split_indicator elim!: eventually_mono)
68721
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1063
    qed
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1064
    fix n show "AE x in M. norm (indicator {X n..b} x *\<^sub>R f x) \<le> 
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1065
                             indicator {..b} x *\<^sub>R norm (f x)"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1066
      by (auto split: split_indicator)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1067
  next
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1068
    from int show "(\<lambda>x. indicat_real {..b} x *\<^sub>R f x) \<in> borel_measurable M"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1069
      by (simp add: set_integrable_def)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1070
  next
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1071
    fix n :: nat
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1072
    from sets have "{X n..b} \<in> sets M" by (cases "X n \<le> b") auto
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1073
    with int have "set_integrable M {X n..b} f"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1074
      by (rule set_integrable_subset) auto
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1075
    thus "(\<lambda>x. indicat_real {X n..b} x *\<^sub>R f x) \<in> borel_measurable M"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1076
      by (simp add: set_integrable_def)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1077
  qed
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1078
qed
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68403
diff changeset
  1079
73253
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1080
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1081
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1082
theorem integral_Markov_inequality':
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1083
  fixes u :: "'a \<Rightarrow> real"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1084
  assumes [measurable]: "set_integrable M A u" and "A \<in> sets M"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1085
  assumes "AE x in M. x \<in> A \<longrightarrow> u x \<ge> 0" and "0 < (c::real)"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1086
  shows "emeasure M {x\<in>A. u x \<ge> c} \<le> (1/c::real) * (\<integral>x\<in>A. u x \<partial>M)"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1087
proof -
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1088
  have "(\<lambda>x. u x * indicator A x) \<in> borel_measurable M" 
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1089
    using assms by (auto simp: set_integrable_def mult_ac)
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1090
  hence "(\<lambda>x. ennreal (u x * indicator A x)) \<in> borel_measurable M"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1091
    by measurable
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1092
  also have "(\<lambda>x. ennreal (u x * indicator A x)) = (\<lambda>x. ennreal (u x) * indicator A x)"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1093
    by (intro ext) (auto simp: indicator_def)
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1094
  finally have meas: "\<dots> \<in> borel_measurable M" .
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1095
  from assms(3) have AE: "AE x in M. 0 \<le> u x * indicator A x"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1096
    by eventually_elim (auto simp: indicator_def)
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1097
  have nonneg: "set_lebesgue_integral M A u \<ge> 0"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1098
    unfolding set_lebesgue_integral_def
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1099
    by (intro Bochner_Integration.integral_nonneg_AE eventually_mono[OF AE]) (auto simp: mult_ac)
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1100
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1101
  have A: "A \<subseteq> space M"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1102
    using \<open>A \<in> sets M\<close> by (simp add: sets.sets_into_space)
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1103
  have "{x \<in> A. u x \<ge> c} = {x \<in> A. ennreal(1/c) * u x \<ge> 1}"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1104
    using \<open>c>0\<close> A by (auto simp: ennreal_mult'[symmetric])
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1105
  then have "emeasure M {x \<in> A. u x \<ge> c} = emeasure M ({x \<in> A. ennreal(1/c) * u x \<ge> 1})"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1106
    by simp
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1107
  also have "... \<le> ennreal(1/c) * (\<integral>\<^sup>+ x. ennreal(u x) * indicator A x \<partial>M)"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1108
    by (intro nn_integral_Markov_inequality meas assms)
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1109
  also have "(\<integral>\<^sup>+ x. ennreal(u x) * indicator A x \<partial>M) = ennreal (set_lebesgue_integral M A u)"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1110
    unfolding set_lebesgue_integral_def nn_integral_set_ennreal using assms AE
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1111
    by (subst nn_integral_eq_integral) (simp_all add: mult_ac set_integrable_def)
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1112
  finally show ?thesis
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1113
    using \<open>c > 0\<close> nonneg by (subst ennreal_mult) auto
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1114
qed
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1115
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1116
theorem integral_Markov_inequality'_measure:
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1117
  assumes [measurable]: "set_integrable M A u" and "A \<in> sets M" 
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1118
     and "AE x in M. x \<in> A \<longrightarrow> 0 \<le> u x" "0 < (c::real)"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1119
  shows "measure M {x\<in>A. u x \<ge> c} \<le> (\<integral>x\<in>A. u x \<partial>M) / c"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1120
proof -
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1121
  have nonneg: "set_lebesgue_integral M A u \<ge> 0"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1122
    unfolding set_lebesgue_integral_def
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1123
    by (intro Bochner_Integration.integral_nonneg_AE eventually_mono[OF assms(3)])
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1124
       (auto simp: mult_ac)
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1125
  have le: "emeasure M {x\<in>A. u x \<ge> c} \<le> ennreal ((1/c) * (\<integral>x\<in>A. u x \<partial>M))"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1126
    by (rule integral_Markov_inequality') (use assms in auto)
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1127
  also have "\<dots> < top"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1128
    by auto
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1129
  finally have "ennreal (measure M {x\<in>A. u x \<ge> c}) = emeasure M {x\<in>A. u x \<ge> c}"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1130
    by (intro emeasure_eq_ennreal_measure [symmetric]) auto
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1131
  also note le
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1132
  finally show ?thesis using nonneg
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1133
    by (subst (asm) ennreal_le_iff)
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1134
       (auto intro!: divide_nonneg_pos Bochner_Integration.integral_nonneg_AE assms)
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1135
qed
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1136
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1137
theorem%important (in finite_measure) Chernoff_ineq_ge:
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1138
  assumes s: "s > 0"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1139
  assumes integrable: "set_integrable M A (\<lambda>x. exp (s * f x))" and "A \<in> sets M"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1140
  shows   "measure M {x\<in>A. f x \<ge> a} \<le> exp (-s * a) * (\<integral>x\<in>A. exp (s * f x) \<partial>M)"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1141
proof -
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1142
  have "{x\<in>A. f x \<ge> a} = {x\<in>A. exp (s * f x) \<ge> exp (s * a)}"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1143
    using s by auto
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1144
  also have "measure M \<dots> \<le> set_lebesgue_integral M A (\<lambda>x. exp (s * f x)) / exp (s * a)"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1145
    by (intro integral_Markov_inequality'_measure assms) auto
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1146
  finally show ?thesis 
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1147
    by (simp add: exp_minus field_simps)
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1148
qed
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1149
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1150
theorem%important (in finite_measure) Chernoff_ineq_le:
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1151
  assumes s: "s > 0"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1152
  assumes integrable: "set_integrable M A (\<lambda>x. exp (-s * f x))" and "A \<in> sets M"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1153
  shows   "measure M {x\<in>A. f x \<le> a} \<le> exp (s * a) * (\<integral>x\<in>A. exp (-s * f x) \<partial>M)"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1154
proof -
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1155
  have "{x\<in>A. f x \<le> a} = {x\<in>A. exp (-s * f x) \<ge> exp (-s * a)}"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1156
    using s by auto
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1157
  also have "measure M \<dots> \<le> set_lebesgue_integral M A (\<lambda>x. exp (-s * f x)) / exp (-s * a)"
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1158
    by (intro integral_Markov_inequality'_measure assms) auto
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1159
  finally show ?thesis 
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1160
    by (simp add: exp_minus field_simps)
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1161
qed
f6bb31879698 HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
Manuel Eberl <eberlm@in.tum.de>
parents: 70721
diff changeset
  1162
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1163
end