| author | haftmann | 
| Fri, 24 Mar 2023 18:30:17 +0000 | |
| changeset 77703 | 0262155d2743 | 
| parent 76834 | 4645ca4457db | 
| child 79583 | a521c241e946 | 
| permissions | -rw-r--r-- | 
| 63627 | 1 | (* Title: HOL/Analysis/Sigma_Algebra.thy | 
| 42067 | 2 | Author: Stefan Richter, Markus Wenzel, TU München | 
| 3 | Author: Johannes Hölzl, TU München | |
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41959diff
changeset | 4 | Plus material from the Hurd/Coble measure theory development, | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41959diff
changeset | 5 | translated by Lawrence Paulson. | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 6 | *) | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 7 | |
| 69676 | 8 | chapter \<open>Measure and Integration Theory\<close> | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 9 | |
| 41413 
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
 wenzelm parents: 
41095diff
changeset | 10 | theory Sigma_Algebra | 
| 
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
 wenzelm parents: 
41095diff
changeset | 11 | imports | 
| 42145 | 12 | Complex_Main | 
| 66453 
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
 wenzelm parents: 
64008diff
changeset | 13 | "HOL-Library.Countable_Set" | 
| 68188 
2af1f142f855
move FuncSet back to HOL-Library (amending 493b818e8e10)
 immler parents: 
68073diff
changeset | 14 | "HOL-Library.FuncSet" | 
| 66453 
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
 wenzelm parents: 
64008diff
changeset | 15 | "HOL-Library.Indicator_Function" | 
| 
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
 wenzelm parents: 
64008diff
changeset | 16 | "HOL-Library.Extended_Nonnegative_Real" | 
| 
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
 wenzelm parents: 
64008diff
changeset | 17 | "HOL-Library.Disjoint_Sets" | 
| 41413 
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
 wenzelm parents: 
41095diff
changeset | 18 | begin | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 19 | |
| 69676 | 20 | |
| 21 | section \<open>Sigma Algebra\<close> | |
| 22 | ||
| 61808 | 23 | text \<open>Sigma algebras are an elementary concept in measure | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 24 | theory. To measure --- that is to integrate --- functions, we first have | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 25 | to measure sets. Unfortunately, when dealing with a large universe, | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 26 | it is often not possible to consistently assign a measure to every | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 27 | subset. Therefore it is necessary to define the set of measurable | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 28 | subsets of the universe. A sigma algebra is such a set that has | 
| 61808 | 29 | three very natural and desirable properties.\<close> | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 30 | |
| 61808 | 31 | subsection \<open>Families of sets\<close> | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 32 | |
| 70136 | 33 | locale\<^marker>\<open>tag important\<close> subset_class = | 
| 47694 | 34 | fixes \<Omega> :: "'a set" and M :: "'a set set" | 
| 35 | assumes space_closed: "M \<subseteq> Pow \<Omega>" | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 36 | |
| 47694 | 37 | lemma (in subset_class) sets_into_space: "x \<in> M \<Longrightarrow> x \<subseteq> \<Omega>" | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 38 | by (metis PowD contra_subsetD space_closed) | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 39 | |
| 61808 | 40 | subsubsection \<open>Semiring of sets\<close> | 
| 47762 | 41 | |
| 70136 | 42 | locale\<^marker>\<open>tag important\<close> semiring_of_sets = subset_class + | 
| 47762 | 43 |   assumes empty_sets[iff]: "{} \<in> M"
 | 
| 44 | assumes Int[intro]: "\<And>a b. a \<in> M \<Longrightarrow> b \<in> M \<Longrightarrow> a \<inter> b \<in> M" | |
| 45 | assumes Diff_cover: | |
| 46 | "\<And>a b. a \<in> M \<Longrightarrow> b \<in> M \<Longrightarrow> \<exists>C\<subseteq>M. finite C \<and> disjoint C \<and> a - b = \<Union>C" | |
| 47 | ||
| 48 | lemma (in semiring_of_sets) finite_INT[intro]: | |
| 49 |   assumes "finite I" "I \<noteq> {}" "\<And>i. i \<in> I \<Longrightarrow> A i \<in> M"
 | |
| 50 | shows "(\<Inter>i\<in>I. A i) \<in> M" | |
| 51 | using assms by (induct rule: finite_ne_induct) auto | |
| 52 | ||
| 53 | lemma (in semiring_of_sets) Int_space_eq1 [simp]: "x \<in> M \<Longrightarrow> \<Omega> \<inter> x = x" | |
| 54 | by (metis Int_absorb1 sets_into_space) | |
| 55 | ||
| 56 | lemma (in semiring_of_sets) Int_space_eq2 [simp]: "x \<in> M \<Longrightarrow> x \<inter> \<Omega> = x" | |
| 57 | by (metis Int_absorb2 sets_into_space) | |
| 58 | ||
| 59 | lemma (in semiring_of_sets) sets_Collect_conj: | |
| 60 |   assumes "{x\<in>\<Omega>. P x} \<in> M" "{x\<in>\<Omega>. Q x} \<in> M"
 | |
| 61 |   shows "{x\<in>\<Omega>. Q x \<and> P x} \<in> M"
 | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 62 | proof - | 
| 47762 | 63 |   have "{x\<in>\<Omega>. Q x \<and> P x} = {x\<in>\<Omega>. Q x} \<inter> {x\<in>\<Omega>. P x}"
 | 
| 42065 
2b98b4c2e2f1
add ring_of_sets and subset_class as basis for algebra
 hoelzl parents: 
41983diff
changeset | 64 | by auto | 
| 47762 | 65 | with assms show ?thesis by auto | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 66 | qed | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 67 | |
| 50002 
ce0d316b5b44
add measurability prover; add support for Borel sets
 hoelzl parents: 
49834diff
changeset | 68 | lemma (in semiring_of_sets) sets_Collect_finite_All': | 
| 47762 | 69 |   assumes "\<And>i. i \<in> S \<Longrightarrow> {x\<in>\<Omega>. P i x} \<in> M" "finite S" "S \<noteq> {}"
 | 
| 70 |   shows "{x\<in>\<Omega>. \<forall>i\<in>S. P i x} \<in> M"
 | |
| 71 | proof - | |
| 72 |   have "{x\<in>\<Omega>. \<forall>i\<in>S. P i x} = (\<Inter>i\<in>S. {x\<in>\<Omega>. P i x})"
 | |
| 61808 | 73 |     using \<open>S \<noteq> {}\<close> by auto
 | 
| 47762 | 74 | with assms show ?thesis by auto | 
| 75 | qed | |
| 76 | ||
| 67962 | 77 | subsubsection \<open>Ring of sets\<close> | 
| 78 | ||
| 70136 | 79 | locale\<^marker>\<open>tag important\<close> ring_of_sets = semiring_of_sets + | 
| 47762 | 80 | assumes Un [intro]: "\<And>a b. a \<in> M \<Longrightarrow> b \<in> M \<Longrightarrow> a \<union> b \<in> M" | 
| 81 | ||
| 42065 
2b98b4c2e2f1
add ring_of_sets and subset_class as basis for algebra
 hoelzl parents: 
41983diff
changeset | 82 | lemma (in ring_of_sets) finite_Union [intro]: | 
| 61952 | 83 | "finite X \<Longrightarrow> X \<subseteq> M \<Longrightarrow> \<Union>X \<in> M" | 
| 38656 | 84 | by (induct set: finite) (auto simp add: Un) | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 85 | |
| 42065 
2b98b4c2e2f1
add ring_of_sets and subset_class as basis for algebra
 hoelzl parents: 
41983diff
changeset | 86 | lemma (in ring_of_sets) finite_UN[intro]: | 
| 47694 | 87 | assumes "finite I" and "\<And>i. i \<in> I \<Longrightarrow> A i \<in> M" | 
| 88 | shows "(\<Union>i\<in>I. A i) \<in> M" | |
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41959diff
changeset | 89 | using assms by induct auto | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41959diff
changeset | 90 | |
| 47762 | 91 | lemma (in ring_of_sets) Diff [intro]: | 
| 92 | assumes "a \<in> M" "b \<in> M" shows "a - b \<in> M" | |
| 93 | using Diff_cover[OF assms] by auto | |
| 94 | ||
| 95 | lemma ring_of_setsI: | |
| 96 | assumes space_closed: "M \<subseteq> Pow \<Omega>" | |
| 97 |   assumes empty_sets[iff]: "{} \<in> M"
 | |
| 98 | assumes Un[intro]: "\<And>a b. a \<in> M \<Longrightarrow> b \<in> M \<Longrightarrow> a \<union> b \<in> M" | |
| 99 | assumes Diff[intro]: "\<And>a b. a \<in> M \<Longrightarrow> b \<in> M \<Longrightarrow> a - b \<in> M" | |
| 100 | shows "ring_of_sets \<Omega> M" | |
| 101 | proof | |
| 102 | fix a b assume ab: "a \<in> M" "b \<in> M" | |
| 103 | from ab show "\<exists>C\<subseteq>M. finite C \<and> disjoint C \<and> a - b = \<Union>C" | |
| 104 |     by (intro exI[of _ "{a - b}"]) (auto simp: disjoint_def)
 | |
| 105 | have "a \<inter> b = a - (a - b)" by auto | |
| 106 | also have "\<dots> \<in> M" using ab by auto | |
| 107 | finally show "a \<inter> b \<in> M" . | |
| 108 | qed fact+ | |
| 109 | ||
| 110 | lemma ring_of_sets_iff: "ring_of_sets \<Omega> M \<longleftrightarrow> M \<subseteq> Pow \<Omega> \<and> {} \<in> M \<and> (\<forall>a\<in>M. \<forall>b\<in>M. a \<union> b \<in> M) \<and> (\<forall>a\<in>M. \<forall>b\<in>M. a - b \<in> M)"
 | |
| 111 | proof | |
| 112 | assume "ring_of_sets \<Omega> M" | |
| 113 | then interpret ring_of_sets \<Omega> M . | |
| 114 |   show "M \<subseteq> Pow \<Omega> \<and> {} \<in> M \<and> (\<forall>a\<in>M. \<forall>b\<in>M. a \<union> b \<in> M) \<and> (\<forall>a\<in>M. \<forall>b\<in>M. a - b \<in> M)"
 | |
| 115 | using space_closed by auto | |
| 116 | qed (auto intro!: ring_of_setsI) | |
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41959diff
changeset | 117 | |
| 42065 
2b98b4c2e2f1
add ring_of_sets and subset_class as basis for algebra
 hoelzl parents: 
41983diff
changeset | 118 | lemma (in ring_of_sets) insert_in_sets: | 
| 47694 | 119 |   assumes "{x} \<in> M" "A \<in> M" shows "insert x A \<in> M"
 | 
| 38656 | 120 | proof - | 
| 47694 | 121 |   have "{x} \<union> A \<in> M" using assms by (rule Un)
 | 
| 38656 | 122 | thus ?thesis by auto | 
| 123 | qed | |
| 124 | ||
| 42867 | 125 | lemma (in ring_of_sets) sets_Collect_disj: | 
| 47694 | 126 |   assumes "{x\<in>\<Omega>. P x} \<in> M" "{x\<in>\<Omega>. Q x} \<in> M"
 | 
| 127 |   shows "{x\<in>\<Omega>. Q x \<or> P x} \<in> M"
 | |
| 42867 | 128 | proof - | 
| 47694 | 129 |   have "{x\<in>\<Omega>. Q x \<or> P x} = {x\<in>\<Omega>. Q x} \<union> {x\<in>\<Omega>. P x}"
 | 
| 42867 | 130 | by auto | 
| 131 | with assms show ?thesis by auto | |
| 132 | qed | |
| 133 | ||
| 134 | lemma (in ring_of_sets) sets_Collect_finite_Ex: | |
| 47694 | 135 |   assumes "\<And>i. i \<in> S \<Longrightarrow> {x\<in>\<Omega>. P i x} \<in> M" "finite S"
 | 
| 136 |   shows "{x\<in>\<Omega>. \<exists>i\<in>S. P i x} \<in> M"
 | |
| 42867 | 137 | proof - | 
| 47694 | 138 |   have "{x\<in>\<Omega>. \<exists>i\<in>S. P i x} = (\<Union>i\<in>S. {x\<in>\<Omega>. P i x})"
 | 
| 42867 | 139 | by auto | 
| 140 | with assms show ?thesis by auto | |
| 141 | qed | |
| 142 | ||
| 67962 | 143 | subsubsection \<open>Algebra of sets\<close> | 
| 144 | ||
| 70136 | 145 | locale\<^marker>\<open>tag important\<close> algebra = ring_of_sets + | 
| 47694 | 146 | assumes top [iff]: "\<Omega> \<in> M" | 
| 42065 
2b98b4c2e2f1
add ring_of_sets and subset_class as basis for algebra
 hoelzl parents: 
41983diff
changeset | 147 | |
| 
2b98b4c2e2f1
add ring_of_sets and subset_class as basis for algebra
 hoelzl parents: 
41983diff
changeset | 148 | lemma (in algebra) compl_sets [intro]: | 
| 47694 | 149 | "a \<in> M \<Longrightarrow> \<Omega> - a \<in> M" | 
| 42065 
2b98b4c2e2f1
add ring_of_sets and subset_class as basis for algebra
 hoelzl parents: 
41983diff
changeset | 150 | by auto | 
| 
2b98b4c2e2f1
add ring_of_sets and subset_class as basis for algebra
 hoelzl parents: 
41983diff
changeset | 151 | |
| 68607 
67bb59e49834
make theorem, corollary, and proposition %important for HOL-Analysis manual
 immler parents: 
68403diff
changeset | 152 | proposition algebra_iff_Un: | 
| 47694 | 153 | "algebra \<Omega> M \<longleftrightarrow> | 
| 154 | M \<subseteq> Pow \<Omega> \<and> | |
| 155 |     {} \<in> M \<and>
 | |
| 156 | (\<forall>a \<in> M. \<Omega> - a \<in> M) \<and> | |
| 157 | (\<forall>a \<in> M. \<forall> b \<in> M. a \<union> b \<in> M)" (is "_ \<longleftrightarrow> ?Un") | |
| 68607 
67bb59e49834
make theorem, corollary, and proposition %important for HOL-Analysis manual
 immler parents: 
68403diff
changeset | 158 | proof | 
| 47694 | 159 | assume "algebra \<Omega> M" | 
| 160 | then interpret algebra \<Omega> M . | |
| 42065 
2b98b4c2e2f1
add ring_of_sets and subset_class as basis for algebra
 hoelzl parents: 
41983diff
changeset | 161 | show ?Un using sets_into_space by auto | 
| 
2b98b4c2e2f1
add ring_of_sets and subset_class as basis for algebra
 hoelzl parents: 
41983diff
changeset | 162 | next | 
| 
2b98b4c2e2f1
add ring_of_sets and subset_class as basis for algebra
 hoelzl parents: 
41983diff
changeset | 163 | assume ?Un | 
| 47762 | 164 | then have "\<Omega> \<in> M" by auto | 
| 165 | interpret ring_of_sets \<Omega> M | |
| 166 | proof (rule ring_of_setsI) | |
| 167 |     show \<Omega>: "M \<subseteq> Pow \<Omega>" "{} \<in> M"
 | |
| 61808 | 168 | using \<open>?Un\<close> by auto | 
| 47694 | 169 | fix a b assume a: "a \<in> M" and b: "b \<in> M" | 
| 61808 | 170 | then show "a \<union> b \<in> M" using \<open>?Un\<close> by auto | 
| 47694 | 171 | have "a - b = \<Omega> - ((\<Omega> - a) \<union> b)" | 
| 172 | using \<Omega> a b by auto | |
| 173 | then show "a - b \<in> M" | |
| 61808 | 174 | using a b \<open>?Un\<close> by auto | 
| 42065 
2b98b4c2e2f1
add ring_of_sets and subset_class as basis for algebra
 hoelzl parents: 
41983diff
changeset | 175 | qed | 
| 47762 | 176 | show "algebra \<Omega> M" proof qed fact | 
| 42065 
2b98b4c2e2f1
add ring_of_sets and subset_class as basis for algebra
 hoelzl parents: 
41983diff
changeset | 177 | qed | 
| 
2b98b4c2e2f1
add ring_of_sets and subset_class as basis for algebra
 hoelzl parents: 
41983diff
changeset | 178 | |
| 68607 
67bb59e49834
make theorem, corollary, and proposition %important for HOL-Analysis manual
 immler parents: 
68403diff
changeset | 179 | proposition algebra_iff_Int: | 
| 47694 | 180 | "algebra \<Omega> M \<longleftrightarrow> | 
| 181 |        M \<subseteq> Pow \<Omega> & {} \<in> M &
 | |
| 182 | (\<forall>a \<in> M. \<Omega> - a \<in> M) & | |
| 183 | (\<forall>a \<in> M. \<forall> b \<in> M. a \<inter> b \<in> M)" (is "_ \<longleftrightarrow> ?Int") | |
| 68607 
67bb59e49834
make theorem, corollary, and proposition %important for HOL-Analysis manual
 immler parents: 
68403diff
changeset | 184 | proof | 
| 47694 | 185 | assume "algebra \<Omega> M" | 
| 186 | then interpret algebra \<Omega> M . | |
| 42065 
2b98b4c2e2f1
add ring_of_sets and subset_class as basis for algebra
 hoelzl parents: 
41983diff
changeset | 187 | show ?Int using sets_into_space by auto | 
| 
2b98b4c2e2f1
add ring_of_sets and subset_class as basis for algebra
 hoelzl parents: 
41983diff
changeset | 188 | next | 
| 
2b98b4c2e2f1
add ring_of_sets and subset_class as basis for algebra
 hoelzl parents: 
41983diff
changeset | 189 | assume ?Int | 
| 47694 | 190 | show "algebra \<Omega> M" | 
| 42065 
2b98b4c2e2f1
add ring_of_sets and subset_class as basis for algebra
 hoelzl parents: 
41983diff
changeset | 191 | proof (unfold algebra_iff_Un, intro conjI ballI) | 
| 47694 | 192 |     show \<Omega>: "M \<subseteq> Pow \<Omega>" "{} \<in> M"
 | 
| 61808 | 193 | using \<open>?Int\<close> by auto | 
| 194 | from \<open>?Int\<close> show "\<And>a. a \<in> M \<Longrightarrow> \<Omega> - a \<in> M" by auto | |
| 47694 | 195 | fix a b assume M: "a \<in> M" "b \<in> M" | 
| 196 | hence "a \<union> b = \<Omega> - ((\<Omega> - a) \<inter> (\<Omega> - b))" | |
| 197 | using \<Omega> by blast | |
| 198 | also have "... \<in> M" | |
| 61808 | 199 | using M \<open>?Int\<close> by auto | 
| 47694 | 200 | finally show "a \<union> b \<in> M" . | 
| 42065 
2b98b4c2e2f1
add ring_of_sets and subset_class as basis for algebra
 hoelzl parents: 
41983diff
changeset | 201 | qed | 
| 
2b98b4c2e2f1
add ring_of_sets and subset_class as basis for algebra
 hoelzl parents: 
41983diff
changeset | 202 | qed | 
| 
2b98b4c2e2f1
add ring_of_sets and subset_class as basis for algebra
 hoelzl parents: 
41983diff
changeset | 203 | |
| 42867 | 204 | lemma (in algebra) sets_Collect_neg: | 
| 47694 | 205 |   assumes "{x\<in>\<Omega>. P x} \<in> M"
 | 
| 206 |   shows "{x\<in>\<Omega>. \<not> P x} \<in> M"
 | |
| 42867 | 207 | proof - | 
| 47694 | 208 |   have "{x\<in>\<Omega>. \<not> P x} = \<Omega> - {x\<in>\<Omega>. P x}" by auto
 | 
| 42867 | 209 | with assms show ?thesis by auto | 
| 210 | qed | |
| 211 | ||
| 212 | lemma (in algebra) sets_Collect_imp: | |
| 47694 | 213 |   "{x\<in>\<Omega>. P x} \<in> M \<Longrightarrow> {x\<in>\<Omega>. Q x} \<in> M \<Longrightarrow> {x\<in>\<Omega>. Q x \<longrightarrow> P x} \<in> M"
 | 
| 42867 | 214 | unfolding imp_conv_disj by (intro sets_Collect_disj sets_Collect_neg) | 
| 215 | ||
| 216 | lemma (in algebra) sets_Collect_const: | |
| 47694 | 217 |   "{x\<in>\<Omega>. P} \<in> M"
 | 
| 42867 | 218 | by (cases P) auto | 
| 219 | ||
| 42984 | 220 | lemma algebra_single_set: | 
| 47762 | 221 |   "X \<subseteq> S \<Longrightarrow> algebra S { {}, X, S - X, S }"
 | 
| 222 | by (auto simp: algebra_iff_Int) | |
| 42984 | 223 | |
| 70136 | 224 | subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Restricted algebras\<close> | 
| 39092 | 225 | |
| 226 | abbreviation (in algebra) | |
| 67399 | 227 | "restricted_space A \<equiv> ((\<inter>) A) ` M" | 
| 39092 | 228 | |
| 38656 | 229 | lemma (in algebra) restricted_algebra: | 
| 47694 | 230 | assumes "A \<in> M" shows "algebra A (restricted_space A)" | 
| 47762 | 231 | using assms by (auto simp: algebra_iff_Int) | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 232 | |
| 61808 | 233 | subsubsection \<open>Sigma Algebras\<close> | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 234 | |
| 70136 | 235 | locale\<^marker>\<open>tag important\<close> sigma_algebra = algebra + | 
| 47694 | 236 | assumes countable_nat_UN [intro]: "\<And>A. range A \<subseteq> M \<Longrightarrow> (\<Union>i::nat. A i) \<in> M" | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 237 | |
| 42984 | 238 | lemma (in algebra) is_sigma_algebra: | 
| 47694 | 239 | assumes "finite M" | 
| 240 | shows "sigma_algebra \<Omega> M" | |
| 42984 | 241 | proof | 
| 47694 | 242 | fix A :: "nat \<Rightarrow> 'a set" assume "range A \<subseteq> M" | 
| 243 | then have "(\<Union>i. A i) = (\<Union>s\<in>M \<inter> range A. s)" | |
| 42984 | 244 | by auto | 
| 47694 | 245 | also have "(\<Union>s\<in>M \<inter> range A. s) \<in> M" | 
| 61808 | 246 | using \<open>finite M\<close> by auto | 
| 47694 | 247 | finally show "(\<Union>i. A i) \<in> M" . | 
| 42984 | 248 | qed | 
| 249 | ||
| 38656 | 250 | lemma countable_UN_eq: | 
| 251 | fixes A :: "'i::countable \<Rightarrow> 'a set" | |
| 47694 | 252 | shows "(range A \<subseteq> M \<longrightarrow> (\<Union>i. A i) \<in> M) \<longleftrightarrow> | 
| 253 | (range (A \<circ> from_nat) \<subseteq> M \<longrightarrow> (\<Union>i. (A \<circ> from_nat) i) \<in> M)" | |
| 38656 | 254 | proof - | 
| 255 | let ?A' = "A \<circ> from_nat" | |
| 256 | have *: "(\<Union>i. ?A' i) = (\<Union>i. A i)" (is "?l = ?r") | |
| 257 | proof safe | |
| 258 | fix x i assume "x \<in> A i" thus "x \<in> ?l" | |
| 259 | by (auto intro!: exI[of _ "to_nat i"]) | |
| 260 | next | |
| 261 | fix x i assume "x \<in> ?A' i" thus "x \<in> ?r" | |
| 262 | by (auto intro!: exI[of _ "from_nat i"]) | |
| 263 | qed | |
| 69661 | 264 | have "A ` range from_nat = range A" | 
| 265 | using surj_from_nat by simp | |
| 266 | then have **: "range ?A' = range A" | |
| 267 | by (simp only: image_comp [symmetric]) | |
| 38656 | 268 | show ?thesis unfolding * ** .. | 
| 269 | qed | |
| 270 | ||
| 50245 
dea9363887a6
based countable topological basis on Countable_Set
 immler parents: 
50244diff
changeset | 271 | lemma (in sigma_algebra) countable_Union [intro]: | 
| 61952 | 272 | assumes "countable X" "X \<subseteq> M" shows "\<Union>X \<in> M" | 
| 50245 
dea9363887a6
based countable topological basis on Countable_Set
 immler parents: 
50244diff
changeset | 273 | proof cases | 
| 
dea9363887a6
based countable topological basis on Countable_Set
 immler parents: 
50244diff
changeset | 274 |   assume "X \<noteq> {}"
 | 
| 
dea9363887a6
based countable topological basis on Countable_Set
 immler parents: 
50244diff
changeset | 275 | hence "\<Union>X = (\<Union>n. from_nat_into X n)" | 
| 69661 | 276 | using assms by (auto cong del: SUP_cong) | 
| 50245 
dea9363887a6
based countable topological basis on Countable_Set
 immler parents: 
50244diff
changeset | 277 | also have "\<dots> \<in> M" using assms | 
| 69712 | 278 |     by (auto intro!: countable_nat_UN) (metis \<open>X \<noteq> {}\<close> from_nat_into subsetD)
 | 
| 50245 
dea9363887a6
based countable topological basis on Countable_Set
 immler parents: 
50244diff
changeset | 279 | finally show ?thesis . | 
| 
dea9363887a6
based countable topological basis on Countable_Set
 immler parents: 
50244diff
changeset | 280 | qed simp | 
| 
dea9363887a6
based countable topological basis on Countable_Set
 immler parents: 
50244diff
changeset | 281 | |
| 38656 | 282 | lemma (in sigma_algebra) countable_UN[intro]: | 
| 283 | fixes A :: "'i::countable \<Rightarrow> 'a set" | |
| 47694 | 284 | assumes "A`X \<subseteq> M" | 
| 285 | shows "(\<Union>x\<in>X. A x) \<in> M" | |
| 38656 | 286 | proof - | 
| 46731 | 287 |   let ?A = "\<lambda>i. if i \<in> X then A i else {}"
 | 
| 47694 | 288 | from assms have "range ?A \<subseteq> M" by auto | 
| 38656 | 289 | with countable_nat_UN[of "?A \<circ> from_nat"] countable_UN_eq[of ?A M] | 
| 47694 | 290 | have "(\<Union>x. ?A x) \<in> M" by auto | 
| 62390 | 291 | moreover have "(\<Union>x. ?A x) = (\<Union>x\<in>X. A x)" by (auto split: if_split_asm) | 
| 38656 | 292 | ultimately show ?thesis by simp | 
| 293 | qed | |
| 294 | ||
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 295 | lemma (in sigma_algebra) countable_UN': | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 296 | fixes A :: "'i \<Rightarrow> 'a set" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 297 | assumes X: "countable X" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 298 | assumes A: "A`X \<subseteq> M" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 299 | shows "(\<Union>x\<in>X. A x) \<in> M" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 300 | proof - | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 301 | have "(\<Union>x\<in>X. A x) = (\<Union>i\<in>to_nat_on X ` X. A (from_nat_into X i))" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 302 | using X by auto | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 303 | also have "\<dots> \<in> M" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 304 | using A X | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 305 | by (intro countable_UN) auto | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 306 | finally show ?thesis . | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 307 | qed | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 308 | |
| 61633 | 309 | lemma (in sigma_algebra) countable_UN'': | 
| 310 | "\<lbrakk> countable X; \<And>x y. x \<in> X \<Longrightarrow> A x \<in> M \<rbrakk> \<Longrightarrow> (\<Union>x\<in>X. A x) \<in> M" | |
| 311 | by(erule countable_UN')(auto) | |
| 312 | ||
| 33533 
40b44cb20c8c
New theory Probability/Borel.thy, and some associated lemmas
 paulson parents: 
33271diff
changeset | 313 | lemma (in sigma_algebra) countable_INT [intro]: | 
| 38656 | 314 | fixes A :: "'i::countable \<Rightarrow> 'a set" | 
| 47694 | 315 |   assumes A: "A`X \<subseteq> M" "X \<noteq> {}"
 | 
| 316 | shows "(\<Inter>i\<in>X. A i) \<in> M" | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 317 | proof - | 
| 47694 | 318 | from A have "\<forall>i\<in>X. A i \<in> M" by fast | 
| 319 | hence "\<Omega> - (\<Union>i\<in>X. \<Omega> - A i) \<in> M" by blast | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 320 | moreover | 
| 47694 | 321 | have "(\<Inter>i\<in>X. A i) = \<Omega> - (\<Union>i\<in>X. \<Omega> - A i)" using space_closed A | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 322 | by blast | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 323 | ultimately show ?thesis by metis | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 324 | qed | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 325 | |
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 326 | lemma (in sigma_algebra) countable_INT': | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 327 | fixes A :: "'i \<Rightarrow> 'a set" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 328 |   assumes X: "countable X" "X \<noteq> {}"
 | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 329 | assumes A: "A`X \<subseteq> M" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 330 | shows "(\<Inter>x\<in>X. A x) \<in> M" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 331 | proof - | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 332 | have "(\<Inter>x\<in>X. A x) = (\<Inter>i\<in>to_nat_on X ` X. A (from_nat_into X i))" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 333 | using X by auto | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 334 | also have "\<dots> \<in> M" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 335 | using A X | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 336 | by (intro countable_INT) auto | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 337 | finally show ?thesis . | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 338 | qed | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 339 | |
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 340 | lemma (in sigma_algebra) countable_INT'': | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 341 | "UNIV \<in> M \<Longrightarrow> countable I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> F i \<in> M) \<Longrightarrow> (\<Inter>i\<in>I. F i) \<in> M" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 342 |   by (cases "I = {}") (auto intro: countable_INT')
 | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57138diff
changeset | 343 | |
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57138diff
changeset | 344 | lemma (in sigma_algebra) countable: | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57138diff
changeset | 345 |   assumes "\<And>a. a \<in> A \<Longrightarrow> {a} \<in> M" "countable A"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57138diff
changeset | 346 | shows "A \<in> M" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57138diff
changeset | 347 | proof - | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57138diff
changeset | 348 |   have "(\<Union>a\<in>A. {a}) \<in> M"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57138diff
changeset | 349 | using assms by (intro countable_UN') auto | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57138diff
changeset | 350 |   also have "(\<Union>a\<in>A. {a}) = A" by auto
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57138diff
changeset | 351 | finally show ?thesis by auto | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57138diff
changeset | 352 | qed | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57138diff
changeset | 353 | |
| 47694 | 354 | lemma ring_of_sets_Pow: "ring_of_sets sp (Pow sp)" | 
| 47762 | 355 | by (auto simp: ring_of_sets_iff) | 
| 42145 | 356 | |
| 47694 | 357 | lemma algebra_Pow: "algebra sp (Pow sp)" | 
| 47762 | 358 | by (auto simp: algebra_iff_Un) | 
| 38656 | 359 | |
| 360 | lemma sigma_algebra_iff: | |
| 47694 | 361 | "sigma_algebra \<Omega> M \<longleftrightarrow> | 
| 362 | algebra \<Omega> M \<and> (\<forall>A. range A \<subseteq> M \<longrightarrow> (\<Union>i::nat. A i) \<in> M)" | |
| 38656 | 363 | by (simp add: sigma_algebra_def sigma_algebra_axioms_def) | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 364 | |
| 47762 | 365 | lemma sigma_algebra_Pow: "sigma_algebra sp (Pow sp)" | 
| 366 | by (auto simp: sigma_algebra_iff algebra_iff_Int) | |
| 367 | ||
| 42867 | 368 | lemma (in sigma_algebra) sets_Collect_countable_All: | 
| 47694 | 369 |   assumes "\<And>i. {x\<in>\<Omega>. P i x} \<in> M"
 | 
| 370 |   shows "{x\<in>\<Omega>. \<forall>i::'i::countable. P i x} \<in> M"
 | |
| 42867 | 371 | proof - | 
| 47694 | 372 |   have "{x\<in>\<Omega>. \<forall>i::'i::countable. P i x} = (\<Inter>i. {x\<in>\<Omega>. P i x})" by auto
 | 
| 42867 | 373 | with assms show ?thesis by auto | 
| 374 | qed | |
| 375 | ||
| 376 | lemma (in sigma_algebra) sets_Collect_countable_Ex: | |
| 47694 | 377 |   assumes "\<And>i. {x\<in>\<Omega>. P i x} \<in> M"
 | 
| 378 |   shows "{x\<in>\<Omega>. \<exists>i::'i::countable. P i x} \<in> M"
 | |
| 42867 | 379 | proof - | 
| 47694 | 380 |   have "{x\<in>\<Omega>. \<exists>i::'i::countable. P i x} = (\<Union>i. {x\<in>\<Omega>. P i x})" by auto
 | 
| 42867 | 381 | with assms show ?thesis by auto | 
| 382 | qed | |
| 383 | ||
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 384 | lemma (in sigma_algebra) sets_Collect_countable_Ex': | 
| 54418 | 385 |   assumes "\<And>i. i \<in> I \<Longrightarrow> {x\<in>\<Omega>. P i x} \<in> M"
 | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 386 | assumes "countable I" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 387 |   shows "{x\<in>\<Omega>. \<exists>i\<in>I. P i x} \<in> M"
 | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 388 | proof - | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 389 |   have "{x\<in>\<Omega>. \<exists>i\<in>I. P i x} = (\<Union>i\<in>I. {x\<in>\<Omega>. P i x})" by auto
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 390 | with assms show ?thesis | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 391 | by (auto intro!: countable_UN') | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 392 | qed | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50387diff
changeset | 393 | |
| 54418 | 394 | lemma (in sigma_algebra) sets_Collect_countable_All': | 
| 395 |   assumes "\<And>i. i \<in> I \<Longrightarrow> {x\<in>\<Omega>. P i x} \<in> M"
 | |
| 396 | assumes "countable I" | |
| 397 |   shows "{x\<in>\<Omega>. \<forall>i\<in>I. P i x} \<in> M"
 | |
| 398 | proof - | |
| 399 |   have "{x\<in>\<Omega>. \<forall>i\<in>I. P i x} = (\<Inter>i\<in>I. {x\<in>\<Omega>. P i x}) \<inter> \<Omega>" by auto
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 400 | with assms show ?thesis | 
| 54418 | 401 |     by (cases "I = {}") (auto intro!: countable_INT')
 | 
| 402 | qed | |
| 403 | ||
| 404 | lemma (in sigma_algebra) sets_Collect_countable_Ex1': | |
| 405 |   assumes "\<And>i. i \<in> I \<Longrightarrow> {x\<in>\<Omega>. P i x} \<in> M"
 | |
| 406 | assumes "countable I" | |
| 407 |   shows "{x\<in>\<Omega>. \<exists>!i\<in>I. P i x} \<in> M"
 | |
| 408 | proof - | |
| 409 |   have "{x\<in>\<Omega>. \<exists>!i\<in>I. P i x} = {x\<in>\<Omega>. \<exists>i\<in>I. P i x \<and> (\<forall>j\<in>I. P j x \<longrightarrow> i = j)}"
 | |
| 410 | by auto | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 411 | with assms show ?thesis | 
| 54418 | 412 | by (auto intro!: sets_Collect_countable_All' sets_Collect_countable_Ex' sets_Collect_conj sets_Collect_imp sets_Collect_const) | 
| 413 | qed | |
| 414 | ||
| 42867 | 415 | lemmas (in sigma_algebra) sets_Collect = | 
| 416 | sets_Collect_imp sets_Collect_disj sets_Collect_conj sets_Collect_neg sets_Collect_const | |
| 417 | sets_Collect_countable_All sets_Collect_countable_Ex sets_Collect_countable_All | |
| 418 | ||
| 47694 | 419 | lemma (in sigma_algebra) sets_Collect_countable_Ball: | 
| 420 |   assumes "\<And>i. {x\<in>\<Omega>. P i x} \<in> M"
 | |
| 421 |   shows "{x\<in>\<Omega>. \<forall>i::'i::countable\<in>X. P i x} \<in> M"
 | |
| 422 | unfolding Ball_def by (intro sets_Collect assms) | |
| 423 | ||
| 424 | lemma (in sigma_algebra) sets_Collect_countable_Bex: | |
| 425 |   assumes "\<And>i. {x\<in>\<Omega>. P i x} \<in> M"
 | |
| 426 |   shows "{x\<in>\<Omega>. \<exists>i::'i::countable\<in>X. P i x} \<in> M"
 | |
| 427 | unfolding Bex_def by (intro sets_Collect assms) | |
| 428 | ||
| 42984 | 429 | lemma sigma_algebra_single_set: | 
| 430 | assumes "X \<subseteq> S" | |
| 47694 | 431 |   shows "sigma_algebra S { {}, X, S - X, S }"
 | 
| 61808 | 432 | using algebra.is_sigma_algebra[OF algebra_single_set[OF \<open>X \<subseteq> S\<close>]] by simp | 
| 42984 | 433 | |
| 70136 | 434 | subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Binary Unions\<close> | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 435 | |
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 436 | definition binary :: "'a \<Rightarrow> 'a \<Rightarrow> nat \<Rightarrow> 'a" | 
| 50252 | 437 | where "binary a b = (\<lambda>x. b)(0 := a)" | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 438 | |
| 38656 | 439 | lemma range_binary_eq: "range(binary a b) = {a,b}"
 | 
| 440 | by (auto simp add: binary_def) | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 441 | |
| 38656 | 442 | lemma Un_range_binary: "a \<union> b = (\<Union>i::nat. binary a b i)" | 
| 69546 
27dae626822b
prefer naming convention from datatype package for strong congruence rules
 haftmann parents: 
69313diff
changeset | 443 | by (simp add: range_binary_eq cong del: SUP_cong_simp) | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 444 | |
| 38656 | 445 | lemma Int_range_binary: "a \<inter> b = (\<Inter>i::nat. binary a b i)" | 
| 69546 
27dae626822b
prefer naming convention from datatype package for strong congruence rules
 haftmann parents: 
69313diff
changeset | 446 | by (simp add: range_binary_eq cong del: INF_cong_simp) | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 447 | |
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 448 | lemma sigma_algebra_iff2: | 
| 69768 | 449 | "sigma_algebra \<Omega> M \<longleftrightarrow> | 
| 450 |     M \<subseteq> Pow \<Omega> \<and> {} \<in> M \<and> (\<forall>s \<in> M. \<Omega> - s \<in> M)
 | |
| 451 | \<and> (\<forall>A. range A \<subseteq> M \<longrightarrow>(\<Union> i::nat. A i) \<in> M)" (is "?P \<longleftrightarrow> ?R \<and> ?S \<and> ?V \<and> ?W") | |
| 452 | proof | |
| 453 | assume ?P | |
| 454 | then interpret sigma_algebra \<Omega> M . | |
| 455 | from space_closed show "?R \<and> ?S \<and> ?V \<and> ?W" | |
| 456 | by auto | |
| 457 | next | |
| 458 | assume "?R \<and> ?S \<and> ?V \<and> ?W" | |
| 459 | then have ?R ?S ?V ?W | |
| 460 | by simp_all | |
| 461 | show ?P | |
| 462 | proof (rule sigma_algebra.intro) | |
| 463 | show "sigma_algebra_axioms M" | |
| 464 | by standard (use \<open>?W\<close> in simp) | |
| 465 | from \<open>?W\<close> have *: "range (binary a b) \<subseteq> M \<Longrightarrow> \<Union> (range (binary a b)) \<in> M" for a b | |
| 466 | by auto | |
| 467 | show "algebra \<Omega> M" | |
| 468 | unfolding algebra_iff_Un using \<open>?R\<close> \<open>?S\<close> \<open>?V\<close> * | |
| 469 | by (auto simp add: range_binary_eq) | |
| 470 | qed | |
| 471 | qed | |
| 472 | ||
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 473 | |
| 61808 | 474 | subsubsection \<open>Initial Sigma Algebra\<close> | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 475 | |
| 70136 | 476 | text\<^marker>\<open>tag important\<close> \<open>Sigma algebras can naturally be created as the closure of any set of | 
| 61808 | 477 | M with regard to the properties just postulated.\<close> | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 478 | |
| 70136 | 479 | inductive_set\<^marker>\<open>tag important\<close> sigma_sets :: "'a set \<Rightarrow> 'a set set \<Rightarrow> 'a set set" | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 480 | for sp :: "'a set" and A :: "'a set set" | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 481 | where | 
| 47694 | 482 | Basic[intro, simp]: "a \<in> A \<Longrightarrow> a \<in> sigma_sets sp A" | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 483 |   | Empty: "{} \<in> sigma_sets sp A"
 | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 484 | | Compl: "a \<in> sigma_sets sp A \<Longrightarrow> sp - a \<in> sigma_sets sp A" | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 485 | | Union: "(\<And>i::nat. a i \<in> sigma_sets sp A) \<Longrightarrow> (\<Union>i. a i) \<in> sigma_sets sp A" | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 486 | |
| 41543 | 487 | lemma (in sigma_algebra) sigma_sets_subset: | 
| 47694 | 488 | assumes a: "a \<subseteq> M" | 
| 489 | shows "sigma_sets \<Omega> a \<subseteq> M" | |
| 41543 | 490 | proof | 
| 491 | fix x | |
| 47694 | 492 | assume "x \<in> sigma_sets \<Omega> a" | 
| 493 | from this show "x \<in> M" | |
| 41543 | 494 | by (induct rule: sigma_sets.induct, auto) (metis a subsetD) | 
| 495 | qed | |
| 496 | ||
| 497 | lemma sigma_sets_into_sp: "A \<subseteq> Pow sp \<Longrightarrow> x \<in> sigma_sets sp A \<Longrightarrow> x \<subseteq> sp" | |
| 498 | by (erule sigma_sets.induct, auto) | |
| 499 | ||
| 500 | lemma sigma_algebra_sigma_sets: | |
| 47694 | 501 | "a \<subseteq> Pow \<Omega> \<Longrightarrow> sigma_algebra \<Omega> (sigma_sets \<Omega> a)" | 
| 41543 | 502 | by (auto simp add: sigma_algebra_iff2 dest: sigma_sets_into_sp | 
| 503 | intro!: sigma_sets.Union sigma_sets.Empty sigma_sets.Compl) | |
| 504 | ||
| 505 | lemma sigma_sets_least_sigma_algebra: | |
| 506 | assumes "A \<subseteq> Pow S" | |
| 47694 | 507 |   shows "sigma_sets S A = \<Inter>{B. A \<subseteq> B \<and> sigma_algebra S B}"
 | 
| 41543 | 508 | proof safe | 
| 47694 | 509 | fix B X assume "A \<subseteq> B" and sa: "sigma_algebra S B" | 
| 41543 | 510 | and X: "X \<in> sigma_sets S A" | 
| 61808 | 511 | from sigma_algebra.sigma_sets_subset[OF sa, simplified, OF \<open>A \<subseteq> B\<close>] X | 
| 41543 | 512 | show "X \<in> B" by auto | 
| 513 | next | |
| 47694 | 514 |   fix X assume "X \<in> \<Inter>{B. A \<subseteq> B \<and> sigma_algebra S B}"
 | 
| 515 | then have [intro!]: "\<And>B. A \<subseteq> B \<Longrightarrow> sigma_algebra S B \<Longrightarrow> X \<in> B" | |
| 41543 | 516 | by simp | 
| 47694 | 517 | have "A \<subseteq> sigma_sets S A" using assms by auto | 
| 518 | moreover have "sigma_algebra S (sigma_sets S A)" | |
| 41543 | 519 | using assms by (intro sigma_algebra_sigma_sets[of A]) auto | 
| 520 | ultimately show "X \<in> sigma_sets S A" by auto | |
| 521 | qed | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 522 | |
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 523 | lemma sigma_sets_top: "sp \<in> sigma_sets sp A" | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 524 | by (metis Diff_empty sigma_sets.Compl sigma_sets.Empty) | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 525 | |
| 69661 | 526 | lemma binary_in_sigma_sets: | 
| 527 | "binary a b i \<in> sigma_sets sp A" if "a \<in> sigma_sets sp A" and "b \<in> sigma_sets sp A" | |
| 528 | using that by (simp add: binary_def) | |
| 529 | ||
| 38656 | 530 | lemma sigma_sets_Un: | 
| 69661 | 531 | "a \<union> b \<in> sigma_sets sp A" if "a \<in> sigma_sets sp A" and "b \<in> sigma_sets sp A" | 
| 532 | using that by (simp add: Un_range_binary binary_in_sigma_sets Union) | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 533 | |
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 534 | lemma sigma_sets_Inter: | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 535 | assumes Asb: "A \<subseteq> Pow sp" | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 536 | shows "(\<And>i::nat. a i \<in> sigma_sets sp A) \<Longrightarrow> (\<Inter>i. a i) \<in> sigma_sets sp A" | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 537 | proof - | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 538 | assume ai: "\<And>i::nat. a i \<in> sigma_sets sp A" | 
| 38656 | 539 | hence "\<And>i::nat. sp-(a i) \<in> sigma_sets sp A" | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 540 | by (rule sigma_sets.Compl) | 
| 38656 | 541 | hence "(\<Union>i. sp-(a i)) \<in> sigma_sets sp A" | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 542 | by (rule sigma_sets.Union) | 
| 38656 | 543 | hence "sp-(\<Union>i. sp-(a i)) \<in> sigma_sets sp A" | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 544 | by (rule sigma_sets.Compl) | 
| 38656 | 545 | also have "sp-(\<Union>i. sp-(a i)) = sp Int (\<Inter>i. a i)" | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 546 | by auto | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 547 | also have "... = (\<Inter>i. a i)" using ai | 
| 38656 | 548 | by (blast dest: sigma_sets_into_sp [OF Asb]) | 
| 549 | finally show ?thesis . | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 550 | qed | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 551 | |
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 552 | lemma sigma_sets_INTER: | 
| 38656 | 553 | assumes Asb: "A \<subseteq> Pow sp" | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 554 |       and ai: "\<And>i::nat. i \<in> S \<Longrightarrow> a i \<in> sigma_sets sp A" and non: "S \<noteq> {}"
 | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 555 | shows "(\<Inter>i\<in>S. a i) \<in> sigma_sets sp A" | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 556 | proof - | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 557 | from ai have "\<And>i. (if i\<in>S then a i else sp) \<in> sigma_sets sp A" | 
| 47694 | 558 | by (simp add: sigma_sets.intros(2-) sigma_sets_top) | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 559 | hence "(\<Inter>i. (if i\<in>S then a i else sp)) \<in> sigma_sets sp A" | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 560 | by (rule sigma_sets_Inter [OF Asb]) | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 561 | also have "(\<Inter>i. (if i\<in>S then a i else sp)) = (\<Inter>i\<in>S. a i)" | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 562 | by auto (metis ai non sigma_sets_into_sp subset_empty subset_iff Asb)+ | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 563 | finally show ?thesis . | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 564 | qed | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 565 | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62083diff
changeset | 566 | lemma sigma_sets_UNION: | 
| 69661 | 567 | "countable B \<Longrightarrow> (\<And>b. b \<in> B \<Longrightarrow> b \<in> sigma_sets X A) \<Longrightarrow> \<Union> B \<in> sigma_sets X A" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62083diff
changeset | 568 | using from_nat_into [of B] range_from_nat_into [of B] sigma_sets.Union [of "from_nat_into B" X A] | 
| 69661 | 569 |   by (cases "B = {}") (simp_all add: sigma_sets.Empty cong del: SUP_cong)
 | 
| 51683 
baefa3b461c2
generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
 hoelzl parents: 
50526diff
changeset | 570 | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 571 | lemma (in sigma_algebra) sigma_sets_eq: | 
| 47694 | 572 | "sigma_sets \<Omega> M = M" | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 573 | proof | 
| 47694 | 574 | show "M \<subseteq> sigma_sets \<Omega> M" | 
| 37032 | 575 | by (metis Set.subsetI sigma_sets.Basic) | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 576 | next | 
| 47694 | 577 | show "sigma_sets \<Omega> M \<subseteq> M" | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 578 | by (metis sigma_sets_subset subset_refl) | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 579 | qed | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 580 | |
| 42981 | 581 | lemma sigma_sets_eqI: | 
| 582 | assumes A: "\<And>a. a \<in> A \<Longrightarrow> a \<in> sigma_sets M B" | |
| 583 | assumes B: "\<And>b. b \<in> B \<Longrightarrow> b \<in> sigma_sets M A" | |
| 584 | shows "sigma_sets M A = sigma_sets M B" | |
| 585 | proof (intro set_eqI iffI) | |
| 586 | fix a assume "a \<in> sigma_sets M A" | |
| 587 | from this A show "a \<in> sigma_sets M B" | |
| 47694 | 588 | by induct (auto intro!: sigma_sets.intros(2-) del: sigma_sets.Basic) | 
| 42981 | 589 | next | 
| 590 | fix b assume "b \<in> sigma_sets M B" | |
| 591 | from this B show "b \<in> sigma_sets M A" | |
| 47694 | 592 | by induct (auto intro!: sigma_sets.intros(2-) del: sigma_sets.Basic) | 
| 42981 | 593 | qed | 
| 594 | ||
| 42984 | 595 | lemma sigma_sets_subseteq: assumes "A \<subseteq> B" shows "sigma_sets X A \<subseteq> sigma_sets X B" | 
| 596 | proof | |
| 597 | fix x assume "x \<in> sigma_sets X A" then show "x \<in> sigma_sets X B" | |
| 61808 | 598 | by induct (insert \<open>A \<subseteq> B\<close>, auto intro: sigma_sets.intros(2-)) | 
| 42984 | 599 | qed | 
| 600 | ||
| 47762 | 601 | lemma sigma_sets_mono: assumes "A \<subseteq> sigma_sets X B" shows "sigma_sets X A \<subseteq> sigma_sets X B" | 
| 602 | proof | |
| 603 | fix x assume "x \<in> sigma_sets X A" then show "x \<in> sigma_sets X B" | |
| 61808 | 604 | by induct (insert \<open>A \<subseteq> sigma_sets X B\<close>, auto intro: sigma_sets.intros(2-)) | 
| 47762 | 605 | qed | 
| 606 | ||
| 607 | lemma sigma_sets_mono': assumes "A \<subseteq> B" shows "sigma_sets X A \<subseteq> sigma_sets X B" | |
| 608 | proof | |
| 609 | fix x assume "x \<in> sigma_sets X A" then show "x \<in> sigma_sets X B" | |
| 61808 | 610 | by induct (insert \<open>A \<subseteq> B\<close>, auto intro: sigma_sets.intros(2-)) | 
| 47762 | 611 | qed | 
| 612 | ||
| 613 | lemma sigma_sets_superset_generator: "A \<subseteq> sigma_sets X A" | |
| 614 | by (auto intro: sigma_sets.Basic) | |
| 615 | ||
| 38656 | 616 | lemma (in sigma_algebra) restriction_in_sets: | 
| 617 | fixes A :: "nat \<Rightarrow> 'a set" | |
| 47694 | 618 | assumes "S \<in> M" | 
| 619 | and *: "range A \<subseteq> (\<lambda>A. S \<inter> A) ` M" (is "_ \<subseteq> ?r") | |
| 620 | shows "range A \<subseteq> M" "(\<Union>i. A i) \<in> (\<lambda>A. S \<inter> A) ` M" | |
| 38656 | 621 | proof - | 
| 622 |   { fix i have "A i \<in> ?r" using * by auto
 | |
| 47694 | 623 | hence "\<exists>B. A i = B \<inter> S \<and> B \<in> M" by auto | 
| 61808 | 624 | hence "A i \<subseteq> S" "A i \<in> M" using \<open>S \<in> M\<close> by auto } | 
| 47694 | 625 | thus "range A \<subseteq> M" "(\<Union>i. A i) \<in> (\<lambda>A. S \<inter> A) ` M" | 
| 38656 | 626 | by (auto intro!: image_eqI[of _ _ "(\<Union>i. A i)"]) | 
| 627 | qed | |
| 628 | ||
| 629 | lemma (in sigma_algebra) restricted_sigma_algebra: | |
| 47694 | 630 | assumes "S \<in> M" | 
| 631 | shows "sigma_algebra S (restricted_space S)" | |
| 38656 | 632 | unfolding sigma_algebra_def sigma_algebra_axioms_def | 
| 633 | proof safe | |
| 47694 | 634 | show "algebra S (restricted_space S)" using restricted_algebra[OF assms] . | 
| 38656 | 635 | next | 
| 47694 | 636 | fix A :: "nat \<Rightarrow> 'a set" assume "range A \<subseteq> restricted_space S" | 
| 38656 | 637 | from restriction_in_sets[OF assms this[simplified]] | 
| 47694 | 638 | show "(\<Union>i. A i) \<in> restricted_space S" by simp | 
| 38656 | 639 | qed | 
| 640 | ||
| 40859 | 641 | lemma sigma_sets_Int: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41543diff
changeset | 642 | assumes "A \<in> sigma_sets sp st" "A \<subseteq> sp" | 
| 67399 | 643 | shows "(\<inter>) A ` sigma_sets sp st = sigma_sets A ((\<inter>) A ` st)" | 
| 40859 | 644 | proof (intro equalityI subsetI) | 
| 67399 | 645 | fix x assume "x \<in> (\<inter>) A ` sigma_sets sp st" | 
| 40859 | 646 | then obtain y where "y \<in> sigma_sets sp st" "x = y \<inter> A" by auto | 
| 67399 | 647 | then have "x \<in> sigma_sets (A \<inter> sp) ((\<inter>) A ` st)" | 
| 40859 | 648 | proof (induct arbitrary: x) | 
| 649 | case (Compl a) | |
| 650 | then show ?case | |
| 651 | by (force intro!: sigma_sets.Compl simp: Diff_Int_distrib ac_simps) | |
| 652 | next | |
| 653 | case (Union a) | |
| 654 | then show ?case | |
| 655 | by (auto intro!: sigma_sets.Union | |
| 656 | simp add: UN_extend_simps simp del: UN_simps) | |
| 47694 | 657 | qed (auto intro!: sigma_sets.intros(2-)) | 
| 67399 | 658 | then show "x \<in> sigma_sets A ((\<inter>) A ` st)" | 
| 61808 | 659 | using \<open>A \<subseteq> sp\<close> by (simp add: Int_absorb2) | 
| 40859 | 660 | next | 
| 67399 | 661 | fix x assume "x \<in> sigma_sets A ((\<inter>) A ` st)" | 
| 662 | then show "x \<in> (\<inter>) A ` sigma_sets sp st" | |
| 40859 | 663 | proof induct | 
| 664 | case (Compl a) | |
| 665 | then obtain x where "a = A \<inter> x" "x \<in> sigma_sets sp st" by auto | |
| 61808 | 666 | then show ?case using \<open>A \<subseteq> sp\<close> | 
| 40859 | 667 | by (force simp add: image_iff intro!: bexI[of _ "sp - x"] sigma_sets.Compl) | 
| 668 | next | |
| 669 | case (Union a) | |
| 670 | then have "\<forall>i. \<exists>x. x \<in> sigma_sets sp st \<and> a i = A \<inter> x" | |
| 671 | by (auto simp: image_iff Bex_def) | |
| 74362 | 672 | then obtain f where "\<forall>x. f x \<in> sigma_sets sp st \<and> a x = A \<inter> f x" | 
| 673 | by metis | |
| 40859 | 674 | then show ?case | 
| 675 | by (auto intro!: bexI[of _ "(\<Union>x. f x)"] sigma_sets.Union | |
| 676 | simp add: image_iff) | |
| 47694 | 677 | qed (auto intro!: sigma_sets.intros(2-)) | 
| 40859 | 678 | qed | 
| 679 | ||
| 47694 | 680 | lemma sigma_sets_empty_eq: "sigma_sets A {} = {{}, A}"
 | 
| 40859 | 681 | proof (intro set_eqI iffI) | 
| 47694 | 682 |   fix a assume "a \<in> sigma_sets A {}" then show "a \<in> {{}, A}"
 | 
| 683 | by induct blast+ | |
| 684 | qed (auto intro: sigma_sets.Empty sigma_sets_top) | |
| 685 | ||
| 686 | lemma sigma_sets_single[simp]: "sigma_sets A {A} = {{}, A}"
 | |
| 687 | proof (intro set_eqI iffI) | |
| 688 |   fix x assume "x \<in> sigma_sets A {A}"
 | |
| 689 |   then show "x \<in> {{}, A}"
 | |
| 690 | by induct blast+ | |
| 40859 | 691 | next | 
| 47694 | 692 |   fix x assume "x \<in> {{}, A}"
 | 
| 693 |   then show "x \<in> sigma_sets A {A}"
 | |
| 40859 | 694 | by (auto intro: sigma_sets.Empty sigma_sets_top) | 
| 695 | qed | |
| 696 | ||
| 42987 | 697 | lemma sigma_sets_sigma_sets_eq: | 
| 698 | "M \<subseteq> Pow S \<Longrightarrow> sigma_sets S (sigma_sets S M) = sigma_sets S M" | |
| 47694 | 699 | by (rule sigma_algebra.sigma_sets_eq[OF sigma_algebra_sigma_sets, of M S]) auto | 
| 42987 | 700 | |
| 42984 | 701 | lemma sigma_sets_singleton: | 
| 702 | assumes "X \<subseteq> S" | |
| 703 |   shows "sigma_sets S { X } = { {}, X, S - X, S }"
 | |
| 704 | proof - | |
| 47694 | 705 |   interpret sigma_algebra S "{ {}, X, S - X, S }"
 | 
| 42984 | 706 | by (rule sigma_algebra_single_set) fact | 
| 707 |   have "sigma_sets S { X } \<subseteq> sigma_sets S { {}, X, S - X, S }"
 | |
| 708 | by (rule sigma_sets_subseteq) simp | |
| 709 |   moreover have "\<dots> = { {}, X, S - X, S }"
 | |
| 47694 | 710 | using sigma_sets_eq by simp | 
| 42984 | 711 | moreover | 
| 712 |   { fix A assume "A \<in> { {}, X, S - X, S }"
 | |
| 713 |     then have "A \<in> sigma_sets S { X }"
 | |
| 47694 | 714 | by (auto intro: sigma_sets.intros(2-) sigma_sets_top) } | 
| 42984 | 715 |   ultimately have "sigma_sets S { X } = sigma_sets S { {}, X, S - X, S }"
 | 
| 716 | by (intro antisym) auto | |
| 47694 | 717 | with sigma_sets_eq show ?thesis by simp | 
| 42984 | 718 | qed | 
| 719 | ||
| 42863 | 720 | lemma restricted_sigma: | 
| 47694 | 721 | assumes S: "S \<in> sigma_sets \<Omega> M" and M: "M \<subseteq> Pow \<Omega>" | 
| 722 | shows "algebra.restricted_space (sigma_sets \<Omega> M) S = | |
| 723 | sigma_sets S (algebra.restricted_space M S)" | |
| 42863 | 724 | proof - | 
| 725 | from S sigma_sets_into_sp[OF M] | |
| 47694 | 726 | have "S \<in> sigma_sets \<Omega> M" "S \<subseteq> \<Omega>" by auto | 
| 42863 | 727 | from sigma_sets_Int[OF this] | 
| 47694 | 728 | show ?thesis by simp | 
| 42863 | 729 | qed | 
| 730 | ||
| 42987 | 731 | lemma sigma_sets_vimage_commute: | 
| 47694 | 732 | assumes X: "X \<in> \<Omega> \<rightarrow> \<Omega>'" | 
| 733 |   shows "{X -` A \<inter> \<Omega> |A. A \<in> sigma_sets \<Omega>' M'}
 | |
| 734 |        = sigma_sets \<Omega> {X -` A \<inter> \<Omega> |A. A \<in> M'}" (is "?L = ?R")
 | |
| 42987 | 735 | proof | 
| 736 | show "?L \<subseteq> ?R" | |
| 737 | proof clarify | |
| 47694 | 738 | fix A assume "A \<in> sigma_sets \<Omega>' M'" | 
| 739 | then show "X -` A \<inter> \<Omega> \<in> ?R" | |
| 42987 | 740 | proof induct | 
| 741 | case Empty then show ?case | |
| 742 | by (auto intro!: sigma_sets.Empty) | |
| 743 | next | |
| 744 | case (Compl B) | |
| 47694 | 745 | have [simp]: "X -` (\<Omega>' - B) \<inter> \<Omega> = \<Omega> - (X -` B \<inter> \<Omega>)" | 
| 42987 | 746 | by (auto simp add: funcset_mem [OF X]) | 
| 747 | with Compl show ?case | |
| 748 | by (auto intro!: sigma_sets.Compl) | |
| 749 | next | |
| 750 | case (Union F) | |
| 751 | then show ?case | |
| 752 | by (auto simp add: vimage_UN UN_extend_simps(4) simp del: UN_simps | |
| 753 | intro!: sigma_sets.Union) | |
| 47694 | 754 | qed auto | 
| 42987 | 755 | qed | 
| 756 | show "?R \<subseteq> ?L" | |
| 757 | proof clarify | |
| 758 | fix A assume "A \<in> ?R" | |
| 47694 | 759 | then show "\<exists>B. A = X -` B \<inter> \<Omega> \<and> B \<in> sigma_sets \<Omega>' M'" | 
| 42987 | 760 | proof induct | 
| 761 | case (Basic B) then show ?case by auto | |
| 762 | next | |
| 763 | case Empty then show ?case | |
| 47694 | 764 |         by (auto intro!: sigma_sets.Empty exI[of _ "{}"])
 | 
| 42987 | 765 | next | 
| 766 | case (Compl B) | |
| 47694 | 767 | then obtain A where A: "B = X -` A \<inter> \<Omega>" "A \<in> sigma_sets \<Omega>' M'" by auto | 
| 768 | then have [simp]: "\<Omega> - B = X -` (\<Omega>' - A) \<inter> \<Omega>" | |
| 42987 | 769 | by (auto simp add: funcset_mem [OF X]) | 
| 770 | with A(2) show ?case | |
| 47694 | 771 | by (auto intro: sigma_sets.Compl) | 
| 42987 | 772 | next | 
| 773 | case (Union F) | |
| 47694 | 774 | then have "\<forall>i. \<exists>B. F i = X -` B \<inter> \<Omega> \<and> B \<in> sigma_sets \<Omega>' M'" by auto | 
| 74362 | 775 | then obtain A where "\<forall>x. F x = X -` A x \<inter> \<Omega> \<and> A x \<in> sigma_sets \<Omega>' M'" | 
| 776 | by metis | |
| 777 | then show ?case | |
| 47694 | 778 | by (auto simp: vimage_UN[symmetric] intro: sigma_sets.Union) | 
| 42987 | 779 | qed | 
| 780 | qed | |
| 781 | qed | |
| 782 | ||
| 42065 
2b98b4c2e2f1
add ring_of_sets and subset_class as basis for algebra
 hoelzl parents: 
41983diff
changeset | 783 | lemma (in ring_of_sets) UNION_in_sets: | 
| 38656 | 784 | fixes A:: "nat \<Rightarrow> 'a set" | 
| 47694 | 785 | assumes A: "range A \<subseteq> M" | 
| 786 |   shows  "(\<Union>i\<in>{0..<n}. A i) \<in> M"
 | |
| 38656 | 787 | proof (induct n) | 
| 788 | case 0 show ?case by simp | |
| 789 | next | |
| 790 | case (Suc n) | |
| 791 | thus ?case | |
| 792 | by (simp add: atLeastLessThanSuc) (metis A Un UNIV_I image_subset_iff) | |
| 793 | qed | |
| 794 | ||
| 42065 
2b98b4c2e2f1
add ring_of_sets and subset_class as basis for algebra
 hoelzl parents: 
41983diff
changeset | 795 | lemma (in ring_of_sets) range_disjointed_sets: | 
| 47694 | 796 | assumes A: "range A \<subseteq> M" | 
| 797 | shows "range (disjointed A) \<subseteq> M" | |
| 38656 | 798 | proof (auto simp add: disjointed_def) | 
| 799 | fix n | |
| 47694 | 800 |   show "A n - (\<Union>i\<in>{0..<n}. A i) \<in> M" using UNION_in_sets
 | 
| 38656 | 801 | by (metis A Diff UNIV_I image_subset_iff) | 
| 802 | qed | |
| 803 | ||
| 42065 
2b98b4c2e2f1
add ring_of_sets and subset_class as basis for algebra
 hoelzl parents: 
41983diff
changeset | 804 | lemma (in algebra) range_disjointed_sets': | 
| 47694 | 805 | "range A \<subseteq> M \<Longrightarrow> range (disjointed A) \<subseteq> M" | 
| 42065 
2b98b4c2e2f1
add ring_of_sets and subset_class as basis for algebra
 hoelzl parents: 
41983diff
changeset | 806 | using range_disjointed_sets . | 
| 
2b98b4c2e2f1
add ring_of_sets and subset_class as basis for algebra
 hoelzl parents: 
41983diff
changeset | 807 | |
| 38656 | 808 | lemma sigma_algebra_disjoint_iff: | 
| 47694 | 809 | "sigma_algebra \<Omega> M \<longleftrightarrow> algebra \<Omega> M \<and> | 
| 810 | (\<forall>A. range A \<subseteq> M \<longrightarrow> disjoint_family A \<longrightarrow> (\<Union>i::nat. A i) \<in> M)" | |
| 38656 | 811 | proof (auto simp add: sigma_algebra_iff) | 
| 812 | fix A :: "nat \<Rightarrow> 'a set" | |
| 47694 | 813 | assume M: "algebra \<Omega> M" | 
| 814 | and A: "range A \<subseteq> M" | |
| 815 | and UnA: "\<forall>A. range A \<subseteq> M \<longrightarrow> disjoint_family A \<longrightarrow> (\<Union>i::nat. A i) \<in> M" | |
| 816 | hence "range (disjointed A) \<subseteq> M \<longrightarrow> | |
| 38656 | 817 | disjoint_family (disjointed A) \<longrightarrow> | 
| 47694 | 818 | (\<Union>i. disjointed A i) \<in> M" by blast | 
| 819 | hence "(\<Union>i. disjointed A i) \<in> M" | |
| 820 | by (simp add: algebra.range_disjointed_sets'[of \<Omega>] M A disjoint_family_disjointed) | |
| 821 | thus "(\<Union>i::nat. A i) \<in> M" by (simp add: UN_disjointed_eq) | |
| 822 | qed | |
| 823 | ||
| 70136 | 824 | subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Ring generated by a semiring\<close> | 
| 47762 | 825 | |
| 69554 | 826 | definition (in semiring_of_sets) generated_ring :: "'a set set" where | 
| 47762 | 827 |   "generated_ring = { \<Union>C | C. C \<subseteq> M \<and> finite C \<and> disjoint C }"
 | 
| 828 | ||
| 829 | lemma (in semiring_of_sets) generated_ringE[elim?]: | |
| 830 | assumes "a \<in> generated_ring" | |
| 831 | obtains C where "finite C" "disjoint C" "C \<subseteq> M" "a = \<Union>C" | |
| 832 | using assms unfolding generated_ring_def by auto | |
| 833 | ||
| 834 | lemma (in semiring_of_sets) generated_ringI[intro?]: | |
| 835 | assumes "finite C" "disjoint C" "C \<subseteq> M" "a = \<Union>C" | |
| 836 | shows "a \<in> generated_ring" | |
| 837 | using assms unfolding generated_ring_def by auto | |
| 838 | ||
| 839 | lemma (in semiring_of_sets) generated_ringI_Basic: | |
| 840 | "A \<in> M \<Longrightarrow> A \<in> generated_ring" | |
| 841 |   by (rule generated_ringI[of "{A}"]) (auto simp: disjoint_def)
 | |
| 842 | ||
| 843 | lemma (in semiring_of_sets) generated_ring_disjoint_Un[intro]: | |
| 844 | assumes a: "a \<in> generated_ring" and b: "b \<in> generated_ring" | |
| 845 |   and "a \<inter> b = {}"
 | |
| 846 | shows "a \<union> b \<in> generated_ring" | |
| 847 | proof - | |
| 74362 | 848 | from a b obtain Ca Cb | 
| 849 | where Ca: "finite Ca" "disjoint Ca" "Ca \<subseteq> M" "a = \<Union> Ca" | |
| 850 | and Cb: "finite Cb" "disjoint Cb" "Cb \<subseteq> M" "b = \<Union> Cb" | |
| 851 | using generated_ringE by metis | |
| 47762 | 852 | show ?thesis | 
| 853 | proof | |
| 74362 | 854 |     from \<open>a \<inter> b = {}\<close> Ca Cb show "disjoint (Ca \<union> Cb)"
 | 
| 855 | by (auto intro!: disjoint_union) | |
| 856 | qed (use Ca Cb in auto) | |
| 47762 | 857 | qed | 
| 858 | ||
| 859 | lemma (in semiring_of_sets) generated_ring_empty: "{} \<in> generated_ring"
 | |
| 860 | by (auto simp: generated_ring_def disjoint_def) | |
| 861 | ||
| 862 | lemma (in semiring_of_sets) generated_ring_disjoint_Union: | |
| 863 | assumes "finite A" shows "A \<subseteq> generated_ring \<Longrightarrow> disjoint A \<Longrightarrow> \<Union>A \<in> generated_ring" | |
| 864 | using assms by (induct A) (auto simp: disjoint_def intro!: generated_ring_disjoint_Un generated_ring_empty) | |
| 865 | ||
| 866 | lemma (in semiring_of_sets) generated_ring_disjoint_UNION: | |
| 69313 | 867 | "finite I \<Longrightarrow> disjoint (A ` I) \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> A i \<in> generated_ring) \<Longrightarrow> \<Union>(A ` I) \<in> generated_ring" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62083diff
changeset | 868 | by (intro generated_ring_disjoint_Union) auto | 
| 47762 | 869 | |
| 870 | lemma (in semiring_of_sets) generated_ring_Int: | |
| 871 | assumes a: "a \<in> generated_ring" and b: "b \<in> generated_ring" | |
| 872 | shows "a \<inter> b \<in> generated_ring" | |
| 873 | proof - | |
| 74362 | 874 | from a b obtain Ca Cb | 
| 875 | where Ca: "finite Ca" "disjoint Ca" "Ca \<subseteq> M" "a = \<Union> Ca" | |
| 876 | and Cb: "finite Cb" "disjoint Cb" "Cb \<subseteq> M" "b = \<Union> Cb" | |
| 877 | using generated_ringE by metis | |
| 63040 | 878 | define C where "C = (\<lambda>(a,b). a \<inter> b)` (Ca\<times>Cb)" | 
| 47762 | 879 | show ?thesis | 
| 880 | proof | |
| 881 | show "disjoint C" | |
| 882 | proof (simp add: disjoint_def C_def, intro ballI impI) | |
| 883 | fix a1 b1 a2 b2 assume sets: "a1 \<in> Ca" "b1 \<in> Cb" "a2 \<in> Ca" "b2 \<in> Cb" | |
| 884 | assume "a1 \<inter> b1 \<noteq> a2 \<inter> b2" | |
| 885 | then have "a1 \<noteq> a2 \<or> b1 \<noteq> b2" by auto | |
| 886 |       then show "(a1 \<inter> b1) \<inter> (a2 \<inter> b2) = {}"
 | |
| 887 | proof | |
| 888 | assume "a1 \<noteq> a2" | |
| 889 |         with sets Ca have "a1 \<inter> a2 = {}"
 | |
| 890 | by (auto simp: disjoint_def) | |
| 891 | then show ?thesis by auto | |
| 892 | next | |
| 893 | assume "b1 \<noteq> b2" | |
| 894 |         with sets Cb have "b1 \<inter> b2 = {}"
 | |
| 895 | by (auto simp: disjoint_def) | |
| 896 | then show ?thesis by auto | |
| 897 | qed | |
| 898 | qed | |
| 74362 | 899 | qed (use Ca Cb in \<open>auto simp: C_def\<close>) | 
| 47762 | 900 | qed | 
| 901 | ||
| 902 | lemma (in semiring_of_sets) generated_ring_Inter: | |
| 903 |   assumes "finite A" "A \<noteq> {}" shows "A \<subseteq> generated_ring \<Longrightarrow> \<Inter>A \<in> generated_ring"
 | |
| 904 | using assms by (induct A rule: finite_ne_induct) (auto intro: generated_ring_Int) | |
| 905 | ||
| 906 | lemma (in semiring_of_sets) generated_ring_INTER: | |
| 69313 | 907 |   "finite I \<Longrightarrow> I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> A i \<in> generated_ring) \<Longrightarrow> \<Inter>(A ` I) \<in> generated_ring"
 | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62083diff
changeset | 908 | by (intro generated_ring_Inter) auto | 
| 47762 | 909 | |
| 910 | lemma (in semiring_of_sets) generating_ring: | |
| 911 | "ring_of_sets \<Omega> generated_ring" | |
| 912 | proof (rule ring_of_setsI) | |
| 913 | let ?R = generated_ring | |
| 914 | show "?R \<subseteq> Pow \<Omega>" | |
| 915 | using sets_into_space by (auto simp: generated_ring_def generated_ring_empty) | |
| 916 |   show "{} \<in> ?R" by (rule generated_ring_empty)
 | |
| 917 | ||
| 74362 | 918 |   {
 | 
| 919 | fix a b assume "a \<in> ?R" "b \<in> ?R" | |
| 920 | then obtain Ca Cb | |
| 921 | where Ca: "finite Ca" "disjoint Ca" "Ca \<subseteq> M" "a = \<Union> Ca" | |
| 922 | and Cb: "finite Cb" "disjoint Cb" "Cb \<subseteq> M" "b = \<Union> Cb" | |
| 923 | using generated_ringE by metis | |
| 47762 | 924 | show "a - b \<in> ?R" | 
| 925 | proof cases | |
| 61808 | 926 |       assume "Cb = {}" with Cb \<open>a \<in> ?R\<close> show ?thesis
 | 
| 47762 | 927 | by simp | 
| 928 | next | |
| 929 |       assume "Cb \<noteq> {}"
 | |
| 930 | with Ca Cb have "a - b = (\<Union>a'\<in>Ca. \<Inter>b'\<in>Cb. a' - b')" by auto | |
| 931 | also have "\<dots> \<in> ?R" | |
| 932 | proof (intro generated_ring_INTER generated_ring_disjoint_UNION) | |
| 933 | fix a b assume "a \<in> Ca" "b \<in> Cb" | |
| 934 | with Ca Cb Diff_cover[of a b] show "a - b \<in> ?R" | |
| 935 | by (auto simp add: generated_ring_def) | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62083diff
changeset | 936 | (metis DiffI Diff_eq_empty_iff empty_iff) | 
| 47762 | 937 | next | 
| 938 | show "disjoint ((\<lambda>a'. \<Inter>b'\<in>Cb. a' - b')`Ca)" | |
| 61808 | 939 |           using Ca by (auto simp add: disjoint_def \<open>Cb \<noteq> {}\<close>)
 | 
| 47762 | 940 | next | 
| 941 |         show "finite Ca" "finite Cb" "Cb \<noteq> {}" by fact+
 | |
| 942 | qed | |
| 943 | finally show "a - b \<in> ?R" . | |
| 74362 | 944 | qed | 
| 945 | } | |
| 47762 | 946 | note Diff = this | 
| 947 | ||
| 948 | fix a b assume sets: "a \<in> ?R" "b \<in> ?R" | |
| 949 | have "a \<union> b = (a - b) \<union> (a \<inter> b) \<union> (b - a)" by auto | |
| 950 | also have "\<dots> \<in> ?R" | |
| 951 | by (intro sets generated_ring_disjoint_Un generated_ring_Int Diff) auto | |
| 952 | finally show "a \<union> b \<in> ?R" . | |
| 953 | qed | |
| 954 | ||
| 955 | lemma (in semiring_of_sets) sigma_sets_generated_ring_eq: "sigma_sets \<Omega> generated_ring = sigma_sets \<Omega> M" | |
| 956 | proof | |
| 957 | interpret M: sigma_algebra \<Omega> "sigma_sets \<Omega> M" | |
| 958 | using space_closed by (rule sigma_algebra_sigma_sets) | |
| 959 | show "sigma_sets \<Omega> generated_ring \<subseteq> sigma_sets \<Omega> M" | |
| 960 | by (blast intro!: sigma_sets_mono elim: generated_ringE) | |
| 961 | qed (auto intro!: generated_ringI_Basic sigma_sets_mono) | |
| 962 | ||
| 70136 | 963 | subsubsection\<^marker>\<open>tag unimportant\<close> \<open>A Two-Element Series\<close> | 
| 38656 | 964 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 965 | definition binaryset :: "'a set \<Rightarrow> 'a set \<Rightarrow> nat \<Rightarrow> 'a set" | 
| 50252 | 966 |   where "binaryset A B = (\<lambda>x. {})(0 := A, Suc 0 := B)"
 | 
| 38656 | 967 | |
| 968 | lemma range_binaryset_eq: "range(binaryset A B) = {A,B,{}}"
 | |
| 969 | apply (simp add: binaryset_def) | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39092diff
changeset | 970 | apply (rule set_eqI) | 
| 38656 | 971 | apply (auto simp add: image_iff) | 
| 972 | done | |
| 973 | ||
| 974 | lemma UN_binaryset_eq: "(\<Union>i. binaryset A B i) = A \<union> B" | |
| 69546 
27dae626822b
prefer naming convention from datatype package for strong congruence rules
 haftmann parents: 
69313diff
changeset | 975 | by (simp add: range_binaryset_eq cong del: SUP_cong_simp) | 
| 38656 | 976 | |
| 61808 | 977 | subsubsection \<open>Closed CDI\<close> | 
| 38656 | 978 | |
| 70136 | 979 | definition\<^marker>\<open>tag important\<close> closed_cdi :: "'a set \<Rightarrow> 'a set set \<Rightarrow> bool" where | 
| 47694 | 980 | "closed_cdi \<Omega> M \<longleftrightarrow> | 
| 981 | M \<subseteq> Pow \<Omega> & | |
| 982 | (\<forall>s \<in> M. \<Omega> - s \<in> M) & | |
| 983 |    (\<forall>A. (range A \<subseteq> M) & (A 0 = {}) & (\<forall>n. A n \<subseteq> A (Suc n)) \<longrightarrow>
 | |
| 984 | (\<Union>i. A i) \<in> M) & | |
| 985 | (\<forall>A. (range A \<subseteq> M) & disjoint_family A \<longrightarrow> (\<Union>i::nat. A i) \<in> M)" | |
| 38656 | 986 | |
| 987 | inductive_set | |
| 47694 | 988 | smallest_ccdi_sets :: "'a set \<Rightarrow> 'a set set \<Rightarrow> 'a set set" | 
| 989 | for \<Omega> M | |
| 38656 | 990 | where | 
| 991 | Basic [intro]: | |
| 47694 | 992 | "a \<in> M \<Longrightarrow> a \<in> smallest_ccdi_sets \<Omega> M" | 
| 38656 | 993 | | Compl [intro]: | 
| 47694 | 994 | "a \<in> smallest_ccdi_sets \<Omega> M \<Longrightarrow> \<Omega> - a \<in> smallest_ccdi_sets \<Omega> M" | 
| 38656 | 995 | | Inc: | 
| 47694 | 996 |       "range A \<in> Pow(smallest_ccdi_sets \<Omega> M) \<Longrightarrow> A 0 = {} \<Longrightarrow> (\<And>n. A n \<subseteq> A (Suc n))
 | 
| 997 | \<Longrightarrow> (\<Union>i. A i) \<in> smallest_ccdi_sets \<Omega> M" | |
| 38656 | 998 | | Disj: | 
| 47694 | 999 | "range A \<in> Pow(smallest_ccdi_sets \<Omega> M) \<Longrightarrow> disjoint_family A | 
| 1000 | \<Longrightarrow> (\<Union>i::nat. A i) \<in> smallest_ccdi_sets \<Omega> M" | |
| 38656 | 1001 | |
| 47694 | 1002 | lemma (in subset_class) smallest_closed_cdi1: "M \<subseteq> smallest_ccdi_sets \<Omega> M" | 
| 1003 | by auto | |
| 38656 | 1004 | |
| 47694 | 1005 | lemma (in subset_class) smallest_ccdi_sets: "smallest_ccdi_sets \<Omega> M \<subseteq> Pow \<Omega>" | 
| 38656 | 1006 | apply (rule subsetI) | 
| 1007 | apply (erule smallest_ccdi_sets.induct) | |
| 1008 | apply (auto intro: range_subsetD dest: sets_into_space) | |
| 1009 | done | |
| 1010 | ||
| 47694 | 1011 | lemma (in subset_class) smallest_closed_cdi2: "closed_cdi \<Omega> (smallest_ccdi_sets \<Omega> M)" | 
| 1012 | apply (auto simp add: closed_cdi_def smallest_ccdi_sets) | |
| 38656 | 1013 | apply (blast intro: smallest_ccdi_sets.Inc smallest_ccdi_sets.Disj) + | 
| 1014 | done | |
| 1015 | ||
| 47694 | 1016 | lemma closed_cdi_subset: "closed_cdi \<Omega> M \<Longrightarrow> M \<subseteq> Pow \<Omega>" | 
| 38656 | 1017 | by (simp add: closed_cdi_def) | 
| 1018 | ||
| 47694 | 1019 | lemma closed_cdi_Compl: "closed_cdi \<Omega> M \<Longrightarrow> s \<in> M \<Longrightarrow> \<Omega> - s \<in> M" | 
| 38656 | 1020 | by (simp add: closed_cdi_def) | 
| 1021 | ||
| 1022 | lemma closed_cdi_Inc: | |
| 47694 | 1023 |   "closed_cdi \<Omega> M \<Longrightarrow> range A \<subseteq> M \<Longrightarrow> A 0 = {} \<Longrightarrow> (!!n. A n \<subseteq> A (Suc n)) \<Longrightarrow> (\<Union>i. A i) \<in> M"
 | 
| 38656 | 1024 | by (simp add: closed_cdi_def) | 
| 1025 | ||
| 1026 | lemma closed_cdi_Disj: | |
| 47694 | 1027 | "closed_cdi \<Omega> M \<Longrightarrow> range A \<subseteq> M \<Longrightarrow> disjoint_family A \<Longrightarrow> (\<Union>i::nat. A i) \<in> M" | 
| 38656 | 1028 | by (simp add: closed_cdi_def) | 
| 1029 | ||
| 1030 | lemma closed_cdi_Un: | |
| 47694 | 1031 |   assumes cdi: "closed_cdi \<Omega> M" and empty: "{} \<in> M"
 | 
| 1032 | and A: "A \<in> M" and B: "B \<in> M" | |
| 38656 | 1033 |       and disj: "A \<inter> B = {}"
 | 
| 47694 | 1034 | shows "A \<union> B \<in> M" | 
| 38656 | 1035 | proof - | 
| 47694 | 1036 | have ra: "range (binaryset A B) \<subseteq> M" | 
| 38656 | 1037 | by (simp add: range_binaryset_eq empty A B) | 
| 1038 | have di: "disjoint_family (binaryset A B)" using disj | |
| 1039 | by (simp add: disjoint_family_on_def binaryset_def Int_commute) | |
| 1040 | from closed_cdi_Disj [OF cdi ra di] | |
| 1041 | show ?thesis | |
| 1042 | by (simp add: UN_binaryset_eq) | |
| 1043 | qed | |
| 1044 | ||
| 1045 | lemma (in algebra) smallest_ccdi_sets_Un: | |
| 47694 | 1046 | assumes A: "A \<in> smallest_ccdi_sets \<Omega> M" and B: "B \<in> smallest_ccdi_sets \<Omega> M" | 
| 38656 | 1047 |       and disj: "A \<inter> B = {}"
 | 
| 47694 | 1048 | shows "A \<union> B \<in> smallest_ccdi_sets \<Omega> M" | 
| 38656 | 1049 | proof - | 
| 47694 | 1050 | have ra: "range (binaryset A B) \<in> Pow (smallest_ccdi_sets \<Omega> M)" | 
| 38656 | 1051 | by (simp add: range_binaryset_eq A B smallest_ccdi_sets.Basic) | 
| 1052 | have di: "disjoint_family (binaryset A B)" using disj | |
| 1053 | by (simp add: disjoint_family_on_def binaryset_def Int_commute) | |
| 1054 | from Disj [OF ra di] | |
| 1055 | show ?thesis | |
| 1056 | by (simp add: UN_binaryset_eq) | |
| 1057 | qed | |
| 1058 | ||
| 1059 | lemma (in algebra) smallest_ccdi_sets_Int1: | |
| 47694 | 1060 | assumes a: "a \<in> M" | 
| 1061 | shows "b \<in> smallest_ccdi_sets \<Omega> M \<Longrightarrow> a \<inter> b \<in> smallest_ccdi_sets \<Omega> M" | |
| 38656 | 1062 | proof (induct rule: smallest_ccdi_sets.induct) | 
| 1063 | case (Basic x) | |
| 1064 | thus ?case | |
| 1065 | by (metis a Int smallest_ccdi_sets.Basic) | |
| 1066 | next | |
| 1067 | case (Compl x) | |
| 47694 | 1068 | have "a \<inter> (\<Omega> - x) = \<Omega> - ((\<Omega> - a) \<union> (a \<inter> x))" | 
| 38656 | 1069 | by blast | 
| 47694 | 1070 | also have "... \<in> smallest_ccdi_sets \<Omega> M" | 
| 38656 | 1071 | by (metis smallest_ccdi_sets.Compl a Compl(2) Diff_Int2 Diff_Int_distrib2 | 
| 47694 | 1072 | Diff_disjoint Int_Diff Int_empty_right smallest_ccdi_sets_Un | 
| 1073 | smallest_ccdi_sets.Basic smallest_ccdi_sets.Compl) | |
| 38656 | 1074 | finally show ?case . | 
| 1075 | next | |
| 1076 | case (Inc A) | |
| 1077 | have 1: "(\<Union>i. (\<lambda>i. a \<inter> A i) i) = a \<inter> (\<Union>i. A i)" | |
| 1078 | by blast | |
| 47694 | 1079 | have "range (\<lambda>i. a \<inter> A i) \<in> Pow(smallest_ccdi_sets \<Omega> M)" using Inc | 
| 38656 | 1080 | by blast | 
| 1081 |   moreover have "(\<lambda>i. a \<inter> A i) 0 = {}"
 | |
| 1082 | by (simp add: Inc) | |
| 1083 | moreover have "!!n. (\<lambda>i. a \<inter> A i) n \<subseteq> (\<lambda>i. a \<inter> A i) (Suc n)" using Inc | |
| 1084 | by blast | |
| 47694 | 1085 | ultimately have 2: "(\<Union>i. (\<lambda>i. a \<inter> A i) i) \<in> smallest_ccdi_sets \<Omega> M" | 
| 38656 | 1086 | by (rule smallest_ccdi_sets.Inc) | 
| 1087 | show ?case | |
| 1088 | by (metis 1 2) | |
| 1089 | next | |
| 1090 | case (Disj A) | |
| 1091 | have 1: "(\<Union>i. (\<lambda>i. a \<inter> A i) i) = a \<inter> (\<Union>i. A i)" | |
| 1092 | by blast | |
| 47694 | 1093 | have "range (\<lambda>i. a \<inter> A i) \<in> Pow(smallest_ccdi_sets \<Omega> M)" using Disj | 
| 38656 | 1094 | by blast | 
| 1095 | moreover have "disjoint_family (\<lambda>i. a \<inter> A i)" using Disj | |
| 1096 | by (auto simp add: disjoint_family_on_def) | |
| 47694 | 1097 | ultimately have 2: "(\<Union>i. (\<lambda>i. a \<inter> A i) i) \<in> smallest_ccdi_sets \<Omega> M" | 
| 38656 | 1098 | by (rule smallest_ccdi_sets.Disj) | 
| 1099 | show ?case | |
| 1100 | by (metis 1 2) | |
| 1101 | qed | |
| 1102 | ||
| 1103 | ||
| 1104 | lemma (in algebra) smallest_ccdi_sets_Int: | |
| 47694 | 1105 | assumes b: "b \<in> smallest_ccdi_sets \<Omega> M" | 
| 1106 | shows "a \<in> smallest_ccdi_sets \<Omega> M \<Longrightarrow> a \<inter> b \<in> smallest_ccdi_sets \<Omega> M" | |
| 38656 | 1107 | proof (induct rule: smallest_ccdi_sets.induct) | 
| 1108 | case (Basic x) | |
| 1109 | thus ?case | |
| 1110 | by (metis b smallest_ccdi_sets_Int1) | |
| 1111 | next | |
| 1112 | case (Compl x) | |
| 47694 | 1113 | have "(\<Omega> - x) \<inter> b = \<Omega> - (x \<inter> b \<union> (\<Omega> - b))" | 
| 38656 | 1114 | by blast | 
| 47694 | 1115 | also have "... \<in> smallest_ccdi_sets \<Omega> M" | 
| 38656 | 1116 | by (metis Compl(2) Diff_disjoint Int_Diff Int_commute Int_empty_right b | 
| 1117 | smallest_ccdi_sets.Compl smallest_ccdi_sets_Un) | |
| 1118 | finally show ?case . | |
| 1119 | next | |
| 1120 | case (Inc A) | |
| 1121 | have 1: "(\<Union>i. (\<lambda>i. A i \<inter> b) i) = (\<Union>i. A i) \<inter> b" | |
| 1122 | by blast | |
| 47694 | 1123 | have "range (\<lambda>i. A i \<inter> b) \<in> Pow(smallest_ccdi_sets \<Omega> M)" using Inc | 
| 38656 | 1124 | by blast | 
| 1125 |   moreover have "(\<lambda>i. A i \<inter> b) 0 = {}"
 | |
| 1126 | by (simp add: Inc) | |
| 1127 | moreover have "!!n. (\<lambda>i. A i \<inter> b) n \<subseteq> (\<lambda>i. A i \<inter> b) (Suc n)" using Inc | |
| 1128 | by blast | |
| 47694 | 1129 | ultimately have 2: "(\<Union>i. (\<lambda>i. A i \<inter> b) i) \<in> smallest_ccdi_sets \<Omega> M" | 
| 38656 | 1130 | by (rule smallest_ccdi_sets.Inc) | 
| 1131 | show ?case | |
| 1132 | by (metis 1 2) | |
| 1133 | next | |
| 1134 | case (Disj A) | |
| 1135 | have 1: "(\<Union>i. (\<lambda>i. A i \<inter> b) i) = (\<Union>i. A i) \<inter> b" | |
| 1136 | by blast | |
| 47694 | 1137 | have "range (\<lambda>i. A i \<inter> b) \<in> Pow(smallest_ccdi_sets \<Omega> M)" using Disj | 
| 38656 | 1138 | by blast | 
| 1139 | moreover have "disjoint_family (\<lambda>i. A i \<inter> b)" using Disj | |
| 1140 | by (auto simp add: disjoint_family_on_def) | |
| 47694 | 1141 | ultimately have 2: "(\<Union>i. (\<lambda>i. A i \<inter> b) i) \<in> smallest_ccdi_sets \<Omega> M" | 
| 38656 | 1142 | by (rule smallest_ccdi_sets.Disj) | 
| 1143 | show ?case | |
| 1144 | by (metis 1 2) | |
| 1145 | qed | |
| 1146 | ||
| 1147 | lemma (in algebra) sigma_property_disjoint_lemma: | |
| 47694 | 1148 | assumes sbC: "M \<subseteq> C" | 
| 1149 | and ccdi: "closed_cdi \<Omega> C" | |
| 1150 | shows "sigma_sets \<Omega> M \<subseteq> C" | |
| 38656 | 1151 | proof - | 
| 47694 | 1152 |   have "smallest_ccdi_sets \<Omega> M \<in> {B . M \<subseteq> B \<and> sigma_algebra \<Omega> B}"
 | 
| 38656 | 1153 | apply (auto simp add: sigma_algebra_disjoint_iff algebra_iff_Int | 
| 1154 | smallest_ccdi_sets_Int) | |
| 1155 | apply (metis Union_Pow_eq Union_upper subsetD smallest_ccdi_sets) | |
| 1156 | apply (blast intro: smallest_ccdi_sets.Disj) | |
| 1157 | done | |
| 47694 | 1158 | hence "sigma_sets (\<Omega>) (M) \<subseteq> smallest_ccdi_sets \<Omega> M" | 
| 38656 | 1159 | by clarsimp | 
| 47694 | 1160 | (drule sigma_algebra.sigma_sets_subset [where a="M"], auto) | 
| 38656 | 1161 | also have "... \<subseteq> C" | 
| 1162 | proof | |
| 1163 | fix x | |
| 47694 | 1164 | assume x: "x \<in> smallest_ccdi_sets \<Omega> M" | 
| 38656 | 1165 | thus "x \<in> C" | 
| 1166 | proof (induct rule: smallest_ccdi_sets.induct) | |
| 1167 | case (Basic x) | |
| 1168 | thus ?case | |
| 1169 | by (metis Basic subsetD sbC) | |
| 1170 | next | |
| 1171 | case (Compl x) | |
| 1172 | thus ?case | |
| 1173 | by (blast intro: closed_cdi_Compl [OF ccdi, simplified]) | |
| 1174 | next | |
| 1175 | case (Inc A) | |
| 1176 | thus ?case | |
| 1177 | by (auto intro: closed_cdi_Inc [OF ccdi, simplified]) | |
| 1178 | next | |
| 1179 | case (Disj A) | |
| 1180 | thus ?case | |
| 1181 | by (auto intro: closed_cdi_Disj [OF ccdi, simplified]) | |
| 1182 | qed | |
| 1183 | qed | |
| 1184 | finally show ?thesis . | |
| 1185 | qed | |
| 1186 | ||
| 1187 | lemma (in algebra) sigma_property_disjoint: | |
| 47694 | 1188 | assumes sbC: "M \<subseteq> C" | 
| 1189 | and compl: "!!s. s \<in> C \<inter> sigma_sets (\<Omega>) (M) \<Longrightarrow> \<Omega> - s \<in> C" | |
| 1190 | and inc: "!!A. range A \<subseteq> C \<inter> sigma_sets (\<Omega>) (M) | |
| 38656 | 1191 |                      \<Longrightarrow> A 0 = {} \<Longrightarrow> (!!n. A n \<subseteq> A (Suc n))
 | 
| 1192 | \<Longrightarrow> (\<Union>i. A i) \<in> C" | |
| 47694 | 1193 | and disj: "!!A. range A \<subseteq> C \<inter> sigma_sets (\<Omega>) (M) | 
| 38656 | 1194 | \<Longrightarrow> disjoint_family A \<Longrightarrow> (\<Union>i::nat. A i) \<in> C" | 
| 47694 | 1195 | shows "sigma_sets (\<Omega>) (M) \<subseteq> C" | 
| 38656 | 1196 | proof - | 
| 47694 | 1197 | have "sigma_sets (\<Omega>) (M) \<subseteq> C \<inter> sigma_sets (\<Omega>) (M)" | 
| 38656 | 1198 | proof (rule sigma_property_disjoint_lemma) | 
| 47694 | 1199 | show "M \<subseteq> C \<inter> sigma_sets (\<Omega>) (M)" | 
| 38656 | 1200 | by (metis Int_greatest Set.subsetI sbC sigma_sets.Basic) | 
| 1201 | next | |
| 47694 | 1202 | show "closed_cdi \<Omega> (C \<inter> sigma_sets (\<Omega>) (M))" | 
| 38656 | 1203 | by (simp add: closed_cdi_def compl inc disj) | 
| 1204 | (metis PowI Set.subsetI le_infI2 sigma_sets_into_sp space_closed | |
| 1205 | IntE sigma_sets.Compl range_subsetD sigma_sets.Union) | |
| 1206 | qed | |
| 1207 | thus ?thesis | |
| 1208 | by blast | |
| 1209 | qed | |
| 1210 | ||
| 61808 | 1211 | subsubsection \<open>Dynkin systems\<close> | 
| 40859 | 1212 | |
| 70136 | 1213 | locale\<^marker>\<open>tag important\<close> Dynkin_system = subset_class + | 
| 47694 | 1214 | assumes space: "\<Omega> \<in> M" | 
| 1215 | and compl[intro!]: "\<And>A. A \<in> M \<Longrightarrow> \<Omega> - A \<in> M" | |
| 1216 | and UN[intro!]: "\<And>A. disjoint_family A \<Longrightarrow> range A \<subseteq> M | |
| 1217 | \<Longrightarrow> (\<Union>i::nat. A i) \<in> M" | |
| 40859 | 1218 | |
| 69555 | 1219 | lemma (in Dynkin_system) empty[intro, simp]: "{} \<in> M"
 | 
| 47694 | 1220 | using space compl[of "\<Omega>"] by simp | 
| 40859 | 1221 | |
| 69555 | 1222 | lemma (in Dynkin_system) diff: | 
| 47694 | 1223 | assumes sets: "D \<in> M" "E \<in> M" and "D \<subseteq> E" | 
| 1224 | shows "E - D \<in> M" | |
| 40859 | 1225 | proof - | 
| 47694 | 1226 |   let ?f = "\<lambda>x. if x = 0 then D else if x = Suc 0 then \<Omega> - E else {}"
 | 
| 1227 |   have "range ?f = {D, \<Omega> - E, {}}"
 | |
| 40859 | 1228 | by (auto simp: image_iff) | 
| 47694 | 1229 | moreover have "D \<union> (\<Omega> - E) = (\<Union>i. ?f i)" | 
| 62390 | 1230 | by (auto simp: image_iff split: if_split_asm) | 
| 40859 | 1231 | moreover | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
51683diff
changeset | 1232 | have "disjoint_family ?f" unfolding disjoint_family_on_def | 
| 61808 | 1233 | using \<open>D \<in> M\<close>[THEN sets_into_space] \<open>D \<subseteq> E\<close> by auto | 
| 47694 | 1234 | ultimately have "\<Omega> - (D \<union> (\<Omega> - E)) \<in> M" | 
| 69768 | 1235 | using sets UN by auto fastforce | 
| 47694 | 1236 | also have "\<Omega> - (D \<union> (\<Omega> - E)) = E - D" | 
| 40859 | 1237 | using assms sets_into_space by auto | 
| 1238 | finally show ?thesis . | |
| 1239 | qed | |
| 1240 | ||
| 69555 | 1241 | lemma Dynkin_systemI: | 
| 47694 | 1242 | assumes "\<And> A. A \<in> M \<Longrightarrow> A \<subseteq> \<Omega>" "\<Omega> \<in> M" | 
| 1243 | assumes "\<And> A. A \<in> M \<Longrightarrow> \<Omega> - A \<in> M" | |
| 1244 | assumes "\<And> A. disjoint_family A \<Longrightarrow> range A \<subseteq> M | |
| 1245 | \<Longrightarrow> (\<Union>i::nat. A i) \<in> M" | |
| 69555 | 1246 | shows "Dynkin_system \<Omega> M" | 
| 1247 | using assms by (auto simp: Dynkin_system_def Dynkin_system_axioms_def subset_class_def) | |
| 40859 | 1248 | |
| 69555 | 1249 | lemma Dynkin_systemI': | 
| 47694 | 1250 | assumes 1: "\<And> A. A \<in> M \<Longrightarrow> A \<subseteq> \<Omega>" | 
| 1251 |   assumes empty: "{} \<in> M"
 | |
| 1252 | assumes Diff: "\<And> A. A \<in> M \<Longrightarrow> \<Omega> - A \<in> M" | |
| 1253 | assumes 2: "\<And> A. disjoint_family A \<Longrightarrow> range A \<subseteq> M | |
| 1254 | \<Longrightarrow> (\<Union>i::nat. A i) \<in> M" | |
| 69555 | 1255 | shows "Dynkin_system \<Omega> M" | 
| 42988 | 1256 | proof - | 
| 47694 | 1257 | from Diff[OF empty] have "\<Omega> \<in> M" by auto | 
| 42988 | 1258 | from 1 this Diff 2 show ?thesis | 
| 69555 | 1259 | by (intro Dynkin_systemI) auto | 
| 42988 | 1260 | qed | 
| 1261 | ||
| 69555 | 1262 | lemma Dynkin_system_trivial: | 
| 1263 | shows "Dynkin_system A (Pow A)" | |
| 1264 | by (rule Dynkin_systemI) auto | |
| 40859 | 1265 | |
| 69555 | 1266 | lemma sigma_algebra_imp_Dynkin_system: | 
| 1267 | assumes "sigma_algebra \<Omega> M" shows "Dynkin_system \<Omega> M" | |
| 40859 | 1268 | proof - | 
| 47694 | 1269 | interpret sigma_algebra \<Omega> M by fact | 
| 69555 | 1270 | show ?thesis using sets_into_space by (fastforce intro!: Dynkin_systemI) | 
| 40859 | 1271 | qed | 
| 1272 | ||
| 56994 | 1273 | subsubsection "Intersection sets systems" | 
| 40859 | 1274 | |
| 70136 | 1275 | definition\<^marker>\<open>tag important\<close> Int_stable :: "'a set set \<Rightarrow> bool" where | 
| 69554 | 1276 | "Int_stable M \<longleftrightarrow> (\<forall> a \<in> M. \<forall> b \<in> M. a \<inter> b \<in> M)" | 
| 40859 | 1277 | |
| 1278 | lemma (in algebra) Int_stable: "Int_stable M" | |
| 1279 | unfolding Int_stable_def by auto | |
| 1280 | ||
| 64008 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63627diff
changeset | 1281 | lemma Int_stableI_image: | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63627diff
changeset | 1282 | "(\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> \<exists>k\<in>I. A i \<inter> A j = A k) \<Longrightarrow> Int_stable (A ` I)" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63627diff
changeset | 1283 | by (auto simp: Int_stable_def image_def) | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63627diff
changeset | 1284 | |
| 42981 | 1285 | lemma Int_stableI: | 
| 47694 | 1286 | "(\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<inter> b \<in> A) \<Longrightarrow> Int_stable A" | 
| 42981 | 1287 | unfolding Int_stable_def by auto | 
| 1288 | ||
| 1289 | lemma Int_stableD: | |
| 47694 | 1290 | "Int_stable M \<Longrightarrow> a \<in> M \<Longrightarrow> b \<in> M \<Longrightarrow> a \<inter> b \<in> M" | 
| 42981 | 1291 | unfolding Int_stable_def by auto | 
| 1292 | ||
| 69555 | 1293 | lemma (in Dynkin_system) sigma_algebra_eq_Int_stable: | 
| 47694 | 1294 | "sigma_algebra \<Omega> M \<longleftrightarrow> Int_stable M" | 
| 40859 | 1295 | proof | 
| 47694 | 1296 | assume "sigma_algebra \<Omega> M" then show "Int_stable M" | 
| 40859 | 1297 | unfolding sigma_algebra_def using algebra.Int_stable by auto | 
| 1298 | next | |
| 1299 | assume "Int_stable M" | |
| 47694 | 1300 | show "sigma_algebra \<Omega> M" | 
| 42065 
2b98b4c2e2f1
add ring_of_sets and subset_class as basis for algebra
 hoelzl parents: 
41983diff
changeset | 1301 | unfolding sigma_algebra_disjoint_iff algebra_iff_Un | 
| 40859 | 1302 | proof (intro conjI ballI allI impI) | 
| 47694 | 1303 | show "M \<subseteq> Pow (\<Omega>)" using sets_into_space by auto | 
| 40859 | 1304 | next | 
| 47694 | 1305 | fix A B assume "A \<in> M" "B \<in> M" | 
| 1306 | then have "A \<union> B = \<Omega> - ((\<Omega> - A) \<inter> (\<Omega> - B))" | |
| 1307 | "\<Omega> - A \<in> M" "\<Omega> - B \<in> M" | |
| 40859 | 1308 | using sets_into_space by auto | 
| 47694 | 1309 | then show "A \<union> B \<in> M" | 
| 61808 | 1310 | using \<open>Int_stable M\<close> unfolding Int_stable_def by auto | 
| 40859 | 1311 | qed auto | 
| 1312 | qed | |
| 1313 | ||
| 56994 | 1314 | subsubsection "Smallest Dynkin systems" | 
| 40859 | 1315 | |
| 70136 | 1316 | definition\<^marker>\<open>tag important\<close> Dynkin :: "'a set \<Rightarrow> 'a set set \<Rightarrow> 'a set set" where | 
| 69555 | 1317 |   "Dynkin \<Omega> M =  (\<Inter>{D. Dynkin_system \<Omega> D \<and> M \<subseteq> D})"
 | 
| 40859 | 1318 | |
| 69555 | 1319 | lemma Dynkin_system_Dynkin: | 
| 47694 | 1320 | assumes "M \<subseteq> Pow (\<Omega>)" | 
| 69555 | 1321 | shows "Dynkin_system \<Omega> (Dynkin \<Omega> M)" | 
| 1322 | proof (rule Dynkin_systemI) | |
| 1323 | fix A assume "A \<in> Dynkin \<Omega> M" | |
| 40859 | 1324 | moreover | 
| 69555 | 1325 |   { fix D assume "A \<in> D" and d: "Dynkin_system \<Omega> D"
 | 
| 1326 | then have "A \<subseteq> \<Omega>" by (auto simp: Dynkin_system_def subset_class_def) } | |
| 1327 |   moreover have "{D. Dynkin_system \<Omega> D \<and> M \<subseteq> D} \<noteq> {}"
 | |
| 1328 | using assms Dynkin_system_trivial by fastforce | |
| 47694 | 1329 | ultimately show "A \<subseteq> \<Omega>" | 
| 69555 | 1330 | unfolding Dynkin_def using assms | 
| 47694 | 1331 | by auto | 
| 40859 | 1332 | next | 
| 69555 | 1333 | show "\<Omega> \<in> Dynkin \<Omega> M" | 
| 1334 | unfolding Dynkin_def using Dynkin_system.space by fastforce | |
| 40859 | 1335 | next | 
| 69555 | 1336 | fix A assume "A \<in> Dynkin \<Omega> M" | 
| 1337 | then show "\<Omega> - A \<in> Dynkin \<Omega> M" | |
| 1338 | unfolding Dynkin_def using Dynkin_system.compl by force | |
| 40859 | 1339 | next | 
| 1340 | fix A :: "nat \<Rightarrow> 'a set" | |
| 69555 | 1341 | assume A: "disjoint_family A" "range A \<subseteq> Dynkin \<Omega> M" | 
| 1342 | show "(\<Union>i. A i) \<in> Dynkin \<Omega> M" unfolding Dynkin_def | |
| 40859 | 1343 | proof (simp, safe) | 
| 69555 | 1344 | fix D assume "Dynkin_system \<Omega> D" "M \<subseteq> D" | 
| 47694 | 1345 | with A have "(\<Union>i. A i) \<in> D" | 
| 69555 | 1346 | by (intro Dynkin_system.UN) (auto simp: Dynkin_def) | 
| 40859 | 1347 | then show "(\<Union>i. A i) \<in> D" by auto | 
| 1348 | qed | |
| 1349 | qed | |
| 1350 | ||
| 69555 | 1351 | lemma Dynkin_Basic[intro]: "A \<in> M \<Longrightarrow> A \<in> Dynkin \<Omega> M" | 
| 1352 | unfolding Dynkin_def by auto | |
| 40859 | 1353 | |
| 69555 | 1354 | lemma (in Dynkin_system) restricted_Dynkin_system: | 
| 47694 | 1355 | assumes "D \<in> M" | 
| 69555 | 1356 |   shows "Dynkin_system \<Omega> {Q. Q \<subseteq> \<Omega> \<and> Q \<inter> D \<in> M}"
 | 
| 1357 | proof (rule Dynkin_systemI, simp_all) | |
| 47694 | 1358 | have "\<Omega> \<inter> D = D" | 
| 61808 | 1359 | using \<open>D \<in> M\<close> sets_into_space by auto | 
| 47694 | 1360 | then show "\<Omega> \<inter> D \<in> M" | 
| 61808 | 1361 | using \<open>D \<in> M\<close> by auto | 
| 40859 | 1362 | next | 
| 47694 | 1363 | fix A assume "A \<subseteq> \<Omega> \<and> A \<inter> D \<in> M" | 
| 1364 | moreover have "(\<Omega> - A) \<inter> D = (\<Omega> - (A \<inter> D)) - (\<Omega> - D)" | |
| 40859 | 1365 | by auto | 
| 69284 | 1366 | ultimately show "(\<Omega> - A) \<inter> D \<in> M" | 
| 61808 | 1367 | using \<open>D \<in> M\<close> by (auto intro: diff) | 
| 40859 | 1368 | next | 
| 1369 | fix A :: "nat \<Rightarrow> 'a set" | |
| 47694 | 1370 |   assume "disjoint_family A" "range A \<subseteq> {Q. Q \<subseteq> \<Omega> \<and> Q \<inter> D \<in> M}"
 | 
| 1371 | then have "\<And>i. A i \<subseteq> \<Omega>" "disjoint_family (\<lambda>i. A i \<inter> D)" | |
| 1372 | "range (\<lambda>i. A i \<inter> D) \<subseteq> M" "(\<Union>x. A x) \<inter> D = (\<Union>x. A x \<inter> D)" | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44537diff
changeset | 1373 | by ((fastforce simp: disjoint_family_on_def)+) | 
| 47694 | 1374 | then show "(\<Union>x. A x) \<subseteq> \<Omega> \<and> (\<Union>x. A x) \<inter> D \<in> M" | 
| 40859 | 1375 | by (auto simp del: UN_simps) | 
| 1376 | qed | |
| 1377 | ||
| 69555 | 1378 | lemma (in Dynkin_system) Dynkin_subset: | 
| 47694 | 1379 | assumes "N \<subseteq> M" | 
| 69555 | 1380 | shows "Dynkin \<Omega> N \<subseteq> M" | 
| 40859 | 1381 | proof - | 
| 69555 | 1382 | have "Dynkin_system \<Omega> M" .. | 
| 1383 | then have "Dynkin_system \<Omega> M" | |
| 1384 | using assms unfolding Dynkin_system_def Dynkin_system_axioms_def subset_class_def by simp | |
| 1385 | with \<open>N \<subseteq> M\<close> show ?thesis by (auto simp add: Dynkin_def) | |
| 40859 | 1386 | qed | 
| 1387 | ||
| 69555 | 1388 | lemma sigma_eq_Dynkin: | 
| 47694 | 1389 | assumes sets: "M \<subseteq> Pow \<Omega>" | 
| 40859 | 1390 | assumes "Int_stable M" | 
| 69555 | 1391 | shows "sigma_sets \<Omega> M = Dynkin \<Omega> M" | 
| 40859 | 1392 | proof - | 
| 69555 | 1393 | have "Dynkin \<Omega> M \<subseteq> sigma_sets (\<Omega>) (M)" | 
| 1394 | using sigma_algebra_imp_Dynkin_system | |
| 1395 | unfolding Dynkin_def sigma_sets_least_sigma_algebra[OF sets] by auto | |
| 40859 | 1396 | moreover | 
| 69555 | 1397 | interpret Dynkin_system \<Omega> "Dynkin \<Omega> M" | 
| 1398 | using Dynkin_system_Dynkin[OF sets] . | |
| 1399 | have "sigma_algebra \<Omega> (Dynkin \<Omega> M)" | |
| 40859 | 1400 | unfolding sigma_algebra_eq_Int_stable Int_stable_def | 
| 1401 | proof (intro ballI) | |
| 69555 | 1402 | fix A B assume "A \<in> Dynkin \<Omega> M" "B \<in> Dynkin \<Omega> M" | 
| 1403 |     let ?D = "\<lambda>E. {Q. Q \<subseteq> \<Omega> \<and> Q \<inter> E \<in> Dynkin \<Omega> M}"
 | |
| 47694 | 1404 | have "M \<subseteq> ?D B" | 
| 40859 | 1405 | proof | 
| 47694 | 1406 | fix E assume "E \<in> M" | 
| 69555 | 1407 | then have "M \<subseteq> ?D E" "E \<in> Dynkin \<Omega> M" | 
| 61808 | 1408 | using sets_into_space \<open>Int_stable M\<close> by (auto simp: Int_stable_def) | 
| 69555 | 1409 | then have "Dynkin \<Omega> M \<subseteq> ?D E" | 
| 1410 | using restricted_Dynkin_system \<open>E \<in> Dynkin \<Omega> M\<close> | |
| 1411 | by (intro Dynkin_system.Dynkin_subset) simp_all | |
| 47694 | 1412 | then have "B \<in> ?D E" | 
| 69555 | 1413 | using \<open>B \<in> Dynkin \<Omega> M\<close> by auto | 
| 1414 | then have "E \<inter> B \<in> Dynkin \<Omega> M" | |
| 40859 | 1415 | by (subst Int_commute) simp | 
| 47694 | 1416 | then show "E \<in> ?D B" | 
| 61808 | 1417 | using sets \<open>E \<in> M\<close> by auto | 
| 40859 | 1418 | qed | 
| 69555 | 1419 | then have "Dynkin \<Omega> M \<subseteq> ?D B" | 
| 1420 | using restricted_Dynkin_system \<open>B \<in> Dynkin \<Omega> M\<close> | |
| 1421 | by (intro Dynkin_system.Dynkin_subset) simp_all | |
| 1422 | then show "A \<inter> B \<in> Dynkin \<Omega> M" | |
| 1423 | using \<open>A \<in> Dynkin \<Omega> M\<close> sets_into_space by auto | |
| 40859 | 1424 | qed | 
| 47694 | 1425 | from sigma_algebra.sigma_sets_subset[OF this, of "M"] | 
| 69555 | 1426 | have "sigma_sets (\<Omega>) (M) \<subseteq> Dynkin \<Omega> M" by auto | 
| 1427 | ultimately have "sigma_sets (\<Omega>) (M) = Dynkin \<Omega> M" by auto | |
| 40859 | 1428 | then show ?thesis | 
| 69555 | 1429 | by (auto simp: Dynkin_def) | 
| 40859 | 1430 | qed | 
| 1431 | ||
| 69555 | 1432 | lemma (in Dynkin_system) Dynkin_idem: | 
| 1433 | "Dynkin \<Omega> M = M" | |
| 40859 | 1434 | proof - | 
| 69555 | 1435 | have "Dynkin \<Omega> M = M" | 
| 40859 | 1436 | proof | 
| 69555 | 1437 | show "M \<subseteq> Dynkin \<Omega> M" | 
| 1438 | using Dynkin_Basic by auto | |
| 1439 | show "Dynkin \<Omega> M \<subseteq> M" | |
| 1440 | by (intro Dynkin_subset) auto | |
| 40859 | 1441 | qed | 
| 1442 | then show ?thesis | |
| 69555 | 1443 | by (auto simp: Dynkin_def) | 
| 40859 | 1444 | qed | 
| 1445 | ||
| 69555 | 1446 | lemma (in Dynkin_system) Dynkin_lemma: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41543diff
changeset | 1447 | assumes "Int_stable E" | 
| 47694 | 1448 | and E: "E \<subseteq> M" "M \<subseteq> sigma_sets \<Omega> E" | 
| 1449 | shows "sigma_sets \<Omega> E = M" | |
| 40859 | 1450 | proof - | 
| 47694 | 1451 | have "E \<subseteq> Pow \<Omega>" | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41543diff
changeset | 1452 | using E sets_into_space by force | 
| 69555 | 1453 | then have *: "sigma_sets \<Omega> E = Dynkin \<Omega> E" | 
| 1454 | using \<open>Int_stable E\<close> by (rule sigma_eq_Dynkin) | |
| 1455 | then have "Dynkin \<Omega> E = M" | |
| 1456 | using assms Dynkin_subset[OF E(1)] by simp | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
51683diff
changeset | 1457 | with * show ?thesis | 
| 69555 | 1458 | using assms by (auto simp: Dynkin_def) | 
| 42864 | 1459 | qed | 
| 1460 | ||
| 61808 | 1461 | subsubsection \<open>Induction rule for intersection-stable generators\<close> | 
| 56994 | 1462 | |
| 70136 | 1463 | text\<^marker>\<open>tag important\<close> \<open>The reason to introduce Dynkin-systems is the following induction rules for \<open>\<sigma>\<close>-algebras | 
| 61808 | 1464 | generated by a generator closed under intersection.\<close> | 
| 56994 | 1465 | |
| 68607 
67bb59e49834
make theorem, corollary, and proposition %important for HOL-Analysis manual
 immler parents: 
68403diff
changeset | 1466 | proposition sigma_sets_induct_disjoint[consumes 3, case_names basic empty compl union]: | 
| 49789 
e0a4cb91a8a9
add induction rule for intersection-stable sigma-sets
 hoelzl parents: 
49782diff
changeset | 1467 | assumes "Int_stable G" | 
| 
e0a4cb91a8a9
add induction rule for intersection-stable sigma-sets
 hoelzl parents: 
49782diff
changeset | 1468 | and closed: "G \<subseteq> Pow \<Omega>" | 
| 
e0a4cb91a8a9
add induction rule for intersection-stable sigma-sets
 hoelzl parents: 
49782diff
changeset | 1469 | and A: "A \<in> sigma_sets \<Omega> G" | 
| 
e0a4cb91a8a9
add induction rule for intersection-stable sigma-sets
 hoelzl parents: 
49782diff
changeset | 1470 | assumes basic: "\<And>A. A \<in> G \<Longrightarrow> P A" | 
| 
e0a4cb91a8a9
add induction rule for intersection-stable sigma-sets
 hoelzl parents: 
49782diff
changeset | 1471 |     and empty: "P {}"
 | 
| 
e0a4cb91a8a9
add induction rule for intersection-stable sigma-sets
 hoelzl parents: 
49782diff
changeset | 1472 | and compl: "\<And>A. A \<in> sigma_sets \<Omega> G \<Longrightarrow> P A \<Longrightarrow> P (\<Omega> - A)" | 
| 
e0a4cb91a8a9
add induction rule for intersection-stable sigma-sets
 hoelzl parents: 
49782diff
changeset | 1473 | and union: "\<And>A. disjoint_family A \<Longrightarrow> range A \<subseteq> sigma_sets \<Omega> G \<Longrightarrow> (\<And>i. P (A i)) \<Longrightarrow> P (\<Union>i::nat. A i)" | 
| 
e0a4cb91a8a9
add induction rule for intersection-stable sigma-sets
 hoelzl parents: 
49782diff
changeset | 1474 | shows "P A" | 
| 68607 
67bb59e49834
make theorem, corollary, and proposition %important for HOL-Analysis manual
 immler parents: 
68403diff
changeset | 1475 | proof - | 
| 49789 
e0a4cb91a8a9
add induction rule for intersection-stable sigma-sets
 hoelzl parents: 
49782diff
changeset | 1476 |   let ?D = "{ A \<in> sigma_sets \<Omega> G. P A }"
 | 
| 
e0a4cb91a8a9
add induction rule for intersection-stable sigma-sets
 hoelzl parents: 
49782diff
changeset | 1477 | interpret sigma_algebra \<Omega> "sigma_sets \<Omega> G" | 
| 
e0a4cb91a8a9
add induction rule for intersection-stable sigma-sets
 hoelzl parents: 
49782diff
changeset | 1478 | using closed by (rule sigma_algebra_sigma_sets) | 
| 
e0a4cb91a8a9
add induction rule for intersection-stable sigma-sets
 hoelzl parents: 
49782diff
changeset | 1479 | from compl[OF _ empty] closed have space: "P \<Omega>" by simp | 
| 69555 | 1480 | interpret Dynkin_system \<Omega> ?D | 
| 61169 | 1481 | by standard (auto dest: sets_into_space intro!: space compl union) | 
| 49789 
e0a4cb91a8a9
add induction rule for intersection-stable sigma-sets
 hoelzl parents: 
49782diff
changeset | 1482 | have "sigma_sets \<Omega> G = ?D" | 
| 69555 | 1483 | by (rule Dynkin_lemma) (auto simp: basic \<open>Int_stable G\<close>) | 
| 49789 
e0a4cb91a8a9
add induction rule for intersection-stable sigma-sets
 hoelzl parents: 
49782diff
changeset | 1484 | with A show ?thesis by auto | 
| 
e0a4cb91a8a9
add induction rule for intersection-stable sigma-sets
 hoelzl parents: 
49782diff
changeset | 1485 | qed | 
| 
e0a4cb91a8a9
add induction rule for intersection-stable sigma-sets
 hoelzl parents: 
49782diff
changeset | 1486 | |
| 61808 | 1487 | subsection \<open>Measure type\<close> | 
| 56994 | 1488 | |
| 70136 | 1489 | definition\<^marker>\<open>tag important\<close> positive :: "'a set set \<Rightarrow> ('a set \<Rightarrow> ennreal) \<Rightarrow> bool" where
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1490 |   "positive M \<mu> \<longleftrightarrow> \<mu> {} = 0"
 | 
| 56994 | 1491 | |
| 70136 | 1492 | definition\<^marker>\<open>tag important\<close> countably_additive :: "'a set set \<Rightarrow> ('a set \<Rightarrow> ennreal) \<Rightarrow> bool" where
 | 
| 69554 | 1493 | "countably_additive M f \<longleftrightarrow> | 
| 1494 | (\<forall>A. range A \<subseteq> M \<longrightarrow> disjoint_family A \<longrightarrow> (\<Union>i. A i) \<in> M \<longrightarrow> | |
| 56994 | 1495 | (\<Sum>i. f (A i)) = f (\<Union>i. A i))" | 
| 1496 | ||
| 70136 | 1497 | definition\<^marker>\<open>tag important\<close> measure_space :: "'a set \<Rightarrow> 'a set set \<Rightarrow> ('a set \<Rightarrow> ennreal) \<Rightarrow> bool" where
 | 
| 69554 | 1498 | "measure_space \<Omega> A \<mu> \<longleftrightarrow> | 
| 1499 | sigma_algebra \<Omega> A \<and> positive A \<mu> \<and> countably_additive A \<mu>" | |
| 56994 | 1500 | |
| 70136 | 1501 | typedef\<^marker>\<open>tag important\<close> 'a measure = | 
| 69554 | 1502 |   "{(\<Omega>::'a set, A, \<mu>). (\<forall>a\<in>-A. \<mu> a = 0) \<and> measure_space \<Omega> A \<mu> }"
 | 
| 70136 | 1503 | proof | 
| 56994 | 1504 |   have "sigma_algebra UNIV {{}, UNIV}"
 | 
| 1505 | by (auto simp: sigma_algebra_iff2) | |
| 1506 |   then show "(UNIV, {{}, UNIV}, \<lambda>A. 0) \<in> {(\<Omega>, A, \<mu>). (\<forall>a\<in>-A. \<mu> a = 0) \<and> measure_space \<Omega> A \<mu>} "
 | |
| 1507 | by (auto simp: measure_space_def positive_def countably_additive_def) | |
| 1508 | qed | |
| 1509 | ||
| 70136 | 1510 | definition\<^marker>\<open>tag important\<close> space :: "'a measure \<Rightarrow> 'a set" where | 
| 56994 | 1511 | "space M = fst (Rep_measure M)" | 
| 1512 | ||
| 70136 | 1513 | definition\<^marker>\<open>tag important\<close> sets :: "'a measure \<Rightarrow> 'a set set" where | 
| 56994 | 1514 | "sets M = fst (snd (Rep_measure M))" | 
| 1515 | ||
| 70136 | 1516 | definition\<^marker>\<open>tag important\<close> emeasure :: "'a measure \<Rightarrow> 'a set \<Rightarrow> ennreal" where | 
| 56994 | 1517 | "emeasure M = snd (snd (Rep_measure M))" | 
| 1518 | ||
| 70136 | 1519 | definition\<^marker>\<open>tag important\<close> measure :: "'a measure \<Rightarrow> 'a set \<Rightarrow> real" where | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1520 | "measure M A = enn2real (emeasure M A)" | 
| 56994 | 1521 | |
| 1522 | declare [[coercion sets]] | |
| 1523 | ||
| 1524 | declare [[coercion measure]] | |
| 1525 | ||
| 1526 | declare [[coercion emeasure]] | |
| 1527 | ||
| 1528 | lemma measure_space: "measure_space (space M) (sets M) (emeasure M)" | |
| 1529 | by (cases M) (auto simp: space_def sets_def emeasure_def Abs_measure_inverse) | |
| 1530 | ||
| 61605 | 1531 | interpretation sets: sigma_algebra "space M" "sets M" for M :: "'a measure" | 
| 56994 | 1532 | using measure_space[of M] by (auto simp: measure_space_def) | 
| 1533 | ||
| 70136 | 1534 | definition\<^marker>\<open>tag important\<close> measure_of :: "'a set \<Rightarrow> 'a set set \<Rightarrow> ('a set \<Rightarrow> ennreal) \<Rightarrow> 'a measure"
 | 
| 69554 | 1535 | where | 
| 1536 | "measure_of \<Omega> A \<mu> = | |
| 1537 |   Abs_measure (\<Omega>, if A \<subseteq> Pow \<Omega> then sigma_sets \<Omega> A else {{}, \<Omega>},
 | |
| 56994 | 1538 | \<lambda>a. if a \<in> sigma_sets \<Omega> A \<and> measure_space \<Omega> (sigma_sets \<Omega> A) \<mu> then \<mu> a else 0)" | 
| 1539 | ||
| 1540 | abbreviation "sigma \<Omega> A \<equiv> measure_of \<Omega> A (\<lambda>x. 0)" | |
| 1541 | ||
| 1542 | lemma measure_space_0: "A \<subseteq> Pow \<Omega> \<Longrightarrow> measure_space \<Omega> (sigma_sets \<Omega> A) (\<lambda>x. 0)" | |
| 1543 | unfolding measure_space_def | |
| 1544 | by (auto intro!: sigma_algebra_sigma_sets simp: positive_def countably_additive_def) | |
| 1545 | ||
| 1546 | lemma sigma_algebra_trivial: "sigma_algebra \<Omega> {{}, \<Omega>}"
 | |
| 1547 | by unfold_locales(fastforce intro: exI[where x="{{}}"] exI[where x="{\<Omega>}"])+
 | |
| 1548 | ||
| 1549 | lemma measure_space_0': "measure_space \<Omega> {{}, \<Omega>} (\<lambda>x. 0)"
 | |
| 1550 | by(simp add: measure_space_def positive_def countably_additive_def sigma_algebra_trivial) | |
| 1551 | ||
| 1552 | lemma measure_space_closed: | |
| 1553 | assumes "measure_space \<Omega> M \<mu>" | |
| 1554 | shows "M \<subseteq> Pow \<Omega>" | |
| 1555 | proof - | |
| 1556 | interpret sigma_algebra \<Omega> M using assms by(simp add: measure_space_def) | |
| 1557 | show ?thesis by(rule space_closed) | |
| 1558 | qed | |
| 1559 | ||
| 1560 | lemma (in ring_of_sets) positive_cong_eq: | |
| 1561 | "(\<And>a. a \<in> M \<Longrightarrow> \<mu>' a = \<mu> a) \<Longrightarrow> positive M \<mu>' = positive M \<mu>" | |
| 1562 | by (auto simp add: positive_def) | |
| 1563 | ||
| 1564 | lemma (in sigma_algebra) countably_additive_eq: | |
| 1565 | "(\<And>a. a \<in> M \<Longrightarrow> \<mu>' a = \<mu> a) \<Longrightarrow> countably_additive M \<mu>' = countably_additive M \<mu>" | |
| 1566 | unfolding countably_additive_def | |
| 1567 | by (intro arg_cong[where f=All] ext) (auto simp add: countably_additive_def subset_eq) | |
| 1568 | ||
| 1569 | lemma measure_space_eq: | |
| 1570 | assumes closed: "A \<subseteq> Pow \<Omega>" and eq: "\<And>a. a \<in> sigma_sets \<Omega> A \<Longrightarrow> \<mu> a = \<mu>' a" | |
| 1571 | shows "measure_space \<Omega> (sigma_sets \<Omega> A) \<mu> = measure_space \<Omega> (sigma_sets \<Omega> A) \<mu>'" | |
| 1572 | proof - | |
| 1573 | interpret sigma_algebra \<Omega> "sigma_sets \<Omega> A" using closed by (rule sigma_algebra_sigma_sets) | |
| 1574 | from positive_cong_eq[OF eq, of "\<lambda>i. i"] countably_additive_eq[OF eq, of "\<lambda>i. i"] show ?thesis | |
| 1575 | by (auto simp: measure_space_def) | |
| 1576 | qed | |
| 1577 | ||
| 1578 | lemma measure_of_eq: | |
| 1579 | assumes closed: "A \<subseteq> Pow \<Omega>" and eq: "(\<And>a. a \<in> sigma_sets \<Omega> A \<Longrightarrow> \<mu> a = \<mu>' a)" | |
| 1580 | shows "measure_of \<Omega> A \<mu> = measure_of \<Omega> A \<mu>'" | |
| 1581 | proof - | |
| 1582 | have "measure_space \<Omega> (sigma_sets \<Omega> A) \<mu> = measure_space \<Omega> (sigma_sets \<Omega> A) \<mu>'" | |
| 1583 | using assms by (rule measure_space_eq) | |
| 1584 | with eq show ?thesis | |
| 1585 | by (auto simp add: measure_of_def intro!: arg_cong[where f=Abs_measure]) | |
| 1586 | qed | |
| 1587 | ||
| 1588 | lemma | |
| 76834 | 1589 | shows space_measure_of_conv: "space (measure_of \<Omega> A \<mu>) = \<Omega>" (is ?space) | 
| 56994 | 1590 | and sets_measure_of_conv: | 
| 1591 |   "sets (measure_of \<Omega> A \<mu>) = (if A \<subseteq> Pow \<Omega> then sigma_sets \<Omega> A else {{}, \<Omega>})" (is ?sets)
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1592 | and emeasure_measure_of_conv: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1593 | "emeasure (measure_of \<Omega> A \<mu>) = | 
| 56994 | 1594 | (\<lambda>B. if B \<in> sigma_sets \<Omega> A \<and> measure_space \<Omega> (sigma_sets \<Omega> A) \<mu> then \<mu> B else 0)" (is ?emeasure) | 
| 1595 | proof - | |
| 1596 | have "?space \<and> ?sets \<and> ?emeasure" | |
| 1597 | proof(cases "measure_space \<Omega> (sigma_sets \<Omega> A) \<mu>") | |
| 1598 | case True | |
| 1599 | from measure_space_closed[OF this] sigma_sets_superset_generator[of A \<Omega>] | |
| 1600 | have "A \<subseteq> Pow \<Omega>" by simp | |
| 1601 | hence "measure_space \<Omega> (sigma_sets \<Omega> A) \<mu> = measure_space \<Omega> (sigma_sets \<Omega> A) | |
| 1602 | (\<lambda>a. if a \<in> sigma_sets \<Omega> A then \<mu> a else 0)" | |
| 1603 | by(rule measure_space_eq) auto | |
| 61808 | 1604 | with True \<open>A \<subseteq> Pow \<Omega>\<close> show ?thesis | 
| 56994 | 1605 | by(simp add: measure_of_def space_def sets_def emeasure_def Abs_measure_inverse) | 
| 1606 | next | |
| 1607 | case False thus ?thesis | |
| 1608 | by(cases "A \<subseteq> Pow \<Omega>")(simp_all add: Abs_measure_inverse measure_of_def sets_def space_def emeasure_def measure_space_0 measure_space_0') | |
| 1609 | qed | |
| 1610 | thus ?space ?sets ?emeasure by simp_all | |
| 1611 | qed | |
| 1612 | ||
| 1613 | lemma [simp]: | |
| 1614 | assumes A: "A \<subseteq> Pow \<Omega>" | |
| 1615 | shows sets_measure_of: "sets (measure_of \<Omega> A \<mu>) = sigma_sets \<Omega> A" | |
| 1616 | and space_measure_of: "space (measure_of \<Omega> A \<mu>) = \<Omega>" | |
| 1617 | using assms | |
| 1618 | by(simp_all add: sets_measure_of_conv space_measure_of_conv) | |
| 1619 | ||
| 64008 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63627diff
changeset | 1620 | lemma space_in_measure_of[simp]: "\<Omega> \<in> sets (measure_of \<Omega> M \<mu>)" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63627diff
changeset | 1621 | by (subst sets_measure_of_conv) (auto simp: sigma_sets_top) | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63627diff
changeset | 1622 | |
| 56994 | 1623 | lemma (in sigma_algebra) sets_measure_of_eq[simp]: "sets (measure_of \<Omega> M \<mu>) = M" | 
| 1624 | using space_closed by (auto intro!: sigma_sets_eq) | |
| 1625 | ||
| 1626 | lemma (in sigma_algebra) space_measure_of_eq[simp]: "space (measure_of \<Omega> M \<mu>) = \<Omega>" | |
| 1627 | by (rule space_measure_of_conv) | |
| 1628 | ||
| 1629 | lemma measure_of_subset: "M \<subseteq> Pow \<Omega> \<Longrightarrow> M' \<subseteq> M \<Longrightarrow> sets (measure_of \<Omega> M' \<mu>) \<subseteq> sets (measure_of \<Omega> M \<mu>')" | |
| 1630 | by (auto intro!: sigma_sets_subseteq) | |
| 1631 | ||
| 59000 | 1632 | lemma emeasure_sigma: "emeasure (sigma \<Omega> A) = (\<lambda>x. 0)" | 
| 1633 | unfolding measure_of_def emeasure_def | |
| 1634 | by (subst Abs_measure_inverse) | |
| 1635 | (auto simp: measure_space_def positive_def countably_additive_def | |
| 1636 | intro!: sigma_algebra_sigma_sets sigma_algebra_trivial) | |
| 1637 | ||
| 56994 | 1638 | lemma sigma_sets_mono'': | 
| 1639 | assumes "A \<in> sigma_sets C D" | |
| 1640 | assumes "B \<subseteq> D" | |
| 1641 | assumes "D \<subseteq> Pow C" | |
| 1642 | shows "sigma_sets A B \<subseteq> sigma_sets C D" | |
| 1643 | proof | |
| 1644 | fix x assume "x \<in> sigma_sets A B" | |
| 1645 | thus "x \<in> sigma_sets C D" | |
| 1646 | proof induct | |
| 1647 | case (Basic a) with assms have "a \<in> D" by auto | |
| 1648 | thus ?case .. | |
| 1649 | next | |
| 1650 | case Empty show ?case by (rule sigma_sets.Empty) | |
| 1651 | next | |
| 61808 | 1652 | from assms have "A \<in> sets (sigma C D)" by (subst sets_measure_of[OF \<open>D \<subseteq> Pow C\<close>]) | 
| 1653 | moreover case (Compl a) hence "a \<in> sets (sigma C D)" by (subst sets_measure_of[OF \<open>D \<subseteq> Pow C\<close>]) | |
| 56994 | 1654 | ultimately have "A - a \<in> sets (sigma C D)" .. | 
| 61808 | 1655 | thus ?case by (subst (asm) sets_measure_of[OF \<open>D \<subseteq> Pow C\<close>]) | 
| 56994 | 1656 | next | 
| 1657 | case (Union a) | |
| 1658 | thus ?case by (intro sigma_sets.Union) | |
| 1659 | qed | |
| 1660 | qed | |
| 1661 | ||
| 1662 | lemma in_measure_of[intro, simp]: "M \<subseteq> Pow \<Omega> \<Longrightarrow> A \<in> M \<Longrightarrow> A \<in> sets (measure_of \<Omega> M \<mu>)" | |
| 1663 | by auto | |
| 1664 | ||
| 58606 | 1665 | lemma space_empty_iff: "space N = {} \<longleftrightarrow> sets N = {{}}"
 | 
| 1666 | by (metis Pow_empty Sup_bot_conv(1) cSup_singleton empty_iff | |
| 1667 | sets.sigma_sets_eq sets.space_closed sigma_sets_top subset_singletonD) | |
| 1668 | ||
| 69597 | 1669 | subsubsection \<open>Constructing simple \<^typ>\<open>'a measure\<close>\<close> | 
| 56994 | 1670 | |
| 68607 
67bb59e49834
make theorem, corollary, and proposition %important for HOL-Analysis manual
 immler parents: 
68403diff
changeset | 1671 | proposition emeasure_measure_of: | 
| 56994 | 1672 | assumes M: "M = measure_of \<Omega> A \<mu>" | 
| 1673 | assumes ms: "A \<subseteq> Pow \<Omega>" "positive (sets M) \<mu>" "countably_additive (sets M) \<mu>" | |
| 1674 | assumes X: "X \<in> sets M" | |
| 1675 | shows "emeasure M X = \<mu> X" | |
| 68607 
67bb59e49834
make theorem, corollary, and proposition %important for HOL-Analysis manual
 immler parents: 
68403diff
changeset | 1676 | proof - | 
| 56994 | 1677 | interpret sigma_algebra \<Omega> "sigma_sets \<Omega> A" by (rule sigma_algebra_sigma_sets) fact | 
| 1678 | have "measure_space \<Omega> (sigma_sets \<Omega> A) \<mu>" | |
| 1679 | using ms M by (simp add: measure_space_def sigma_algebra_sigma_sets) | |
| 1680 | thus ?thesis using X ms | |
| 1681 | by(simp add: M emeasure_measure_of_conv sets_measure_of_conv) | |
| 1682 | qed | |
| 1683 | ||
| 1684 | lemma emeasure_measure_of_sigma: | |
| 1685 | assumes ms: "sigma_algebra \<Omega> M" "positive M \<mu>" "countably_additive M \<mu>" | |
| 1686 | assumes A: "A \<in> M" | |
| 1687 | shows "emeasure (measure_of \<Omega> M \<mu>) A = \<mu> A" | |
| 1688 | proof - | |
| 1689 | interpret sigma_algebra \<Omega> M by fact | |
| 1690 | have "measure_space \<Omega> (sigma_sets \<Omega> M) \<mu>" | |
| 1691 | using ms sigma_sets_eq by (simp add: measure_space_def) | |
| 1692 | thus ?thesis by(simp add: emeasure_measure_of_conv A) | |
| 1693 | qed | |
| 1694 | ||
| 1695 | lemma measure_cases[cases type: measure]: | |
| 1696 | obtains (measure) \<Omega> A \<mu> where "x = Abs_measure (\<Omega>, A, \<mu>)" "\<forall>a\<in>-A. \<mu> a = 0" "measure_space \<Omega> A \<mu>" | |
| 1697 | by atomize_elim (cases x, auto) | |
| 1698 | ||
| 60772 | 1699 | lemma sets_le_imp_space_le: "sets A \<subseteq> sets B \<Longrightarrow> space A \<subseteq> space B" | 
| 1700 | by (auto dest: sets.sets_into_space) | |
| 1701 | ||
| 1702 | lemma sets_eq_imp_space_eq: "sets M = sets M' \<Longrightarrow> space M = space M'" | |
| 1703 | by (auto intro!: antisym sets_le_imp_space_le) | |
| 56994 | 1704 | |
| 1705 | lemma emeasure_notin_sets: "A \<notin> sets M \<Longrightarrow> emeasure M A = 0" | |
| 1706 | by (cases M) (auto simp: sets_def emeasure_def Abs_measure_inverse measure_space_def) | |
| 1707 | ||
| 1708 | lemma emeasure_neq_0_sets: "emeasure M A \<noteq> 0 \<Longrightarrow> A \<in> sets M" | |
| 1709 | using emeasure_notin_sets[of A M] by blast | |
| 1710 | ||
| 1711 | lemma measure_notin_sets: "A \<notin> sets M \<Longrightarrow> measure M A = 0" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1712 | by (simp add: measure_def emeasure_notin_sets zero_ennreal.rep_eq) | 
| 56994 | 1713 | |
| 1714 | lemma measure_eqI: | |
| 1715 | fixes M N :: "'a measure" | |
| 1716 | assumes "sets M = sets N" and eq: "\<And>A. A \<in> sets M \<Longrightarrow> emeasure M A = emeasure N A" | |
| 1717 | shows "M = N" | |
| 1718 | proof (cases M N rule: measure_cases[case_product measure_cases]) | |
| 1719 | case (measure_measure \<Omega> A \<mu> \<Omega>' A' \<mu>') | |
| 1720 | interpret M: sigma_algebra \<Omega> A using measure_measure by (auto simp: measure_space_def) | |
| 1721 | interpret N: sigma_algebra \<Omega>' A' using measure_measure by (auto simp: measure_space_def) | |
| 1722 | have "A = sets M" "A' = sets N" | |
| 1723 | using measure_measure by (simp_all add: sets_def Abs_measure_inverse) | |
| 61808 | 1724 | with \<open>sets M = sets N\<close> have AA': "A = A'" by simp | 
| 56994 | 1725 | moreover from M.top N.top M.space_closed N.space_closed AA' have "\<Omega> = \<Omega>'" by auto | 
| 1726 |   moreover { fix B have "\<mu> B = \<mu>' B"
 | |
| 1727 | proof cases | |
| 1728 | assume "B \<in> A" | |
| 61808 | 1729 | with eq \<open>A = sets M\<close> have "emeasure M B = emeasure N B" by simp | 
| 56994 | 1730 | with measure_measure show "\<mu> B = \<mu>' B" | 
| 1731 | by (simp add: emeasure_def Abs_measure_inverse) | |
| 1732 | next | |
| 1733 | assume "B \<notin> A" | |
| 61808 | 1734 | with \<open>A = sets M\<close> \<open>A' = sets N\<close> \<open>A = A'\<close> have "B \<notin> sets M" "B \<notin> sets N" | 
| 56994 | 1735 | by auto | 
| 1736 | then have "emeasure M B = 0" "emeasure N B = 0" | |
| 1737 | by (simp_all add: emeasure_notin_sets) | |
| 1738 | with measure_measure show "\<mu> B = \<mu>' B" | |
| 1739 | by (simp add: emeasure_def Abs_measure_inverse) | |
| 1740 | qed } | |
| 1741 | then have "\<mu> = \<mu>'" by auto | |
| 1742 | ultimately show "M = N" | |
| 1743 | by (simp add: measure_measure) | |
| 1744 | qed | |
| 1745 | ||
| 1746 | lemma sigma_eqI: | |
| 1747 | assumes [simp]: "M \<subseteq> Pow \<Omega>" "N \<subseteq> Pow \<Omega>" "sigma_sets \<Omega> M = sigma_sets \<Omega> N" | |
| 1748 | shows "sigma \<Omega> M = sigma \<Omega> N" | |
| 1749 | by (rule measure_eqI) (simp_all add: emeasure_sigma) | |
| 1750 | ||
| 61808 | 1751 | subsubsection \<open>Measurable functions\<close> | 
| 56994 | 1752 | |
| 70136 | 1753 | definition\<^marker>\<open>tag important\<close> measurable :: "'a measure \<Rightarrow> 'b measure \<Rightarrow> ('a \<Rightarrow> 'b) set"
 | 
| 69554 | 1754 | (infixr "\<rightarrow>\<^sub>M" 60) where | 
| 1755 | "measurable A B = {f \<in> space A \<rightarrow> space B. \<forall>y \<in> sets B. f -` y \<inter> space A \<in> sets A}"
 | |
| 56994 | 1756 | |
| 59415 | 1757 | lemma measurableI: | 
| 1758 | "(\<And>x. x \<in> space M \<Longrightarrow> f x \<in> space N) \<Longrightarrow> (\<And>A. A \<in> sets N \<Longrightarrow> f -` A \<inter> space M \<in> sets M) \<Longrightarrow> | |
| 1759 | f \<in> measurable M N" | |
| 1760 | by (auto simp: measurable_def) | |
| 1761 | ||
| 56994 | 1762 | lemma measurable_space: | 
| 1763 | "f \<in> measurable M A \<Longrightarrow> x \<in> space M \<Longrightarrow> f x \<in> space A" | |
| 1764 | unfolding measurable_def by auto | |
| 1765 | ||
| 1766 | lemma measurable_sets: | |
| 1767 | "f \<in> measurable M A \<Longrightarrow> S \<in> sets A \<Longrightarrow> f -` S \<inter> space M \<in> sets M" | |
| 1768 | unfolding measurable_def by auto | |
| 1769 | ||
| 1770 | lemma measurable_sets_Collect: | |
| 1771 |   assumes f: "f \<in> measurable M N" and P: "{x\<in>space N. P x} \<in> sets N" shows "{x\<in>space M. P (f x)} \<in> sets M"
 | |
| 1772 | proof - | |
| 1773 |   have "f -` {x \<in> space N. P x} \<inter> space M = {x\<in>space M. P (f x)}"
 | |
| 1774 | using measurable_space[OF f] by auto | |
| 1775 | with measurable_sets[OF f P] show ?thesis | |
| 1776 | by simp | |
| 1777 | qed | |
| 1778 | ||
| 1779 | lemma measurable_sigma_sets: | |
| 1780 | assumes B: "sets N = sigma_sets \<Omega> A" "A \<subseteq> Pow \<Omega>" | |
| 1781 | and f: "f \<in> space M \<rightarrow> \<Omega>" | |
| 1782 | and ba: "\<And>y. y \<in> A \<Longrightarrow> (f -` y) \<inter> space M \<in> sets M" | |
| 1783 | shows "f \<in> measurable M N" | |
| 1784 | proof - | |
| 1785 | interpret A: sigma_algebra \<Omega> "sigma_sets \<Omega> A" using B(2) by (rule sigma_algebra_sigma_sets) | |
| 1786 | from B sets.top[of N] A.top sets.space_closed[of N] A.space_closed have \<Omega>: "\<Omega> = space N" by force | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1787 | |
| 56994 | 1788 |   { fix X assume "X \<in> sigma_sets \<Omega> A"
 | 
| 1789 | then have "f -` X \<inter> space M \<in> sets M \<and> X \<subseteq> \<Omega>" | |
| 1790 | proof induct | |
| 1791 | case (Basic a) then show ?case | |
| 1792 | by (auto simp add: ba) (metis B(2) subsetD PowD) | |
| 1793 | next | |
| 1794 | case (Compl a) | |
| 1795 | have [simp]: "f -` \<Omega> \<inter> space M = space M" | |
| 1796 | by (auto simp add: funcset_mem [OF f]) | |
| 1797 | then show ?case | |
| 1798 | by (auto simp add: vimage_Diff Diff_Int_distrib2 sets.compl_sets Compl) | |
| 1799 | next | |
| 1800 | case (Union a) | |
| 1801 | then show ?case | |
| 1802 | by (simp add: vimage_UN, simp only: UN_extend_simps(4)) blast | |
| 1803 | qed auto } | |
| 1804 | with f show ?thesis | |
| 1805 | by (auto simp add: measurable_def B \<Omega>) | |
| 1806 | qed | |
| 1807 | ||
| 1808 | lemma measurable_measure_of: | |
| 1809 | assumes B: "N \<subseteq> Pow \<Omega>" | |
| 1810 | and f: "f \<in> space M \<rightarrow> \<Omega>" | |
| 1811 | and ba: "\<And>y. y \<in> N \<Longrightarrow> (f -` y) \<inter> space M \<in> sets M" | |
| 1812 | shows "f \<in> measurable M (measure_of \<Omega> N \<mu>)" | |
| 1813 | proof - | |
| 1814 | have "sets (measure_of \<Omega> N \<mu>) = sigma_sets \<Omega> N" | |
| 1815 | using B by (rule sets_measure_of) | |
| 1816 | from this assms show ?thesis by (rule measurable_sigma_sets) | |
| 1817 | qed | |
| 1818 | ||
| 1819 | lemma measurable_iff_measure_of: | |
| 1820 | assumes "N \<subseteq> Pow \<Omega>" "f \<in> space M \<rightarrow> \<Omega>" | |
| 1821 | shows "f \<in> measurable M (measure_of \<Omega> N \<mu>) \<longleftrightarrow> (\<forall>A\<in>N. f -` A \<inter> space M \<in> sets M)" | |
| 1822 | by (metis assms in_measure_of measurable_measure_of assms measurable_sets) | |
| 1823 | ||
| 1824 | lemma measurable_cong_sets: | |
| 1825 | assumes sets: "sets M = sets M'" "sets N = sets N'" | |
| 1826 | shows "measurable M N = measurable M' N'" | |
| 1827 | using sets[THEN sets_eq_imp_space_eq] sets by (simp add: measurable_def) | |
| 1828 | ||
| 1829 | lemma measurable_cong: | |
| 59415 | 1830 | assumes "\<And>w. w \<in> space M \<Longrightarrow> f w = g w" | 
| 56994 | 1831 | shows "f \<in> measurable M M' \<longleftrightarrow> g \<in> measurable M M'" | 
| 1832 | unfolding measurable_def using assms | |
| 1833 | by (simp cong: vimage_inter_cong Pi_cong) | |
| 1834 | ||
| 59415 | 1835 | lemma measurable_cong': | 
| 1836 | assumes "\<And>w. w \<in> space M =simp=> f w = g w" | |
| 1837 | shows "f \<in> measurable M M' \<longleftrightarrow> g \<in> measurable M M'" | |
| 1838 | unfolding measurable_def using assms | |
| 1839 | by (simp cong: vimage_inter_cong Pi_cong add: simp_implies_def) | |
| 1840 | ||
| 69546 
27dae626822b
prefer naming convention from datatype package for strong congruence rules
 haftmann parents: 
69313diff
changeset | 1841 | lemma measurable_cong_simp: | 
| 56994 | 1842 | "M = N \<Longrightarrow> M' = N' \<Longrightarrow> (\<And>w. w \<in> space M \<Longrightarrow> f w = g w) \<Longrightarrow> | 
| 1843 | f \<in> measurable M M' \<longleftrightarrow> g \<in> measurable N N'" | |
| 1844 | by (metis measurable_cong) | |
| 1845 | ||
| 1846 | lemma measurable_compose: | |
| 1847 | assumes f: "f \<in> measurable M N" and g: "g \<in> measurable N L" | |
| 1848 | shows "(\<lambda>x. g (f x)) \<in> measurable M L" | |
| 1849 | proof - | |
| 1850 | have "\<And>A. (\<lambda>x. g (f x)) -` A \<inter> space M = f -` (g -` A \<inter> space N) \<inter> space M" | |
| 1851 | using measurable_space[OF f] by auto | |
| 1852 | with measurable_space[OF f] measurable_space[OF g] show ?thesis | |
| 1853 | by (auto intro: measurable_sets[OF f] measurable_sets[OF g] | |
| 1854 | simp del: vimage_Int simp add: measurable_def) | |
| 1855 | qed | |
| 1856 | ||
| 1857 | lemma measurable_comp: | |
| 1858 | "f \<in> measurable M N \<Longrightarrow> g \<in> measurable N L \<Longrightarrow> g \<circ> f \<in> measurable M L" | |
| 1859 | using measurable_compose[of f M N g L] by (simp add: comp_def) | |
| 1860 | ||
| 1861 | lemma measurable_const: | |
| 1862 | "c \<in> space M' \<Longrightarrow> (\<lambda>x. c) \<in> measurable M M'" | |
| 1863 | by (auto simp add: measurable_def) | |
| 1864 | ||
| 1865 | lemma measurable_ident: "id \<in> measurable M M" | |
| 1866 | by (auto simp add: measurable_def) | |
| 1867 | ||
| 59048 | 1868 | lemma measurable_id: "(\<lambda>x. x) \<in> measurable M M" | 
| 1869 | by (simp add: measurable_def) | |
| 1870 | ||
| 56994 | 1871 | lemma measurable_ident_sets: | 
| 1872 | assumes eq: "sets M = sets M'" shows "(\<lambda>x. x) \<in> measurable M M'" | |
| 1873 | using measurable_ident[of M] | |
| 1874 | unfolding id_def measurable_def eq sets_eq_imp_space_eq[OF eq] . | |
| 1875 | ||
| 1876 | lemma sets_Least: | |
| 1877 |   assumes meas: "\<And>i::nat. {x\<in>space M. P i x} \<in> M"
 | |
| 1878 | shows "(\<lambda>x. LEAST j. P j x) -` A \<inter> space M \<in> sets M" | |
| 1879 | proof - | |
| 1880 |   { fix i have "(\<lambda>x. LEAST j. P j x) -` {i} \<inter> space M \<in> sets M"
 | |
| 1881 | proof cases | |
| 1882 | assume i: "(LEAST j. False) = i" | |
| 1883 |       have "(\<lambda>x. LEAST j. P j x) -` {i} \<inter> space M =
 | |
| 1884 |         {x\<in>space M. P i x} \<inter> (space M - (\<Union>j<i. {x\<in>space M. P j x})) \<union> (space M - (\<Union>i. {x\<in>space M. P i x}))"
 | |
| 1885 | by (simp add: set_eq_iff, safe) | |
| 1886 | (insert i, auto dest: Least_le intro: LeastI intro!: Least_equality) | |
| 1887 | with meas show ?thesis | |
| 1888 | by (auto intro!: sets.Int) | |
| 1889 | next | |
| 1890 | assume i: "(LEAST j. False) \<noteq> i" | |
| 1891 |       then have "(\<lambda>x. LEAST j. P j x) -` {i} \<inter> space M =
 | |
| 1892 |         {x\<in>space M. P i x} \<inter> (space M - (\<Union>j<i. {x\<in>space M. P j x}))"
 | |
| 1893 | proof (simp add: set_eq_iff, safe) | |
| 1894 | fix x assume neq: "(LEAST j. False) \<noteq> (LEAST j. P j x)" | |
| 1895 | have "\<exists>j. P j x" | |
| 1896 | by (rule ccontr) (insert neq, auto) | |
| 1897 | then show "P (LEAST j. P j x) x" by (rule LeastI_ex) | |
| 1898 | qed (auto dest: Least_le intro!: Least_equality) | |
| 1899 | with meas show ?thesis | |
| 1900 | by auto | |
| 1901 | qed } | |
| 1902 |   then have "(\<Union>i\<in>A. (\<lambda>x. LEAST j. P j x) -` {i} \<inter> space M) \<in> sets M"
 | |
| 1903 | by (intro sets.countable_UN) auto | |
| 1904 |   moreover have "(\<Union>i\<in>A. (\<lambda>x. LEAST j. P j x) -` {i} \<inter> space M) =
 | |
| 1905 | (\<lambda>x. LEAST j. P j x) -` A \<inter> space M" by auto | |
| 1906 | ultimately show ?thesis by auto | |
| 1907 | qed | |
| 1908 | ||
| 1909 | lemma measurable_mono1: | |
| 1910 | "M' \<subseteq> Pow \<Omega> \<Longrightarrow> M \<subseteq> M' \<Longrightarrow> | |
| 1911 | measurable (measure_of \<Omega> M \<mu>) N \<subseteq> measurable (measure_of \<Omega> M' \<mu>') N" | |
| 1912 | using measure_of_subset[of M' \<Omega> M] by (auto simp add: measurable_def) | |
| 1913 | ||
| 61808 | 1914 | subsubsection \<open>Counting space\<close> | 
| 56994 | 1915 | |
| 70136 | 1916 | definition\<^marker>\<open>tag important\<close> count_space :: "'a set \<Rightarrow> 'a measure" where | 
| 69554 | 1917 | "count_space \<Omega> = measure_of \<Omega> (Pow \<Omega>) (\<lambda>A. if finite A then of_nat (card A) else \<infinity>)" | 
| 56994 | 1918 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1919 | lemma | 
| 56994 | 1920 | shows space_count_space[simp]: "space (count_space \<Omega>) = \<Omega>" | 
| 1921 | and sets_count_space[simp]: "sets (count_space \<Omega>) = Pow \<Omega>" | |
| 1922 | using sigma_sets_into_sp[of "Pow \<Omega>" \<Omega>] | |
| 1923 | by (auto simp: count_space_def) | |
| 1924 | ||
| 1925 | lemma measurable_count_space_eq1[simp]: | |
| 1926 | "f \<in> measurable (count_space A) M \<longleftrightarrow> f \<in> A \<rightarrow> space M" | |
| 1927 | unfolding measurable_def by simp | |
| 1928 | ||
| 59000 | 1929 | lemma measurable_compose_countable': | 
| 1930 | assumes f: "\<And>i. i \<in> I \<Longrightarrow> (\<lambda>x. f i x) \<in> measurable M N" | |
| 1931 | and g: "g \<in> measurable M (count_space I)" and I: "countable I" | |
| 56994 | 1932 | shows "(\<lambda>x. f (g x) x) \<in> measurable M N" | 
| 1933 | unfolding measurable_def | |
| 1934 | proof safe | |
| 1935 | fix x assume "x \<in> space M" then show "f (g x) x \<in> space N" | |
| 59000 | 1936 | using measurable_space[OF f] g[THEN measurable_space] by auto | 
| 56994 | 1937 | next | 
| 1938 | fix A assume A: "A \<in> sets N" | |
| 59000 | 1939 |   have "(\<lambda>x. f (g x) x) -` A \<inter> space M = (\<Union>i\<in>I. (g -` {i} \<inter> space M) \<inter> (f i -` A \<inter> space M))"
 | 
| 1940 | using measurable_space[OF g] by auto | |
| 59415 | 1941 | also have "\<dots> \<in> sets M" | 
| 1942 | using f[THEN measurable_sets, OF _ A] g[THEN measurable_sets] | |
| 1943 | by (auto intro!: sets.countable_UN' I intro: sets.Int[OF measurable_sets measurable_sets]) | |
| 56994 | 1944 | finally show "(\<lambda>x. f (g x) x) -` A \<inter> space M \<in> sets M" . | 
| 1945 | qed | |
| 1946 | ||
| 1947 | lemma measurable_count_space_eq_countable: | |
| 1948 | assumes "countable A" | |
| 1949 |   shows "f \<in> measurable M (count_space A) \<longleftrightarrow> (f \<in> space M \<rightarrow> A \<and> (\<forall>a\<in>A. f -` {a} \<inter> space M \<in> sets M))"
 | |
| 1950 | proof - | |
| 1951 |   { fix X assume "X \<subseteq> A" "f \<in> space M \<rightarrow> A"
 | |
| 61808 | 1952 |     with \<open>countable A\<close> have "f -` X \<inter> space M = (\<Union>a\<in>X. f -` {a} \<inter> space M)" "countable X"
 | 
| 56994 | 1953 | by (auto dest: countable_subset) | 
| 1954 |     moreover assume "\<forall>a\<in>A. f -` {a} \<inter> space M \<in> sets M"
 | |
| 1955 | ultimately have "f -` X \<inter> space M \<in> sets M" | |
| 61808 | 1956 | using \<open>X \<subseteq> A\<close> by (auto intro!: sets.countable_UN' simp del: UN_simps) } | 
| 56994 | 1957 | then show ?thesis | 
| 1958 | unfolding measurable_def by auto | |
| 1959 | qed | |
| 1960 | ||
| 59415 | 1961 | lemma measurable_count_space_eq2: | 
| 1962 |   "finite A \<Longrightarrow> f \<in> measurable M (count_space A) \<longleftrightarrow> (f \<in> space M \<rightarrow> A \<and> (\<forall>a\<in>A. f -` {a} \<inter> space M \<in> sets M))"
 | |
| 1963 | by (intro measurable_count_space_eq_countable countable_finite) | |
| 1964 | ||
| 1965 | lemma measurable_count_space_eq2_countable: | |
| 1966 | fixes f :: "'a => 'c::countable" | |
| 1967 |   shows "f \<in> measurable M (count_space A) \<longleftrightarrow> (f \<in> space M \<rightarrow> A \<and> (\<forall>a\<in>A. f -` {a} \<inter> space M \<in> sets M))"
 | |
| 1968 | by (intro measurable_count_space_eq_countable countableI_type) | |
| 1969 | ||
| 1970 | lemma measurable_compose_countable: | |
| 1971 | assumes f: "\<And>i::'i::countable. (\<lambda>x. f i x) \<in> measurable M N" and g: "g \<in> measurable M (count_space UNIV)" | |
| 1972 | shows "(\<lambda>x. f (g x) x) \<in> measurable M N" | |
| 1973 | by (rule measurable_compose_countable'[OF assms]) auto | |
| 1974 | ||
| 1975 | lemma measurable_count_space_const: | |
| 1976 | "(\<lambda>x. c) \<in> measurable M (count_space UNIV)" | |
| 1977 | by (simp add: measurable_const) | |
| 1978 | ||
| 1979 | lemma measurable_count_space: | |
| 1980 | "f \<in> measurable (count_space A) (count_space UNIV)" | |
| 1981 | by simp | |
| 1982 | ||
| 1983 | lemma measurable_compose_rev: | |
| 1984 | assumes f: "f \<in> measurable L N" and g: "g \<in> measurable M L" | |
| 1985 | shows "(\<lambda>x. f (g x)) \<in> measurable M N" | |
| 1986 | using measurable_compose[OF g f] . | |
| 1987 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1988 | lemma measurable_empty_iff: | 
| 58606 | 1989 |   "space N = {} \<Longrightarrow> f \<in> measurable M N \<longleftrightarrow> space M = {}"
 | 
| 1990 | by (auto simp add: measurable_def Pi_iff) | |
| 1991 | ||
| 70136 | 1992 | subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Extend measure\<close> | 
| 56994 | 1993 | |
| 69554 | 1994 | definition extend_measure :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('b \<Rightarrow> 'a set) \<Rightarrow> ('b \<Rightarrow> ennreal) \<Rightarrow> 'a measure"
 | 
| 1995 | where | |
| 1996 | "extend_measure \<Omega> I G \<mu> = | |
| 56994 | 1997 | (if (\<exists>\<mu>'. (\<forall>i\<in>I. \<mu>' (G i) = \<mu> i) \<and> measure_space \<Omega> (sigma_sets \<Omega> (G`I)) \<mu>') \<and> \<not> (\<forall>i\<in>I. \<mu> i = 0) | 
| 1998 | then measure_of \<Omega> (G`I) (SOME \<mu>'. (\<forall>i\<in>I. \<mu>' (G i) = \<mu> i) \<and> measure_space \<Omega> (sigma_sets \<Omega> (G`I)) \<mu>') | |
| 1999 | else measure_of \<Omega> (G`I) (\<lambda>_. 0))" | |
| 2000 | ||
| 2001 | lemma space_extend_measure: "G ` I \<subseteq> Pow \<Omega> \<Longrightarrow> space (extend_measure \<Omega> I G \<mu>) = \<Omega>" | |
| 2002 | unfolding extend_measure_def by simp | |
| 2003 | ||
| 2004 | lemma sets_extend_measure: "G ` I \<subseteq> Pow \<Omega> \<Longrightarrow> sets (extend_measure \<Omega> I G \<mu>) = sigma_sets \<Omega> (G`I)" | |
| 2005 | unfolding extend_measure_def by simp | |
| 2006 | ||
| 2007 | lemma emeasure_extend_measure: | |
| 2008 | assumes M: "M = extend_measure \<Omega> I G \<mu>" | |
| 2009 | and eq: "\<And>i. i \<in> I \<Longrightarrow> \<mu>' (G i) = \<mu> i" | |
| 2010 | and ms: "G ` I \<subseteq> Pow \<Omega>" "positive (sets M) \<mu>'" "countably_additive (sets M) \<mu>'" | |
| 2011 | and "i \<in> I" | |
| 2012 | shows "emeasure M (G i) = \<mu> i" | |
| 2013 | proof cases | |
| 2014 | assume *: "(\<forall>i\<in>I. \<mu> i = 0)" | |
| 2015 | with M have M_eq: "M = measure_of \<Omega> (G`I) (\<lambda>_. 0)" | |
| 2016 | by (simp add: extend_measure_def) | |
| 61808 | 2017 | from measure_space_0[OF ms(1)] ms \<open>i\<in>I\<close> | 
| 56994 | 2018 | have "emeasure M (G i) = 0" | 
| 2019 | by (intro emeasure_measure_of[OF M_eq]) (auto simp add: M measure_space_def sets_extend_measure) | |
| 61808 | 2020 | with \<open>i\<in>I\<close> * show ?thesis | 
| 56994 | 2021 | by simp | 
| 2022 | next | |
| 63040 | 2023 | define P where "P \<mu>' \<longleftrightarrow> (\<forall>i\<in>I. \<mu>' (G i) = \<mu> i) \<and> measure_space \<Omega> (sigma_sets \<Omega> (G`I)) \<mu>'" for \<mu>' | 
| 56994 | 2024 | assume "\<not> (\<forall>i\<in>I. \<mu> i = 0)" | 
| 2025 | moreover | |
| 2026 | have "measure_space (space M) (sets M) \<mu>'" | |
| 61169 | 2027 | using ms unfolding measure_space_def by auto standard | 
| 56994 | 2028 | with ms eq have "\<exists>\<mu>'. P \<mu>'" | 
| 2029 | unfolding P_def | |
| 2030 | by (intro exI[of _ \<mu>']) (auto simp add: M space_extend_measure sets_extend_measure) | |
| 2031 | ultimately have M_eq: "M = measure_of \<Omega> (G`I) (Eps P)" | |
| 2032 | by (simp add: M extend_measure_def P_def[symmetric]) | |
| 2033 | ||
| 61808 | 2034 | from \<open>\<exists>\<mu>'. P \<mu>'\<close> have P: "P (Eps P)" by (rule someI_ex) | 
| 56994 | 2035 | show "emeasure M (G i) = \<mu> i" | 
| 2036 | proof (subst emeasure_measure_of[OF M_eq]) | |
| 2037 | have sets_M: "sets M = sigma_sets \<Omega> (G`I)" | |
| 2038 | using M_eq ms by (auto simp: sets_extend_measure) | |
| 61808 | 2039 | then show "G i \<in> sets M" using \<open>i \<in> I\<close> by auto | 
| 56994 | 2040 | show "positive (sets M) (Eps P)" "countably_additive (sets M) (Eps P)" "Eps P (G i) = \<mu> i" | 
| 61808 | 2041 | using P \<open>i\<in>I\<close> by (auto simp add: sets_M measure_space_def P_def) | 
| 56994 | 2042 | qed fact | 
| 2043 | qed | |
| 2044 | ||
| 2045 | lemma emeasure_extend_measure_Pair: | |
| 2046 |   assumes M: "M = extend_measure \<Omega> {(i, j). I i j} (\<lambda>(i, j). G i j) (\<lambda>(i, j). \<mu> i j)"
 | |
| 2047 | and eq: "\<And>i j. I i j \<Longrightarrow> \<mu>' (G i j) = \<mu> i j" | |
| 2048 | and ms: "\<And>i j. I i j \<Longrightarrow> G i j \<in> Pow \<Omega>" "positive (sets M) \<mu>'" "countably_additive (sets M) \<mu>'" | |
| 2049 | and "I i j" | |
| 2050 | shows "emeasure M (G i j) = \<mu> i j" | |
| 61808 | 2051 | using emeasure_extend_measure[OF M _ _ ms(2,3), of "(i,j)"] eq ms(1) \<open>I i j\<close> | 
| 56994 | 2052 | by (auto simp: subset_eq) | 
| 2053 | ||
| 69566 | 2054 | subsection \<open>The smallest \<open>\<sigma>\<close>-algebra regarding a function\<close> | 
| 56994 | 2055 | |
| 70136 | 2056 | definition\<^marker>\<open>tag important\<close> vimage_algebra :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b measure \<Rightarrow> 'a measure" where
 | 
| 58588 | 2057 |   "vimage_algebra X f M = sigma X {f -` A \<inter> X | A. A \<in> sets M}"
 | 
| 2058 | ||
| 2059 | lemma space_vimage_algebra[simp]: "space (vimage_algebra X f M) = X" | |
| 2060 | unfolding vimage_algebra_def by (rule space_measure_of) auto | |
| 56994 | 2061 | |
| 58588 | 2062 | lemma sets_vimage_algebra: "sets (vimage_algebra X f M) = sigma_sets X {f -` A \<inter> X | A. A \<in> sets M}"
 | 
| 2063 | unfolding vimage_algebra_def by (rule sets_measure_of) auto | |
| 2064 | ||
| 2065 | lemma sets_vimage_algebra2: | |
| 2066 |   "f \<in> X \<rightarrow> space M \<Longrightarrow> sets (vimage_algebra X f M) = {f -` A \<inter> X | A. A \<in> sets M}"
 | |
| 2067 | using sigma_sets_vimage_commute[of f X "space M" "sets M"] | |
| 2068 | unfolding sets_vimage_algebra sets.sigma_sets_eq by simp | |
| 56994 | 2069 | |
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: 
59088diff
changeset | 2070 | lemma sets_vimage_algebra_cong: "sets M = sets N \<Longrightarrow> sets (vimage_algebra X f M) = sets (vimage_algebra X f N)" | 
| 59000 | 2071 | by (simp add: sets_vimage_algebra) | 
| 2072 | ||
| 59092 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: 
59088diff
changeset | 2073 | lemma vimage_algebra_cong: | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: 
59088diff
changeset | 2074 | assumes "X = Y" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: 
59088diff
changeset | 2075 | assumes "\<And>x. x \<in> Y \<Longrightarrow> f x = g x" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: 
59088diff
changeset | 2076 | assumes "sets M = sets N" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: 
59088diff
changeset | 2077 | shows "vimage_algebra X f M = vimage_algebra Y g N" | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: 
59088diff
changeset | 2078 | by (auto simp: vimage_algebra_def assms intro!: arg_cong2[where f=sigma]) | 
| 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 hoelzl parents: 
59088diff
changeset | 2079 | |
| 58588 | 2080 | lemma in_vimage_algebra: "A \<in> sets M \<Longrightarrow> f -` A \<inter> X \<in> sets (vimage_algebra X f M)" | 
| 2081 | by (auto simp: vimage_algebra_def) | |
| 2082 | ||
| 2083 | lemma sets_image_in_sets: | |
| 2084 | assumes N: "space N = X" | |
| 2085 | assumes f: "f \<in> measurable N M" | |
| 2086 | shows "sets (vimage_algebra X f M) \<subseteq> sets N" | |
| 2087 | unfolding sets_vimage_algebra N[symmetric] | |
| 2088 | by (rule sets.sigma_sets_subset) (auto intro!: measurable_sets f) | |
| 2089 | ||
| 2090 | lemma measurable_vimage_algebra1: "f \<in> X \<rightarrow> space M \<Longrightarrow> f \<in> measurable (vimage_algebra X f M) M" | |
| 2091 | unfolding measurable_def by (auto intro: in_vimage_algebra) | |
| 2092 | ||
| 2093 | lemma measurable_vimage_algebra2: | |
| 2094 | assumes g: "g \<in> space N \<rightarrow> X" and f: "(\<lambda>x. f (g x)) \<in> measurable N M" | |
| 2095 | shows "g \<in> measurable N (vimage_algebra X f M)" | |
| 2096 | unfolding vimage_algebra_def | |
| 2097 | proof (rule measurable_measure_of) | |
| 2098 |   fix A assume "A \<in> {f -` A \<inter> X | A. A \<in> sets M}"
 | |
| 2099 | then obtain Y where Y: "Y \<in> sets M" and A: "A = f -` Y \<inter> X" | |
| 2100 | by auto | |
| 2101 | then have "g -` A \<inter> space N = (\<lambda>x. f (g x)) -` Y \<inter> space N" | |
| 2102 | using g by auto | |
| 2103 | also have "\<dots> \<in> sets N" | |
| 2104 | using f Y by (rule measurable_sets) | |
| 2105 | finally show "g -` A \<inter> space N \<in> sets N" . | |
| 2106 | qed (insert g, auto) | |
| 56994 | 2107 | |
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 2108 | lemma vimage_algebra_sigma: | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 2109 | assumes X: "X \<subseteq> Pow \<Omega>'" and f: "f \<in> \<Omega> \<rightarrow> \<Omega>'" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 2110 |   shows "vimage_algebra \<Omega> f (sigma \<Omega>' X) = sigma \<Omega> {f -` A \<inter> \<Omega> | A. A \<in> X }" (is "?V = ?S")
 | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 2111 | proof (rule measure_eqI) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 2112 |   have \<Omega>: "{f -` A \<inter> \<Omega> |A. A \<in> X} \<subseteq> Pow \<Omega>" by auto
 | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 2113 | show "sets ?V = sets ?S" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 2114 | using sigma_sets_vimage_commute[OF f, of X] | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 2115 | by (simp add: space_measure_of_conv f sets_vimage_algebra2 \<Omega> X) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 2116 | qed (simp add: vimage_algebra_def emeasure_sigma) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 2117 | |
| 59000 | 2118 | lemma vimage_algebra_vimage_algebra_eq: | 
| 2119 | assumes *: "f \<in> X \<rightarrow> Y" "g \<in> Y \<rightarrow> space M" | |
| 2120 | shows "vimage_algebra X f (vimage_algebra Y g M) = vimage_algebra X (\<lambda>x. g (f x)) M" | |
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 2121 | (is "?VV = ?V") | 
| 59000 | 2122 | proof (rule measure_eqI) | 
| 2123 | have "(\<lambda>x. g (f x)) \<in> X \<rightarrow> space M" "\<And>A. A \<inter> f -` Y \<inter> X = A \<inter> X" | |
| 2124 | using * by auto | |
| 2125 | with * show "sets ?VV = sets ?V" | |
| 68403 | 2126 | by (simp add: sets_vimage_algebra2 vimage_comp comp_def flip: ex_simps) | 
| 59000 | 2127 | qed (simp add: vimage_algebra_def emeasure_sigma) | 
| 2128 | ||
| 61808 | 2129 | subsubsection \<open>Restricted Space Sigma Algebra\<close> | 
| 56994 | 2130 | |
| 69554 | 2131 | definition restrict_space :: "'a measure \<Rightarrow> 'a set \<Rightarrow> 'a measure" where | 
| 67399 | 2132 | "restrict_space M \<Omega> = measure_of (\<Omega> \<inter> space M) (((\<inter>) \<Omega>) ` sets M) (emeasure M)" | 
| 56994 | 2133 | |
| 57025 | 2134 | lemma space_restrict_space: "space (restrict_space M \<Omega>) = \<Omega> \<inter> space M" | 
| 2135 | using sets.sets_into_space unfolding restrict_space_def by (subst space_measure_of) auto | |
| 2136 | ||
| 67982 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67962diff
changeset | 2137 | lemma space_restrict_space2 [simp]: "\<Omega> \<in> sets M \<Longrightarrow> space (restrict_space M \<Omega>) = \<Omega>" | 
| 57025 | 2138 | by (simp add: space_restrict_space sets.sets_into_space) | 
| 56994 | 2139 | |
| 67399 | 2140 | lemma sets_restrict_space: "sets (restrict_space M \<Omega>) = ((\<inter>) \<Omega>) ` sets M" | 
| 58588 | 2141 | unfolding restrict_space_def | 
| 2142 | proof (subst sets_measure_of) | |
| 67399 | 2143 | show "(\<inter>) \<Omega> ` sets M \<subseteq> Pow (\<Omega> \<inter> space M)" | 
| 58588 | 2144 | by (auto dest: sets.sets_into_space) | 
| 2145 |   have "sigma_sets (\<Omega> \<inter> space M) {((\<lambda>x. x) -` X) \<inter> (\<Omega> \<inter> space M) | X. X \<in> sets M} =
 | |
| 57025 | 2146 | (\<lambda>X. X \<inter> (\<Omega> \<inter> space M)) ` sets M" | 
| 58588 | 2147 | by (subst sigma_sets_vimage_commute[symmetric, where \<Omega>' = "space M"]) | 
| 2148 | (auto simp add: sets.sigma_sets_eq) | |
| 2149 |   moreover have "{((\<lambda>x. x) -` X) \<inter> (\<Omega> \<inter> space M) | X. X \<in> sets M} = (\<lambda>X. X \<inter> (\<Omega> \<inter> space M)) `  sets M"
 | |
| 2150 | by auto | |
| 67399 | 2151 | moreover have "(\<lambda>X. X \<inter> (\<Omega> \<inter> space M)) ` sets M = ((\<inter>) \<Omega>) ` sets M" | 
| 58588 | 2152 | by (intro image_cong) (auto dest: sets.sets_into_space) | 
| 67399 | 2153 | ultimately show "sigma_sets (\<Omega> \<inter> space M) ((\<inter>) \<Omega> ` sets M) = (\<inter>) \<Omega> ` sets M" | 
| 58588 | 2154 | by simp | 
| 57025 | 2155 | qed | 
| 56994 | 2156 | |
| 62083 | 2157 | lemma restrict_space_sets_cong: | 
| 2158 | "A = B \<Longrightarrow> sets M = sets N \<Longrightarrow> sets (restrict_space M A) = sets (restrict_space N B)" | |
| 2159 | by (auto simp: sets_restrict_space) | |
| 2160 | ||
| 60063 | 2161 | lemma sets_restrict_space_count_space : | 
| 2162 | "sets (restrict_space (count_space A) B) = sets (count_space (A \<inter> B))" | |
| 2163 | by(auto simp add: sets_restrict_space) | |
| 2164 | ||
| 59361 
fd5da2434be4
piecewise measurability using restrict_space; cleanup Borel_Space
 hoelzl parents: 
59092diff
changeset | 2165 | lemma sets_restrict_UNIV[simp]: "sets (restrict_space M UNIV) = sets M" | 
| 
fd5da2434be4
piecewise measurability using restrict_space; cleanup Borel_Space
 hoelzl parents: 
59092diff
changeset | 2166 | by (auto simp add: sets_restrict_space) | 
| 
fd5da2434be4
piecewise measurability using restrict_space; cleanup Borel_Space
 hoelzl parents: 
59092diff
changeset | 2167 | |
| 59415 | 2168 | lemma sets_restrict_restrict_space: | 
| 2169 | "sets (restrict_space (restrict_space M A) B) = sets (restrict_space M (A \<inter> B))" | |
| 2170 | unfolding sets_restrict_space image_comp by (intro image_cong) auto | |
| 2171 | ||
| 56994 | 2172 | lemma sets_restrict_space_iff: | 
| 57025 | 2173 | "\<Omega> \<inter> space M \<in> sets M \<Longrightarrow> A \<in> sets (restrict_space M \<Omega>) \<longleftrightarrow> (A \<subseteq> \<Omega> \<and> A \<in> sets M)" | 
| 2174 | proof (subst sets_restrict_space, safe) | |
| 2175 | fix A assume "\<Omega> \<inter> space M \<in> sets M" and A: "A \<in> sets M" | |
| 2176 | then have "(\<Omega> \<inter> space M) \<inter> A \<in> sets M" | |
| 2177 | by rule | |
| 2178 | also have "(\<Omega> \<inter> space M) \<inter> A = \<Omega> \<inter> A" | |
| 2179 | using sets.sets_into_space[OF A] by auto | |
| 2180 | finally show "\<Omega> \<inter> A \<in> sets M" | |
| 2181 | by auto | |
| 2182 | qed auto | |
| 56994 | 2183 | |
| 59000 | 2184 | lemma sets_restrict_space_cong: "sets M = sets N \<Longrightarrow> sets (restrict_space M \<Omega>) = sets (restrict_space N \<Omega>)" | 
| 2185 | by (simp add: sets_restrict_space) | |
| 2186 | ||
| 2187 | lemma restrict_space_eq_vimage_algebra: | |
| 2188 | "\<Omega> \<subseteq> space M \<Longrightarrow> sets (restrict_space M \<Omega>) = sets (vimage_algebra \<Omega> (\<lambda>x. x) M)" | |
| 2189 | unfolding restrict_space_def | |
| 2190 | apply (subst sets_measure_of) | |
| 2191 | apply (auto simp add: image_subset_iff dest: sets.sets_into_space) [] | |
| 2192 | apply (auto simp add: sets_vimage_algebra intro!: arg_cong2[where f=sigma_sets]) | |
| 2193 | done | |
| 2194 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2195 | lemma sets_Collect_restrict_space_iff: | 
| 59000 | 2196 | assumes "S \<in> sets M" | 
| 2197 |   shows "{x\<in>space (restrict_space M S). P x} \<in> sets (restrict_space M S) \<longleftrightarrow> {x\<in>space M. x \<in> S \<and> P x} \<in> sets M"
 | |
| 2198 | proof - | |
| 2199 |   have "{x\<in>S. P x} = {x\<in>space M. x \<in> S \<and> P x}"
 | |
| 2200 | using sets.sets_into_space[OF assms] by auto | |
| 2201 | then show ?thesis | |
| 2202 | by (subst sets_restrict_space_iff) (auto simp add: space_restrict_space assms) | |
| 2203 | qed | |
| 2204 | ||
| 56994 | 2205 | lemma measurable_restrict_space1: | 
| 59415 | 2206 | assumes f: "f \<in> measurable M N" | 
| 57025 | 2207 | shows "f \<in> measurable (restrict_space M \<Omega>) N" | 
| 56994 | 2208 | unfolding measurable_def | 
| 2209 | proof (intro CollectI conjI ballI) | |
| 2210 | show sp: "f \<in> space (restrict_space M \<Omega>) \<rightarrow> space N" | |
| 59415 | 2211 | using measurable_space[OF f] by (auto simp: space_restrict_space) | 
| 56994 | 2212 | |
| 2213 | fix A assume "A \<in> sets N" | |
| 57025 | 2214 | have "f -` A \<inter> space (restrict_space M \<Omega>) = (f -` A \<inter> space M) \<inter> (\<Omega> \<inter> space M)" | 
| 59415 | 2215 | by (auto simp: space_restrict_space) | 
| 56994 | 2216 | also have "\<dots> \<in> sets (restrict_space M \<Omega>)" | 
| 59415 | 2217 | unfolding sets_restrict_space | 
| 61808 | 2218 | using measurable_sets[OF f \<open>A \<in> sets N\<close>] by blast | 
| 56994 | 2219 | finally show "f -` A \<inter> space (restrict_space M \<Omega>) \<in> sets (restrict_space M \<Omega>)" . | 
| 2220 | qed | |
| 2221 | ||
| 59415 | 2222 | lemma measurable_restrict_space2_iff: | 
| 2223 | "f \<in> measurable M (restrict_space N \<Omega>) \<longleftrightarrow> (f \<in> measurable M N \<and> f \<in> space M \<rightarrow> \<Omega>)" | |
| 2224 | proof - | |
| 2225 | have "\<And>A. f \<in> space M \<rightarrow> \<Omega> \<Longrightarrow> f -` \<Omega> \<inter> f -` A \<inter> space M = f -` A \<inter> space M" | |
| 2226 | by auto | |
| 2227 | then show ?thesis | |
| 2228 | by (auto simp: measurable_def space_restrict_space Pi_Int[symmetric] sets_restrict_space) | |
| 2229 | qed | |
| 2230 | ||
| 56994 | 2231 | lemma measurable_restrict_space2: | 
| 59415 | 2232 | "f \<in> space M \<rightarrow> \<Omega> \<Longrightarrow> f \<in> measurable M N \<Longrightarrow> f \<in> measurable M (restrict_space N \<Omega>)" | 
| 2233 | by (simp add: measurable_restrict_space2_iff) | |
| 56994 | 2234 | |
| 59415 | 2235 | lemma measurable_piecewise_restrict: | 
| 2236 | assumes I: "countable C" | |
| 2237 | and X: "\<And>\<Omega>. \<Omega> \<in> C \<Longrightarrow> \<Omega> \<inter> space M \<in> sets M" "space M \<subseteq> \<Union>C" | |
| 2238 | and f: "\<And>\<Omega>. \<Omega> \<in> C \<Longrightarrow> f \<in> measurable (restrict_space M \<Omega>) N" | |
| 2239 | shows "f \<in> measurable M N" | |
| 2240 | proof (rule measurableI) | |
| 2241 | fix x assume "x \<in> space M" | |
| 2242 | with X obtain \<Omega> where "\<Omega> \<in> C" "x \<in> \<Omega>" "x \<in> space M" by auto | |
| 2243 | then show "f x \<in> space N" | |
| 2244 | by (auto simp: space_restrict_space intro: f measurable_space) | |
| 57138 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 2245 | next | 
| 59415 | 2246 | fix A assume A: "A \<in> sets N" | 
| 2247 | have "f -` A \<inter> space M = (\<Union>\<Omega>\<in>C. (f -` A \<inter> (\<Omega> \<inter> space M)))" | |
| 2248 | using X by (auto simp: subset_eq) | |
| 57138 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 2249 | also have "\<dots> \<in> sets M" | 
| 59415 | 2250 | using measurable_sets[OF f A] X I | 
| 2251 | by (intro sets.countable_UN') (auto simp: sets_restrict_space_iff space_restrict_space) | |
| 2252 | finally show "f -` A \<inter> space M \<in> sets M" . | |
| 57138 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 2253 | qed | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 2254 | |
| 59415 | 2255 | lemma measurable_piecewise_restrict_iff: | 
| 2256 | "countable C \<Longrightarrow> (\<And>\<Omega>. \<Omega> \<in> C \<Longrightarrow> \<Omega> \<inter> space M \<in> sets M) \<Longrightarrow> space M \<subseteq> (\<Union>C) \<Longrightarrow> | |
| 2257 | f \<in> measurable M N \<longleftrightarrow> (\<forall>\<Omega>\<in>C. f \<in> measurable (restrict_space M \<Omega>) N)" | |
| 2258 | by (auto intro: measurable_piecewise_restrict measurable_restrict_space1) | |
| 2259 | ||
| 2260 | lemma measurable_If_restrict_space_iff: | |
| 2261 |   "{x\<in>space M. P x} \<in> sets M \<Longrightarrow>
 | |
| 2262 | (\<lambda>x. if P x then f x else g x) \<in> measurable M N \<longleftrightarrow> | |
| 2263 |     (f \<in> measurable (restrict_space M {x. P x}) N \<and> g \<in> measurable (restrict_space M {x. \<not> P x}) N)"
 | |
| 2264 |   by (subst measurable_piecewise_restrict_iff[where C="{{x. P x}, {x. \<not> P x}}"])
 | |
| 2265 | (auto simp: Int_def sets.sets_Collect_neg space_restrict_space conj_commute[of _ "x \<in> space M" for x] | |
| 2266 | cong: measurable_cong') | |
| 2267 | ||
| 2268 | lemma measurable_If: | |
| 2269 |   "f \<in> measurable M M' \<Longrightarrow> g \<in> measurable M M' \<Longrightarrow> {x\<in>space M. P x} \<in> sets M \<Longrightarrow>
 | |
| 2270 | (\<lambda>x. if P x then f x else g x) \<in> measurable M M'" | |
| 2271 | unfolding measurable_If_restrict_space_iff by (auto intro: measurable_restrict_space1) | |
| 2272 | ||
| 2273 | lemma measurable_If_set: | |
| 2274 | assumes measure: "f \<in> measurable M M'" "g \<in> measurable M M'" | |
| 2275 | assumes P: "A \<inter> space M \<in> sets M" | |
| 2276 | shows "(\<lambda>x. if x \<in> A then f x else g x) \<in> measurable M M'" | |
| 2277 | proof (rule measurable_If[OF measure]) | |
| 2278 |   have "{x \<in> space M. x \<in> A} = A \<inter> space M" by auto
 | |
| 61808 | 2279 |   thus "{x \<in> space M. x \<in> A} \<in> sets M" using \<open>A \<inter> space M \<in> sets M\<close> by auto
 | 
| 59415 | 2280 | qed | 
| 59361 
fd5da2434be4
piecewise measurability using restrict_space; cleanup Borel_Space
 hoelzl parents: 
59092diff
changeset | 2281 | |
| 59415 | 2282 | lemma measurable_restrict_space_iff: | 
| 2283 | "\<Omega> \<inter> space M \<in> sets M \<Longrightarrow> c \<in> space N \<Longrightarrow> | |
| 2284 | f \<in> measurable (restrict_space M \<Omega>) N \<longleftrightarrow> (\<lambda>x. if x \<in> \<Omega> then f x else c) \<in> measurable M N" | |
| 2285 | by (subst measurable_If_restrict_space_iff) | |
| 2286 | (simp_all add: Int_def conj_commute measurable_const) | |
| 2287 | ||
| 2288 | lemma restrict_space_singleton: "{x} \<in> sets M \<Longrightarrow> sets (restrict_space M {x}) = sets (count_space {x})"
 | |
| 2289 |   using sets_restrict_space_iff[of "{x}" M]
 | |
| 2290 | by (auto simp add: sets_restrict_space_iff dest!: subset_singletonD) | |
| 2291 | ||
| 2292 | lemma measurable_restrict_countable: | |
| 2293 | assumes X[intro]: "countable X" | |
| 2294 |   assumes sets[simp]: "\<And>x. x \<in> X \<Longrightarrow> {x} \<in> sets M"
 | |
| 2295 | assumes space[simp]: "\<And>x. x \<in> X \<Longrightarrow> f x \<in> space N" | |
| 2296 | assumes f: "f \<in> measurable (restrict_space M (- X)) N" | |
| 2297 | shows "f \<in> measurable M N" | |
| 2298 | using f sets.countable[OF sets X] | |
| 2299 |   by (intro measurable_piecewise_restrict[where M=M and C="{- X} \<union> ((\<lambda>x. {x}) ` X)"])
 | |
| 2300 | (auto simp: Diff_Int_distrib2 Compl_eq_Diff_UNIV Int_insert_left sets.Diff restrict_space_singleton | |
| 2301 | simp del: sets_count_space cong: measurable_cong_sets) | |
| 2302 | ||
| 2303 | lemma measurable_discrete_difference: | |
| 2304 | assumes f: "f \<in> measurable M N" | |
| 2305 |   assumes X: "countable X" "\<And>x. x \<in> X \<Longrightarrow> {x} \<in> sets M" "\<And>x. x \<in> X \<Longrightarrow> g x \<in> space N"
 | |
| 2306 | assumes eq: "\<And>x. x \<in> space M \<Longrightarrow> x \<notin> X \<Longrightarrow> f x = g x" | |
| 2307 | shows "g \<in> measurable M N" | |
| 2308 | by (rule measurable_restrict_countable[OF X]) | |
| 2309 | (auto simp: eq[symmetric] space_restrict_space cong: measurable_cong' intro: f measurable_restrict_space1) | |
| 59361 
fd5da2434be4
piecewise measurability using restrict_space; cleanup Borel_Space
 hoelzl parents: 
59092diff
changeset | 2310 | |
| 64008 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63627diff
changeset | 2311 | lemma measurable_count_space_extend: "A \<subseteq> B \<Longrightarrow> f \<in> space M \<rightarrow> A \<Longrightarrow> f \<in> M \<rightarrow>\<^sub>M count_space B \<Longrightarrow> f \<in> M \<rightarrow>\<^sub>M count_space A" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63627diff
changeset | 2312 | by (auto simp: measurable_def) | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63627diff
changeset | 2313 | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: diff
changeset | 2314 | end |