move FuncSet back to HOL-Library (amending 493b818e8e10)
authorimmler
Tue, 15 May 2018 11:33:43 +0200
changeset 68188 2af1f142f855
parent 68187 48262e3a2bde
child 68189 6163c90694ef
move FuncSet back to HOL-Library (amending 493b818e8e10)
src/HOL/Algebra/Congruence.thy
src/HOL/Algebra/Group.thy
src/HOL/Analysis/Finite_Cartesian_Product.thy
src/HOL/Analysis/Sigma_Algebra.thy
src/HOL/Analysis/Topology_Euclidean_Space.thy
src/HOL/FuncSet.thy
src/HOL/Library/FuncSet.thy
src/HOL/Library/Library.thy
src/HOL/Metis_Examples/Abstraction.thy
src/HOL/Metis_Examples/Tarski.thy
src/HOL/Number_Theory/Prime_Powers.thy
src/HOL/Vector_Spaces.thy
src/HOL/ex/Ballot.thy
src/HOL/ex/Birthday_Paradox.thy
src/HOL/ex/Tarski.thy
--- a/src/HOL/Algebra/Congruence.thy	Tue May 15 06:23:12 2018 +0200
+++ b/src/HOL/Algebra/Congruence.thy	Tue May 15 11:33:43 2018 +0200
@@ -5,7 +5,8 @@
 
 theory Congruence
   imports
-    Main HOL.FuncSet
+    Main
+    "HOL-Library.FuncSet"
 begin
 
 section \<open>Objects\<close>
--- a/src/HOL/Algebra/Group.thy	Tue May 15 06:23:12 2018 +0200
+++ b/src/HOL/Algebra/Group.thy	Tue May 15 11:33:43 2018 +0200
@@ -5,7 +5,7 @@
 *)
 
 theory Group
-imports Complete_Lattice HOL.FuncSet
+imports Complete_Lattice "HOL-Library.FuncSet"
 begin
 
 section \<open>Monoids and Groups\<close>
--- a/src/HOL/Analysis/Finite_Cartesian_Product.thy	Tue May 15 06:23:12 2018 +0200
+++ b/src/HOL/Analysis/Finite_Cartesian_Product.thy	Tue May 15 11:33:43 2018 +0200
@@ -10,6 +10,7 @@
   L2_Norm
   "HOL-Library.Numeral_Type"
   "HOL-Library.Countable_Set"
+  "HOL-Library.FuncSet"
 begin
 
 subsection \<open>Finite Cartesian products, with indexing and lambdas\<close>
--- a/src/HOL/Analysis/Sigma_Algebra.thy	Tue May 15 06:23:12 2018 +0200
+++ b/src/HOL/Analysis/Sigma_Algebra.thy	Tue May 15 11:33:43 2018 +0200
@@ -11,6 +11,7 @@
 imports
   Complex_Main
   "HOL-Library.Countable_Set"
+  "HOL-Library.FuncSet"
   "HOL-Library.Indicator_Function"
   "HOL-Library.Extended_Nonnegative_Real"
   "HOL-Library.Disjoint_Sets"
--- a/src/HOL/Analysis/Topology_Euclidean_Space.thy	Tue May 15 06:23:12 2018 +0200
+++ b/src/HOL/Analysis/Topology_Euclidean_Space.thy	Tue May 15 11:33:43 2018 +0200
@@ -10,6 +10,7 @@
 imports
   "HOL-Library.Indicator_Function"
   "HOL-Library.Countable_Set"
+  "HOL-Library.FuncSet"
   Linear_Algebra
   Norm_Arith
 begin
--- a/src/HOL/FuncSet.thy	Tue May 15 06:23:12 2018 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,568 +0,0 @@
-(*  Title:      HOL/FuncSet.thy
-    Author:     Florian Kammueller and Lawrence C Paulson, Lukas Bulwahn
-*)
-
-section \<open>Pi and Function Sets\<close>
-
-theory FuncSet
-  imports Main
-  abbrevs PiE = "Pi\<^sub>E"
-    and PIE = "\<Pi>\<^sub>E"
-begin
-
-definition Pi :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> ('a \<Rightarrow> 'b) set"
-  where "Pi A B = {f. \<forall>x. x \<in> A \<longrightarrow> f x \<in> B x}"
-
-definition extensional :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b) set"
-  where "extensional A = {f. \<forall>x. x \<notin> A \<longrightarrow> f x = undefined}"
-
-definition "restrict" :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b"
-  where "restrict f A = (\<lambda>x. if x \<in> A then f x else undefined)"
-
-abbreviation funcset :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set"  (infixr "\<rightarrow>" 60)
-  where "A \<rightarrow> B \<equiv> Pi A (\<lambda>_. B)"
-
-syntax
-  "_Pi" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
-  "_lam" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
-translations
-  "\<Pi> x\<in>A. B" \<rightleftharpoons> "CONST Pi A (\<lambda>x. B)"
-  "\<lambda>x\<in>A. f" \<rightleftharpoons> "CONST restrict (\<lambda>x. f) A"
-
-definition "compose" :: "'a set \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'c)"
-  where "compose A g f = (\<lambda>x\<in>A. g (f x))"
-
-
-subsection \<open>Basic Properties of @{term Pi}\<close>
-
-lemma Pi_I[intro!]: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B x) \<Longrightarrow> f \<in> Pi A B"
-  by (simp add: Pi_def)
-
-lemma Pi_I'[simp]: "(\<And>x. x \<in> A \<longrightarrow> f x \<in> B x) \<Longrightarrow> f \<in> Pi A B"
-  by (simp add:Pi_def)
-
-lemma funcsetI: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> f \<in> A \<rightarrow> B"
-  by (simp add: Pi_def)
-
-lemma Pi_mem: "f \<in> Pi A B \<Longrightarrow> x \<in> A \<Longrightarrow> f x \<in> B x"
-  by (simp add: Pi_def)
-
-lemma Pi_iff: "f \<in> Pi I X \<longleftrightarrow> (\<forall>i\<in>I. f i \<in> X i)"
-  unfolding Pi_def by auto
-
-lemma PiE [elim]: "f \<in> Pi A B \<Longrightarrow> (f x \<in> B x \<Longrightarrow> Q) \<Longrightarrow> (x \<notin> A \<Longrightarrow> Q) \<Longrightarrow> Q"
-  by (auto simp: Pi_def)
-
-lemma Pi_cong: "(\<And>w. w \<in> A \<Longrightarrow> f w = g w) \<Longrightarrow> f \<in> Pi A B \<longleftrightarrow> g \<in> Pi A B"
-  by (auto simp: Pi_def)
-
-lemma funcset_id [simp]: "(\<lambda>x. x) \<in> A \<rightarrow> A"
-  by auto
-
-lemma funcset_mem: "f \<in> A \<rightarrow> B \<Longrightarrow> x \<in> A \<Longrightarrow> f x \<in> B"
-  by (simp add: Pi_def)
-
-lemma funcset_image: "f \<in> A \<rightarrow> B \<Longrightarrow> f ` A \<subseteq> B"
-  by auto
-
-lemma image_subset_iff_funcset: "F ` A \<subseteq> B \<longleftrightarrow> F \<in> A \<rightarrow> B"
-  by auto
-
-lemma Pi_eq_empty[simp]: "(\<Pi> x \<in> A. B x) = {} \<longleftrightarrow> (\<exists>x\<in>A. B x = {})"
-  apply (simp add: Pi_def)
-  apply auto
-  txt \<open>Converse direction requires Axiom of Choice to exhibit a function
-  picking an element from each non-empty @{term "B x"}\<close>
-  apply (drule_tac x = "\<lambda>u. SOME y. y \<in> B u" in spec)
-  apply auto
-  apply (cut_tac P = "\<lambda>y. y \<in> B x" in some_eq_ex)
-  apply auto
-  done
-
-lemma Pi_empty [simp]: "Pi {} B = UNIV"
-  by (simp add: Pi_def)
-
-lemma Pi_Int: "Pi I E \<inter> Pi I F = (\<Pi> i\<in>I. E i \<inter> F i)"
-  by auto
-
-lemma Pi_UN:
-  fixes A :: "nat \<Rightarrow> 'i \<Rightarrow> 'a set"
-  assumes "finite I"
-    and mono: "\<And>i n m. i \<in> I \<Longrightarrow> n \<le> m \<Longrightarrow> A n i \<subseteq> A m i"
-  shows "(\<Union>n. Pi I (A n)) = (\<Pi> i\<in>I. \<Union>n. A n i)"
-proof (intro set_eqI iffI)
-  fix f
-  assume "f \<in> (\<Pi> i\<in>I. \<Union>n. A n i)"
-  then have "\<forall>i\<in>I. \<exists>n. f i \<in> A n i"
-    by auto
-  from bchoice[OF this] obtain n where n: "f i \<in> A (n i) i" if "i \<in> I" for i
-    by auto
-  obtain k where k: "n i \<le> k" if "i \<in> I" for i
-    using \<open>finite I\<close> finite_nat_set_iff_bounded_le[of "n`I"] by auto
-  have "f \<in> Pi I (A k)"
-  proof (intro Pi_I)
-    fix i
-    assume "i \<in> I"
-    from mono[OF this, of "n i" k] k[OF this] n[OF this]
-    show "f i \<in> A k i" by auto
-  qed
-  then show "f \<in> (\<Union>n. Pi I (A n))"
-    by auto
-qed auto
-
-lemma Pi_UNIV [simp]: "A \<rightarrow> UNIV = UNIV"
-  by (simp add: Pi_def)
-
-text \<open>Covariance of Pi-sets in their second argument\<close>
-lemma Pi_mono: "(\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> C x) \<Longrightarrow> Pi A B \<subseteq> Pi A C"
-  by auto
-
-text \<open>Contravariance of Pi-sets in their first argument\<close>
-lemma Pi_anti_mono: "A' \<subseteq> A \<Longrightarrow> Pi A B \<subseteq> Pi A' B"
-  by auto
-
-lemma prod_final:
-  assumes 1: "fst \<circ> f \<in> Pi A B"
-    and 2: "snd \<circ> f \<in> Pi A C"
-  shows "f \<in> (\<Pi> z \<in> A. B z \<times> C z)"
-proof (rule Pi_I)
-  fix z
-  assume z: "z \<in> A"
-  have "f z = (fst (f z), snd (f z))"
-    by simp
-  also have "\<dots> \<in> B z \<times> C z"
-    by (metis SigmaI PiE o_apply 1 2 z)
-  finally show "f z \<in> B z \<times> C z" .
-qed
-
-lemma Pi_split_domain[simp]: "x \<in> Pi (I \<union> J) X \<longleftrightarrow> x \<in> Pi I X \<and> x \<in> Pi J X"
-  by (auto simp: Pi_def)
-
-lemma Pi_split_insert_domain[simp]: "x \<in> Pi (insert i I) X \<longleftrightarrow> x \<in> Pi I X \<and> x i \<in> X i"
-  by (auto simp: Pi_def)
-
-lemma Pi_cancel_fupd_range[simp]: "i \<notin> I \<Longrightarrow> x \<in> Pi I (B(i := b)) \<longleftrightarrow> x \<in> Pi I B"
-  by (auto simp: Pi_def)
-
-lemma Pi_cancel_fupd[simp]: "i \<notin> I \<Longrightarrow> x(i := a) \<in> Pi I B \<longleftrightarrow> x \<in> Pi I B"
-  by (auto simp: Pi_def)
-
-lemma Pi_fupd_iff: "i \<in> I \<Longrightarrow> f \<in> Pi I (B(i := A)) \<longleftrightarrow> f \<in> Pi (I - {i}) B \<and> f i \<in> A"
-  apply auto
-  apply (drule_tac x=x in Pi_mem)
-  apply (simp_all split: if_split_asm)
-  apply (drule_tac x=i in Pi_mem)
-  apply (auto dest!: Pi_mem)
-  done
-
-
-subsection \<open>Composition With a Restricted Domain: @{term compose}\<close>
-
-lemma funcset_compose: "f \<in> A \<rightarrow> B \<Longrightarrow> g \<in> B \<rightarrow> C \<Longrightarrow> compose A g f \<in> A \<rightarrow> C"
-  by (simp add: Pi_def compose_def restrict_def)
-
-lemma compose_assoc:
-  assumes "f \<in> A \<rightarrow> B"
-    and "g \<in> B \<rightarrow> C"
-    and "h \<in> C \<rightarrow> D"
-  shows "compose A h (compose A g f) = compose A (compose B h g) f"
-  using assms by (simp add: fun_eq_iff Pi_def compose_def restrict_def)
-
-lemma compose_eq: "x \<in> A \<Longrightarrow> compose A g f x = g (f x)"
-  by (simp add: compose_def restrict_def)
-
-lemma surj_compose: "f ` A = B \<Longrightarrow> g ` B = C \<Longrightarrow> compose A g f ` A = C"
-  by (auto simp add: image_def compose_eq)
-
-
-subsection \<open>Bounded Abstraction: @{term restrict}\<close>
-
-lemma restrict_cong: "I = J \<Longrightarrow> (\<And>i. i \<in> J =simp=> f i = g i) \<Longrightarrow> restrict f I = restrict g J"
-  by (auto simp: restrict_def fun_eq_iff simp_implies_def)
-
-lemma restrict_in_funcset: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> (\<lambda>x\<in>A. f x) \<in> A \<rightarrow> B"
-  by (simp add: Pi_def restrict_def)
-
-lemma restrictI[intro!]: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B x) \<Longrightarrow> (\<lambda>x\<in>A. f x) \<in> Pi A B"
-  by (simp add: Pi_def restrict_def)
-
-lemma restrict_apply[simp]: "(\<lambda>y\<in>A. f y) x = (if x \<in> A then f x else undefined)"
-  by (simp add: restrict_def)
-
-lemma restrict_apply': "x \<in> A \<Longrightarrow> (\<lambda>y\<in>A. f y) x = f x"
-  by simp
-
-lemma restrict_ext: "(\<And>x. x \<in> A \<Longrightarrow> f x = g x) \<Longrightarrow> (\<lambda>x\<in>A. f x) = (\<lambda>x\<in>A. g x)"
-  by (simp add: fun_eq_iff Pi_def restrict_def)
-
-lemma restrict_UNIV: "restrict f UNIV = f"
-  by (simp add: restrict_def)
-
-lemma inj_on_restrict_eq [simp]: "inj_on (restrict f A) A = inj_on f A"
-  by (simp add: inj_on_def restrict_def)
-
-lemma Id_compose: "f \<in> A \<rightarrow> B \<Longrightarrow> f \<in> extensional A \<Longrightarrow> compose A (\<lambda>y\<in>B. y) f = f"
-  by (auto simp add: fun_eq_iff compose_def extensional_def Pi_def)
-
-lemma compose_Id: "g \<in> A \<rightarrow> B \<Longrightarrow> g \<in> extensional A \<Longrightarrow> compose A g (\<lambda>x\<in>A. x) = g"
-  by (auto simp add: fun_eq_iff compose_def extensional_def Pi_def)
-
-lemma image_restrict_eq [simp]: "(restrict f A) ` A = f ` A"
-  by (auto simp add: restrict_def)
-
-lemma restrict_restrict[simp]: "restrict (restrict f A) B = restrict f (A \<inter> B)"
-  unfolding restrict_def by (simp add: fun_eq_iff)
-
-lemma restrict_fupd[simp]: "i \<notin> I \<Longrightarrow> restrict (f (i := x)) I = restrict f I"
-  by (auto simp: restrict_def)
-
-lemma restrict_upd[simp]: "i \<notin> I \<Longrightarrow> (restrict f I)(i := y) = restrict (f(i := y)) (insert i I)"
-  by (auto simp: fun_eq_iff)
-
-lemma restrict_Pi_cancel: "restrict x I \<in> Pi I A \<longleftrightarrow> x \<in> Pi I A"
-  by (auto simp: restrict_def Pi_def)
-
-
-subsection \<open>Bijections Between Sets\<close>
-
-text \<open>The definition of @{const bij_betw} is in \<open>Fun.thy\<close>, but most of
-the theorems belong here, or need at least @{term Hilbert_Choice}.\<close>
-
-lemma bij_betwI:
-  assumes "f \<in> A \<rightarrow> B"
-    and "g \<in> B \<rightarrow> A"
-    and g_f: "\<And>x. x\<in>A \<Longrightarrow> g (f x) = x"
-    and f_g: "\<And>y. y\<in>B \<Longrightarrow> f (g y) = y"
-  shows "bij_betw f A B"
-  unfolding bij_betw_def
-proof
-  show "inj_on f A"
-    by (metis g_f inj_on_def)
-  have "f ` A \<subseteq> B"
-    using \<open>f \<in> A \<rightarrow> B\<close> by auto
-  moreover
-  have "B \<subseteq> f ` A"
-    by auto (metis Pi_mem \<open>g \<in> B \<rightarrow> A\<close> f_g image_iff)
-  ultimately show "f ` A = B"
-    by blast
-qed
-
-lemma bij_betw_imp_funcset: "bij_betw f A B \<Longrightarrow> f \<in> A \<rightarrow> B"
-  by (auto simp add: bij_betw_def)
-
-lemma inj_on_compose: "bij_betw f A B \<Longrightarrow> inj_on g B \<Longrightarrow> inj_on (compose A g f) A"
-  by (auto simp add: bij_betw_def inj_on_def compose_eq)
-
-lemma bij_betw_compose: "bij_betw f A B \<Longrightarrow> bij_betw g B C \<Longrightarrow> bij_betw (compose A g f) A C"
-  apply (simp add: bij_betw_def compose_eq inj_on_compose)
-  apply (auto simp add: compose_def image_def)
-  done
-
-lemma bij_betw_restrict_eq [simp]: "bij_betw (restrict f A) A B = bij_betw f A B"
-  by (simp add: bij_betw_def)
-
-
-subsection \<open>Extensionality\<close>
-
-lemma extensional_empty[simp]: "extensional {} = {\<lambda>x. undefined}"
-  unfolding extensional_def by auto
-
-lemma extensional_arb: "f \<in> extensional A \<Longrightarrow> x \<notin> A \<Longrightarrow> f x = undefined"
-  by (simp add: extensional_def)
-
-lemma restrict_extensional [simp]: "restrict f A \<in> extensional A"
-  by (simp add: restrict_def extensional_def)
-
-lemma compose_extensional [simp]: "compose A f g \<in> extensional A"
-  by (simp add: compose_def)
-
-lemma extensionalityI:
-  assumes "f \<in> extensional A"
-    and "g \<in> extensional A"
-    and "\<And>x. x \<in> A \<Longrightarrow> f x = g x"
-  shows "f = g"
-  using assms by (force simp add: fun_eq_iff extensional_def)
-
-lemma extensional_restrict:  "f \<in> extensional A \<Longrightarrow> restrict f A = f"
-  by (rule extensionalityI[OF restrict_extensional]) auto
-
-lemma extensional_subset: "f \<in> extensional A \<Longrightarrow> A \<subseteq> B \<Longrightarrow> f \<in> extensional B"
-  unfolding extensional_def by auto
-
-lemma inv_into_funcset: "f ` A = B \<Longrightarrow> (\<lambda>x\<in>B. inv_into A f x) \<in> B \<rightarrow> A"
-  by (unfold inv_into_def) (fast intro: someI2)
-
-lemma compose_inv_into_id: "bij_betw f A B \<Longrightarrow> compose A (\<lambda>y\<in>B. inv_into A f y) f = (\<lambda>x\<in>A. x)"
-  apply (simp add: bij_betw_def compose_def)
-  apply (rule restrict_ext, auto)
-  done
-
-lemma compose_id_inv_into: "f ` A = B \<Longrightarrow> compose B f (\<lambda>y\<in>B. inv_into A f y) = (\<lambda>x\<in>B. x)"
-  apply (simp add: compose_def)
-  apply (rule restrict_ext)
-  apply (simp add: f_inv_into_f)
-  done
-
-lemma extensional_insert[intro, simp]:
-  assumes "a \<in> extensional (insert i I)"
-  shows "a(i := b) \<in> extensional (insert i I)"
-  using assms unfolding extensional_def by auto
-
-lemma extensional_Int[simp]: "extensional I \<inter> extensional I' = extensional (I \<inter> I')"
-  unfolding extensional_def by auto
-
-lemma extensional_UNIV[simp]: "extensional UNIV = UNIV"
-  by (auto simp: extensional_def)
-
-lemma restrict_extensional_sub[intro]: "A \<subseteq> B \<Longrightarrow> restrict f A \<in> extensional B"
-  unfolding restrict_def extensional_def by auto
-
-lemma extensional_insert_undefined[intro, simp]:
-  "a \<in> extensional (insert i I) \<Longrightarrow> a(i := undefined) \<in> extensional I"
-  unfolding extensional_def by auto
-
-lemma extensional_insert_cancel[intro, simp]:
-  "a \<in> extensional I \<Longrightarrow> a \<in> extensional (insert i I)"
-  unfolding extensional_def by auto
-
-
-subsection \<open>Cardinality\<close>
-
-lemma card_inj: "f \<in> A \<rightarrow> B \<Longrightarrow> inj_on f A \<Longrightarrow> finite B \<Longrightarrow> card A \<le> card B"
-  by (rule card_inj_on_le) auto
-
-lemma card_bij:
-  assumes "f \<in> A \<rightarrow> B" "inj_on f A"
-    and "g \<in> B \<rightarrow> A" "inj_on g B"
-    and "finite A" "finite B"
-  shows "card A = card B"
-  using assms by (blast intro: card_inj order_antisym)
-
-
-subsection \<open>Extensional Function Spaces\<close>
-
-definition PiE :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> ('a \<Rightarrow> 'b) set"
-  where "PiE S T = Pi S T \<inter> extensional S"
-
-abbreviation "Pi\<^sub>E A B \<equiv> PiE A B"
-
-syntax
-  "_PiE" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set"  ("(3\<Pi>\<^sub>E _\<in>_./ _)" 10)
-translations
-  "\<Pi>\<^sub>E x\<in>A. B" \<rightleftharpoons> "CONST Pi\<^sub>E A (\<lambda>x. B)"
-
-abbreviation extensional_funcset :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set" (infixr "\<rightarrow>\<^sub>E" 60)
-  where "A \<rightarrow>\<^sub>E B \<equiv> (\<Pi>\<^sub>E i\<in>A. B)"
-
-lemma extensional_funcset_def: "extensional_funcset S T = (S \<rightarrow> T) \<inter> extensional S"
-  by (simp add: PiE_def)
-
-lemma PiE_empty_domain[simp]: "Pi\<^sub>E {} T = {\<lambda>x. undefined}"
-  unfolding PiE_def by simp
-
-lemma PiE_UNIV_domain: "Pi\<^sub>E UNIV T = Pi UNIV T"
-  unfolding PiE_def by simp
-
-lemma PiE_empty_range[simp]: "i \<in> I \<Longrightarrow> F i = {} \<Longrightarrow> (\<Pi>\<^sub>E i\<in>I. F i) = {}"
-  unfolding PiE_def by auto
-
-lemma PiE_eq_empty_iff: "Pi\<^sub>E I F = {} \<longleftrightarrow> (\<exists>i\<in>I. F i = {})"
-proof
-  assume "Pi\<^sub>E I F = {}"
-  show "\<exists>i\<in>I. F i = {}"
-  proof (rule ccontr)
-    assume "\<not> ?thesis"
-    then have "\<forall>i. \<exists>y. (i \<in> I \<longrightarrow> y \<in> F i) \<and> (i \<notin> I \<longrightarrow> y = undefined)"
-      by auto
-    from choice[OF this]
-    obtain f where " \<forall>x. (x \<in> I \<longrightarrow> f x \<in> F x) \<and> (x \<notin> I \<longrightarrow> f x = undefined)" ..
-    then have "f \<in> Pi\<^sub>E I F"
-      by (auto simp: extensional_def PiE_def)
-    with \<open>Pi\<^sub>E I F = {}\<close> show False
-      by auto
-  qed
-qed (auto simp: PiE_def)
-
-lemma PiE_arb: "f \<in> Pi\<^sub>E S T \<Longrightarrow> x \<notin> S \<Longrightarrow> f x = undefined"
-  unfolding PiE_def by auto (auto dest!: extensional_arb)
-
-lemma PiE_mem: "f \<in> Pi\<^sub>E S T \<Longrightarrow> x \<in> S \<Longrightarrow> f x \<in> T x"
-  unfolding PiE_def by auto
-
-lemma PiE_fun_upd: "y \<in> T x \<Longrightarrow> f \<in> Pi\<^sub>E S T \<Longrightarrow> f(x := y) \<in> Pi\<^sub>E (insert x S) T"
-  unfolding PiE_def extensional_def by auto
-
-lemma fun_upd_in_PiE: "x \<notin> S \<Longrightarrow> f \<in> Pi\<^sub>E (insert x S) T \<Longrightarrow> f(x := undefined) \<in> Pi\<^sub>E S T"
-  unfolding PiE_def extensional_def by auto
-
-lemma PiE_insert_eq: "Pi\<^sub>E (insert x S) T = (\<lambda>(y, g). g(x := y)) ` (T x \<times> Pi\<^sub>E S T)"
-proof -
-  {
-    fix f assume "f \<in> Pi\<^sub>E (insert x S) T" "x \<notin> S"
-    then have "f \<in> (\<lambda>(y, g). g(x := y)) ` (T x \<times> Pi\<^sub>E S T)"
-      by (auto intro!: image_eqI[where x="(f x, f(x := undefined))"] intro: fun_upd_in_PiE PiE_mem)
-  }
-  moreover
-  {
-    fix f assume "f \<in> Pi\<^sub>E (insert x S) T" "x \<in> S"
-    then have "f \<in> (\<lambda>(y, g). g(x := y)) ` (T x \<times> Pi\<^sub>E S T)"
-      by (auto intro!: image_eqI[where x="(f x, f)"] intro: fun_upd_in_PiE PiE_mem simp: insert_absorb)
-  }
-  ultimately show ?thesis
-    by (auto intro: PiE_fun_upd)
-qed
-
-lemma PiE_Int: "Pi\<^sub>E I A \<inter> Pi\<^sub>E I B = Pi\<^sub>E I (\<lambda>x. A x \<inter> B x)"
-  by (auto simp: PiE_def)
-
-lemma PiE_cong: "(\<And>i. i\<in>I \<Longrightarrow> A i = B i) \<Longrightarrow> Pi\<^sub>E I A = Pi\<^sub>E I B"
-  unfolding PiE_def by (auto simp: Pi_cong)
-
-lemma PiE_E [elim]:
-  assumes "f \<in> Pi\<^sub>E A B"
-  obtains "x \<in> A" and "f x \<in> B x"
-    | "x \<notin> A" and "f x = undefined"
-  using assms by (auto simp: Pi_def PiE_def extensional_def)
-
-lemma PiE_I[intro!]:
-  "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B x) \<Longrightarrow> (\<And>x. x \<notin> A \<Longrightarrow> f x = undefined) \<Longrightarrow> f \<in> Pi\<^sub>E A B"
-  by (simp add: PiE_def extensional_def)
-
-lemma PiE_mono: "(\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> C x) \<Longrightarrow> Pi\<^sub>E A B \<subseteq> Pi\<^sub>E A C"
-  by auto
-
-lemma PiE_iff: "f \<in> Pi\<^sub>E I X \<longleftrightarrow> (\<forall>i\<in>I. f i \<in> X i) \<and> f \<in> extensional I"
-  by (simp add: PiE_def Pi_iff)
-
-lemma PiE_restrict[simp]:  "f \<in> Pi\<^sub>E A B \<Longrightarrow> restrict f A = f"
-  by (simp add: extensional_restrict PiE_def)
-
-lemma restrict_PiE[simp]: "restrict f I \<in> Pi\<^sub>E I S \<longleftrightarrow> f \<in> Pi I S"
-  by (auto simp: PiE_iff)
-
-lemma PiE_eq_subset:
-  assumes ne: "\<And>i. i \<in> I \<Longrightarrow> F i \<noteq> {}" "\<And>i. i \<in> I \<Longrightarrow> F' i \<noteq> {}"
-    and eq: "Pi\<^sub>E I F = Pi\<^sub>E I F'"
-    and "i \<in> I"
-  shows "F i \<subseteq> F' i"
-proof
-  fix x
-  assume "x \<in> F i"
-  with ne have "\<forall>j. \<exists>y. (j \<in> I \<longrightarrow> y \<in> F j \<and> (i = j \<longrightarrow> x = y)) \<and> (j \<notin> I \<longrightarrow> y = undefined)"
-    by auto
-  from choice[OF this] obtain f
-    where f: " \<forall>j. (j \<in> I \<longrightarrow> f j \<in> F j \<and> (i = j \<longrightarrow> x = f j)) \<and> (j \<notin> I \<longrightarrow> f j = undefined)" ..
-  then have "f \<in> Pi\<^sub>E I F"
-    by (auto simp: extensional_def PiE_def)
-  then have "f \<in> Pi\<^sub>E I F'"
-    using assms by simp
-  then show "x \<in> F' i"
-    using f \<open>i \<in> I\<close> by (auto simp: PiE_def)
-qed
-
-lemma PiE_eq_iff_not_empty:
-  assumes ne: "\<And>i. i \<in> I \<Longrightarrow> F i \<noteq> {}" "\<And>i. i \<in> I \<Longrightarrow> F' i \<noteq> {}"
-  shows "Pi\<^sub>E I F = Pi\<^sub>E I F' \<longleftrightarrow> (\<forall>i\<in>I. F i = F' i)"
-proof (intro iffI ballI)
-  fix i
-  assume eq: "Pi\<^sub>E I F = Pi\<^sub>E I F'"
-  assume i: "i \<in> I"
-  show "F i = F' i"
-    using PiE_eq_subset[of I F F', OF ne eq i]
-    using PiE_eq_subset[of I F' F, OF ne(2,1) eq[symmetric] i]
-    by auto
-qed (auto simp: PiE_def)
-
-lemma PiE_eq_iff:
-  "Pi\<^sub>E I F = Pi\<^sub>E I F' \<longleftrightarrow> (\<forall>i\<in>I. F i = F' i) \<or> ((\<exists>i\<in>I. F i = {}) \<and> (\<exists>i\<in>I. F' i = {}))"
-proof (intro iffI disjCI)
-  assume eq[simp]: "Pi\<^sub>E I F = Pi\<^sub>E I F'"
-  assume "\<not> ((\<exists>i\<in>I. F i = {}) \<and> (\<exists>i\<in>I. F' i = {}))"
-  then have "(\<forall>i\<in>I. F i \<noteq> {}) \<and> (\<forall>i\<in>I. F' i \<noteq> {})"
-    using PiE_eq_empty_iff[of I F] PiE_eq_empty_iff[of I F'] by auto
-  with PiE_eq_iff_not_empty[of I F F'] show "\<forall>i\<in>I. F i = F' i"
-    by auto
-next
-  assume "(\<forall>i\<in>I. F i = F' i) \<or> (\<exists>i\<in>I. F i = {}) \<and> (\<exists>i\<in>I. F' i = {})"
-  then show "Pi\<^sub>E I F = Pi\<^sub>E I F'"
-    using PiE_eq_empty_iff[of I F] PiE_eq_empty_iff[of I F'] by (auto simp: PiE_def)
-qed
-
-lemma extensional_funcset_fun_upd_restricts_rangeI:
-  "\<forall>y \<in> S. f x \<noteq> f y \<Longrightarrow> f \<in> (insert x S) \<rightarrow>\<^sub>E T \<Longrightarrow> f(x := undefined) \<in> S \<rightarrow>\<^sub>E (T - {f x})"
-  unfolding extensional_funcset_def extensional_def
-  apply auto
-  apply (case_tac "x = xa")
-  apply auto
-  done
-
-lemma extensional_funcset_fun_upd_extends_rangeI:
-  assumes "a \<in> T" "f \<in> S \<rightarrow>\<^sub>E (T - {a})"
-  shows "f(x := a) \<in> insert x S \<rightarrow>\<^sub>E  T"
-  using assms unfolding extensional_funcset_def extensional_def by auto
-
-
-subsubsection \<open>Injective Extensional Function Spaces\<close>
-
-lemma extensional_funcset_fun_upd_inj_onI:
-  assumes "f \<in> S \<rightarrow>\<^sub>E (T - {a})"
-    and "inj_on f S"
-  shows "inj_on (f(x := a)) S"
-  using assms
-  unfolding extensional_funcset_def by (auto intro!: inj_on_fun_updI)
-
-lemma extensional_funcset_extend_domain_inj_on_eq:
-  assumes "x \<notin> S"
-  shows "{f. f \<in> (insert x S) \<rightarrow>\<^sub>E T \<and> inj_on f (insert x S)} =
-    (\<lambda>(y, g). g(x:=y)) ` {(y, g). y \<in> T \<and> g \<in> S \<rightarrow>\<^sub>E (T - {y}) \<and> inj_on g S}"
-  using assms
-  apply (auto del: PiE_I PiE_E)
-  apply (auto intro: extensional_funcset_fun_upd_inj_onI
-    extensional_funcset_fun_upd_extends_rangeI del: PiE_I PiE_E)
-  apply (auto simp add: image_iff inj_on_def)
-  apply (rule_tac x="xa x" in exI)
-  apply (auto intro: PiE_mem del: PiE_I PiE_E)
-  apply (rule_tac x="xa(x := undefined)" in exI)
-  apply (auto intro!: extensional_funcset_fun_upd_restricts_rangeI)
-  apply (auto dest!: PiE_mem split: if_split_asm)
-  done
-
-lemma extensional_funcset_extend_domain_inj_onI:
-  assumes "x \<notin> S"
-  shows "inj_on (\<lambda>(y, g). g(x := y)) {(y, g). y \<in> T \<and> g \<in> S \<rightarrow>\<^sub>E (T - {y}) \<and> inj_on g S}"
-  using assms
-  apply (auto intro!: inj_onI)
-  apply (metis fun_upd_same)
-  apply (metis assms PiE_arb fun_upd_triv fun_upd_upd)
-  done
-
-
-subsubsection \<open>Cardinality\<close>
-
-lemma finite_PiE: "finite S \<Longrightarrow> (\<And>i. i \<in> S \<Longrightarrow> finite (T i)) \<Longrightarrow> finite (\<Pi>\<^sub>E i \<in> S. T i)"
-  by (induct S arbitrary: T rule: finite_induct) (simp_all add: PiE_insert_eq)
-
-lemma inj_combinator: "x \<notin> S \<Longrightarrow> inj_on (\<lambda>(y, g). g(x := y)) (T x \<times> Pi\<^sub>E S T)"
-proof (safe intro!: inj_onI ext)
-  fix f y g z
-  assume "x \<notin> S"
-  assume fg: "f \<in> Pi\<^sub>E S T" "g \<in> Pi\<^sub>E S T"
-  assume "f(x := y) = g(x := z)"
-  then have *: "\<And>i. (f(x := y)) i = (g(x := z)) i"
-    unfolding fun_eq_iff by auto
-  from this[of x] show "y = z" by simp
-  fix i from *[of i] \<open>x \<notin> S\<close> fg show "f i = g i"
-    by (auto split: if_split_asm simp: PiE_def extensional_def)
-qed
-
-lemma card_PiE: "finite S \<Longrightarrow> card (\<Pi>\<^sub>E i \<in> S. T i) = (\<Prod> i\<in>S. card (T i))"
-proof (induct rule: finite_induct)
-  case empty
-  then show ?case by auto
-next
-  case (insert x S)
-  then show ?case
-    by (simp add: PiE_insert_eq inj_combinator card_image card_cartesian_product)
-qed
-
-end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/FuncSet.thy	Tue May 15 11:33:43 2018 +0200
@@ -0,0 +1,568 @@
+(*  Title:      HOL/FuncSet.thy
+    Author:     Florian Kammueller and Lawrence C Paulson, Lukas Bulwahn
+*)
+
+section \<open>Pi and Function Sets\<close>
+
+theory FuncSet
+  imports Main
+  abbrevs PiE = "Pi\<^sub>E"
+    and PIE = "\<Pi>\<^sub>E"
+begin
+
+definition Pi :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> ('a \<Rightarrow> 'b) set"
+  where "Pi A B = {f. \<forall>x. x \<in> A \<longrightarrow> f x \<in> B x}"
+
+definition extensional :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b) set"
+  where "extensional A = {f. \<forall>x. x \<notin> A \<longrightarrow> f x = undefined}"
+
+definition "restrict" :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b"
+  where "restrict f A = (\<lambda>x. if x \<in> A then f x else undefined)"
+
+abbreviation funcset :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set"  (infixr "\<rightarrow>" 60)
+  where "A \<rightarrow> B \<equiv> Pi A (\<lambda>_. B)"
+
+syntax
+  "_Pi" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
+  "_lam" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
+translations
+  "\<Pi> x\<in>A. B" \<rightleftharpoons> "CONST Pi A (\<lambda>x. B)"
+  "\<lambda>x\<in>A. f" \<rightleftharpoons> "CONST restrict (\<lambda>x. f) A"
+
+definition "compose" :: "'a set \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'c)"
+  where "compose A g f = (\<lambda>x\<in>A. g (f x))"
+
+
+subsection \<open>Basic Properties of @{term Pi}\<close>
+
+lemma Pi_I[intro!]: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B x) \<Longrightarrow> f \<in> Pi A B"
+  by (simp add: Pi_def)
+
+lemma Pi_I'[simp]: "(\<And>x. x \<in> A \<longrightarrow> f x \<in> B x) \<Longrightarrow> f \<in> Pi A B"
+  by (simp add:Pi_def)
+
+lemma funcsetI: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> f \<in> A \<rightarrow> B"
+  by (simp add: Pi_def)
+
+lemma Pi_mem: "f \<in> Pi A B \<Longrightarrow> x \<in> A \<Longrightarrow> f x \<in> B x"
+  by (simp add: Pi_def)
+
+lemma Pi_iff: "f \<in> Pi I X \<longleftrightarrow> (\<forall>i\<in>I. f i \<in> X i)"
+  unfolding Pi_def by auto
+
+lemma PiE [elim]: "f \<in> Pi A B \<Longrightarrow> (f x \<in> B x \<Longrightarrow> Q) \<Longrightarrow> (x \<notin> A \<Longrightarrow> Q) \<Longrightarrow> Q"
+  by (auto simp: Pi_def)
+
+lemma Pi_cong: "(\<And>w. w \<in> A \<Longrightarrow> f w = g w) \<Longrightarrow> f \<in> Pi A B \<longleftrightarrow> g \<in> Pi A B"
+  by (auto simp: Pi_def)
+
+lemma funcset_id [simp]: "(\<lambda>x. x) \<in> A \<rightarrow> A"
+  by auto
+
+lemma funcset_mem: "f \<in> A \<rightarrow> B \<Longrightarrow> x \<in> A \<Longrightarrow> f x \<in> B"
+  by (simp add: Pi_def)
+
+lemma funcset_image: "f \<in> A \<rightarrow> B \<Longrightarrow> f ` A \<subseteq> B"
+  by auto
+
+lemma image_subset_iff_funcset: "F ` A \<subseteq> B \<longleftrightarrow> F \<in> A \<rightarrow> B"
+  by auto
+
+lemma Pi_eq_empty[simp]: "(\<Pi> x \<in> A. B x) = {} \<longleftrightarrow> (\<exists>x\<in>A. B x = {})"
+  apply (simp add: Pi_def)
+  apply auto
+  txt \<open>Converse direction requires Axiom of Choice to exhibit a function
+  picking an element from each non-empty @{term "B x"}\<close>
+  apply (drule_tac x = "\<lambda>u. SOME y. y \<in> B u" in spec)
+  apply auto
+  apply (cut_tac P = "\<lambda>y. y \<in> B x" in some_eq_ex)
+  apply auto
+  done
+
+lemma Pi_empty [simp]: "Pi {} B = UNIV"
+  by (simp add: Pi_def)
+
+lemma Pi_Int: "Pi I E \<inter> Pi I F = (\<Pi> i\<in>I. E i \<inter> F i)"
+  by auto
+
+lemma Pi_UN:
+  fixes A :: "nat \<Rightarrow> 'i \<Rightarrow> 'a set"
+  assumes "finite I"
+    and mono: "\<And>i n m. i \<in> I \<Longrightarrow> n \<le> m \<Longrightarrow> A n i \<subseteq> A m i"
+  shows "(\<Union>n. Pi I (A n)) = (\<Pi> i\<in>I. \<Union>n. A n i)"
+proof (intro set_eqI iffI)
+  fix f
+  assume "f \<in> (\<Pi> i\<in>I. \<Union>n. A n i)"
+  then have "\<forall>i\<in>I. \<exists>n. f i \<in> A n i"
+    by auto
+  from bchoice[OF this] obtain n where n: "f i \<in> A (n i) i" if "i \<in> I" for i
+    by auto
+  obtain k where k: "n i \<le> k" if "i \<in> I" for i
+    using \<open>finite I\<close> finite_nat_set_iff_bounded_le[of "n`I"] by auto
+  have "f \<in> Pi I (A k)"
+  proof (intro Pi_I)
+    fix i
+    assume "i \<in> I"
+    from mono[OF this, of "n i" k] k[OF this] n[OF this]
+    show "f i \<in> A k i" by auto
+  qed
+  then show "f \<in> (\<Union>n. Pi I (A n))"
+    by auto
+qed auto
+
+lemma Pi_UNIV [simp]: "A \<rightarrow> UNIV = UNIV"
+  by (simp add: Pi_def)
+
+text \<open>Covariance of Pi-sets in their second argument\<close>
+lemma Pi_mono: "(\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> C x) \<Longrightarrow> Pi A B \<subseteq> Pi A C"
+  by auto
+
+text \<open>Contravariance of Pi-sets in their first argument\<close>
+lemma Pi_anti_mono: "A' \<subseteq> A \<Longrightarrow> Pi A B \<subseteq> Pi A' B"
+  by auto
+
+lemma prod_final:
+  assumes 1: "fst \<circ> f \<in> Pi A B"
+    and 2: "snd \<circ> f \<in> Pi A C"
+  shows "f \<in> (\<Pi> z \<in> A. B z \<times> C z)"
+proof (rule Pi_I)
+  fix z
+  assume z: "z \<in> A"
+  have "f z = (fst (f z), snd (f z))"
+    by simp
+  also have "\<dots> \<in> B z \<times> C z"
+    by (metis SigmaI PiE o_apply 1 2 z)
+  finally show "f z \<in> B z \<times> C z" .
+qed
+
+lemma Pi_split_domain[simp]: "x \<in> Pi (I \<union> J) X \<longleftrightarrow> x \<in> Pi I X \<and> x \<in> Pi J X"
+  by (auto simp: Pi_def)
+
+lemma Pi_split_insert_domain[simp]: "x \<in> Pi (insert i I) X \<longleftrightarrow> x \<in> Pi I X \<and> x i \<in> X i"
+  by (auto simp: Pi_def)
+
+lemma Pi_cancel_fupd_range[simp]: "i \<notin> I \<Longrightarrow> x \<in> Pi I (B(i := b)) \<longleftrightarrow> x \<in> Pi I B"
+  by (auto simp: Pi_def)
+
+lemma Pi_cancel_fupd[simp]: "i \<notin> I \<Longrightarrow> x(i := a) \<in> Pi I B \<longleftrightarrow> x \<in> Pi I B"
+  by (auto simp: Pi_def)
+
+lemma Pi_fupd_iff: "i \<in> I \<Longrightarrow> f \<in> Pi I (B(i := A)) \<longleftrightarrow> f \<in> Pi (I - {i}) B \<and> f i \<in> A"
+  apply auto
+  apply (drule_tac x=x in Pi_mem)
+  apply (simp_all split: if_split_asm)
+  apply (drule_tac x=i in Pi_mem)
+  apply (auto dest!: Pi_mem)
+  done
+
+
+subsection \<open>Composition With a Restricted Domain: @{term compose}\<close>
+
+lemma funcset_compose: "f \<in> A \<rightarrow> B \<Longrightarrow> g \<in> B \<rightarrow> C \<Longrightarrow> compose A g f \<in> A \<rightarrow> C"
+  by (simp add: Pi_def compose_def restrict_def)
+
+lemma compose_assoc:
+  assumes "f \<in> A \<rightarrow> B"
+    and "g \<in> B \<rightarrow> C"
+    and "h \<in> C \<rightarrow> D"
+  shows "compose A h (compose A g f) = compose A (compose B h g) f"
+  using assms by (simp add: fun_eq_iff Pi_def compose_def restrict_def)
+
+lemma compose_eq: "x \<in> A \<Longrightarrow> compose A g f x = g (f x)"
+  by (simp add: compose_def restrict_def)
+
+lemma surj_compose: "f ` A = B \<Longrightarrow> g ` B = C \<Longrightarrow> compose A g f ` A = C"
+  by (auto simp add: image_def compose_eq)
+
+
+subsection \<open>Bounded Abstraction: @{term restrict}\<close>
+
+lemma restrict_cong: "I = J \<Longrightarrow> (\<And>i. i \<in> J =simp=> f i = g i) \<Longrightarrow> restrict f I = restrict g J"
+  by (auto simp: restrict_def fun_eq_iff simp_implies_def)
+
+lemma restrict_in_funcset: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> (\<lambda>x\<in>A. f x) \<in> A \<rightarrow> B"
+  by (simp add: Pi_def restrict_def)
+
+lemma restrictI[intro!]: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B x) \<Longrightarrow> (\<lambda>x\<in>A. f x) \<in> Pi A B"
+  by (simp add: Pi_def restrict_def)
+
+lemma restrict_apply[simp]: "(\<lambda>y\<in>A. f y) x = (if x \<in> A then f x else undefined)"
+  by (simp add: restrict_def)
+
+lemma restrict_apply': "x \<in> A \<Longrightarrow> (\<lambda>y\<in>A. f y) x = f x"
+  by simp
+
+lemma restrict_ext: "(\<And>x. x \<in> A \<Longrightarrow> f x = g x) \<Longrightarrow> (\<lambda>x\<in>A. f x) = (\<lambda>x\<in>A. g x)"
+  by (simp add: fun_eq_iff Pi_def restrict_def)
+
+lemma restrict_UNIV: "restrict f UNIV = f"
+  by (simp add: restrict_def)
+
+lemma inj_on_restrict_eq [simp]: "inj_on (restrict f A) A = inj_on f A"
+  by (simp add: inj_on_def restrict_def)
+
+lemma Id_compose: "f \<in> A \<rightarrow> B \<Longrightarrow> f \<in> extensional A \<Longrightarrow> compose A (\<lambda>y\<in>B. y) f = f"
+  by (auto simp add: fun_eq_iff compose_def extensional_def Pi_def)
+
+lemma compose_Id: "g \<in> A \<rightarrow> B \<Longrightarrow> g \<in> extensional A \<Longrightarrow> compose A g (\<lambda>x\<in>A. x) = g"
+  by (auto simp add: fun_eq_iff compose_def extensional_def Pi_def)
+
+lemma image_restrict_eq [simp]: "(restrict f A) ` A = f ` A"
+  by (auto simp add: restrict_def)
+
+lemma restrict_restrict[simp]: "restrict (restrict f A) B = restrict f (A \<inter> B)"
+  unfolding restrict_def by (simp add: fun_eq_iff)
+
+lemma restrict_fupd[simp]: "i \<notin> I \<Longrightarrow> restrict (f (i := x)) I = restrict f I"
+  by (auto simp: restrict_def)
+
+lemma restrict_upd[simp]: "i \<notin> I \<Longrightarrow> (restrict f I)(i := y) = restrict (f(i := y)) (insert i I)"
+  by (auto simp: fun_eq_iff)
+
+lemma restrict_Pi_cancel: "restrict x I \<in> Pi I A \<longleftrightarrow> x \<in> Pi I A"
+  by (auto simp: restrict_def Pi_def)
+
+
+subsection \<open>Bijections Between Sets\<close>
+
+text \<open>The definition of @{const bij_betw} is in \<open>Fun.thy\<close>, but most of
+the theorems belong here, or need at least @{term Hilbert_Choice}.\<close>
+
+lemma bij_betwI:
+  assumes "f \<in> A \<rightarrow> B"
+    and "g \<in> B \<rightarrow> A"
+    and g_f: "\<And>x. x\<in>A \<Longrightarrow> g (f x) = x"
+    and f_g: "\<And>y. y\<in>B \<Longrightarrow> f (g y) = y"
+  shows "bij_betw f A B"
+  unfolding bij_betw_def
+proof
+  show "inj_on f A"
+    by (metis g_f inj_on_def)
+  have "f ` A \<subseteq> B"
+    using \<open>f \<in> A \<rightarrow> B\<close> by auto
+  moreover
+  have "B \<subseteq> f ` A"
+    by auto (metis Pi_mem \<open>g \<in> B \<rightarrow> A\<close> f_g image_iff)
+  ultimately show "f ` A = B"
+    by blast
+qed
+
+lemma bij_betw_imp_funcset: "bij_betw f A B \<Longrightarrow> f \<in> A \<rightarrow> B"
+  by (auto simp add: bij_betw_def)
+
+lemma inj_on_compose: "bij_betw f A B \<Longrightarrow> inj_on g B \<Longrightarrow> inj_on (compose A g f) A"
+  by (auto simp add: bij_betw_def inj_on_def compose_eq)
+
+lemma bij_betw_compose: "bij_betw f A B \<Longrightarrow> bij_betw g B C \<Longrightarrow> bij_betw (compose A g f) A C"
+  apply (simp add: bij_betw_def compose_eq inj_on_compose)
+  apply (auto simp add: compose_def image_def)
+  done
+
+lemma bij_betw_restrict_eq [simp]: "bij_betw (restrict f A) A B = bij_betw f A B"
+  by (simp add: bij_betw_def)
+
+
+subsection \<open>Extensionality\<close>
+
+lemma extensional_empty[simp]: "extensional {} = {\<lambda>x. undefined}"
+  unfolding extensional_def by auto
+
+lemma extensional_arb: "f \<in> extensional A \<Longrightarrow> x \<notin> A \<Longrightarrow> f x = undefined"
+  by (simp add: extensional_def)
+
+lemma restrict_extensional [simp]: "restrict f A \<in> extensional A"
+  by (simp add: restrict_def extensional_def)
+
+lemma compose_extensional [simp]: "compose A f g \<in> extensional A"
+  by (simp add: compose_def)
+
+lemma extensionalityI:
+  assumes "f \<in> extensional A"
+    and "g \<in> extensional A"
+    and "\<And>x. x \<in> A \<Longrightarrow> f x = g x"
+  shows "f = g"
+  using assms by (force simp add: fun_eq_iff extensional_def)
+
+lemma extensional_restrict:  "f \<in> extensional A \<Longrightarrow> restrict f A = f"
+  by (rule extensionalityI[OF restrict_extensional]) auto
+
+lemma extensional_subset: "f \<in> extensional A \<Longrightarrow> A \<subseteq> B \<Longrightarrow> f \<in> extensional B"
+  unfolding extensional_def by auto
+
+lemma inv_into_funcset: "f ` A = B \<Longrightarrow> (\<lambda>x\<in>B. inv_into A f x) \<in> B \<rightarrow> A"
+  by (unfold inv_into_def) (fast intro: someI2)
+
+lemma compose_inv_into_id: "bij_betw f A B \<Longrightarrow> compose A (\<lambda>y\<in>B. inv_into A f y) f = (\<lambda>x\<in>A. x)"
+  apply (simp add: bij_betw_def compose_def)
+  apply (rule restrict_ext, auto)
+  done
+
+lemma compose_id_inv_into: "f ` A = B \<Longrightarrow> compose B f (\<lambda>y\<in>B. inv_into A f y) = (\<lambda>x\<in>B. x)"
+  apply (simp add: compose_def)
+  apply (rule restrict_ext)
+  apply (simp add: f_inv_into_f)
+  done
+
+lemma extensional_insert[intro, simp]:
+  assumes "a \<in> extensional (insert i I)"
+  shows "a(i := b) \<in> extensional (insert i I)"
+  using assms unfolding extensional_def by auto
+
+lemma extensional_Int[simp]: "extensional I \<inter> extensional I' = extensional (I \<inter> I')"
+  unfolding extensional_def by auto
+
+lemma extensional_UNIV[simp]: "extensional UNIV = UNIV"
+  by (auto simp: extensional_def)
+
+lemma restrict_extensional_sub[intro]: "A \<subseteq> B \<Longrightarrow> restrict f A \<in> extensional B"
+  unfolding restrict_def extensional_def by auto
+
+lemma extensional_insert_undefined[intro, simp]:
+  "a \<in> extensional (insert i I) \<Longrightarrow> a(i := undefined) \<in> extensional I"
+  unfolding extensional_def by auto
+
+lemma extensional_insert_cancel[intro, simp]:
+  "a \<in> extensional I \<Longrightarrow> a \<in> extensional (insert i I)"
+  unfolding extensional_def by auto
+
+
+subsection \<open>Cardinality\<close>
+
+lemma card_inj: "f \<in> A \<rightarrow> B \<Longrightarrow> inj_on f A \<Longrightarrow> finite B \<Longrightarrow> card A \<le> card B"
+  by (rule card_inj_on_le) auto
+
+lemma card_bij:
+  assumes "f \<in> A \<rightarrow> B" "inj_on f A"
+    and "g \<in> B \<rightarrow> A" "inj_on g B"
+    and "finite A" "finite B"
+  shows "card A = card B"
+  using assms by (blast intro: card_inj order_antisym)
+
+
+subsection \<open>Extensional Function Spaces\<close>
+
+definition PiE :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> ('a \<Rightarrow> 'b) set"
+  where "PiE S T = Pi S T \<inter> extensional S"
+
+abbreviation "Pi\<^sub>E A B \<equiv> PiE A B"
+
+syntax
+  "_PiE" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set"  ("(3\<Pi>\<^sub>E _\<in>_./ _)" 10)
+translations
+  "\<Pi>\<^sub>E x\<in>A. B" \<rightleftharpoons> "CONST Pi\<^sub>E A (\<lambda>x. B)"
+
+abbreviation extensional_funcset :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set" (infixr "\<rightarrow>\<^sub>E" 60)
+  where "A \<rightarrow>\<^sub>E B \<equiv> (\<Pi>\<^sub>E i\<in>A. B)"
+
+lemma extensional_funcset_def: "extensional_funcset S T = (S \<rightarrow> T) \<inter> extensional S"
+  by (simp add: PiE_def)
+
+lemma PiE_empty_domain[simp]: "Pi\<^sub>E {} T = {\<lambda>x. undefined}"
+  unfolding PiE_def by simp
+
+lemma PiE_UNIV_domain: "Pi\<^sub>E UNIV T = Pi UNIV T"
+  unfolding PiE_def by simp
+
+lemma PiE_empty_range[simp]: "i \<in> I \<Longrightarrow> F i = {} \<Longrightarrow> (\<Pi>\<^sub>E i\<in>I. F i) = {}"
+  unfolding PiE_def by auto
+
+lemma PiE_eq_empty_iff: "Pi\<^sub>E I F = {} \<longleftrightarrow> (\<exists>i\<in>I. F i = {})"
+proof
+  assume "Pi\<^sub>E I F = {}"
+  show "\<exists>i\<in>I. F i = {}"
+  proof (rule ccontr)
+    assume "\<not> ?thesis"
+    then have "\<forall>i. \<exists>y. (i \<in> I \<longrightarrow> y \<in> F i) \<and> (i \<notin> I \<longrightarrow> y = undefined)"
+      by auto
+    from choice[OF this]
+    obtain f where " \<forall>x. (x \<in> I \<longrightarrow> f x \<in> F x) \<and> (x \<notin> I \<longrightarrow> f x = undefined)" ..
+    then have "f \<in> Pi\<^sub>E I F"
+      by (auto simp: extensional_def PiE_def)
+    with \<open>Pi\<^sub>E I F = {}\<close> show False
+      by auto
+  qed
+qed (auto simp: PiE_def)
+
+lemma PiE_arb: "f \<in> Pi\<^sub>E S T \<Longrightarrow> x \<notin> S \<Longrightarrow> f x = undefined"
+  unfolding PiE_def by auto (auto dest!: extensional_arb)
+
+lemma PiE_mem: "f \<in> Pi\<^sub>E S T \<Longrightarrow> x \<in> S \<Longrightarrow> f x \<in> T x"
+  unfolding PiE_def by auto
+
+lemma PiE_fun_upd: "y \<in> T x \<Longrightarrow> f \<in> Pi\<^sub>E S T \<Longrightarrow> f(x := y) \<in> Pi\<^sub>E (insert x S) T"
+  unfolding PiE_def extensional_def by auto
+
+lemma fun_upd_in_PiE: "x \<notin> S \<Longrightarrow> f \<in> Pi\<^sub>E (insert x S) T \<Longrightarrow> f(x := undefined) \<in> Pi\<^sub>E S T"
+  unfolding PiE_def extensional_def by auto
+
+lemma PiE_insert_eq: "Pi\<^sub>E (insert x S) T = (\<lambda>(y, g). g(x := y)) ` (T x \<times> Pi\<^sub>E S T)"
+proof -
+  {
+    fix f assume "f \<in> Pi\<^sub>E (insert x S) T" "x \<notin> S"
+    then have "f \<in> (\<lambda>(y, g). g(x := y)) ` (T x \<times> Pi\<^sub>E S T)"
+      by (auto intro!: image_eqI[where x="(f x, f(x := undefined))"] intro: fun_upd_in_PiE PiE_mem)
+  }
+  moreover
+  {
+    fix f assume "f \<in> Pi\<^sub>E (insert x S) T" "x \<in> S"
+    then have "f \<in> (\<lambda>(y, g). g(x := y)) ` (T x \<times> Pi\<^sub>E S T)"
+      by (auto intro!: image_eqI[where x="(f x, f)"] intro: fun_upd_in_PiE PiE_mem simp: insert_absorb)
+  }
+  ultimately show ?thesis
+    by (auto intro: PiE_fun_upd)
+qed
+
+lemma PiE_Int: "Pi\<^sub>E I A \<inter> Pi\<^sub>E I B = Pi\<^sub>E I (\<lambda>x. A x \<inter> B x)"
+  by (auto simp: PiE_def)
+
+lemma PiE_cong: "(\<And>i. i\<in>I \<Longrightarrow> A i = B i) \<Longrightarrow> Pi\<^sub>E I A = Pi\<^sub>E I B"
+  unfolding PiE_def by (auto simp: Pi_cong)
+
+lemma PiE_E [elim]:
+  assumes "f \<in> Pi\<^sub>E A B"
+  obtains "x \<in> A" and "f x \<in> B x"
+    | "x \<notin> A" and "f x = undefined"
+  using assms by (auto simp: Pi_def PiE_def extensional_def)
+
+lemma PiE_I[intro!]:
+  "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B x) \<Longrightarrow> (\<And>x. x \<notin> A \<Longrightarrow> f x = undefined) \<Longrightarrow> f \<in> Pi\<^sub>E A B"
+  by (simp add: PiE_def extensional_def)
+
+lemma PiE_mono: "(\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> C x) \<Longrightarrow> Pi\<^sub>E A B \<subseteq> Pi\<^sub>E A C"
+  by auto
+
+lemma PiE_iff: "f \<in> Pi\<^sub>E I X \<longleftrightarrow> (\<forall>i\<in>I. f i \<in> X i) \<and> f \<in> extensional I"
+  by (simp add: PiE_def Pi_iff)
+
+lemma PiE_restrict[simp]:  "f \<in> Pi\<^sub>E A B \<Longrightarrow> restrict f A = f"
+  by (simp add: extensional_restrict PiE_def)
+
+lemma restrict_PiE[simp]: "restrict f I \<in> Pi\<^sub>E I S \<longleftrightarrow> f \<in> Pi I S"
+  by (auto simp: PiE_iff)
+
+lemma PiE_eq_subset:
+  assumes ne: "\<And>i. i \<in> I \<Longrightarrow> F i \<noteq> {}" "\<And>i. i \<in> I \<Longrightarrow> F' i \<noteq> {}"
+    and eq: "Pi\<^sub>E I F = Pi\<^sub>E I F'"
+    and "i \<in> I"
+  shows "F i \<subseteq> F' i"
+proof
+  fix x
+  assume "x \<in> F i"
+  with ne have "\<forall>j. \<exists>y. (j \<in> I \<longrightarrow> y \<in> F j \<and> (i = j \<longrightarrow> x = y)) \<and> (j \<notin> I \<longrightarrow> y = undefined)"
+    by auto
+  from choice[OF this] obtain f
+    where f: " \<forall>j. (j \<in> I \<longrightarrow> f j \<in> F j \<and> (i = j \<longrightarrow> x = f j)) \<and> (j \<notin> I \<longrightarrow> f j = undefined)" ..
+  then have "f \<in> Pi\<^sub>E I F"
+    by (auto simp: extensional_def PiE_def)
+  then have "f \<in> Pi\<^sub>E I F'"
+    using assms by simp
+  then show "x \<in> F' i"
+    using f \<open>i \<in> I\<close> by (auto simp: PiE_def)
+qed
+
+lemma PiE_eq_iff_not_empty:
+  assumes ne: "\<And>i. i \<in> I \<Longrightarrow> F i \<noteq> {}" "\<And>i. i \<in> I \<Longrightarrow> F' i \<noteq> {}"
+  shows "Pi\<^sub>E I F = Pi\<^sub>E I F' \<longleftrightarrow> (\<forall>i\<in>I. F i = F' i)"
+proof (intro iffI ballI)
+  fix i
+  assume eq: "Pi\<^sub>E I F = Pi\<^sub>E I F'"
+  assume i: "i \<in> I"
+  show "F i = F' i"
+    using PiE_eq_subset[of I F F', OF ne eq i]
+    using PiE_eq_subset[of I F' F, OF ne(2,1) eq[symmetric] i]
+    by auto
+qed (auto simp: PiE_def)
+
+lemma PiE_eq_iff:
+  "Pi\<^sub>E I F = Pi\<^sub>E I F' \<longleftrightarrow> (\<forall>i\<in>I. F i = F' i) \<or> ((\<exists>i\<in>I. F i = {}) \<and> (\<exists>i\<in>I. F' i = {}))"
+proof (intro iffI disjCI)
+  assume eq[simp]: "Pi\<^sub>E I F = Pi\<^sub>E I F'"
+  assume "\<not> ((\<exists>i\<in>I. F i = {}) \<and> (\<exists>i\<in>I. F' i = {}))"
+  then have "(\<forall>i\<in>I. F i \<noteq> {}) \<and> (\<forall>i\<in>I. F' i \<noteq> {})"
+    using PiE_eq_empty_iff[of I F] PiE_eq_empty_iff[of I F'] by auto
+  with PiE_eq_iff_not_empty[of I F F'] show "\<forall>i\<in>I. F i = F' i"
+    by auto
+next
+  assume "(\<forall>i\<in>I. F i = F' i) \<or> (\<exists>i\<in>I. F i = {}) \<and> (\<exists>i\<in>I. F' i = {})"
+  then show "Pi\<^sub>E I F = Pi\<^sub>E I F'"
+    using PiE_eq_empty_iff[of I F] PiE_eq_empty_iff[of I F'] by (auto simp: PiE_def)
+qed
+
+lemma extensional_funcset_fun_upd_restricts_rangeI:
+  "\<forall>y \<in> S. f x \<noteq> f y \<Longrightarrow> f \<in> (insert x S) \<rightarrow>\<^sub>E T \<Longrightarrow> f(x := undefined) \<in> S \<rightarrow>\<^sub>E (T - {f x})"
+  unfolding extensional_funcset_def extensional_def
+  apply auto
+  apply (case_tac "x = xa")
+  apply auto
+  done
+
+lemma extensional_funcset_fun_upd_extends_rangeI:
+  assumes "a \<in> T" "f \<in> S \<rightarrow>\<^sub>E (T - {a})"
+  shows "f(x := a) \<in> insert x S \<rightarrow>\<^sub>E  T"
+  using assms unfolding extensional_funcset_def extensional_def by auto
+
+
+subsubsection \<open>Injective Extensional Function Spaces\<close>
+
+lemma extensional_funcset_fun_upd_inj_onI:
+  assumes "f \<in> S \<rightarrow>\<^sub>E (T - {a})"
+    and "inj_on f S"
+  shows "inj_on (f(x := a)) S"
+  using assms
+  unfolding extensional_funcset_def by (auto intro!: inj_on_fun_updI)
+
+lemma extensional_funcset_extend_domain_inj_on_eq:
+  assumes "x \<notin> S"
+  shows "{f. f \<in> (insert x S) \<rightarrow>\<^sub>E T \<and> inj_on f (insert x S)} =
+    (\<lambda>(y, g). g(x:=y)) ` {(y, g). y \<in> T \<and> g \<in> S \<rightarrow>\<^sub>E (T - {y}) \<and> inj_on g S}"
+  using assms
+  apply (auto del: PiE_I PiE_E)
+  apply (auto intro: extensional_funcset_fun_upd_inj_onI
+    extensional_funcset_fun_upd_extends_rangeI del: PiE_I PiE_E)
+  apply (auto simp add: image_iff inj_on_def)
+  apply (rule_tac x="xa x" in exI)
+  apply (auto intro: PiE_mem del: PiE_I PiE_E)
+  apply (rule_tac x="xa(x := undefined)" in exI)
+  apply (auto intro!: extensional_funcset_fun_upd_restricts_rangeI)
+  apply (auto dest!: PiE_mem split: if_split_asm)
+  done
+
+lemma extensional_funcset_extend_domain_inj_onI:
+  assumes "x \<notin> S"
+  shows "inj_on (\<lambda>(y, g). g(x := y)) {(y, g). y \<in> T \<and> g \<in> S \<rightarrow>\<^sub>E (T - {y}) \<and> inj_on g S}"
+  using assms
+  apply (auto intro!: inj_onI)
+  apply (metis fun_upd_same)
+  apply (metis assms PiE_arb fun_upd_triv fun_upd_upd)
+  done
+
+
+subsubsection \<open>Cardinality\<close>
+
+lemma finite_PiE: "finite S \<Longrightarrow> (\<And>i. i \<in> S \<Longrightarrow> finite (T i)) \<Longrightarrow> finite (\<Pi>\<^sub>E i \<in> S. T i)"
+  by (induct S arbitrary: T rule: finite_induct) (simp_all add: PiE_insert_eq)
+
+lemma inj_combinator: "x \<notin> S \<Longrightarrow> inj_on (\<lambda>(y, g). g(x := y)) (T x \<times> Pi\<^sub>E S T)"
+proof (safe intro!: inj_onI ext)
+  fix f y g z
+  assume "x \<notin> S"
+  assume fg: "f \<in> Pi\<^sub>E S T" "g \<in> Pi\<^sub>E S T"
+  assume "f(x := y) = g(x := z)"
+  then have *: "\<And>i. (f(x := y)) i = (g(x := z)) i"
+    unfolding fun_eq_iff by auto
+  from this[of x] show "y = z" by simp
+  fix i from *[of i] \<open>x \<notin> S\<close> fg show "f i = g i"
+    by (auto split: if_split_asm simp: PiE_def extensional_def)
+qed
+
+lemma card_PiE: "finite S \<Longrightarrow> card (\<Pi>\<^sub>E i \<in> S. T i) = (\<Prod> i\<in>S. card (T i))"
+proof (induct rule: finite_induct)
+  case empty
+  then show ?case by auto
+next
+  case (insert x S)
+  then show ?case
+    by (simp add: PiE_insert_eq inj_combinator card_image card_cartesian_product)
+qed
+
+end
--- a/src/HOL/Library/Library.thy	Tue May 15 06:23:12 2018 +0200
+++ b/src/HOL/Library/Library.thy	Tue May 15 11:33:43 2018 +0200
@@ -30,6 +30,7 @@
   Finite_Map
   Float
   FSet
+  FuncSet
   Function_Division
   Fun_Lexorder
   Going_To_Filter
--- a/src/HOL/Metis_Examples/Abstraction.thy	Tue May 15 06:23:12 2018 +0200
+++ b/src/HOL/Metis_Examples/Abstraction.thy	Tue May 15 11:33:43 2018 +0200
@@ -8,7 +8,7 @@
 section \<open>Example Featuring Metis's Support for Lambda-Abstractions\<close>
 
 theory Abstraction
-imports HOL.FuncSet
+imports "HOL-Library.FuncSet"
 begin
 
 (* For Christoph Benzmüller *)
--- a/src/HOL/Metis_Examples/Tarski.thy	Tue May 15 06:23:12 2018 +0200
+++ b/src/HOL/Metis_Examples/Tarski.thy	Tue May 15 11:33:43 2018 +0200
@@ -8,7 +8,7 @@
 section \<open>Metis Example Featuring the Full Theorem of Tarski\<close>
 
 theory Tarski
-imports Main HOL.FuncSet
+imports Main "HOL-Library.FuncSet"
 begin
 
 declare [[metis_new_skolem]]
--- a/src/HOL/Number_Theory/Prime_Powers.thy	Tue May 15 06:23:12 2018 +0200
+++ b/src/HOL/Number_Theory/Prime_Powers.thy	Tue May 15 11:33:43 2018 +0200
@@ -6,7 +6,7 @@
 *)
 section \<open>Prime powers\<close>
 theory Prime_Powers
-  imports Complex_Main "HOL-Computational_Algebra.Primes"
+  imports Complex_Main "HOL-Computational_Algebra.Primes" "HOL-Library.FuncSet"
 begin
 
 definition aprimedivisor :: "'a :: normalization_semidom \<Rightarrow> 'a" where
--- a/src/HOL/Vector_Spaces.thy	Tue May 15 06:23:12 2018 +0200
+++ b/src/HOL/Vector_Spaces.thy	Tue May 15 11:33:43 2018 +0200
@@ -9,7 +9,7 @@
 section \<open>Vector Spaces\<close>
 
 theory Vector_Spaces
-  imports Modules FuncSet
+  imports Modules
 begin
 
 lemma isomorphism_expand:
@@ -847,7 +847,7 @@
 lemma linear_exists_left_inverse_on:
   assumes lf: "linear s1 s2 f"
   assumes V: "vs1.subspace V" and f: "inj_on f V"
-  shows "\<exists>g\<in>UNIV \<rightarrow> V. linear s2 s1 g \<and> (\<forall>v\<in>V. g (f v) = v)"
+  shows "\<exists>g. g ` UNIV \<subseteq> V \<and> linear s2 s1 g \<and> (\<forall>v\<in>V. g (f v) = v)"
 proof -
   interpret linear s1 s2 f by fact
   obtain B where V_eq: "V = vs1.span B" and B: "vs1.independent B"
@@ -856,7 +856,7 @@
   have f: "inj_on f (vs1.span B)"
     using f unfolding V_eq .
   show ?thesis
-  proof (intro bexI ballI conjI)
+  proof (intro exI ballI conjI)
     interpret p: vector_space_pair s2 s1 by unfold_locales
     have fB: "vs2.independent (f ` B)"
       using independent_injective_image[OF B f] .
@@ -868,7 +868,7 @@
     moreover have "the_inv_into B f ` f ` B = B"
       by (auto simp: image_comp comp_def the_inv_into_f_f inj_on_subset[OF f vs1.span_superset]
           cong: image_cong)
-    ultimately show "?g \<in> UNIV \<rightarrow> V"
+    ultimately show "?g ` UNIV \<subseteq> V"
       by (auto simp: V_eq)
     have "(?g \<circ> f) v = id v" if "v \<in> vs1.span B" for v
     proof (rule vector_space_pair.linear_eq_on[where x=v])
@@ -890,7 +890,7 @@
 lemma linear_exists_right_inverse_on:
   assumes lf: "linear s1 s2 f"
   assumes "vs1.subspace V"
-  shows "\<exists>g\<in>UNIV \<rightarrow> V. linear s2 s1 g \<and> (\<forall>v\<in>f ` V. f (g v) = v)"
+  shows "\<exists>g. g ` UNIV \<subseteq> V \<and> linear s2 s1 g \<and> (\<forall>v\<in>f ` V. f (g v) = v)"
 proof -
   obtain B where V_eq: "V = vs1.span B" and B: "vs1.independent B"
     using vs1.maximal_independent_subset[of V] vs1.span_minimal[OF _ \<open>vs1.subspace V\<close>]
@@ -900,7 +900,7 @@
   then have "\<forall>v\<in>C. \<exists>b\<in>B. v = f b" by auto
   then obtain g where g: "\<And>v. v \<in> C \<Longrightarrow> g v \<in> B" "\<And>v. v \<in> C \<Longrightarrow> f (g v) = v" by metis
   show ?thesis
-  proof (intro bexI ballI conjI)
+  proof (intro exI ballI conjI)
     interpret p: vector_space_pair s2 s1 by unfold_locales
     let ?g = "p.construct C g"
     show "linear ( *b) ( *a) ?g"
@@ -908,7 +908,7 @@
     have "?g v \<in> vs1.span (g ` C)" for v
       by (rule p.construct_in_span[OF C])
     also have "\<dots> \<subseteq> V" unfolding V_eq using g by (intro vs1.span_mono) auto
-    finally show "?g \<in> UNIV \<rightarrow> V" by auto
+    finally show "?g ` UNIV \<subseteq> V" by auto
     have "(f \<circ> ?g) v = id v" if v: "v \<in> f ` V" for v
     proof (rule vector_space_pair.linear_eq_on[where x=v])
       show "vector_space_pair ( *b) ( *b)" by unfold_locales
@@ -946,7 +946,7 @@
   assumes sf: "vs2.span T \<subseteq> f`vs1.span S"
   shows "\<exists>g. range g \<subseteq> vs1.span S \<and> linear s2 s1 g \<and> (\<forall>x\<in>vs2.span T. f (g x) = x)"
   using linear_exists_right_inverse_on[OF lf vs1.subspace_span, of S] sf
-  by (auto simp: linear_iff_module_hom)
+  by (force simp: linear_iff_module_hom)
 
 lemma linear_surjective_right_inverse: "linear s1 s2 f \<Longrightarrow> surj f \<Longrightarrow> \<exists>g. linear s2 s1 g \<and> f \<circ> g = id"
   using linear_surj_right_inverse[of f UNIV UNIV]
--- a/src/HOL/ex/Ballot.thy	Tue May 15 06:23:12 2018 +0200
+++ b/src/HOL/ex/Ballot.thy	Tue May 15 11:33:43 2018 +0200
@@ -8,6 +8,7 @@
 theory Ballot
 imports
   Complex_Main
+  "HOL-Library.FuncSet"
 begin
 
 subsection \<open>Preliminaries\<close>
--- a/src/HOL/ex/Birthday_Paradox.thy	Tue May 15 06:23:12 2018 +0200
+++ b/src/HOL/ex/Birthday_Paradox.thy	Tue May 15 11:33:43 2018 +0200
@@ -5,7 +5,7 @@
 section \<open>A Formulation of the Birthday Paradox\<close>
 
 theory Birthday_Paradox
-imports Main HOL.FuncSet
+imports Main "HOL-Library.FuncSet"
 begin
 
 section \<open>Cardinality\<close>
--- a/src/HOL/ex/Tarski.thy	Tue May 15 06:23:12 2018 +0200
+++ b/src/HOL/ex/Tarski.thy	Tue May 15 11:33:43 2018 +0200
@@ -5,7 +5,7 @@
 section \<open>The Full Theorem of Tarski\<close>
 
 theory Tarski
-imports Main HOL.FuncSet
+imports Main "HOL-Library.FuncSet"
 begin
 
 text \<open>