doc-src/TutorialI/Inductive/AB.thy
author nipkow
Wed, 18 Oct 2000 17:19:18 +0200
changeset 10242 028f54cd2cc9
parent 10237 875bf54b5d74
child 10283 ff003e2b790c
permissions -rw-r--r--
*** empty log message ***
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10225
b9fd52525b69 *** empty log message ***
nipkow
parents: 10217
diff changeset
     1
(*<*)theory AB = Main:(*>*)
b9fd52525b69 *** empty log message ***
nipkow
parents: 10217
diff changeset
     2
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
     3
section{*Case study: A context free grammar*}
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
     4
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
     5
text{*\label{sec:CFG}
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
     6
Grammars are nothing but shorthands for inductive definitions of nonterminals
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
     7
which represent sets of strings. For example, the production
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
     8
$A \to B c$ is short for
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
     9
\[ w \in B \Longrightarrow wc \in A \]
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    10
This section demonstrates this idea with a standard example
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    11
\cite[p.\ 81]{HopcroftUllman}, a grammar for generating all words with an
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    12
equal number of $a$'s and $b$'s:
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    13
\begin{eqnarray}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    14
S &\to& \epsilon \mid b A \mid a B \nonumber\\
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    15
A &\to& a S \mid b A A \nonumber\\
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    16
B &\to& b S \mid a B B \nonumber
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    17
\end{eqnarray}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    18
At the end we say a few words about the relationship of the formalization
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    19
and the text in the book~\cite[p.\ 81]{HopcroftUllman}.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    20
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    21
We start by fixing the alpgabet, which consists only of @{term a}'s
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    22
and @{term b}'s:
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    23
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    24
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    25
datatype alfa = a | b;
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    26
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    27
text{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    28
For convenience we includ the following easy lemmas as simplification rules:
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    29
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    30
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    31
lemma [simp]: "(x \<noteq> a) = (x = b) \<and> (x \<noteq> b) = (x = a)";
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    32
apply(case_tac x);
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    33
by(auto);
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    34
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    35
text{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    36
Words over this alphabet are of type @{typ"alfa list"}, and
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    37
the three nonterminals are declare as sets of such words:
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    38
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    39
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    40
consts S :: "alfa list set"
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    41
       A :: "alfa list set"
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    42
       B :: "alfa list set";
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    43
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    44
text{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    45
The above productions are recast as a \emph{simultaneous} inductive
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    46
definition\index{inductive definition!simultaneous}
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    47
of @{term S}, @{term A} and @{term B}:
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    48
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    49
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    50
inductive S A B
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    51
intros
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    52
  "[] \<in> S"
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    53
  "w \<in> A \<Longrightarrow> b#w \<in> S"
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    54
  "w \<in> B \<Longrightarrow> a#w \<in> S"
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    55
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    56
  "w \<in> S        \<Longrightarrow> a#w   \<in> A"
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    57
  "\<lbrakk> v\<in>A; w\<in>A \<rbrakk> \<Longrightarrow> b#v@w \<in> A"
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    58
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    59
  "w \<in> S            \<Longrightarrow> b#w   \<in> B"
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    60
  "\<lbrakk> v \<in> B; w \<in> B \<rbrakk> \<Longrightarrow> a#v@w \<in> B";
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    61
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    62
text{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    63
First we show that all words in @{term S} contain the same number of @{term
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    64
a}'s and @{term b}'s. Since the definition of @{term S} is by simultaneous
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    65
induction, so is this proof: we show at the same time that all words in
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    66
@{term A} contain one more @{term a} than @{term b} and all words in @{term
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    67
B} contains one more @{term b} than @{term a}.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    68
*}
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    69
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    70
lemma correctness:
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    71
  "(w \<in> S \<longrightarrow> size[x\<in>w. x=a] = size[x\<in>w. x=b])     \<and>
10237
875bf54b5d74 *** empty log message ***
nipkow
parents: 10236
diff changeset
    72
   (w \<in> A \<longrightarrow> size[x\<in>w. x=a] = size[x\<in>w. x=b] + 1) \<and>
875bf54b5d74 *** empty log message ***
nipkow
parents: 10236
diff changeset
    73
   (w \<in> B \<longrightarrow> size[x\<in>w. x=b] = size[x\<in>w. x=a] + 1)"
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    74
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    75
txt{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    76
These propositions are expressed with the help of the predefined @{term
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    77
filter} function on lists, which has the convenient syntax @{term"[x\<in>xs. P
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    78
x]"}, the list of all elements @{term x} in @{term xs} such that @{prop"P x"}
10237
875bf54b5d74 *** empty log message ***
nipkow
parents: 10236
diff changeset
    79
holds. Remember that on lists @{term size} and @{term length} are synonymous.
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    80
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    81
The proof itself is by rule induction and afterwards automatic:
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    82
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    83
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    84
apply(rule S_A_B.induct);
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    85
by(auto);
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    86
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    87
text{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    88
This may seem surprising at first, and is indeed an indication of the power
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    89
of inductive definitions. But it is also quite straightforward. For example,
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    90
consider the production $A \to b A A$: if $v,w \in A$ and the elements of $A$
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    91
contain one more $a$ than $b$'s, then $bvw$ must again contain one more $a$
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    92
than $b$'s.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    93
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    94
As usual, the correctness of syntactic descriptions is easy, but completeness
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    95
is hard: does @{term S} contain \emph{all} words with an equal number of
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    96
@{term a}'s and @{term b}'s? It turns out that this proof requires the
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    97
following little lemma: every string with two more @{term a}'s than @{term
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    98
b}'s can be cut somehwere such that each half has one more @{term a} than
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    99
@{term b}. This is best seen by imagining counting the difference between the
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   100
number of @{term a}'s than @{term b}'s starting at the left end of the
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   101
word. We start at 0 and end (at the right end) with 2. Since each move to the
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   102
right increases or decreases the difference by 1, we must have passed through
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   103
1 on our way from 0 to 2. Formally, we appeal to the following discrete
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   104
intermediate value theorem @{thm[source]nat0_intermed_int_val}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   105
@{thm[display]nat0_intermed_int_val[no_vars]}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   106
where @{term f} is of type @{typ"nat \<Rightarrow> int"}, @{typ int} are the integers,
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   107
@{term abs} is the absolute value function, and @{term"#1::int"} is the
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   108
integer 1 (see \S\ref{sec:int}).
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   109
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   110
First we show that the our specific function, the difference between the
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   111
numbers of @{term a}'s and @{term b}'s, does indeed only change by 1 in every
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   112
move to the right. At this point we also start generalizing from @{term a}'s
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   113
and @{term b}'s to an arbitrary property @{term P}. Otherwise we would have
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   114
to prove the desired lemma twice, once as stated above and once with the
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   115
roles of @{term a}'s and @{term b}'s interchanged.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   116
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   117
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   118
lemma step1: "\<forall>i < size w.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   119
  abs((int(size[x\<in>take (i+1) w.  P x]) -
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   120
       int(size[x\<in>take (i+1) w. \<not>P x]))
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   121
      -
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   122
      (int(size[x\<in>take i w.  P x]) -
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   123
       int(size[x\<in>take i w. \<not>P x]))) <= #1";
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   124
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   125
txt{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   126
The lemma is a bit hard to read because of the coercion function
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   127
@{term[source]"int::nat \<Rightarrow> int"}. It is required because @{term size} returns
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   128
a natural number, but @{text-} on @{typ nat} will do the wrong thing.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   129
Function @{term take} is predefined and @{term"take i xs"} is the prefix of
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   130
length @{term i} of @{term xs}; below we als need @{term"drop i xs"}, which
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   131
is what remains after that prefix has been dropped from @{term xs}.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   132
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   133
The proof is by induction on @{term w}, with a trivial base case, and a not
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   134
so trivial induction step. Since it is essentially just arithmetic, we do not
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   135
discuss it.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   136
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   137
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   138
apply(induct w);
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   139
 apply(simp);
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   140
by(force simp add:zabs_def take_Cons split:nat.split if_splits); 
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   141
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   142
text{*
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   143
Finally we come to the above mentioned lemma about cutting a word with two
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   144
more elements of one sort than of the other sort into two halfs:
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   145
*}
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   146
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   147
lemma part1:
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   148
 "size[x\<in>w. P x] = size[x\<in>w. \<not>P x]+2 \<Longrightarrow>
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   149
  \<exists>i\<le>size w. size[x\<in>take i w. P x] = size[x\<in>take i w. \<not>P x]+1";
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   150
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   151
txt{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   152
This is proved with the help of the intermediate value theorem, instantiated
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   153
appropriately and with its first premise disposed of by lemma
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   154
@{thm[source]step1}.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   155
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   156
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   157
apply(insert nat0_intermed_int_val[OF step1, of "P" "w" "#1"]);
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   158
apply simp;
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   159
by(simp del:int_Suc add:zdiff_eq_eq sym[OF int_Suc]);
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   160
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   161
text{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   162
The additional lemmas are needed to mediate between @{typ nat} and @{typ int}.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   163
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   164
Lemma @{thm[source]part1} tells us only about the prefix @{term"take i w"}.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   165
The suffix @{term"drop i w"} is dealt with in the following easy lemma:
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   166
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   167
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   168
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   169
lemma part2:
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   170
  "\<lbrakk>size[x\<in>take i w @ drop i w. P x] =
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   171
    size[x\<in>take i w @ drop i w. \<not>P x]+2;
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   172
    size[x\<in>take i w. P x] = size[x\<in>take i w. \<not>P x]+1\<rbrakk>
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   173
   \<Longrightarrow> size[x\<in>drop i w. P x] = size[x\<in>drop i w. \<not>P x]+1";
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   174
by(simp del:append_take_drop_id);
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   175
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   176
text{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   177
Lemma @{thm[source]append_take_drop_id}, @{thm append_take_drop_id[no_vars]},
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   178
which is generally useful, needs to be disabled for once.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   179
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   180
To dispose of trivial cases automatically, the rules of the inductive
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   181
definition are declared simplification rules:
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   182
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   183
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   184
declare S_A_B.intros[simp];
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   185
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   186
text{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   187
This could have been done earlier but was not necessary so far.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   188
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   189
The completeness theorem tells us that if a word has the same number of
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   190
@{term a}'s and @{term b}'s, then it is in @{term S}, and similarly and
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   191
simultaneously for @{term A} and @{term B}:
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   192
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   193
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   194
theorem completeness:
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   195
  "(size[x\<in>w. x=a] = size[x\<in>w. x=b]     \<longrightarrow> w \<in> S) \<and>
10237
875bf54b5d74 *** empty log message ***
nipkow
parents: 10236
diff changeset
   196
   (size[x\<in>w. x=a] = size[x\<in>w. x=b] + 1 \<longrightarrow> w \<in> A) \<and>
875bf54b5d74 *** empty log message ***
nipkow
parents: 10236
diff changeset
   197
   (size[x\<in>w. x=b] = size[x\<in>w. x=a] + 1 \<longrightarrow> w \<in> B)";
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   198
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   199
txt{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   200
The proof is by induction on @{term w}. Structural induction would fail here
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   201
because, as we can see from the grammar, we need to make bigger steps than
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   202
merely appending a single letter at the front. Hence we induct on the length
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   203
of @{term w}, using the induction rule @{thm[source]length_induct}:
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   204
*}
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   205
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   206
apply(induct_tac w rule: length_induct);
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   207
(*<*)apply(rename_tac w)(*>*)
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   208
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   209
txt{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   210
The @{text rule} parameter tells @{text induct_tac} explicitly which induction
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   211
rule to use. For details see \S\ref{sec:complete-ind} below.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   212
In this case the result is that we may assume the lemma already
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   213
holds for all words shorter than @{term w}.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   214
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   215
The proof continues with a case distinction on @{term w},
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   216
i.e.\ if @{term w} is empty or not.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   217
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   218
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   219
apply(case_tac w);
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   220
 apply(simp_all);
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   221
(*<*)apply(rename_tac x v)(*>*)
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   222
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   223
txt{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   224
Simplification disposes of the base case and leaves only two step
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   225
cases to be proved:
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   226
if @{prop"w = a#v"} and @{prop"size[x\<in>v. x=a] = size[x\<in>v. x=b]+2"} then
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   227
@{prop"b#v \<in> A"}, and similarly for @{prop"w = b#v"}.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   228
We only consider the first case in detail.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   229
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   230
After breaking the conjuction up into two cases, we can apply
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   231
@{thm[source]part1} to the assumption that @{term w} contains two more @{term
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   232
a}'s than @{term b}'s.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   233
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   234
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   235
apply(rule conjI);
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   236
 apply(clarify);
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   237
 apply(frule part1[of "\<lambda>x. x=a", simplified]);
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   238
 apply(erule exE);
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   239
 apply(erule conjE);
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   240
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   241
txt{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   242
This yields an index @{prop"i \<le> length v"} such that
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   243
@{prop"length [x\<in>take i v . x = a] = length [x\<in>take i v . x = b] + 1"}.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   244
With the help of @{thm[source]part1} it follows that
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   245
@{prop"length [x\<in>drop i v . x = a] = length [x\<in>drop i v . x = b] + 1"}.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   246
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   247
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   248
 apply(drule part2[of "\<lambda>x. x=a", simplified]);
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   249
  apply(assumption);
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   250
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   251
txt{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   252
Now it is time to decompose @{term v} in the conclusion @{prop"b#v \<in> A"}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   253
into @{term"take i v @ drop i v"},
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   254
after which the appropriate rule of the grammar reduces the goal
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   255
to the two subgoals @{prop"take i v \<in> A"} and @{prop"drop i v \<in> A"}:
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   256
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   257
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   258
 apply(rule_tac n1=i and t=v in subst[OF append_take_drop_id]);
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   259
 apply(rule S_A_B.intros);
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   260
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   261
txt{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   262
Both subgoals follow from the induction hypothesis because both @{term"take i
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   263
v"} and @{term"drop i v"} are shorter than @{term w}:
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   264
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   265
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   266
  apply(force simp add: min_less_iff_disj);
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   267
 apply(force split add: nat_diff_split);
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   268
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   269
txt{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   270
Note that the variables @{term n1} and @{term t} referred to in the
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   271
substitution step above come from the derived theorem @{text"subst[OF
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   272
append_take_drop_id]"}.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   273
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   274
The case @{prop"w = b#v"} is proved completely analogously:
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   275
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   276
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   277
apply(clarify);
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   278
apply(frule part1[of "\<lambda>x. x=b", simplified]);
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   279
apply(erule exE);
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   280
apply(erule conjE);
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   281
apply(drule part2[of "\<lambda>x. x=b", simplified]);
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   282
 apply(assumption);
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   283
apply(rule_tac n1=i and t=v in subst[OF append_take_drop_id]);
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   284
apply(rule S_A_B.intros);
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   285
 apply(force simp add:min_less_iff_disj);
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   286
by(force simp add:min_less_iff_disj split add: nat_diff_split);
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   287
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   288
text{*
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   289
We conclude this section with a comparison of the above proof and the one
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   290
in the textbook \cite[p.\ 81]{HopcroftUllman}. For a start, the texbook
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   291
grammar, for no good reason, excludes the empty word, which complicates
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   292
matters just a little bit because we now have 8 instead of our 7 productions.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   293
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   294
More importantly, the proof itself is different: rather than separating the
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   295
two directions, they perform one induction on the length of a word. This
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   296
deprives them of the beauty of rule induction and in the easy direction
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   297
(correctness) their reasoning is more detailed than our @{text auto}. For the
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   298
hard part (completeness), they consider just one of the cases that our @{text
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   299
simp_all} disposes of automatically. Then they conclude the proof by saying
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   300
about the remaining cases: ``We do this in a manner similar to our method of
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   301
proof for part (1); this part is left to the reader''. But this is precisely
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   302
the part that requires the intermediate value theorem and thus is not at all
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   303
similar to the other cases (which are automatic in Isabelle). We conclude
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   304
that the authors are at least cavalier about this point and may even have
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   305
overlooked the slight difficulty lurking in the omitted cases. This is not
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   306
atypical for pen-and-paper proofs, once analysed in detail.  *}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   307
10225
b9fd52525b69 *** empty log message ***
nipkow
parents: 10217
diff changeset
   308
(*<*)end(*>*)