| 13634 |      1 | (*  Title:      ZF/Constructible/Rank.thy
 | 
|  |      2 |     ID:   $Id$
 | 
|  |      3 |     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
 | 
|  |      4 | *)
 | 
|  |      5 | 
 | 
|  |      6 | header {*Absoluteness for Order Types, Rank Functions and Well-Founded 
 | 
|  |      7 |          Relations*}
 | 
|  |      8 | 
 | 
|  |      9 | theory Rank = WF_absolute:
 | 
|  |     10 | 
 | 
|  |     11 | subsection {*Order Types: A Direct Construction by Replacement*}
 | 
|  |     12 | 
 | 
|  |     13 | locale M_ordertype = M_basic +
 | 
|  |     14 | assumes well_ord_iso_separation:
 | 
|  |     15 |      "[| M(A); M(f); M(r) |]
 | 
|  |     16 |       ==> separation (M, \<lambda>x. x\<in>A --> (\<exists>y[M]. (\<exists>p[M].
 | 
|  |     17 | 		     fun_apply(M,f,x,y) & pair(M,y,x,p) & p \<in> r)))"
 | 
|  |     18 |   and obase_separation:
 | 
|  |     19 |      --{*part of the order type formalization*}
 | 
|  |     20 |      "[| M(A); M(r) |]
 | 
|  |     21 |       ==> separation(M, \<lambda>a. \<exists>x[M]. \<exists>g[M]. \<exists>mx[M]. \<exists>par[M].
 | 
|  |     22 | 	     ordinal(M,x) & membership(M,x,mx) & pred_set(M,A,a,r,par) &
 | 
|  |     23 | 	     order_isomorphism(M,par,r,x,mx,g))"
 | 
|  |     24 |   and obase_equals_separation:
 | 
|  |     25 |      "[| M(A); M(r) |]
 | 
|  |     26 |       ==> separation (M, \<lambda>x. x\<in>A --> ~(\<exists>y[M]. \<exists>g[M].
 | 
|  |     27 | 			      ordinal(M,y) & (\<exists>my[M]. \<exists>pxr[M].
 | 
|  |     28 | 			      membership(M,y,my) & pred_set(M,A,x,r,pxr) &
 | 
|  |     29 | 			      order_isomorphism(M,pxr,r,y,my,g))))"
 | 
|  |     30 |   and omap_replacement:
 | 
|  |     31 |      "[| M(A); M(r) |]
 | 
|  |     32 |       ==> strong_replacement(M,
 | 
|  |     33 |              \<lambda>a z. \<exists>x[M]. \<exists>g[M]. \<exists>mx[M]. \<exists>par[M].
 | 
|  |     34 | 	     ordinal(M,x) & pair(M,a,x,z) & membership(M,x,mx) &
 | 
|  |     35 | 	     pred_set(M,A,a,r,par) & order_isomorphism(M,par,r,x,mx,g))"
 | 
|  |     36 | 
 | 
|  |     37 | 
 | 
|  |     38 | text{*Inductive argument for Kunen's Lemma I 6.1, etc.
 | 
|  |     39 |       Simple proof from Halmos, page 72*}
 | 
|  |     40 | lemma  (in M_ordertype) wellordered_iso_subset_lemma: 
 | 
|  |     41 |      "[| wellordered(M,A,r);  f \<in> ord_iso(A,r, A',r);  A'<= A;  y \<in> A;  
 | 
|  |     42 |        M(A);  M(f);  M(r) |] ==> ~ <f`y, y> \<in> r"
 | 
|  |     43 | apply (unfold wellordered_def ord_iso_def)
 | 
|  |     44 | apply (elim conjE CollectE) 
 | 
|  |     45 | apply (erule wellfounded_on_induct, assumption+)
 | 
|  |     46 |  apply (insert well_ord_iso_separation [of A f r])
 | 
|  |     47 |  apply (simp, clarify) 
 | 
|  |     48 | apply (drule_tac a = x in bij_is_fun [THEN apply_type], assumption, blast)
 | 
|  |     49 | done
 | 
|  |     50 | 
 | 
|  |     51 | 
 | 
|  |     52 | text{*Kunen's Lemma I 6.1, page 14: 
 | 
|  |     53 |       there's no order-isomorphism to an initial segment of a well-ordering*}
 | 
|  |     54 | lemma (in M_ordertype) wellordered_iso_predD:
 | 
|  |     55 |      "[| wellordered(M,A,r);  f \<in> ord_iso(A, r, Order.pred(A,x,r), r);  
 | 
|  |     56 |        M(A);  M(f);  M(r) |] ==> x \<notin> A"
 | 
|  |     57 | apply (rule notI) 
 | 
|  |     58 | apply (frule wellordered_iso_subset_lemma, assumption)
 | 
|  |     59 | apply (auto elim: predE)  
 | 
|  |     60 | (*Now we know  ~ (f`x < x) *)
 | 
|  |     61 | apply (drule ord_iso_is_bij [THEN bij_is_fun, THEN apply_type], assumption)
 | 
|  |     62 | (*Now we also know f`x  \<in> pred(A,x,r);  contradiction! *)
 | 
|  |     63 | apply (simp add: Order.pred_def)
 | 
|  |     64 | done
 | 
|  |     65 | 
 | 
|  |     66 | 
 | 
|  |     67 | lemma (in M_ordertype) wellordered_iso_pred_eq_lemma:
 | 
|  |     68 |      "[| f \<in> \<langle>Order.pred(A,y,r), r\<rangle> \<cong> \<langle>Order.pred(A,x,r), r\<rangle>;
 | 
|  |     69 |        wellordered(M,A,r); x\<in>A; y\<in>A; M(A); M(f); M(r) |] ==> <x,y> \<notin> r"
 | 
|  |     70 | apply (frule wellordered_is_trans_on, assumption)
 | 
|  |     71 | apply (rule notI) 
 | 
|  |     72 | apply (drule_tac x2=y and x=x and r2=r in 
 | 
|  |     73 |          wellordered_subset [OF _ pred_subset, THEN wellordered_iso_predD]) 
 | 
|  |     74 | apply (simp add: trans_pred_pred_eq) 
 | 
|  |     75 | apply (blast intro: predI dest: transM)+
 | 
|  |     76 | done
 | 
|  |     77 | 
 | 
|  |     78 | 
 | 
|  |     79 | text{*Simple consequence of Lemma 6.1*}
 | 
|  |     80 | lemma (in M_ordertype) wellordered_iso_pred_eq:
 | 
|  |     81 |      "[| wellordered(M,A,r);
 | 
|  |     82 |        f \<in> ord_iso(Order.pred(A,a,r), r, Order.pred(A,c,r), r);   
 | 
|  |     83 |        M(A);  M(f);  M(r);  a\<in>A;  c\<in>A |] ==> a=c"
 | 
|  |     84 | apply (frule wellordered_is_trans_on, assumption)
 | 
|  |     85 | apply (frule wellordered_is_linear, assumption)
 | 
|  |     86 | apply (erule_tac x=a and y=c in linearE, auto) 
 | 
|  |     87 | apply (drule ord_iso_sym)
 | 
|  |     88 | (*two symmetric cases*)
 | 
|  |     89 | apply (blast dest: wellordered_iso_pred_eq_lemma)+ 
 | 
|  |     90 | done
 | 
|  |     91 | 
 | 
|  |     92 | 
 | 
|  |     93 | text{*Following Kunen's Theorem I 7.6, page 17.  Note that this material is
 | 
|  |     94 | not required elsewhere.*}
 | 
|  |     95 | 
 | 
|  |     96 | text{*Can't use @{text well_ord_iso_preserving} because it needs the
 | 
|  |     97 | strong premise @{term "well_ord(A,r)"}*}
 | 
|  |     98 | lemma (in M_ordertype) ord_iso_pred_imp_lt:
 | 
|  |     99 |      "[| f \<in> ord_iso(Order.pred(A,x,r), r, i, Memrel(i));
 | 
|  |    100 |          g \<in> ord_iso(Order.pred(A,y,r), r, j, Memrel(j));
 | 
|  |    101 |          wellordered(M,A,r);  x \<in> A;  y \<in> A; M(A); M(r); M(f); M(g); M(j);
 | 
|  |    102 |          Ord(i); Ord(j); \<langle>x,y\<rangle> \<in> r |]
 | 
|  |    103 |       ==> i < j"
 | 
|  |    104 | apply (frule wellordered_is_trans_on, assumption)
 | 
|  |    105 | apply (frule_tac y=y in transM, assumption) 
 | 
|  |    106 | apply (rule_tac i=i and j=j in Ord_linear_lt, auto)  
 | 
|  |    107 | txt{*case @{term "i=j"} yields a contradiction*}
 | 
|  |    108 |  apply (rule_tac x1=x and A1="Order.pred(A,y,r)" in 
 | 
|  |    109 |           wellordered_iso_predD [THEN notE]) 
 | 
|  |    110 |    apply (blast intro: wellordered_subset [OF _ pred_subset]) 
 | 
|  |    111 |   apply (simp add: trans_pred_pred_eq)
 | 
|  |    112 |   apply (blast intro: Ord_iso_implies_eq ord_iso_sym ord_iso_trans) 
 | 
|  |    113 |  apply (simp_all add: pred_iff pred_closed converse_closed comp_closed)
 | 
|  |    114 | txt{*case @{term "j<i"} also yields a contradiction*}
 | 
|  |    115 | apply (frule restrict_ord_iso2, assumption+) 
 | 
|  |    116 | apply (frule ord_iso_sym [THEN ord_iso_is_bij, THEN bij_is_fun]) 
 | 
|  |    117 | apply (frule apply_type, blast intro: ltD) 
 | 
|  |    118 |   --{*thus @{term "converse(f)`j \<in> Order.pred(A,x,r)"}*}
 | 
|  |    119 | apply (simp add: pred_iff) 
 | 
|  |    120 | apply (subgoal_tac
 | 
|  |    121 |        "\<exists>h[M]. h \<in> ord_iso(Order.pred(A,y,r), r, 
 | 
|  |    122 |                                Order.pred(A, converse(f)`j, r), r)")
 | 
|  |    123 |  apply (clarify, frule wellordered_iso_pred_eq, assumption+)
 | 
|  |    124 |  apply (blast dest: wellordered_asym)  
 | 
|  |    125 | apply (intro rexI)
 | 
|  |    126 |  apply (blast intro: Ord_iso_implies_eq ord_iso_sym ord_iso_trans)+
 | 
|  |    127 | done
 | 
|  |    128 | 
 | 
|  |    129 | 
 | 
|  |    130 | lemma ord_iso_converse1:
 | 
|  |    131 |      "[| f: ord_iso(A,r,B,s);  <b, f`a>: s;  a:A;  b:B |] 
 | 
| 13721 |    132 |       ==> <converse(f) ` b, a> \<in> r"
 | 
| 13634 |    133 | apply (frule ord_iso_converse, assumption+) 
 | 
|  |    134 | apply (blast intro: ord_iso_is_bij [THEN bij_is_fun, THEN apply_funtype]) 
 | 
|  |    135 | apply (simp add: left_inverse_bij [OF ord_iso_is_bij])
 | 
|  |    136 | done
 | 
|  |    137 | 
 | 
|  |    138 | 
 | 
|  |    139 | constdefs
 | 
|  |    140 |   
 | 
|  |    141 |   obase :: "[i=>o,i,i] => i"
 | 
|  |    142 |        --{*the domain of @{text om}, eventually shown to equal @{text A}*}
 | 
|  |    143 |    "obase(M,A,r) == {a\<in>A. \<exists>x[M]. \<exists>g[M]. Ord(x) & 
 | 
|  |    144 |                           g \<in> ord_iso(Order.pred(A,a,r),r,x,Memrel(x))}"
 | 
|  |    145 | 
 | 
|  |    146 |   omap :: "[i=>o,i,i,i] => o"  
 | 
|  |    147 |     --{*the function that maps wosets to order types*}
 | 
|  |    148 |    "omap(M,A,r,f) == 
 | 
|  |    149 | 	\<forall>z[M].
 | 
|  |    150 |          z \<in> f <-> (\<exists>a\<in>A. \<exists>x[M]. \<exists>g[M]. z = <a,x> & Ord(x) & 
 | 
|  |    151 |                         g \<in> ord_iso(Order.pred(A,a,r),r,x,Memrel(x)))"
 | 
|  |    152 | 
 | 
|  |    153 | 
 | 
|  |    154 |   otype :: "[i=>o,i,i,i] => o"  --{*the order types themselves*}
 | 
|  |    155 |    "otype(M,A,r,i) == \<exists>f[M]. omap(M,A,r,f) & is_range(M,f,i)"
 | 
|  |    156 | 
 | 
|  |    157 | 
 | 
|  |    158 | text{*Can also be proved with the premise @{term "M(z)"} instead of
 | 
|  |    159 |       @{term "M(f)"}, but that version is less useful.  This lemma
 | 
|  |    160 |       is also more useful than the definition, @{text omap_def}.*}
 | 
|  |    161 | lemma (in M_ordertype) omap_iff:
 | 
|  |    162 |      "[| omap(M,A,r,f); M(A); M(f) |] 
 | 
|  |    163 |       ==> z \<in> f <->
 | 
|  |    164 |           (\<exists>a\<in>A. \<exists>x[M]. \<exists>g[M]. z = <a,x> & Ord(x) & 
 | 
|  |    165 |                                 g \<in> ord_iso(Order.pred(A,a,r),r,x,Memrel(x)))"
 | 
|  |    166 | apply (simp add: omap_def Memrel_closed pred_closed) 
 | 
|  |    167 | apply (rule iffI)
 | 
|  |    168 |  apply (drule_tac [2] x=z in rspec)
 | 
|  |    169 |  apply (drule_tac x=z in rspec)
 | 
|  |    170 |  apply (blast dest: transM)+
 | 
|  |    171 | done
 | 
|  |    172 | 
 | 
|  |    173 | lemma (in M_ordertype) omap_unique:
 | 
|  |    174 |      "[| omap(M,A,r,f); omap(M,A,r,f'); M(A); M(r); M(f); M(f') |] ==> f' = f" 
 | 
|  |    175 | apply (rule equality_iffI) 
 | 
|  |    176 | apply (simp add: omap_iff) 
 | 
|  |    177 | done
 | 
|  |    178 | 
 | 
|  |    179 | lemma (in M_ordertype) omap_yields_Ord:
 | 
|  |    180 |      "[| omap(M,A,r,f); \<langle>a,x\<rangle> \<in> f; M(a); M(x) |]  ==> Ord(x)"
 | 
|  |    181 |   by (simp add: omap_def)
 | 
|  |    182 | 
 | 
|  |    183 | lemma (in M_ordertype) otype_iff:
 | 
|  |    184 |      "[| otype(M,A,r,i); M(A); M(r); M(i) |] 
 | 
|  |    185 |       ==> x \<in> i <-> 
 | 
|  |    186 |           (M(x) & Ord(x) & 
 | 
|  |    187 |            (\<exists>a\<in>A. \<exists>g[M]. g \<in> ord_iso(Order.pred(A,a,r),r,x,Memrel(x))))"
 | 
|  |    188 | apply (auto simp add: omap_iff otype_def)
 | 
|  |    189 |  apply (blast intro: transM) 
 | 
|  |    190 | apply (rule rangeI) 
 | 
|  |    191 | apply (frule transM, assumption)
 | 
|  |    192 | apply (simp add: omap_iff, blast)
 | 
|  |    193 | done
 | 
|  |    194 | 
 | 
|  |    195 | lemma (in M_ordertype) otype_eq_range:
 | 
|  |    196 |      "[| omap(M,A,r,f); otype(M,A,r,i); M(A); M(r); M(f); M(i) |] 
 | 
|  |    197 |       ==> i = range(f)"
 | 
|  |    198 | apply (auto simp add: otype_def omap_iff)
 | 
|  |    199 | apply (blast dest: omap_unique) 
 | 
|  |    200 | done
 | 
|  |    201 | 
 | 
|  |    202 | 
 | 
|  |    203 | lemma (in M_ordertype) Ord_otype:
 | 
|  |    204 |      "[| otype(M,A,r,i); trans[A](r); M(A); M(r); M(i) |] ==> Ord(i)"
 | 
|  |    205 | apply (rule OrdI) 
 | 
|  |    206 | prefer 2 
 | 
|  |    207 |     apply (simp add: Ord_def otype_def omap_def) 
 | 
|  |    208 |     apply clarify 
 | 
|  |    209 |     apply (frule pair_components_in_M, assumption) 
 | 
|  |    210 |     apply blast 
 | 
|  |    211 | apply (auto simp add: Transset_def otype_iff) 
 | 
|  |    212 |   apply (blast intro: transM)
 | 
|  |    213 |  apply (blast intro: Ord_in_Ord) 
 | 
|  |    214 | apply (rename_tac y a g)
 | 
|  |    215 | apply (frule ord_iso_sym [THEN ord_iso_is_bij, THEN bij_is_fun, 
 | 
|  |    216 | 			  THEN apply_funtype],  assumption)  
 | 
|  |    217 | apply (rule_tac x="converse(g)`y" in bexI)
 | 
|  |    218 |  apply (frule_tac a="converse(g) ` y" in ord_iso_restrict_pred, assumption) 
 | 
|  |    219 | apply (safe elim!: predE) 
 | 
|  |    220 | apply (blast intro: restrict_ord_iso ord_iso_sym ltI dest: transM)
 | 
|  |    221 | done
 | 
|  |    222 | 
 | 
|  |    223 | lemma (in M_ordertype) domain_omap:
 | 
|  |    224 |      "[| omap(M,A,r,f);  M(A); M(r); M(B); M(f) |] 
 | 
|  |    225 |       ==> domain(f) = obase(M,A,r)"
 | 
|  |    226 | apply (simp add: domain_closed obase_def) 
 | 
|  |    227 | apply (rule equality_iffI) 
 | 
|  |    228 | apply (simp add: domain_iff omap_iff, blast) 
 | 
|  |    229 | done
 | 
|  |    230 | 
 | 
|  |    231 | lemma (in M_ordertype) omap_subset: 
 | 
|  |    232 |      "[| omap(M,A,r,f); otype(M,A,r,i); 
 | 
|  |    233 |        M(A); M(r); M(f); M(B); M(i) |] ==> f \<subseteq> obase(M,A,r) * i"
 | 
|  |    234 | apply clarify 
 | 
|  |    235 | apply (simp add: omap_iff obase_def) 
 | 
|  |    236 | apply (force simp add: otype_iff) 
 | 
|  |    237 | done
 | 
|  |    238 | 
 | 
|  |    239 | lemma (in M_ordertype) omap_funtype: 
 | 
|  |    240 |      "[| omap(M,A,r,f); otype(M,A,r,i); 
 | 
|  |    241 |          M(A); M(r); M(f); M(i) |] ==> f \<in> obase(M,A,r) -> i"
 | 
|  |    242 | apply (simp add: domain_omap omap_subset Pi_iff function_def omap_iff) 
 | 
|  |    243 | apply (blast intro: Ord_iso_implies_eq ord_iso_sym ord_iso_trans) 
 | 
|  |    244 | done
 | 
|  |    245 | 
 | 
|  |    246 | 
 | 
|  |    247 | lemma (in M_ordertype) wellordered_omap_bij:
 | 
|  |    248 |      "[| wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i); 
 | 
|  |    249 |        M(A); M(r); M(f); M(i) |] ==> f \<in> bij(obase(M,A,r),i)"
 | 
|  |    250 | apply (insert omap_funtype [of A r f i]) 
 | 
|  |    251 | apply (auto simp add: bij_def inj_def) 
 | 
|  |    252 | prefer 2  apply (blast intro: fun_is_surj dest: otype_eq_range) 
 | 
|  |    253 | apply (frule_tac a=w in apply_Pair, assumption) 
 | 
|  |    254 | apply (frule_tac a=x in apply_Pair, assumption) 
 | 
|  |    255 | apply (simp add: omap_iff) 
 | 
|  |    256 | apply (blast intro: wellordered_iso_pred_eq ord_iso_sym ord_iso_trans) 
 | 
|  |    257 | done
 | 
|  |    258 | 
 | 
|  |    259 | 
 | 
|  |    260 | text{*This is not the final result: we must show @{term "oB(A,r) = A"}*}
 | 
|  |    261 | lemma (in M_ordertype) omap_ord_iso:
 | 
|  |    262 |      "[| wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i); 
 | 
|  |    263 |        M(A); M(r); M(f); M(i) |] ==> f \<in> ord_iso(obase(M,A,r),r,i,Memrel(i))"
 | 
|  |    264 | apply (rule ord_isoI)
 | 
|  |    265 |  apply (erule wellordered_omap_bij, assumption+) 
 | 
|  |    266 | apply (insert omap_funtype [of A r f i], simp) 
 | 
|  |    267 | apply (frule_tac a=x in apply_Pair, assumption) 
 | 
|  |    268 | apply (frule_tac a=y in apply_Pair, assumption) 
 | 
|  |    269 | apply (auto simp add: omap_iff)
 | 
|  |    270 |  txt{*direction 1: assuming @{term "\<langle>x,y\<rangle> \<in> r"}*}
 | 
|  |    271 |  apply (blast intro: ltD ord_iso_pred_imp_lt)
 | 
|  |    272 |  txt{*direction 2: proving @{term "\<langle>x,y\<rangle> \<in> r"} using linearity of @{term r}*}
 | 
|  |    273 | apply (rename_tac x y g ga) 
 | 
|  |    274 | apply (frule wellordered_is_linear, assumption, 
 | 
|  |    275 |        erule_tac x=x and y=y in linearE, assumption+) 
 | 
|  |    276 | txt{*the case @{term "x=y"} leads to immediate contradiction*} 
 | 
|  |    277 | apply (blast elim: mem_irrefl) 
 | 
|  |    278 | txt{*the case @{term "\<langle>y,x\<rangle> \<in> r"}: handle like the opposite direction*}
 | 
|  |    279 | apply (blast dest: ord_iso_pred_imp_lt ltD elim: mem_asym) 
 | 
|  |    280 | done
 | 
|  |    281 | 
 | 
|  |    282 | lemma (in M_ordertype) Ord_omap_image_pred:
 | 
|  |    283 |      "[| wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i); 
 | 
|  |    284 |        M(A); M(r); M(f); M(i); b \<in> A |] ==> Ord(f `` Order.pred(A,b,r))"
 | 
|  |    285 | apply (frule wellordered_is_trans_on, assumption)
 | 
|  |    286 | apply (rule OrdI) 
 | 
|  |    287 | 	prefer 2 apply (simp add: image_iff omap_iff Ord_def, blast) 
 | 
|  |    288 | txt{*Hard part is to show that the image is a transitive set.*}
 | 
|  |    289 | apply (simp add: Transset_def, clarify) 
 | 
|  |    290 | apply (simp add: image_iff pred_iff apply_iff [OF omap_funtype [of A r f i]])
 | 
|  |    291 | apply (rename_tac c j, clarify)
 | 
|  |    292 | apply (frule omap_funtype [of A r f, THEN apply_funtype], assumption+)
 | 
| 13721 |    293 | apply (subgoal_tac "j \<in> i") 
 | 
| 13634 |    294 | 	prefer 2 apply (blast intro: Ord_trans Ord_otype)
 | 
| 13721 |    295 | apply (subgoal_tac "converse(f) ` j \<in> obase(M,A,r)") 
 | 
| 13634 |    296 | 	prefer 2 
 | 
|  |    297 | 	apply (blast dest: wellordered_omap_bij [THEN bij_converse_bij, 
 | 
|  |    298 |                                       THEN bij_is_fun, THEN apply_funtype])
 | 
|  |    299 | apply (rule_tac x="converse(f) ` j" in bexI) 
 | 
|  |    300 |  apply (simp add: right_inverse_bij [OF wellordered_omap_bij]) 
 | 
|  |    301 | apply (intro predI conjI)
 | 
|  |    302 |  apply (erule_tac b=c in trans_onD) 
 | 
|  |    303 |  apply (rule ord_iso_converse1 [OF omap_ord_iso [of A r f i]])
 | 
|  |    304 | apply (auto simp add: obase_def)
 | 
|  |    305 | done
 | 
|  |    306 | 
 | 
|  |    307 | lemma (in M_ordertype) restrict_omap_ord_iso:
 | 
|  |    308 |      "[| wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i); 
 | 
|  |    309 |        D \<subseteq> obase(M,A,r); M(A); M(r); M(f); M(i) |] 
 | 
|  |    310 |       ==> restrict(f,D) \<in> (\<langle>D,r\<rangle> \<cong> \<langle>f``D, Memrel(f``D)\<rangle>)"
 | 
|  |    311 | apply (frule ord_iso_restrict_image [OF omap_ord_iso [of A r f i]], 
 | 
|  |    312 |        assumption+)
 | 
|  |    313 | apply (drule ord_iso_sym [THEN subset_ord_iso_Memrel]) 
 | 
|  |    314 | apply (blast dest: subsetD [OF omap_subset]) 
 | 
|  |    315 | apply (drule ord_iso_sym, simp) 
 | 
|  |    316 | done
 | 
|  |    317 | 
 | 
|  |    318 | lemma (in M_ordertype) obase_equals: 
 | 
|  |    319 |      "[| wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i);
 | 
|  |    320 |        M(A); M(r); M(f); M(i) |] ==> obase(M,A,r) = A"
 | 
|  |    321 | apply (rule equalityI, force simp add: obase_def, clarify) 
 | 
|  |    322 | apply (unfold obase_def, simp) 
 | 
|  |    323 | apply (frule wellordered_is_wellfounded_on, assumption)
 | 
|  |    324 | apply (erule wellfounded_on_induct, assumption+)
 | 
|  |    325 |  apply (frule obase_equals_separation [of A r], assumption) 
 | 
|  |    326 |  apply (simp, clarify) 
 | 
|  |    327 | apply (rename_tac b) 
 | 
|  |    328 | apply (subgoal_tac "Order.pred(A,b,r) <= obase(M,A,r)") 
 | 
|  |    329 |  apply (blast intro!: restrict_omap_ord_iso Ord_omap_image_pred)
 | 
|  |    330 | apply (force simp add: pred_iff obase_def)  
 | 
|  |    331 | done
 | 
|  |    332 | 
 | 
|  |    333 | 
 | 
|  |    334 | 
 | 
|  |    335 | text{*Main result: @{term om} gives the order-isomorphism 
 | 
|  |    336 |       @{term "\<langle>A,r\<rangle> \<cong> \<langle>i, Memrel(i)\<rangle>"} *}
 | 
|  |    337 | theorem (in M_ordertype) omap_ord_iso_otype:
 | 
|  |    338 |      "[| wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i);
 | 
|  |    339 |        M(A); M(r); M(f); M(i) |] ==> f \<in> ord_iso(A, r, i, Memrel(i))"
 | 
|  |    340 | apply (frule omap_ord_iso, assumption+)
 | 
|  |    341 | apply (simp add: obase_equals)  
 | 
|  |    342 | done 
 | 
|  |    343 | 
 | 
|  |    344 | lemma (in M_ordertype) obase_exists:
 | 
|  |    345 |      "[| M(A); M(r) |] ==> M(obase(M,A,r))"
 | 
|  |    346 | apply (simp add: obase_def) 
 | 
|  |    347 | apply (insert obase_separation [of A r])
 | 
|  |    348 | apply (simp add: separation_def)  
 | 
|  |    349 | done
 | 
|  |    350 | 
 | 
|  |    351 | lemma (in M_ordertype) omap_exists:
 | 
|  |    352 |      "[| M(A); M(r) |] ==> \<exists>z[M]. omap(M,A,r,z)"
 | 
|  |    353 | apply (simp add: omap_def) 
 | 
|  |    354 | apply (insert omap_replacement [of A r])
 | 
|  |    355 | apply (simp add: strong_replacement_def) 
 | 
|  |    356 | apply (drule_tac x="obase(M,A,r)" in rspec) 
 | 
|  |    357 |  apply (simp add: obase_exists) 
 | 
|  |    358 | apply (simp add: Memrel_closed pred_closed obase_def)
 | 
|  |    359 | apply (erule impE) 
 | 
|  |    360 |  apply (clarsimp simp add: univalent_def)
 | 
|  |    361 |  apply (blast intro: Ord_iso_implies_eq ord_iso_sym ord_iso_trans, clarify)  
 | 
|  |    362 | apply (rule_tac x=Y in rexI) 
 | 
|  |    363 | apply (simp add: Memrel_closed pred_closed obase_def, blast, assumption)
 | 
|  |    364 | done
 | 
|  |    365 | 
 | 
|  |    366 | declare rall_simps [simp] rex_simps [simp]
 | 
|  |    367 | 
 | 
|  |    368 | lemma (in M_ordertype) otype_exists:
 | 
|  |    369 |      "[| wellordered(M,A,r); M(A); M(r) |] ==> \<exists>i[M]. otype(M,A,r,i)"
 | 
|  |    370 | apply (insert omap_exists [of A r])  
 | 
|  |    371 | apply (simp add: otype_def, safe)
 | 
|  |    372 | apply (rule_tac x="range(x)" in rexI) 
 | 
|  |    373 | apply blast+
 | 
|  |    374 | done
 | 
|  |    375 | 
 | 
|  |    376 | lemma (in M_ordertype) ordertype_exists:
 | 
|  |    377 |      "[| wellordered(M,A,r); M(A); M(r) |]
 | 
|  |    378 |       ==> \<exists>f[M]. (\<exists>i[M]. Ord(i) & f \<in> ord_iso(A, r, i, Memrel(i)))"
 | 
|  |    379 | apply (insert obase_exists [of A r] omap_exists [of A r] otype_exists [of A r], simp, clarify)
 | 
|  |    380 | apply (rename_tac i) 
 | 
|  |    381 | apply (subgoal_tac "Ord(i)", blast intro: omap_ord_iso_otype)
 | 
|  |    382 | apply (rule Ord_otype) 
 | 
|  |    383 |     apply (force simp add: otype_def range_closed) 
 | 
|  |    384 |    apply (simp_all add: wellordered_is_trans_on) 
 | 
|  |    385 | done
 | 
|  |    386 | 
 | 
|  |    387 | 
 | 
|  |    388 | lemma (in M_ordertype) relativized_imp_well_ord: 
 | 
|  |    389 |      "[| wellordered(M,A,r); M(A); M(r) |] ==> well_ord(A,r)" 
 | 
|  |    390 | apply (insert ordertype_exists [of A r], simp)
 | 
|  |    391 | apply (blast intro: well_ord_ord_iso well_ord_Memrel)  
 | 
|  |    392 | done
 | 
|  |    393 | 
 | 
|  |    394 | subsection {*Kunen's theorem 5.4, page 127*}
 | 
|  |    395 | 
 | 
|  |    396 | text{*(a) The notion of Wellordering is absolute*}
 | 
|  |    397 | theorem (in M_ordertype) well_ord_abs [simp]: 
 | 
|  |    398 |      "[| M(A); M(r) |] ==> wellordered(M,A,r) <-> well_ord(A,r)" 
 | 
|  |    399 | by (blast intro: well_ord_imp_relativized relativized_imp_well_ord)  
 | 
|  |    400 | 
 | 
|  |    401 | 
 | 
|  |    402 | text{*(b) Order types are absolute*}
 | 
|  |    403 | theorem (in M_ordertype) 
 | 
|  |    404 |      "[| wellordered(M,A,r); f \<in> ord_iso(A, r, i, Memrel(i));
 | 
|  |    405 |        M(A); M(r); M(f); M(i); Ord(i) |] ==> i = ordertype(A,r)"
 | 
|  |    406 | by (blast intro: Ord_ordertype relativized_imp_well_ord ordertype_ord_iso
 | 
|  |    407 |                  Ord_iso_implies_eq ord_iso_sym ord_iso_trans)
 | 
|  |    408 | 
 | 
|  |    409 | 
 | 
|  |    410 | subsection{*Ordinal Arithmetic: Two Examples of Recursion*}
 | 
|  |    411 | 
 | 
|  |    412 | text{*Note: the remainder of this theory is not needed elsewhere.*}
 | 
|  |    413 | 
 | 
|  |    414 | subsubsection{*Ordinal Addition*}
 | 
|  |    415 | 
 | 
|  |    416 | (*FIXME: update to use new techniques!!*)
 | 
|  |    417 | constdefs
 | 
|  |    418 |  (*This expresses ordinal addition in the language of ZF.  It also 
 | 
|  |    419 |    provides an abbreviation that can be used in the instance of strong
 | 
|  |    420 |    replacement below.  Here j is used to define the relation, namely
 | 
|  |    421 |    Memrel(succ(j)), while x determines the domain of f.*)
 | 
|  |    422 |  is_oadd_fun :: "[i=>o,i,i,i,i] => o"
 | 
|  |    423 |     "is_oadd_fun(M,i,j,x,f) == 
 | 
|  |    424 |        (\<forall>sj msj. M(sj) --> M(msj) --> 
 | 
|  |    425 |                  successor(M,j,sj) --> membership(M,sj,msj) --> 
 | 
|  |    426 | 	         M_is_recfun(M, 
 | 
|  |    427 | 		     %x g y. \<exists>gx[M]. image(M,g,x,gx) & union(M,i,gx,y),
 | 
|  |    428 | 		     msj, x, f))"
 | 
|  |    429 | 
 | 
|  |    430 |  is_oadd :: "[i=>o,i,i,i] => o"
 | 
|  |    431 |     "is_oadd(M,i,j,k) == 
 | 
|  |    432 |         (~ ordinal(M,i) & ~ ordinal(M,j) & k=0) |
 | 
|  |    433 |         (~ ordinal(M,i) & ordinal(M,j) & k=j) |
 | 
|  |    434 |         (ordinal(M,i) & ~ ordinal(M,j) & k=i) |
 | 
|  |    435 |         (ordinal(M,i) & ordinal(M,j) & 
 | 
|  |    436 | 	 (\<exists>f fj sj. M(f) & M(fj) & M(sj) & 
 | 
|  |    437 | 		    successor(M,j,sj) & is_oadd_fun(M,i,sj,sj,f) & 
 | 
|  |    438 | 		    fun_apply(M,f,j,fj) & fj = k))"
 | 
|  |    439 | 
 | 
|  |    440 |  (*NEEDS RELATIVIZATION*)
 | 
|  |    441 |  omult_eqns :: "[i,i,i,i] => o"
 | 
|  |    442 |     "omult_eqns(i,x,g,z) ==
 | 
|  |    443 |             Ord(x) & 
 | 
|  |    444 | 	    (x=0 --> z=0) &
 | 
|  |    445 |             (\<forall>j. x = succ(j) --> z = g`j ++ i) &
 | 
|  |    446 |             (Limit(x) --> z = \<Union>(g``x))"
 | 
|  |    447 | 
 | 
|  |    448 |  is_omult_fun :: "[i=>o,i,i,i] => o"
 | 
|  |    449 |     "is_omult_fun(M,i,j,f) == 
 | 
|  |    450 | 	    (\<exists>df. M(df) & is_function(M,f) & 
 | 
|  |    451 |                   is_domain(M,f,df) & subset(M, j, df)) & 
 | 
|  |    452 |             (\<forall>x\<in>j. omult_eqns(i,x,f,f`x))"
 | 
|  |    453 | 
 | 
|  |    454 |  is_omult :: "[i=>o,i,i,i] => o"
 | 
|  |    455 |     "is_omult(M,i,j,k) == 
 | 
|  |    456 | 	\<exists>f fj sj. M(f) & M(fj) & M(sj) & 
 | 
|  |    457 |                   successor(M,j,sj) & is_omult_fun(M,i,sj,f) & 
 | 
|  |    458 |                   fun_apply(M,f,j,fj) & fj = k"
 | 
|  |    459 | 
 | 
|  |    460 | 
 | 
|  |    461 | locale M_ord_arith = M_ordertype +
 | 
|  |    462 |   assumes oadd_strong_replacement:
 | 
|  |    463 |    "[| M(i); M(j) |] ==>
 | 
|  |    464 |     strong_replacement(M, 
 | 
|  |    465 |          \<lambda>x z. \<exists>y[M]. pair(M,x,y,z) & 
 | 
|  |    466 |                   (\<exists>f[M]. \<exists>fx[M]. is_oadd_fun(M,i,j,x,f) & 
 | 
|  |    467 | 		           image(M,f,x,fx) & y = i Un fx))"
 | 
|  |    468 | 
 | 
|  |    469 |  and omult_strong_replacement':
 | 
|  |    470 |    "[| M(i); M(j) |] ==>
 | 
|  |    471 |     strong_replacement(M, 
 | 
|  |    472 |          \<lambda>x z. \<exists>y[M]. z = <x,y> &
 | 
|  |    473 | 	     (\<exists>g[M]. is_recfun(Memrel(succ(j)),x,%x g. THE z. omult_eqns(i,x,g,z),g) & 
 | 
|  |    474 | 	     y = (THE z. omult_eqns(i, x, g, z))))" 
 | 
|  |    475 | 
 | 
|  |    476 | 
 | 
|  |    477 | 
 | 
|  |    478 | text{*@{text is_oadd_fun}: Relating the pure "language of set theory" to Isabelle/ZF*}
 | 
|  |    479 | lemma (in M_ord_arith) is_oadd_fun_iff:
 | 
|  |    480 |    "[| a\<le>j; M(i); M(j); M(a); M(f) |] 
 | 
|  |    481 |     ==> is_oadd_fun(M,i,j,a,f) <->
 | 
|  |    482 | 	f \<in> a \<rightarrow> range(f) & (\<forall>x. M(x) --> x < a --> f`x = i Un f``x)"
 | 
|  |    483 | apply (frule lt_Ord) 
 | 
|  |    484 | apply (simp add: is_oadd_fun_def Memrel_closed Un_closed 
 | 
|  |    485 |              relation2_def is_recfun_abs [of "%x g. i Un g``x"]
 | 
|  |    486 |              image_closed is_recfun_iff_equation  
 | 
|  |    487 |              Ball_def lt_trans [OF ltI, of _ a] lt_Memrel)
 | 
|  |    488 | apply (simp add: lt_def) 
 | 
|  |    489 | apply (blast dest: transM) 
 | 
|  |    490 | done
 | 
|  |    491 | 
 | 
|  |    492 | 
 | 
|  |    493 | lemma (in M_ord_arith) oadd_strong_replacement':
 | 
|  |    494 |     "[| M(i); M(j) |] ==>
 | 
|  |    495 |      strong_replacement(M, 
 | 
|  |    496 |             \<lambda>x z. \<exists>y[M]. z = <x,y> &
 | 
|  |    497 | 		  (\<exists>g[M]. is_recfun(Memrel(succ(j)),x,%x g. i Un g``x,g) & 
 | 
|  |    498 | 		  y = i Un g``x))" 
 | 
|  |    499 | apply (insert oadd_strong_replacement [of i j]) 
 | 
|  |    500 | apply (simp add: is_oadd_fun_def relation2_def
 | 
|  |    501 |                  is_recfun_abs [of "%x g. i Un g``x"])  
 | 
|  |    502 | done
 | 
|  |    503 | 
 | 
|  |    504 | 
 | 
|  |    505 | lemma (in M_ord_arith) exists_oadd:
 | 
|  |    506 |     "[| Ord(j);  M(i);  M(j) |]
 | 
|  |    507 |      ==> \<exists>f[M]. is_recfun(Memrel(succ(j)), j, %x g. i Un g``x, f)"
 | 
|  |    508 | apply (rule wf_exists_is_recfun [OF wf_Memrel trans_Memrel])
 | 
|  |    509 |     apply (simp_all add: Memrel_type oadd_strong_replacement') 
 | 
|  |    510 | done 
 | 
|  |    511 | 
 | 
|  |    512 | lemma (in M_ord_arith) exists_oadd_fun:
 | 
|  |    513 |     "[| Ord(j);  M(i);  M(j) |] ==> \<exists>f[M]. is_oadd_fun(M,i,succ(j),succ(j),f)"
 | 
|  |    514 | apply (rule exists_oadd [THEN rexE])
 | 
|  |    515 | apply (erule Ord_succ, assumption, simp) 
 | 
|  |    516 | apply (rename_tac f) 
 | 
|  |    517 | apply (frule is_recfun_type)
 | 
|  |    518 | apply (rule_tac x=f in rexI) 
 | 
|  |    519 |  apply (simp add: fun_is_function domain_of_fun lt_Memrel apply_recfun lt_def
 | 
|  |    520 |                   is_oadd_fun_iff Ord_trans [OF _ succI1], assumption)
 | 
|  |    521 | done
 | 
|  |    522 | 
 | 
|  |    523 | lemma (in M_ord_arith) is_oadd_fun_apply:
 | 
|  |    524 |     "[| x < j; M(i); M(j); M(f); is_oadd_fun(M,i,j,j,f) |] 
 | 
|  |    525 |      ==> f`x = i Un (\<Union>k\<in>x. {f ` k})"
 | 
|  |    526 | apply (simp add: is_oadd_fun_iff lt_Ord2, clarify) 
 | 
|  |    527 | apply (frule lt_closed, simp)
 | 
|  |    528 | apply (frule leI [THEN le_imp_subset])  
 | 
|  |    529 | apply (simp add: image_fun, blast) 
 | 
|  |    530 | done
 | 
|  |    531 | 
 | 
|  |    532 | lemma (in M_ord_arith) is_oadd_fun_iff_oadd [rule_format]:
 | 
|  |    533 |     "[| is_oadd_fun(M,i,J,J,f); M(i); M(J); M(f); Ord(i); Ord(j) |] 
 | 
|  |    534 |      ==> j<J --> f`j = i++j"
 | 
|  |    535 | apply (erule_tac i=j in trans_induct, clarify) 
 | 
|  |    536 | apply (subgoal_tac "\<forall>k\<in>x. k<J")
 | 
|  |    537 |  apply (simp (no_asm_simp) add: is_oadd_def oadd_unfold is_oadd_fun_apply)
 | 
|  |    538 | apply (blast intro: lt_trans ltI lt_Ord) 
 | 
|  |    539 | done
 | 
|  |    540 | 
 | 
|  |    541 | lemma (in M_ord_arith) Ord_oadd_abs:
 | 
|  |    542 |     "[| M(i); M(j); M(k); Ord(i); Ord(j) |] ==> is_oadd(M,i,j,k) <-> k = i++j"
 | 
|  |    543 | apply (simp add: is_oadd_def is_oadd_fun_iff_oadd)
 | 
|  |    544 | apply (frule exists_oadd_fun [of j i], blast+)
 | 
|  |    545 | done
 | 
|  |    546 | 
 | 
|  |    547 | lemma (in M_ord_arith) oadd_abs:
 | 
|  |    548 |     "[| M(i); M(j); M(k) |] ==> is_oadd(M,i,j,k) <-> k = i++j"
 | 
|  |    549 | apply (case_tac "Ord(i) & Ord(j)")
 | 
|  |    550 |  apply (simp add: Ord_oadd_abs)
 | 
|  |    551 | apply (auto simp add: is_oadd_def oadd_eq_if_raw_oadd)
 | 
|  |    552 | done
 | 
|  |    553 | 
 | 
|  |    554 | lemma (in M_ord_arith) oadd_closed [intro,simp]:
 | 
|  |    555 |     "[| M(i); M(j) |] ==> M(i++j)"
 | 
|  |    556 | apply (simp add: oadd_eq_if_raw_oadd, clarify) 
 | 
|  |    557 | apply (simp add: raw_oadd_eq_oadd) 
 | 
|  |    558 | apply (frule exists_oadd_fun [of j i], auto)
 | 
|  |    559 | apply (simp add: apply_closed is_oadd_fun_iff_oadd [symmetric]) 
 | 
|  |    560 | done
 | 
|  |    561 | 
 | 
|  |    562 | 
 | 
|  |    563 | subsubsection{*Ordinal Multiplication*}
 | 
|  |    564 | 
 | 
|  |    565 | lemma omult_eqns_unique:
 | 
|  |    566 |      "[| omult_eqns(i,x,g,z); omult_eqns(i,x,g,z') |] ==> z=z'";
 | 
|  |    567 | apply (simp add: omult_eqns_def, clarify) 
 | 
|  |    568 | apply (erule Ord_cases, simp_all) 
 | 
|  |    569 | done
 | 
|  |    570 | 
 | 
|  |    571 | lemma omult_eqns_0: "omult_eqns(i,0,g,z) <-> z=0"
 | 
|  |    572 | by (simp add: omult_eqns_def)
 | 
|  |    573 | 
 | 
|  |    574 | lemma the_omult_eqns_0: "(THE z. omult_eqns(i,0,g,z)) = 0"
 | 
|  |    575 | by (simp add: omult_eqns_0)
 | 
|  |    576 | 
 | 
|  |    577 | lemma omult_eqns_succ: "omult_eqns(i,succ(j),g,z) <-> Ord(j) & z = g`j ++ i"
 | 
|  |    578 | by (simp add: omult_eqns_def)
 | 
|  |    579 | 
 | 
|  |    580 | lemma the_omult_eqns_succ:
 | 
|  |    581 |      "Ord(j) ==> (THE z. omult_eqns(i,succ(j),g,z)) = g`j ++ i"
 | 
|  |    582 | by (simp add: omult_eqns_succ) 
 | 
|  |    583 | 
 | 
|  |    584 | lemma omult_eqns_Limit:
 | 
|  |    585 |      "Limit(x) ==> omult_eqns(i,x,g,z) <-> z = \<Union>(g``x)"
 | 
|  |    586 | apply (simp add: omult_eqns_def) 
 | 
|  |    587 | apply (blast intro: Limit_is_Ord) 
 | 
|  |    588 | done
 | 
|  |    589 | 
 | 
|  |    590 | lemma the_omult_eqns_Limit:
 | 
|  |    591 |      "Limit(x) ==> (THE z. omult_eqns(i,x,g,z)) = \<Union>(g``x)"
 | 
|  |    592 | by (simp add: omult_eqns_Limit)
 | 
|  |    593 | 
 | 
|  |    594 | lemma omult_eqns_Not: "~ Ord(x) ==> ~ omult_eqns(i,x,g,z)"
 | 
|  |    595 | by (simp add: omult_eqns_def)
 | 
|  |    596 | 
 | 
|  |    597 | 
 | 
|  |    598 | lemma (in M_ord_arith) the_omult_eqns_closed:
 | 
|  |    599 |     "[| M(i); M(x); M(g); function(g) |] 
 | 
|  |    600 |      ==> M(THE z. omult_eqns(i, x, g, z))"
 | 
|  |    601 | apply (case_tac "Ord(x)")
 | 
|  |    602 |  prefer 2 apply (simp add: omult_eqns_Not) --{*trivial, non-Ord case*}
 | 
|  |    603 | apply (erule Ord_cases) 
 | 
|  |    604 |   apply (simp add: omult_eqns_0)
 | 
|  |    605 |  apply (simp add: omult_eqns_succ apply_closed oadd_closed) 
 | 
|  |    606 | apply (simp add: omult_eqns_Limit) 
 | 
|  |    607 | done
 | 
|  |    608 | 
 | 
|  |    609 | lemma (in M_ord_arith) exists_omult:
 | 
|  |    610 |     "[| Ord(j);  M(i);  M(j) |]
 | 
|  |    611 |      ==> \<exists>f[M]. is_recfun(Memrel(succ(j)), j, %x g. THE z. omult_eqns(i,x,g,z), f)"
 | 
|  |    612 | apply (rule wf_exists_is_recfun [OF wf_Memrel trans_Memrel])
 | 
|  |    613 |     apply (simp_all add: Memrel_type omult_strong_replacement') 
 | 
|  |    614 | apply (blast intro: the_omult_eqns_closed) 
 | 
|  |    615 | done
 | 
|  |    616 | 
 | 
|  |    617 | lemma (in M_ord_arith) exists_omult_fun:
 | 
|  |    618 |     "[| Ord(j);  M(i);  M(j) |] ==> \<exists>f[M]. is_omult_fun(M,i,succ(j),f)"
 | 
|  |    619 | apply (rule exists_omult [THEN rexE])
 | 
|  |    620 | apply (erule Ord_succ, assumption, simp) 
 | 
|  |    621 | apply (rename_tac f) 
 | 
|  |    622 | apply (frule is_recfun_type)
 | 
|  |    623 | apply (rule_tac x=f in rexI) 
 | 
|  |    624 | apply (simp add: fun_is_function domain_of_fun lt_Memrel apply_recfun lt_def
 | 
|  |    625 |                  is_omult_fun_def Ord_trans [OF _ succI1])
 | 
|  |    626 |  apply (force dest: Ord_in_Ord' 
 | 
|  |    627 |               simp add: omult_eqns_def the_omult_eqns_0 the_omult_eqns_succ
 | 
|  |    628 |                         the_omult_eqns_Limit, assumption)
 | 
|  |    629 | done
 | 
|  |    630 | 
 | 
|  |    631 | lemma (in M_ord_arith) is_omult_fun_apply_0:
 | 
|  |    632 |     "[| 0 < j; is_omult_fun(M,i,j,f) |] ==> f`0 = 0"
 | 
|  |    633 | by (simp add: is_omult_fun_def omult_eqns_def lt_def ball_conj_distrib)
 | 
|  |    634 | 
 | 
|  |    635 | lemma (in M_ord_arith) is_omult_fun_apply_succ:
 | 
|  |    636 |     "[| succ(x) < j; is_omult_fun(M,i,j,f) |] ==> f`succ(x) = f`x ++ i"
 | 
|  |    637 | by (simp add: is_omult_fun_def omult_eqns_def lt_def, blast) 
 | 
|  |    638 | 
 | 
|  |    639 | lemma (in M_ord_arith) is_omult_fun_apply_Limit:
 | 
|  |    640 |     "[| x < j; Limit(x); M(j); M(f); is_omult_fun(M,i,j,f) |] 
 | 
|  |    641 |      ==> f ` x = (\<Union>y\<in>x. f`y)"
 | 
|  |    642 | apply (simp add: is_omult_fun_def omult_eqns_def domain_closed lt_def, clarify)
 | 
|  |    643 | apply (drule subset_trans [OF OrdmemD], assumption+)  
 | 
|  |    644 | apply (simp add: ball_conj_distrib omult_Limit image_function)
 | 
|  |    645 | done
 | 
|  |    646 | 
 | 
|  |    647 | lemma (in M_ord_arith) is_omult_fun_eq_omult:
 | 
|  |    648 |     "[| is_omult_fun(M,i,J,f); M(J); M(f); Ord(i); Ord(j) |] 
 | 
|  |    649 |      ==> j<J --> f`j = i**j"
 | 
|  |    650 | apply (erule_tac i=j in trans_induct3)
 | 
|  |    651 | apply (safe del: impCE)
 | 
|  |    652 |   apply (simp add: is_omult_fun_apply_0) 
 | 
|  |    653 |  apply (subgoal_tac "x<J") 
 | 
|  |    654 |   apply (simp add: is_omult_fun_apply_succ omult_succ)  
 | 
|  |    655 |  apply (blast intro: lt_trans) 
 | 
|  |    656 | apply (subgoal_tac "\<forall>k\<in>x. k<J")
 | 
|  |    657 |  apply (simp add: is_omult_fun_apply_Limit omult_Limit) 
 | 
|  |    658 | apply (blast intro: lt_trans ltI lt_Ord) 
 | 
|  |    659 | done
 | 
|  |    660 | 
 | 
|  |    661 | lemma (in M_ord_arith) omult_abs:
 | 
|  |    662 |     "[| M(i); M(j); M(k); Ord(i); Ord(j) |] ==> is_omult(M,i,j,k) <-> k = i**j"
 | 
|  |    663 | apply (simp add: is_omult_def is_omult_fun_eq_omult)
 | 
|  |    664 | apply (frule exists_omult_fun [of j i], blast+)
 | 
|  |    665 | done
 | 
|  |    666 | 
 | 
|  |    667 | 
 | 
|  |    668 | 
 | 
| 13647 |    669 | subsection {*Absoluteness of Well-Founded Relations*}
 | 
|  |    670 | 
 | 
|  |    671 | text{*Relativized to @{term M}: Every well-founded relation is a subset of some
 | 
|  |    672 | inverse image of an ordinal.  Key step is the construction (in @{term M}) of a
 | 
|  |    673 | rank function.*}
 | 
|  |    674 | 
 | 
| 13634 |    675 | locale M_wfrank = M_trancl +
 | 
|  |    676 |   assumes wfrank_separation:
 | 
|  |    677 |      "M(r) ==>
 | 
|  |    678 |       separation (M, \<lambda>x. 
 | 
|  |    679 |          \<forall>rplus[M]. tran_closure(M,r,rplus) -->
 | 
|  |    680 |          ~ (\<exists>f[M]. M_is_recfun(M, %x f y. is_range(M,f,y), rplus, x, f)))"
 | 
|  |    681 |  and wfrank_strong_replacement:
 | 
|  |    682 |      "M(r) ==>
 | 
|  |    683 |       strong_replacement(M, \<lambda>x z. 
 | 
|  |    684 |          \<forall>rplus[M]. tran_closure(M,r,rplus) -->
 | 
|  |    685 |          (\<exists>y[M]. \<exists>f[M]. pair(M,x,y,z)  & 
 | 
|  |    686 |                         M_is_recfun(M, %x f y. is_range(M,f,y), rplus, x, f) &
 | 
|  |    687 |                         is_range(M,f,y)))"
 | 
|  |    688 |  and Ord_wfrank_separation:
 | 
|  |    689 |      "M(r) ==>
 | 
|  |    690 |       separation (M, \<lambda>x.
 | 
|  |    691 |          \<forall>rplus[M]. tran_closure(M,r,rplus) --> 
 | 
|  |    692 |           ~ (\<forall>f[M]. \<forall>rangef[M]. 
 | 
|  |    693 |              is_range(M,f,rangef) -->
 | 
|  |    694 |              M_is_recfun(M, \<lambda>x f y. is_range(M,f,y), rplus, x, f) -->
 | 
|  |    695 |              ordinal(M,rangef)))" 
 | 
|  |    696 | 
 | 
|  |    697 | 
 | 
|  |    698 | text{*Proving that the relativized instances of Separation or Replacement
 | 
|  |    699 | agree with the "real" ones.*}
 | 
|  |    700 | 
 | 
|  |    701 | lemma (in M_wfrank) wfrank_separation':
 | 
|  |    702 |      "M(r) ==>
 | 
|  |    703 |       separation
 | 
|  |    704 | 	   (M, \<lambda>x. ~ (\<exists>f[M]. is_recfun(r^+, x, %x f. range(f), f)))"
 | 
|  |    705 | apply (insert wfrank_separation [of r])
 | 
|  |    706 | apply (simp add: relation2_def is_recfun_abs [of "%x. range"])
 | 
|  |    707 | done
 | 
|  |    708 | 
 | 
|  |    709 | lemma (in M_wfrank) wfrank_strong_replacement':
 | 
|  |    710 |      "M(r) ==>
 | 
|  |    711 |       strong_replacement(M, \<lambda>x z. \<exists>y[M]. \<exists>f[M]. 
 | 
|  |    712 | 		  pair(M,x,y,z) & is_recfun(r^+, x, %x f. range(f), f) &
 | 
|  |    713 | 		  y = range(f))"
 | 
|  |    714 | apply (insert wfrank_strong_replacement [of r])
 | 
|  |    715 | apply (simp add: relation2_def is_recfun_abs [of "%x. range"])
 | 
|  |    716 | done
 | 
|  |    717 | 
 | 
|  |    718 | lemma (in M_wfrank) Ord_wfrank_separation':
 | 
|  |    719 |      "M(r) ==>
 | 
|  |    720 |       separation (M, \<lambda>x. 
 | 
|  |    721 |          ~ (\<forall>f[M]. is_recfun(r^+, x, \<lambda>x. range, f) --> Ord(range(f))))" 
 | 
|  |    722 | apply (insert Ord_wfrank_separation [of r])
 | 
|  |    723 | apply (simp add: relation2_def is_recfun_abs [of "%x. range"])
 | 
|  |    724 | done
 | 
|  |    725 | 
 | 
|  |    726 | text{*This function, defined using replacement, is a rank function for
 | 
|  |    727 | well-founded relations within the class M.*}
 | 
|  |    728 | constdefs
 | 
|  |    729 |  wellfoundedrank :: "[i=>o,i,i] => i"
 | 
|  |    730 |     "wellfoundedrank(M,r,A) ==
 | 
|  |    731 |         {p. x\<in>A, \<exists>y[M]. \<exists>f[M]. 
 | 
|  |    732 |                        p = <x,y> & is_recfun(r^+, x, %x f. range(f), f) &
 | 
|  |    733 |                        y = range(f)}"
 | 
|  |    734 | 
 | 
|  |    735 | lemma (in M_wfrank) exists_wfrank:
 | 
|  |    736 |     "[| wellfounded(M,r); M(a); M(r) |]
 | 
|  |    737 |      ==> \<exists>f[M]. is_recfun(r^+, a, %x f. range(f), f)"
 | 
|  |    738 | apply (rule wellfounded_exists_is_recfun)
 | 
|  |    739 |       apply (blast intro: wellfounded_trancl)
 | 
|  |    740 |      apply (rule trans_trancl)
 | 
|  |    741 |     apply (erule wfrank_separation')
 | 
|  |    742 |    apply (erule wfrank_strong_replacement')
 | 
|  |    743 | apply (simp_all add: trancl_subset_times)
 | 
|  |    744 | done
 | 
|  |    745 | 
 | 
|  |    746 | lemma (in M_wfrank) M_wellfoundedrank:
 | 
|  |    747 |     "[| wellfounded(M,r); M(r); M(A) |] ==> M(wellfoundedrank(M,r,A))"
 | 
|  |    748 | apply (insert wfrank_strong_replacement' [of r])
 | 
|  |    749 | apply (simp add: wellfoundedrank_def)
 | 
|  |    750 | apply (rule strong_replacement_closed)
 | 
|  |    751 |    apply assumption+
 | 
|  |    752 |  apply (rule univalent_is_recfun)
 | 
|  |    753 |    apply (blast intro: wellfounded_trancl)
 | 
|  |    754 |   apply (rule trans_trancl)
 | 
|  |    755 |  apply (simp add: trancl_subset_times) 
 | 
|  |    756 | apply (blast dest: transM) 
 | 
|  |    757 | done
 | 
|  |    758 | 
 | 
|  |    759 | lemma (in M_wfrank) Ord_wfrank_range [rule_format]:
 | 
|  |    760 |     "[| wellfounded(M,r); a\<in>A; M(r); M(A) |]
 | 
|  |    761 |      ==> \<forall>f[M]. is_recfun(r^+, a, %x f. range(f), f) --> Ord(range(f))"
 | 
|  |    762 | apply (drule wellfounded_trancl, assumption)
 | 
|  |    763 | apply (rule wellfounded_induct, assumption, erule (1) transM)
 | 
|  |    764 |   apply simp
 | 
|  |    765 |  apply (blast intro: Ord_wfrank_separation', clarify)
 | 
|  |    766 | txt{*The reasoning in both cases is that we get @{term y} such that
 | 
|  |    767 |    @{term "\<langle>y, x\<rangle> \<in> r^+"}.  We find that
 | 
|  |    768 |    @{term "f`y = restrict(f, r^+ -`` {y})"}. *}
 | 
|  |    769 | apply (rule OrdI [OF _ Ord_is_Transset])
 | 
|  |    770 |  txt{*An ordinal is a transitive set...*}
 | 
|  |    771 |  apply (simp add: Transset_def)
 | 
|  |    772 |  apply clarify
 | 
|  |    773 |  apply (frule apply_recfun2, assumption)
 | 
|  |    774 |  apply (force simp add: restrict_iff)
 | 
|  |    775 | txt{*...of ordinals.  This second case requires the induction hyp.*}
 | 
|  |    776 | apply clarify
 | 
|  |    777 | apply (rename_tac i y)
 | 
|  |    778 | apply (frule apply_recfun2, assumption)
 | 
|  |    779 | apply (frule is_recfun_imp_in_r, assumption)
 | 
|  |    780 | apply (frule is_recfun_restrict)
 | 
|  |    781 |     (*simp_all won't work*)
 | 
|  |    782 |     apply (simp add: trans_trancl trancl_subset_times)+
 | 
|  |    783 | apply (drule spec [THEN mp], assumption)
 | 
|  |    784 | apply (subgoal_tac "M(restrict(f, r^+ -`` {y}))")
 | 
|  |    785 |  apply (drule_tac x="restrict(f, r^+ -`` {y})" in rspec)
 | 
|  |    786 | apply assumption
 | 
|  |    787 |  apply (simp add: function_apply_equality [OF _ is_recfun_imp_function])
 | 
|  |    788 | apply (blast dest: pair_components_in_M)
 | 
|  |    789 | done
 | 
|  |    790 | 
 | 
|  |    791 | lemma (in M_wfrank) Ord_range_wellfoundedrank:
 | 
|  |    792 |     "[| wellfounded(M,r); r \<subseteq> A*A;  M(r); M(A) |]
 | 
|  |    793 |      ==> Ord (range(wellfoundedrank(M,r,A)))"
 | 
|  |    794 | apply (frule wellfounded_trancl, assumption)
 | 
|  |    795 | apply (frule trancl_subset_times)
 | 
|  |    796 | apply (simp add: wellfoundedrank_def)
 | 
|  |    797 | apply (rule OrdI [OF _ Ord_is_Transset])
 | 
|  |    798 |  prefer 2
 | 
|  |    799 |  txt{*by our previous result the range consists of ordinals.*}
 | 
|  |    800 |  apply (blast intro: Ord_wfrank_range)
 | 
|  |    801 | txt{*We still must show that the range is a transitive set.*}
 | 
|  |    802 | apply (simp add: Transset_def, clarify, simp)
 | 
|  |    803 | apply (rename_tac x i f u)
 | 
|  |    804 | apply (frule is_recfun_imp_in_r, assumption)
 | 
|  |    805 | apply (subgoal_tac "M(u) & M(i) & M(x)")
 | 
|  |    806 |  prefer 2 apply (blast dest: transM, clarify)
 | 
|  |    807 | apply (rule_tac a=u in rangeI)
 | 
|  |    808 | apply (rule_tac x=u in ReplaceI)
 | 
|  |    809 |   apply simp 
 | 
|  |    810 |   apply (rule_tac x="restrict(f, r^+ -`` {u})" in rexI)
 | 
|  |    811 |    apply (blast intro: is_recfun_restrict trans_trancl dest: apply_recfun2)
 | 
|  |    812 |   apply simp 
 | 
|  |    813 | apply blast 
 | 
|  |    814 | txt{*Unicity requirement of Replacement*}
 | 
|  |    815 | apply clarify
 | 
|  |    816 | apply (frule apply_recfun2, assumption)
 | 
|  |    817 | apply (simp add: trans_trancl is_recfun_cut)
 | 
|  |    818 | done
 | 
|  |    819 | 
 | 
|  |    820 | lemma (in M_wfrank) function_wellfoundedrank:
 | 
|  |    821 |     "[| wellfounded(M,r); M(r); M(A)|]
 | 
|  |    822 |      ==> function(wellfoundedrank(M,r,A))"
 | 
|  |    823 | apply (simp add: wellfoundedrank_def function_def, clarify)
 | 
|  |    824 | txt{*Uniqueness: repeated below!*}
 | 
|  |    825 | apply (drule is_recfun_functional, assumption)
 | 
|  |    826 |      apply (blast intro: wellfounded_trancl)
 | 
|  |    827 |     apply (simp_all add: trancl_subset_times trans_trancl)
 | 
|  |    828 | done
 | 
|  |    829 | 
 | 
|  |    830 | lemma (in M_wfrank) domain_wellfoundedrank:
 | 
|  |    831 |     "[| wellfounded(M,r); M(r); M(A)|]
 | 
|  |    832 |      ==> domain(wellfoundedrank(M,r,A)) = A"
 | 
|  |    833 | apply (simp add: wellfoundedrank_def function_def)
 | 
|  |    834 | apply (rule equalityI, auto)
 | 
|  |    835 | apply (frule transM, assumption)
 | 
|  |    836 | apply (frule_tac a=x in exists_wfrank, assumption+, clarify)
 | 
|  |    837 | apply (rule_tac b="range(f)" in domainI)
 | 
|  |    838 | apply (rule_tac x=x in ReplaceI)
 | 
|  |    839 |   apply simp 
 | 
|  |    840 |   apply (rule_tac x=f in rexI, blast, simp_all)
 | 
|  |    841 | txt{*Uniqueness (for Replacement): repeated above!*}
 | 
|  |    842 | apply clarify
 | 
|  |    843 | apply (drule is_recfun_functional, assumption)
 | 
|  |    844 |     apply (blast intro: wellfounded_trancl)
 | 
|  |    845 |     apply (simp_all add: trancl_subset_times trans_trancl)
 | 
|  |    846 | done
 | 
|  |    847 | 
 | 
|  |    848 | lemma (in M_wfrank) wellfoundedrank_type:
 | 
|  |    849 |     "[| wellfounded(M,r);  M(r); M(A)|]
 | 
|  |    850 |      ==> wellfoundedrank(M,r,A) \<in> A -> range(wellfoundedrank(M,r,A))"
 | 
|  |    851 | apply (frule function_wellfoundedrank [of r A], assumption+)
 | 
|  |    852 | apply (frule function_imp_Pi)
 | 
|  |    853 |  apply (simp add: wellfoundedrank_def relation_def)
 | 
|  |    854 |  apply blast
 | 
|  |    855 | apply (simp add: domain_wellfoundedrank)
 | 
|  |    856 | done
 | 
|  |    857 | 
 | 
|  |    858 | lemma (in M_wfrank) Ord_wellfoundedrank:
 | 
|  |    859 |     "[| wellfounded(M,r); a \<in> A; r \<subseteq> A*A;  M(r); M(A) |]
 | 
|  |    860 |      ==> Ord(wellfoundedrank(M,r,A) ` a)"
 | 
|  |    861 | by (blast intro: apply_funtype [OF wellfoundedrank_type]
 | 
|  |    862 |                  Ord_in_Ord [OF Ord_range_wellfoundedrank])
 | 
|  |    863 | 
 | 
|  |    864 | lemma (in M_wfrank) wellfoundedrank_eq:
 | 
|  |    865 |      "[| is_recfun(r^+, a, %x. range, f);
 | 
|  |    866 |          wellfounded(M,r);  a \<in> A; M(f); M(r); M(A)|]
 | 
|  |    867 |       ==> wellfoundedrank(M,r,A) ` a = range(f)"
 | 
|  |    868 | apply (rule apply_equality)
 | 
|  |    869 |  prefer 2 apply (blast intro: wellfoundedrank_type)
 | 
|  |    870 | apply (simp add: wellfoundedrank_def)
 | 
|  |    871 | apply (rule ReplaceI)
 | 
|  |    872 |   apply (rule_tac x="range(f)" in rexI) 
 | 
|  |    873 |   apply blast
 | 
|  |    874 |  apply simp_all
 | 
|  |    875 | txt{*Unicity requirement of Replacement*}
 | 
|  |    876 | apply clarify
 | 
|  |    877 | apply (drule is_recfun_functional, assumption)
 | 
|  |    878 |     apply (blast intro: wellfounded_trancl)
 | 
|  |    879 |     apply (simp_all add: trancl_subset_times trans_trancl)
 | 
|  |    880 | done
 | 
|  |    881 | 
 | 
|  |    882 | 
 | 
|  |    883 | lemma (in M_wfrank) wellfoundedrank_lt:
 | 
|  |    884 |      "[| <a,b> \<in> r;
 | 
|  |    885 |          wellfounded(M,r); r \<subseteq> A*A;  M(r); M(A)|]
 | 
|  |    886 |       ==> wellfoundedrank(M,r,A) ` a < wellfoundedrank(M,r,A) ` b"
 | 
|  |    887 | apply (frule wellfounded_trancl, assumption)
 | 
|  |    888 | apply (subgoal_tac "a\<in>A & b\<in>A")
 | 
|  |    889 |  prefer 2 apply blast
 | 
|  |    890 | apply (simp add: lt_def Ord_wellfoundedrank, clarify)
 | 
|  |    891 | apply (frule exists_wfrank [of concl: _ b], erule (1) transM, assumption)
 | 
|  |    892 | apply clarify
 | 
|  |    893 | apply (rename_tac fb)
 | 
|  |    894 | apply (frule is_recfun_restrict [of concl: "r^+" a])
 | 
|  |    895 |     apply (rule trans_trancl, assumption)
 | 
|  |    896 |    apply (simp_all add: r_into_trancl trancl_subset_times)
 | 
|  |    897 | txt{*Still the same goal, but with new @{text is_recfun} assumptions.*}
 | 
|  |    898 | apply (simp add: wellfoundedrank_eq)
 | 
|  |    899 | apply (frule_tac a=a in wellfoundedrank_eq, assumption+)
 | 
|  |    900 |    apply (simp_all add: transM [of a])
 | 
|  |    901 | txt{*We have used equations for wellfoundedrank and now must use some
 | 
|  |    902 |     for  @{text is_recfun}. *}
 | 
|  |    903 | apply (rule_tac a=a in rangeI)
 | 
|  |    904 | apply (simp add: is_recfun_type [THEN apply_iff] vimage_singleton_iff
 | 
|  |    905 |                  r_into_trancl apply_recfun r_into_trancl)
 | 
|  |    906 | done
 | 
|  |    907 | 
 | 
|  |    908 | 
 | 
|  |    909 | lemma (in M_wfrank) wellfounded_imp_subset_rvimage:
 | 
|  |    910 |      "[|wellfounded(M,r); r \<subseteq> A*A; M(r); M(A)|]
 | 
|  |    911 |       ==> \<exists>i f. Ord(i) & r <= rvimage(A, f, Memrel(i))"
 | 
|  |    912 | apply (rule_tac x="range(wellfoundedrank(M,r,A))" in exI)
 | 
|  |    913 | apply (rule_tac x="wellfoundedrank(M,r,A)" in exI)
 | 
|  |    914 | apply (simp add: Ord_range_wellfoundedrank, clarify)
 | 
|  |    915 | apply (frule subsetD, assumption, clarify)
 | 
|  |    916 | apply (simp add: rvimage_iff wellfoundedrank_lt [THEN ltD])
 | 
|  |    917 | apply (blast intro: apply_rangeI wellfoundedrank_type)
 | 
|  |    918 | done
 | 
|  |    919 | 
 | 
|  |    920 | lemma (in M_wfrank) wellfounded_imp_wf:
 | 
|  |    921 |      "[|wellfounded(M,r); relation(r); M(r)|] ==> wf(r)"
 | 
|  |    922 | by (blast dest!: relation_field_times_field wellfounded_imp_subset_rvimage
 | 
|  |    923 |           intro: wf_rvimage_Ord [THEN wf_subset])
 | 
|  |    924 | 
 | 
|  |    925 | lemma (in M_wfrank) wellfounded_on_imp_wf_on:
 | 
|  |    926 |      "[|wellfounded_on(M,A,r); relation(r); M(r); M(A)|] ==> wf[A](r)"
 | 
|  |    927 | apply (simp add: wellfounded_on_iff_wellfounded wf_on_def)
 | 
|  |    928 | apply (rule wellfounded_imp_wf)
 | 
|  |    929 | apply (simp_all add: relation_def)
 | 
|  |    930 | done
 | 
|  |    931 | 
 | 
|  |    932 | 
 | 
|  |    933 | theorem (in M_wfrank) wf_abs:
 | 
|  |    934 |      "[|relation(r); M(r)|] ==> wellfounded(M,r) <-> wf(r)"
 | 
|  |    935 | by (blast intro: wellfounded_imp_wf wf_imp_relativized)
 | 
|  |    936 | 
 | 
|  |    937 | theorem (in M_wfrank) wf_on_abs:
 | 
|  |    938 |      "[|relation(r); M(r); M(A)|] ==> wellfounded_on(M,A,r) <-> wf[A](r)"
 | 
|  |    939 | by (blast intro: wellfounded_on_imp_wf_on wf_on_imp_relativized)
 | 
|  |    940 | 
 | 
|  |    941 | end |