author | haftmann |
Tue, 19 Nov 2013 10:05:53 +0100 | |
changeset 54489 | 03ff4d1e6784 |
parent 54437 | 0060957404c7 |
child 54867 | c21a2465cac1 |
permissions | -rw-r--r-- |
32479 | 1 |
(* Authors: Christophe Tabacznyj, Lawrence C. Paulson, Amine Chaieb, |
31798 | 2 |
Thomas M. Rasmussen, Jeremy Avigad, Tobias Nipkow |
31706 | 3 |
|
4 |
||
32479 | 5 |
This file deals with the functions gcd and lcm. Definitions and |
6 |
lemmas are proved uniformly for the natural numbers and integers. |
|
31706 | 7 |
|
8 |
This file combines and revises a number of prior developments. |
|
9 |
||
10 |
The original theories "GCD" and "Primes" were by Christophe Tabacznyj |
|
11 |
and Lawrence C. Paulson, based on \cite{davenport92}. They introduced |
|
12 |
gcd, lcm, and prime for the natural numbers. |
|
13 |
||
14 |
The original theory "IntPrimes" was by Thomas M. Rasmussen, and |
|
15 |
extended gcd, lcm, primes to the integers. Amine Chaieb provided |
|
16 |
another extension of the notions to the integers, and added a number |
|
17 |
of results to "Primes" and "GCD". IntPrimes also defined and developed |
|
18 |
the congruence relations on the integers. The notion was extended to |
|
34915 | 19 |
the natural numbers by Chaieb. |
31706 | 20 |
|
32036
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
avigad
parents:
31952
diff
changeset
|
21 |
Jeremy Avigad combined all of these, made everything uniform for the |
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
avigad
parents:
31952
diff
changeset
|
22 |
natural numbers and the integers, and added a number of new theorems. |
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
avigad
parents:
31952
diff
changeset
|
23 |
|
31798 | 24 |
Tobias Nipkow cleaned up a lot. |
21256 | 25 |
*) |
26 |
||
31706 | 27 |
|
34915 | 28 |
header {* Greatest common divisor and least common multiple *} |
21256 | 29 |
|
30 |
theory GCD |
|
33318
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
33197
diff
changeset
|
31 |
imports Fact Parity |
31706 | 32 |
begin |
33 |
||
34 |
declare One_nat_def [simp del] |
|
35 |
||
34030
829eb528b226
resorted code equations from "old" number theory version
haftmann
parents:
33946
diff
changeset
|
36 |
subsection {* GCD and LCM definitions *} |
31706 | 37 |
|
31992 | 38 |
class gcd = zero + one + dvd + |
41550 | 39 |
fixes gcd :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" |
40 |
and lcm :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" |
|
21256 | 41 |
begin |
42 |
||
31706 | 43 |
abbreviation |
44 |
coprime :: "'a \<Rightarrow> 'a \<Rightarrow> bool" |
|
45 |
where |
|
46 |
"coprime x y == (gcd x y = 1)" |
|
47 |
||
48 |
end |
|
49 |
||
50 |
instantiation nat :: gcd |
|
51 |
begin |
|
21256 | 52 |
|
31706 | 53 |
fun |
54 |
gcd_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat" |
|
55 |
where |
|
56 |
"gcd_nat x y = |
|
57 |
(if y = 0 then x else gcd y (x mod y))" |
|
58 |
||
59 |
definition |
|
60 |
lcm_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat" |
|
61 |
where |
|
62 |
"lcm_nat x y = x * y div (gcd x y)" |
|
63 |
||
64 |
instance proof qed |
|
65 |
||
66 |
end |
|
67 |
||
68 |
instantiation int :: gcd |
|
69 |
begin |
|
21256 | 70 |
|
31706 | 71 |
definition |
72 |
gcd_int :: "int \<Rightarrow> int \<Rightarrow> int" |
|
73 |
where |
|
74 |
"gcd_int x y = int (gcd (nat (abs x)) (nat (abs y)))" |
|
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
75 |
|
31706 | 76 |
definition |
77 |
lcm_int :: "int \<Rightarrow> int \<Rightarrow> int" |
|
78 |
where |
|
79 |
"lcm_int x y = int (lcm (nat (abs x)) (nat (abs y)))" |
|
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
80 |
|
31706 | 81 |
instance proof qed |
82 |
||
83 |
end |
|
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
84 |
|
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
85 |
|
34030
829eb528b226
resorted code equations from "old" number theory version
haftmann
parents:
33946
diff
changeset
|
86 |
subsection {* Transfer setup *} |
31706 | 87 |
|
88 |
lemma transfer_nat_int_gcd: |
|
89 |
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> gcd (nat x) (nat y) = nat (gcd x y)" |
|
90 |
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> lcm (nat x) (nat y) = nat (lcm x y)" |
|
32479 | 91 |
unfolding gcd_int_def lcm_int_def |
31706 | 92 |
by auto |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
93 |
|
31706 | 94 |
lemma transfer_nat_int_gcd_closures: |
95 |
"x >= (0::int) \<Longrightarrow> y >= 0 \<Longrightarrow> gcd x y >= 0" |
|
96 |
"x >= (0::int) \<Longrightarrow> y >= 0 \<Longrightarrow> lcm x y >= 0" |
|
97 |
by (auto simp add: gcd_int_def lcm_int_def) |
|
98 |
||
35644 | 99 |
declare transfer_morphism_nat_int[transfer add return: |
31706 | 100 |
transfer_nat_int_gcd transfer_nat_int_gcd_closures] |
101 |
||
102 |
lemma transfer_int_nat_gcd: |
|
103 |
"gcd (int x) (int y) = int (gcd x y)" |
|
104 |
"lcm (int x) (int y) = int (lcm x y)" |
|
32479 | 105 |
by (unfold gcd_int_def lcm_int_def, auto) |
31706 | 106 |
|
107 |
lemma transfer_int_nat_gcd_closures: |
|
108 |
"is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> gcd x y >= 0" |
|
109 |
"is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> lcm x y >= 0" |
|
110 |
by (auto simp add: gcd_int_def lcm_int_def) |
|
111 |
||
35644 | 112 |
declare transfer_morphism_int_nat[transfer add return: |
31706 | 113 |
transfer_int_nat_gcd transfer_int_nat_gcd_closures] |
114 |
||
115 |
||
34030
829eb528b226
resorted code equations from "old" number theory version
haftmann
parents:
33946
diff
changeset
|
116 |
subsection {* GCD properties *} |
31706 | 117 |
|
118 |
(* was gcd_induct *) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
119 |
lemma gcd_nat_induct: |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
120 |
fixes m n :: nat |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
121 |
assumes "\<And>m. P m 0" |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
122 |
and "\<And>m n. 0 < n \<Longrightarrow> P n (m mod n) \<Longrightarrow> P m n" |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
123 |
shows "P m n" |
31706 | 124 |
apply (rule gcd_nat.induct) |
125 |
apply (case_tac "y = 0") |
|
126 |
using assms apply simp_all |
|
127 |
done |
|
128 |
||
129 |
(* specific to int *) |
|
130 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
131 |
lemma gcd_neg1_int [simp]: "gcd (-x::int) y = gcd x y" |
31706 | 132 |
by (simp add: gcd_int_def) |
133 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
134 |
lemma gcd_neg2_int [simp]: "gcd (x::int) (-y) = gcd x y" |
31706 | 135 |
by (simp add: gcd_int_def) |
136 |
||
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54437
diff
changeset
|
137 |
lemma gcd_neg_numeral_1_int [simp]: |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54437
diff
changeset
|
138 |
"gcd (- numeral n :: int) x = gcd (numeral n) x" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54437
diff
changeset
|
139 |
by (fact gcd_neg1_int) |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54437
diff
changeset
|
140 |
|
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54437
diff
changeset
|
141 |
lemma gcd_neg_numeral_2_int [simp]: |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54437
diff
changeset
|
142 |
"gcd x (- numeral n :: int) = gcd x (numeral n)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54437
diff
changeset
|
143 |
by (fact gcd_neg2_int) |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54437
diff
changeset
|
144 |
|
31813 | 145 |
lemma abs_gcd_int[simp]: "abs(gcd (x::int) y) = gcd x y" |
146 |
by(simp add: gcd_int_def) |
|
147 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
148 |
lemma gcd_abs_int: "gcd (x::int) y = gcd (abs x) (abs y)" |
31813 | 149 |
by (simp add: gcd_int_def) |
150 |
||
151 |
lemma gcd_abs1_int[simp]: "gcd (abs x) (y::int) = gcd x y" |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
152 |
by (metis abs_idempotent gcd_abs_int) |
31813 | 153 |
|
154 |
lemma gcd_abs2_int[simp]: "gcd x (abs y::int) = gcd x y" |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
155 |
by (metis abs_idempotent gcd_abs_int) |
31706 | 156 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
157 |
lemma gcd_cases_int: |
31706 | 158 |
fixes x :: int and y |
159 |
assumes "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (gcd x y)" |
|
160 |
and "x >= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (gcd x (-y))" |
|
161 |
and "x <= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (gcd (-x) y)" |
|
162 |
and "x <= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (gcd (-x) (-y))" |
|
163 |
shows "P (gcd x y)" |
|
35216 | 164 |
by (insert assms, auto, arith) |
21256 | 165 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
166 |
lemma gcd_ge_0_int [simp]: "gcd (x::int) y >= 0" |
31706 | 167 |
by (simp add: gcd_int_def) |
168 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
169 |
lemma lcm_neg1_int: "lcm (-x::int) y = lcm x y" |
31706 | 170 |
by (simp add: lcm_int_def) |
171 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
172 |
lemma lcm_neg2_int: "lcm (x::int) (-y) = lcm x y" |
31706 | 173 |
by (simp add: lcm_int_def) |
174 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
175 |
lemma lcm_abs_int: "lcm (x::int) y = lcm (abs x) (abs y)" |
31706 | 176 |
by (simp add: lcm_int_def) |
21256 | 177 |
|
31814 | 178 |
lemma abs_lcm_int [simp]: "abs (lcm i j::int) = lcm i j" |
179 |
by(simp add:lcm_int_def) |
|
180 |
||
181 |
lemma lcm_abs1_int[simp]: "lcm (abs x) (y::int) = lcm x y" |
|
182 |
by (metis abs_idempotent lcm_int_def) |
|
183 |
||
184 |
lemma lcm_abs2_int[simp]: "lcm x (abs y::int) = lcm x y" |
|
185 |
by (metis abs_idempotent lcm_int_def) |
|
186 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
187 |
lemma lcm_cases_int: |
31706 | 188 |
fixes x :: int and y |
189 |
assumes "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (lcm x y)" |
|
190 |
and "x >= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (lcm x (-y))" |
|
191 |
and "x <= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (lcm (-x) y)" |
|
192 |
and "x <= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (lcm (-x) (-y))" |
|
193 |
shows "P (lcm x y)" |
|
41550 | 194 |
using assms by (auto simp add: lcm_neg1_int lcm_neg2_int) arith |
31706 | 195 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
196 |
lemma lcm_ge_0_int [simp]: "lcm (x::int) y >= 0" |
31706 | 197 |
by (simp add: lcm_int_def) |
198 |
||
199 |
(* was gcd_0, etc. *) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
200 |
lemma gcd_0_nat [simp]: "gcd (x::nat) 0 = x" |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
201 |
by simp |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
202 |
|
31706 | 203 |
(* was igcd_0, etc. *) |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
204 |
lemma gcd_0_int [simp]: "gcd (x::int) 0 = abs x" |
31706 | 205 |
by (unfold gcd_int_def, auto) |
206 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
207 |
lemma gcd_0_left_nat [simp]: "gcd 0 (x::nat) = x" |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
208 |
by simp |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
209 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
210 |
lemma gcd_0_left_int [simp]: "gcd 0 (x::int) = abs x" |
31706 | 211 |
by (unfold gcd_int_def, auto) |
212 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
213 |
lemma gcd_red_nat: "gcd (x::nat) y = gcd y (x mod y)" |
31706 | 214 |
by (case_tac "y = 0", auto) |
215 |
||
216 |
(* weaker, but useful for the simplifier *) |
|
217 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
218 |
lemma gcd_non_0_nat: "y ~= (0::nat) \<Longrightarrow> gcd (x::nat) y = gcd y (x mod y)" |
31706 | 219 |
by simp |
220 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
221 |
lemma gcd_1_nat [simp]: "gcd (m::nat) 1 = 1" |
21263 | 222 |
by simp |
21256 | 223 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
224 |
lemma gcd_Suc_0 [simp]: "gcd (m::nat) (Suc 0) = Suc 0" |
31706 | 225 |
by (simp add: One_nat_def) |
226 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
227 |
lemma gcd_1_int [simp]: "gcd (m::int) 1 = 1" |
31706 | 228 |
by (simp add: gcd_int_def) |
30082
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
huffman
parents:
30042
diff
changeset
|
229 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
230 |
lemma gcd_idem_nat: "gcd (x::nat) x = x" |
31798 | 231 |
by simp |
31706 | 232 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
233 |
lemma gcd_idem_int: "gcd (x::int) x = abs x" |
31813 | 234 |
by (auto simp add: gcd_int_def) |
31706 | 235 |
|
236 |
declare gcd_nat.simps [simp del] |
|
21256 | 237 |
|
238 |
text {* |
|
27556 | 239 |
\medskip @{term "gcd m n"} divides @{text m} and @{text n}. The |
21256 | 240 |
conjunctions don't seem provable separately. |
241 |
*} |
|
242 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
243 |
lemma gcd_dvd1_nat [iff]: "(gcd (m::nat)) n dvd m" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
244 |
and gcd_dvd2_nat [iff]: "(gcd m n) dvd n" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
245 |
apply (induct m n rule: gcd_nat_induct) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
246 |
apply (simp_all add: gcd_non_0_nat) |
21256 | 247 |
apply (blast dest: dvd_mod_imp_dvd) |
31706 | 248 |
done |
249 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
250 |
lemma gcd_dvd1_int [iff]: "gcd (x::int) y dvd x" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
251 |
by (metis gcd_int_def int_dvd_iff gcd_dvd1_nat) |
21256 | 252 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
253 |
lemma gcd_dvd2_int [iff]: "gcd (x::int) y dvd y" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
254 |
by (metis gcd_int_def int_dvd_iff gcd_dvd2_nat) |
31706 | 255 |
|
31730 | 256 |
lemma dvd_gcd_D1_nat: "k dvd gcd m n \<Longrightarrow> (k::nat) dvd m" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
257 |
by(metis gcd_dvd1_nat dvd_trans) |
31730 | 258 |
|
259 |
lemma dvd_gcd_D2_nat: "k dvd gcd m n \<Longrightarrow> (k::nat) dvd n" |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
260 |
by(metis gcd_dvd2_nat dvd_trans) |
31730 | 261 |
|
262 |
lemma dvd_gcd_D1_int: "i dvd gcd m n \<Longrightarrow> (i::int) dvd m" |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
263 |
by(metis gcd_dvd1_int dvd_trans) |
31730 | 264 |
|
265 |
lemma dvd_gcd_D2_int: "i dvd gcd m n \<Longrightarrow> (i::int) dvd n" |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
266 |
by(metis gcd_dvd2_int dvd_trans) |
31730 | 267 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
268 |
lemma gcd_le1_nat [simp]: "a \<noteq> 0 \<Longrightarrow> gcd (a::nat) b \<le> a" |
31706 | 269 |
by (rule dvd_imp_le, auto) |
270 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
271 |
lemma gcd_le2_nat [simp]: "b \<noteq> 0 \<Longrightarrow> gcd (a::nat) b \<le> b" |
31706 | 272 |
by (rule dvd_imp_le, auto) |
273 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
274 |
lemma gcd_le1_int [simp]: "a > 0 \<Longrightarrow> gcd (a::int) b \<le> a" |
31706 | 275 |
by (rule zdvd_imp_le, auto) |
21256 | 276 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
277 |
lemma gcd_le2_int [simp]: "b > 0 \<Longrightarrow> gcd (a::int) b \<le> b" |
31706 | 278 |
by (rule zdvd_imp_le, auto) |
279 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
280 |
lemma gcd_greatest_nat: "(k::nat) dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd gcd m n" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
281 |
by (induct m n rule: gcd_nat_induct) (simp_all add: gcd_non_0_nat dvd_mod) |
31706 | 282 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
283 |
lemma gcd_greatest_int: |
31813 | 284 |
"(k::int) dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd gcd m n" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
285 |
apply (subst gcd_abs_int) |
31706 | 286 |
apply (subst abs_dvd_iff [symmetric]) |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
287 |
apply (rule gcd_greatest_nat [transferred]) |
31813 | 288 |
apply auto |
31706 | 289 |
done |
21256 | 290 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
291 |
lemma gcd_greatest_iff_nat [iff]: "(k dvd gcd (m::nat) n) = |
31706 | 292 |
(k dvd m & k dvd n)" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
293 |
by (blast intro!: gcd_greatest_nat intro: dvd_trans) |
31706 | 294 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
295 |
lemma gcd_greatest_iff_int: "((k::int) dvd gcd m n) = (k dvd m & k dvd n)" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
296 |
by (blast intro!: gcd_greatest_int intro: dvd_trans) |
21256 | 297 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
298 |
lemma gcd_zero_nat [simp]: "(gcd (m::nat) n = 0) = (m = 0 & n = 0)" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
299 |
by (simp only: dvd_0_left_iff [symmetric] gcd_greatest_iff_nat) |
21256 | 300 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
301 |
lemma gcd_zero_int [simp]: "(gcd (m::int) n = 0) = (m = 0 & n = 0)" |
31706 | 302 |
by (auto simp add: gcd_int_def) |
21256 | 303 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
304 |
lemma gcd_pos_nat [simp]: "(gcd (m::nat) n > 0) = (m ~= 0 | n ~= 0)" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
305 |
by (insert gcd_zero_nat [of m n], arith) |
21256 | 306 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
307 |
lemma gcd_pos_int [simp]: "(gcd (m::int) n > 0) = (m ~= 0 | n ~= 0)" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
308 |
by (insert gcd_zero_int [of m n], insert gcd_ge_0_int [of m n], arith) |
31706 | 309 |
|
37770
cddb3106adb8
avoid explicit mandatory prefix markers when prefixes are mandatory implicitly
haftmann
parents:
36350
diff
changeset
|
310 |
interpretation gcd_nat: abel_semigroup "gcd :: nat \<Rightarrow> nat \<Rightarrow> nat" |
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
311 |
proof |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
312 |
qed (auto intro: dvd_antisym dvd_trans) |
31706 | 313 |
|
37770
cddb3106adb8
avoid explicit mandatory prefix markers when prefixes are mandatory implicitly
haftmann
parents:
36350
diff
changeset
|
314 |
interpretation gcd_int: abel_semigroup "gcd :: int \<Rightarrow> int \<Rightarrow> int" |
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
315 |
proof |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
316 |
qed (simp_all add: gcd_int_def gcd_nat.assoc gcd_nat.commute gcd_nat.left_commute) |
21256 | 317 |
|
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
318 |
lemmas gcd_assoc_nat = gcd_nat.assoc |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
319 |
lemmas gcd_commute_nat = gcd_nat.commute |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
320 |
lemmas gcd_left_commute_nat = gcd_nat.left_commute |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
321 |
lemmas gcd_assoc_int = gcd_int.assoc |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
322 |
lemmas gcd_commute_int = gcd_int.commute |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
323 |
lemmas gcd_left_commute_int = gcd_int.left_commute |
31706 | 324 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
325 |
lemmas gcd_ac_nat = gcd_assoc_nat gcd_commute_nat gcd_left_commute_nat |
21256 | 326 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
327 |
lemmas gcd_ac_int = gcd_assoc_int gcd_commute_int gcd_left_commute_int |
31706 | 328 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
329 |
lemma gcd_unique_nat: "(d::nat) dvd a \<and> d dvd b \<and> |
31706 | 330 |
(\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" |
331 |
apply auto |
|
33657 | 332 |
apply (rule dvd_antisym) |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
333 |
apply (erule (1) gcd_greatest_nat) |
31706 | 334 |
apply auto |
335 |
done |
|
21256 | 336 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
337 |
lemma gcd_unique_int: "d >= 0 & (d::int) dvd a \<and> d dvd b \<and> |
31706 | 338 |
(\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" |
33657 | 339 |
apply (case_tac "d = 0") |
340 |
apply simp |
|
341 |
apply (rule iffI) |
|
342 |
apply (rule zdvd_antisym_nonneg) |
|
343 |
apply (auto intro: gcd_greatest_int) |
|
31706 | 344 |
done |
30082
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
huffman
parents:
30042
diff
changeset
|
345 |
|
31798 | 346 |
lemma gcd_proj1_if_dvd_nat [simp]: "(x::nat) dvd y \<Longrightarrow> gcd x y = x" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
347 |
by (metis dvd.eq_iff gcd_unique_nat) |
31798 | 348 |
|
349 |
lemma gcd_proj2_if_dvd_nat [simp]: "(y::nat) dvd x \<Longrightarrow> gcd x y = y" |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
350 |
by (metis dvd.eq_iff gcd_unique_nat) |
31798 | 351 |
|
352 |
lemma gcd_proj1_if_dvd_int[simp]: "x dvd y \<Longrightarrow> gcd (x::int) y = abs x" |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
353 |
by (metis abs_dvd_iff abs_eq_0 gcd_0_left_int gcd_abs_int gcd_unique_int) |
31798 | 354 |
|
355 |
lemma gcd_proj2_if_dvd_int[simp]: "y dvd x \<Longrightarrow> gcd (x::int) y = abs y" |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
356 |
by (metis gcd_proj1_if_dvd_int gcd_commute_int) |
31798 | 357 |
|
358 |
||
21256 | 359 |
text {* |
360 |
\medskip Multiplication laws |
|
361 |
*} |
|
362 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
363 |
lemma gcd_mult_distrib_nat: "(k::nat) * gcd m n = gcd (k * m) (k * n)" |
21256 | 364 |
-- {* \cite[page 27]{davenport92} *} |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
365 |
apply (induct m n rule: gcd_nat_induct) |
31706 | 366 |
apply simp |
21256 | 367 |
apply (case_tac "k = 0") |
45270
d5b5c9259afd
fix bug in cancel_factor simprocs so they will work on goals like 'x * y < x * z' where the common term is already on the left
huffman
parents:
45264
diff
changeset
|
368 |
apply (simp_all add: gcd_non_0_nat) |
31706 | 369 |
done |
21256 | 370 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
371 |
lemma gcd_mult_distrib_int: "abs (k::int) * gcd m n = gcd (k * m) (k * n)" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
372 |
apply (subst (1 2) gcd_abs_int) |
31813 | 373 |
apply (subst (1 2) abs_mult) |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
374 |
apply (rule gcd_mult_distrib_nat [transferred]) |
31706 | 375 |
apply auto |
376 |
done |
|
21256 | 377 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
378 |
lemma coprime_dvd_mult_nat: "coprime (k::nat) n \<Longrightarrow> k dvd m * n \<Longrightarrow> k dvd m" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
379 |
apply (insert gcd_mult_distrib_nat [of m k n]) |
21256 | 380 |
apply simp |
381 |
apply (erule_tac t = m in ssubst) |
|
382 |
apply simp |
|
383 |
done |
|
384 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
385 |
lemma coprime_dvd_mult_int: |
31813 | 386 |
"coprime (k::int) n \<Longrightarrow> k dvd m * n \<Longrightarrow> k dvd m" |
387 |
apply (subst abs_dvd_iff [symmetric]) |
|
388 |
apply (subst dvd_abs_iff [symmetric]) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
389 |
apply (subst (asm) gcd_abs_int) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
390 |
apply (rule coprime_dvd_mult_nat [transferred]) |
31813 | 391 |
prefer 4 apply assumption |
392 |
apply auto |
|
393 |
apply (subst abs_mult [symmetric], auto) |
|
31706 | 394 |
done |
395 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
396 |
lemma coprime_dvd_mult_iff_nat: "coprime (k::nat) n \<Longrightarrow> |
31706 | 397 |
(k dvd m * n) = (k dvd m)" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
398 |
by (auto intro: coprime_dvd_mult_nat) |
31706 | 399 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
400 |
lemma coprime_dvd_mult_iff_int: "coprime (k::int) n \<Longrightarrow> |
31706 | 401 |
(k dvd m * n) = (k dvd m)" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
402 |
by (auto intro: coprime_dvd_mult_int) |
31706 | 403 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
404 |
lemma gcd_mult_cancel_nat: "coprime k n \<Longrightarrow> gcd ((k::nat) * m) n = gcd m n" |
33657 | 405 |
apply (rule dvd_antisym) |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
406 |
apply (rule gcd_greatest_nat) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
407 |
apply (rule_tac n = k in coprime_dvd_mult_nat) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
408 |
apply (simp add: gcd_assoc_nat) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
409 |
apply (simp add: gcd_commute_nat) |
31706 | 410 |
apply (simp_all add: mult_commute) |
411 |
done |
|
21256 | 412 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
413 |
lemma gcd_mult_cancel_int: |
31813 | 414 |
"coprime (k::int) n \<Longrightarrow> gcd (k * m) n = gcd m n" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
415 |
apply (subst (1 2) gcd_abs_int) |
31813 | 416 |
apply (subst abs_mult) |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
417 |
apply (rule gcd_mult_cancel_nat [transferred], auto) |
31706 | 418 |
done |
21256 | 419 |
|
35368 | 420 |
lemma coprime_crossproduct_nat: |
421 |
fixes a b c d :: nat |
|
422 |
assumes "coprime a d" and "coprime b c" |
|
423 |
shows "a * c = b * d \<longleftrightarrow> a = b \<and> c = d" (is "?lhs \<longleftrightarrow> ?rhs") |
|
424 |
proof |
|
425 |
assume ?rhs then show ?lhs by simp |
|
426 |
next |
|
427 |
assume ?lhs |
|
428 |
from `?lhs` have "a dvd b * d" by (auto intro: dvdI dest: sym) |
|
429 |
with `coprime a d` have "a dvd b" by (simp add: coprime_dvd_mult_iff_nat) |
|
430 |
from `?lhs` have "b dvd a * c" by (auto intro: dvdI dest: sym) |
|
431 |
with `coprime b c` have "b dvd a" by (simp add: coprime_dvd_mult_iff_nat) |
|
432 |
from `?lhs` have "c dvd d * b" by (auto intro: dvdI dest: sym simp add: mult_commute) |
|
433 |
with `coprime b c` have "c dvd d" by (simp add: coprime_dvd_mult_iff_nat gcd_commute_nat) |
|
434 |
from `?lhs` have "d dvd c * a" by (auto intro: dvdI dest: sym simp add: mult_commute) |
|
435 |
with `coprime a d` have "d dvd c" by (simp add: coprime_dvd_mult_iff_nat gcd_commute_nat) |
|
436 |
from `a dvd b` `b dvd a` have "a = b" by (rule Nat.dvd.antisym) |
|
437 |
moreover from `c dvd d` `d dvd c` have "c = d" by (rule Nat.dvd.antisym) |
|
438 |
ultimately show ?rhs .. |
|
439 |
qed |
|
440 |
||
441 |
lemma coprime_crossproduct_int: |
|
442 |
fixes a b c d :: int |
|
443 |
assumes "coprime a d" and "coprime b c" |
|
444 |
shows "\<bar>a\<bar> * \<bar>c\<bar> = \<bar>b\<bar> * \<bar>d\<bar> \<longleftrightarrow> \<bar>a\<bar> = \<bar>b\<bar> \<and> \<bar>c\<bar> = \<bar>d\<bar>" |
|
445 |
using assms by (intro coprime_crossproduct_nat [transferred]) auto |
|
446 |
||
21256 | 447 |
text {* \medskip Addition laws *} |
448 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
449 |
lemma gcd_add1_nat [simp]: "gcd ((m::nat) + n) n = gcd m n" |
31706 | 450 |
apply (case_tac "n = 0") |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
451 |
apply (simp_all add: gcd_non_0_nat) |
31706 | 452 |
done |
453 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
454 |
lemma gcd_add2_nat [simp]: "gcd (m::nat) (m + n) = gcd m n" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
455 |
apply (subst (1 2) gcd_commute_nat) |
31706 | 456 |
apply (subst add_commute) |
457 |
apply simp |
|
458 |
done |
|
459 |
||
460 |
(* to do: add the other variations? *) |
|
461 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
462 |
lemma gcd_diff1_nat: "(m::nat) >= n \<Longrightarrow> gcd (m - n) n = gcd m n" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
463 |
by (subst gcd_add1_nat [symmetric], auto) |
31706 | 464 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
465 |
lemma gcd_diff2_nat: "(n::nat) >= m \<Longrightarrow> gcd (n - m) n = gcd m n" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
466 |
apply (subst gcd_commute_nat) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
467 |
apply (subst gcd_diff1_nat [symmetric]) |
31706 | 468 |
apply auto |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
469 |
apply (subst gcd_commute_nat) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
470 |
apply (subst gcd_diff1_nat) |
31706 | 471 |
apply assumption |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
472 |
apply (rule gcd_commute_nat) |
31706 | 473 |
done |
474 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
475 |
lemma gcd_non_0_int: "(y::int) > 0 \<Longrightarrow> gcd x y = gcd y (x mod y)" |
31706 | 476 |
apply (frule_tac b = y and a = x in pos_mod_sign) |
477 |
apply (simp del: pos_mod_sign add: gcd_int_def abs_if nat_mod_distrib) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
478 |
apply (auto simp add: gcd_non_0_nat nat_mod_distrib [symmetric] |
31706 | 479 |
zmod_zminus1_eq_if) |
480 |
apply (frule_tac a = x in pos_mod_bound) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
481 |
apply (subst (1 2) gcd_commute_nat) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
482 |
apply (simp del: pos_mod_bound add: nat_diff_distrib gcd_diff2_nat |
31706 | 483 |
nat_le_eq_zle) |
484 |
done |
|
21256 | 485 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
486 |
lemma gcd_red_int: "gcd (x::int) y = gcd y (x mod y)" |
31706 | 487 |
apply (case_tac "y = 0") |
488 |
apply force |
|
489 |
apply (case_tac "y > 0") |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
490 |
apply (subst gcd_non_0_int, auto) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
491 |
apply (insert gcd_non_0_int [of "-y" "-x"]) |
35216 | 492 |
apply auto |
31706 | 493 |
done |
494 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
495 |
lemma gcd_add1_int [simp]: "gcd ((m::int) + n) n = gcd m n" |
44821 | 496 |
by (metis gcd_red_int mod_add_self1 add_commute) |
31706 | 497 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
498 |
lemma gcd_add2_int [simp]: "gcd m ((m::int) + n) = gcd m n" |
44821 | 499 |
by (metis gcd_add1_int gcd_commute_int add_commute) |
21256 | 500 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
501 |
lemma gcd_add_mult_nat: "gcd (m::nat) (k * m + n) = gcd m n" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
502 |
by (metis mod_mult_self3 gcd_commute_nat gcd_red_nat) |
21256 | 503 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
504 |
lemma gcd_add_mult_int: "gcd (m::int) (k * m + n) = gcd m n" |
44821 | 505 |
by (metis gcd_commute_int gcd_red_int mod_mult_self1 add_commute) |
31798 | 506 |
|
21256 | 507 |
|
31706 | 508 |
(* to do: differences, and all variations of addition rules |
509 |
as simplification rules for nat and int *) |
|
510 |
||
31798 | 511 |
(* FIXME remove iff *) |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
512 |
lemma gcd_dvd_prod_nat [iff]: "gcd (m::nat) n dvd k * n" |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
513 |
using mult_dvd_mono [of 1] by auto |
22027
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
chaieb
parents:
21404
diff
changeset
|
514 |
|
31706 | 515 |
(* to do: add the three variations of these, and for ints? *) |
516 |
||
31992 | 517 |
lemma finite_divisors_nat[simp]: |
518 |
assumes "(m::nat) ~= 0" shows "finite{d. d dvd m}" |
|
31734 | 519 |
proof- |
520 |
have "finite{d. d <= m}" by(blast intro: bounded_nat_set_is_finite) |
|
521 |
from finite_subset[OF _ this] show ?thesis using assms |
|
522 |
by(bestsimp intro!:dvd_imp_le) |
|
523 |
qed |
|
524 |
||
31995 | 525 |
lemma finite_divisors_int[simp]: |
31734 | 526 |
assumes "(i::int) ~= 0" shows "finite{d. d dvd i}" |
527 |
proof- |
|
528 |
have "{d. abs d <= abs i} = {- abs i .. abs i}" by(auto simp:abs_if) |
|
529 |
hence "finite{d. abs d <= abs i}" by simp |
|
530 |
from finite_subset[OF _ this] show ?thesis using assms |
|
531 |
by(bestsimp intro!:dvd_imp_le_int) |
|
532 |
qed |
|
533 |
||
31995 | 534 |
lemma Max_divisors_self_nat[simp]: "n\<noteq>0 \<Longrightarrow> Max{d::nat. d dvd n} = n" |
535 |
apply(rule antisym) |
|
44890
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
nipkow
parents:
44845
diff
changeset
|
536 |
apply (fastforce intro: Max_le_iff[THEN iffD2] simp: dvd_imp_le) |
31995 | 537 |
apply simp |
538 |
done |
|
539 |
||
540 |
lemma Max_divisors_self_int[simp]: "n\<noteq>0 \<Longrightarrow> Max{d::int. d dvd n} = abs n" |
|
541 |
apply(rule antisym) |
|
44278
1220ecb81e8f
observe distinction between sets and predicates more properly
haftmann
parents:
42871
diff
changeset
|
542 |
apply(rule Max_le_iff [THEN iffD2]) |
1220ecb81e8f
observe distinction between sets and predicates more properly
haftmann
parents:
42871
diff
changeset
|
543 |
apply (auto intro: abs_le_D1 dvd_imp_le_int) |
31995 | 544 |
done |
545 |
||
31734 | 546 |
lemma gcd_is_Max_divisors_nat: |
547 |
"m ~= 0 \<Longrightarrow> n ~= 0 \<Longrightarrow> gcd (m::nat) n = (Max {d. d dvd m & d dvd n})" |
|
548 |
apply(rule Max_eqI[THEN sym]) |
|
31995 | 549 |
apply (metis finite_Collect_conjI finite_divisors_nat) |
31734 | 550 |
apply simp |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
551 |
apply(metis Suc_diff_1 Suc_neq_Zero dvd_imp_le gcd_greatest_iff_nat gcd_pos_nat) |
31734 | 552 |
apply simp |
553 |
done |
|
554 |
||
555 |
lemma gcd_is_Max_divisors_int: |
|
556 |
"m ~= 0 ==> n ~= 0 ==> gcd (m::int) n = (Max {d. d dvd m & d dvd n})" |
|
557 |
apply(rule Max_eqI[THEN sym]) |
|
31995 | 558 |
apply (metis finite_Collect_conjI finite_divisors_int) |
31734 | 559 |
apply simp |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
560 |
apply (metis gcd_greatest_iff_int gcd_pos_int zdvd_imp_le) |
31734 | 561 |
apply simp |
562 |
done |
|
563 |
||
34030
829eb528b226
resorted code equations from "old" number theory version
haftmann
parents:
33946
diff
changeset
|
564 |
lemma gcd_code_int [code]: |
829eb528b226
resorted code equations from "old" number theory version
haftmann
parents:
33946
diff
changeset
|
565 |
"gcd k l = \<bar>if l = (0::int) then k else gcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>" |
829eb528b226
resorted code equations from "old" number theory version
haftmann
parents:
33946
diff
changeset
|
566 |
by (simp add: gcd_int_def nat_mod_distrib gcd_non_0_nat) |
829eb528b226
resorted code equations from "old" number theory version
haftmann
parents:
33946
diff
changeset
|
567 |
|
22027
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
chaieb
parents:
21404
diff
changeset
|
568 |
|
31706 | 569 |
subsection {* Coprimality *} |
570 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
571 |
lemma div_gcd_coprime_nat: |
31706 | 572 |
assumes nz: "(a::nat) \<noteq> 0 \<or> b \<noteq> 0" |
573 |
shows "coprime (a div gcd a b) (b div gcd a b)" |
|
22367 | 574 |
proof - |
27556 | 575 |
let ?g = "gcd a b" |
22027
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
chaieb
parents:
21404
diff
changeset
|
576 |
let ?a' = "a div ?g" |
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
chaieb
parents:
21404
diff
changeset
|
577 |
let ?b' = "b div ?g" |
27556 | 578 |
let ?g' = "gcd ?a' ?b'" |
22027
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
chaieb
parents:
21404
diff
changeset
|
579 |
have dvdg: "?g dvd a" "?g dvd b" by simp_all |
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
chaieb
parents:
21404
diff
changeset
|
580 |
have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" by simp_all |
22367 | 581 |
from dvdg dvdg' obtain ka kb ka' kb' where |
582 |
kab: "a = ?g * ka" "b = ?g * kb" "?a' = ?g' * ka'" "?b' = ?g' * kb'" |
|
22027
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
chaieb
parents:
21404
diff
changeset
|
583 |
unfolding dvd_def by blast |
31706 | 584 |
then have "?g * ?a' = (?g * ?g') * ka'" "?g * ?b' = (?g * ?g') * kb'" |
585 |
by simp_all |
|
22367 | 586 |
then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b" |
587 |
by (auto simp add: dvd_mult_div_cancel [OF dvdg(1)] |
|
588 |
dvd_mult_div_cancel [OF dvdg(2)] dvd_def) |
|
35216 | 589 |
have "?g \<noteq> 0" using nz by simp |
31706 | 590 |
then have gp: "?g > 0" by arith |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
591 |
from gcd_greatest_nat [OF dvdgg'] have "?g * ?g' dvd ?g" . |
22367 | 592 |
with dvd_mult_cancel1 [OF gp] show "?g' = 1" by simp |
22027
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
chaieb
parents:
21404
diff
changeset
|
593 |
qed |
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
chaieb
parents:
21404
diff
changeset
|
594 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
595 |
lemma div_gcd_coprime_int: |
31706 | 596 |
assumes nz: "(a::int) \<noteq> 0 \<or> b \<noteq> 0" |
597 |
shows "coprime (a div gcd a b) (b div gcd a b)" |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
598 |
apply (subst (1 2 3) gcd_abs_int) |
31813 | 599 |
apply (subst (1 2) abs_div) |
600 |
apply simp |
|
601 |
apply simp |
|
602 |
apply(subst (1 2) abs_gcd_int) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
603 |
apply (rule div_gcd_coprime_nat [transferred]) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
604 |
using nz apply (auto simp add: gcd_abs_int [symmetric]) |
31706 | 605 |
done |
606 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
607 |
lemma coprime_nat: "coprime (a::nat) b \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> d = 1)" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
608 |
using gcd_unique_nat[of 1 a b, simplified] by auto |
31706 | 609 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
610 |
lemma coprime_Suc_0_nat: |
31706 | 611 |
"coprime (a::nat) b \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> d = Suc 0)" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
612 |
using coprime_nat by (simp add: One_nat_def) |
31706 | 613 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
614 |
lemma coprime_int: "coprime (a::int) b \<longleftrightarrow> |
31706 | 615 |
(\<forall>d. d >= 0 \<and> d dvd a \<and> d dvd b \<longleftrightarrow> d = 1)" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
616 |
using gcd_unique_int [of 1 a b] |
31706 | 617 |
apply clarsimp |
618 |
apply (erule subst) |
|
619 |
apply (rule iffI) |
|
620 |
apply force |
|
48562
f6d6d58fa318
tuned proofs -- avoid odd situations of polymorphic Frees in goal state;
wenzelm
parents:
45992
diff
changeset
|
621 |
apply (drule_tac x = "abs ?e" in exI) |
f6d6d58fa318
tuned proofs -- avoid odd situations of polymorphic Frees in goal state;
wenzelm
parents:
45992
diff
changeset
|
622 |
apply (case_tac "(?e::int) >= 0") |
31706 | 623 |
apply force |
624 |
apply force |
|
625 |
done |
|
626 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
627 |
lemma gcd_coprime_nat: |
31706 | 628 |
assumes z: "gcd (a::nat) b \<noteq> 0" and a: "a = a' * gcd a b" and |
629 |
b: "b = b' * gcd a b" |
|
630 |
shows "coprime a' b'" |
|
631 |
||
632 |
apply (subgoal_tac "a' = a div gcd a b") |
|
633 |
apply (erule ssubst) |
|
634 |
apply (subgoal_tac "b' = b div gcd a b") |
|
635 |
apply (erule ssubst) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
636 |
apply (rule div_gcd_coprime_nat) |
41550 | 637 |
using z apply force |
31706 | 638 |
apply (subst (1) b) |
639 |
using z apply force |
|
640 |
apply (subst (1) a) |
|
641 |
using z apply force |
|
41550 | 642 |
done |
31706 | 643 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
644 |
lemma gcd_coprime_int: |
31706 | 645 |
assumes z: "gcd (a::int) b \<noteq> 0" and a: "a = a' * gcd a b" and |
646 |
b: "b = b' * gcd a b" |
|
647 |
shows "coprime a' b'" |
|
648 |
||
649 |
apply (subgoal_tac "a' = a div gcd a b") |
|
650 |
apply (erule ssubst) |
|
651 |
apply (subgoal_tac "b' = b div gcd a b") |
|
652 |
apply (erule ssubst) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
653 |
apply (rule div_gcd_coprime_int) |
41550 | 654 |
using z apply force |
31706 | 655 |
apply (subst (1) b) |
656 |
using z apply force |
|
657 |
apply (subst (1) a) |
|
658 |
using z apply force |
|
41550 | 659 |
done |
31706 | 660 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
661 |
lemma coprime_mult_nat: assumes da: "coprime (d::nat) a" and db: "coprime d b" |
31706 | 662 |
shows "coprime d (a * b)" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
663 |
apply (subst gcd_commute_nat) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
664 |
using da apply (subst gcd_mult_cancel_nat) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
665 |
apply (subst gcd_commute_nat, assumption) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
666 |
apply (subst gcd_commute_nat, rule db) |
31706 | 667 |
done |
668 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
669 |
lemma coprime_mult_int: assumes da: "coprime (d::int) a" and db: "coprime d b" |
31706 | 670 |
shows "coprime d (a * b)" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
671 |
apply (subst gcd_commute_int) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
672 |
using da apply (subst gcd_mult_cancel_int) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
673 |
apply (subst gcd_commute_int, assumption) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
674 |
apply (subst gcd_commute_int, rule db) |
31706 | 675 |
done |
676 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
677 |
lemma coprime_lmult_nat: |
31706 | 678 |
assumes dab: "coprime (d::nat) (a * b)" shows "coprime d a" |
679 |
proof - |
|
680 |
have "gcd d a dvd gcd d (a * b)" |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
681 |
by (rule gcd_greatest_nat, auto) |
31706 | 682 |
with dab show ?thesis |
683 |
by auto |
|
684 |
qed |
|
685 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
686 |
lemma coprime_lmult_int: |
31798 | 687 |
assumes "coprime (d::int) (a * b)" shows "coprime d a" |
31706 | 688 |
proof - |
689 |
have "gcd d a dvd gcd d (a * b)" |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
690 |
by (rule gcd_greatest_int, auto) |
31798 | 691 |
with assms show ?thesis |
31706 | 692 |
by auto |
693 |
qed |
|
694 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
695 |
lemma coprime_rmult_nat: |
31798 | 696 |
assumes "coprime (d::nat) (a * b)" shows "coprime d b" |
31706 | 697 |
proof - |
698 |
have "gcd d b dvd gcd d (a * b)" |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
699 |
by (rule gcd_greatest_nat, auto intro: dvd_mult) |
31798 | 700 |
with assms show ?thesis |
31706 | 701 |
by auto |
702 |
qed |
|
703 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
704 |
lemma coprime_rmult_int: |
31706 | 705 |
assumes dab: "coprime (d::int) (a * b)" shows "coprime d b" |
706 |
proof - |
|
707 |
have "gcd d b dvd gcd d (a * b)" |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
708 |
by (rule gcd_greatest_int, auto intro: dvd_mult) |
31706 | 709 |
with dab show ?thesis |
710 |
by auto |
|
711 |
qed |
|
712 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
713 |
lemma coprime_mul_eq_nat: "coprime (d::nat) (a * b) \<longleftrightarrow> |
31706 | 714 |
coprime d a \<and> coprime d b" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
715 |
using coprime_rmult_nat[of d a b] coprime_lmult_nat[of d a b] |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
716 |
coprime_mult_nat[of d a b] |
31706 | 717 |
by blast |
718 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
719 |
lemma coprime_mul_eq_int: "coprime (d::int) (a * b) \<longleftrightarrow> |
31706 | 720 |
coprime d a \<and> coprime d b" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
721 |
using coprime_rmult_int[of d a b] coprime_lmult_int[of d a b] |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
722 |
coprime_mult_int[of d a b] |
31706 | 723 |
by blast |
724 |
||
52397 | 725 |
lemma coprime_power_int: |
726 |
assumes "0 < n" shows "coprime (a :: int) (b ^ n) \<longleftrightarrow> coprime a b" |
|
727 |
using assms |
|
728 |
proof (induct n) |
|
729 |
case (Suc n) then show ?case |
|
730 |
by (cases n) (simp_all add: coprime_mul_eq_int) |
|
731 |
qed simp |
|
732 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
733 |
lemma gcd_coprime_exists_nat: |
31706 | 734 |
assumes nz: "gcd (a::nat) b \<noteq> 0" |
735 |
shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> coprime a' b'" |
|
736 |
apply (rule_tac x = "a div gcd a b" in exI) |
|
737 |
apply (rule_tac x = "b div gcd a b" in exI) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
738 |
using nz apply (auto simp add: div_gcd_coprime_nat dvd_div_mult) |
31706 | 739 |
done |
740 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
741 |
lemma gcd_coprime_exists_int: |
31706 | 742 |
assumes nz: "gcd (a::int) b \<noteq> 0" |
743 |
shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> coprime a' b'" |
|
744 |
apply (rule_tac x = "a div gcd a b" in exI) |
|
745 |
apply (rule_tac x = "b div gcd a b" in exI) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
746 |
using nz apply (auto simp add: div_gcd_coprime_int dvd_div_mult_self) |
31706 | 747 |
done |
748 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
749 |
lemma coprime_exp_nat: "coprime (d::nat) a \<Longrightarrow> coprime d (a^n)" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
750 |
by (induct n, simp_all add: coprime_mult_nat) |
31706 | 751 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
752 |
lemma coprime_exp_int: "coprime (d::int) a \<Longrightarrow> coprime d (a^n)" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
753 |
by (induct n, simp_all add: coprime_mult_int) |
31706 | 754 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
755 |
lemma coprime_exp2_nat [intro]: "coprime (a::nat) b \<Longrightarrow> coprime (a^n) (b^m)" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
756 |
apply (rule coprime_exp_nat) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
757 |
apply (subst gcd_commute_nat) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
758 |
apply (rule coprime_exp_nat) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
759 |
apply (subst gcd_commute_nat, assumption) |
31706 | 760 |
done |
761 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
762 |
lemma coprime_exp2_int [intro]: "coprime (a::int) b \<Longrightarrow> coprime (a^n) (b^m)" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
763 |
apply (rule coprime_exp_int) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
764 |
apply (subst gcd_commute_int) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
765 |
apply (rule coprime_exp_int) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
766 |
apply (subst gcd_commute_int, assumption) |
31706 | 767 |
done |
768 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
769 |
lemma gcd_exp_nat: "gcd ((a::nat)^n) (b^n) = (gcd a b)^n" |
31706 | 770 |
proof (cases) |
771 |
assume "a = 0 & b = 0" |
|
772 |
thus ?thesis by simp |
|
773 |
next assume "~(a = 0 & b = 0)" |
|
774 |
hence "coprime ((a div gcd a b)^n) ((b div gcd a b)^n)" |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
775 |
by (auto simp:div_gcd_coprime_nat) |
31706 | 776 |
hence "gcd ((a div gcd a b)^n * (gcd a b)^n) |
777 |
((b div gcd a b)^n * (gcd a b)^n) = (gcd a b)^n" |
|
778 |
apply (subst (1 2) mult_commute) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
779 |
apply (subst gcd_mult_distrib_nat [symmetric]) |
31706 | 780 |
apply simp |
781 |
done |
|
782 |
also have "(a div gcd a b)^n * (gcd a b)^n = a^n" |
|
783 |
apply (subst div_power) |
|
784 |
apply auto |
|
785 |
apply (rule dvd_div_mult_self) |
|
786 |
apply (rule dvd_power_same) |
|
787 |
apply auto |
|
788 |
done |
|
789 |
also have "(b div gcd a b)^n * (gcd a b)^n = b^n" |
|
790 |
apply (subst div_power) |
|
791 |
apply auto |
|
792 |
apply (rule dvd_div_mult_self) |
|
793 |
apply (rule dvd_power_same) |
|
794 |
apply auto |
|
795 |
done |
|
796 |
finally show ?thesis . |
|
797 |
qed |
|
798 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
799 |
lemma gcd_exp_int: "gcd ((a::int)^n) (b^n) = (gcd a b)^n" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
800 |
apply (subst (1 2) gcd_abs_int) |
31706 | 801 |
apply (subst (1 2) power_abs) |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
802 |
apply (rule gcd_exp_nat [where n = n, transferred]) |
31706 | 803 |
apply auto |
804 |
done |
|
805 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
806 |
lemma division_decomp_nat: assumes dc: "(a::nat) dvd b * c" |
31706 | 807 |
shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c" |
808 |
proof- |
|
809 |
let ?g = "gcd a b" |
|
810 |
{assume "?g = 0" with dc have ?thesis by auto} |
|
811 |
moreover |
|
812 |
{assume z: "?g \<noteq> 0" |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
813 |
from gcd_coprime_exists_nat[OF z] |
31706 | 814 |
obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'" |
815 |
by blast |
|
816 |
have thb: "?g dvd b" by auto |
|
817 |
from ab'(1) have "a' dvd a" unfolding dvd_def by blast |
|
818 |
with dc have th0: "a' dvd b*c" using dvd_trans[of a' a "b*c"] by simp |
|
819 |
from dc ab'(1,2) have "a'*?g dvd (b'*?g) *c" by auto |
|
820 |
hence "?g*a' dvd ?g * (b' * c)" by (simp add: mult_assoc) |
|
821 |
with z have th_1: "a' dvd b' * c" by auto |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
822 |
from coprime_dvd_mult_nat[OF ab'(3)] th_1 |
31706 | 823 |
have thc: "a' dvd c" by (subst (asm) mult_commute, blast) |
824 |
from ab' have "a = ?g*a'" by algebra |
|
825 |
with thb thc have ?thesis by blast } |
|
826 |
ultimately show ?thesis by blast |
|
827 |
qed |
|
828 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
829 |
lemma division_decomp_int: assumes dc: "(a::int) dvd b * c" |
31706 | 830 |
shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c" |
831 |
proof- |
|
832 |
let ?g = "gcd a b" |
|
833 |
{assume "?g = 0" with dc have ?thesis by auto} |
|
834 |
moreover |
|
835 |
{assume z: "?g \<noteq> 0" |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
836 |
from gcd_coprime_exists_int[OF z] |
31706 | 837 |
obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'" |
838 |
by blast |
|
839 |
have thb: "?g dvd b" by auto |
|
840 |
from ab'(1) have "a' dvd a" unfolding dvd_def by blast |
|
841 |
with dc have th0: "a' dvd b*c" |
|
842 |
using dvd_trans[of a' a "b*c"] by simp |
|
843 |
from dc ab'(1,2) have "a'*?g dvd (b'*?g) *c" by auto |
|
844 |
hence "?g*a' dvd ?g * (b' * c)" by (simp add: mult_assoc) |
|
845 |
with z have th_1: "a' dvd b' * c" by auto |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
846 |
from coprime_dvd_mult_int[OF ab'(3)] th_1 |
31706 | 847 |
have thc: "a' dvd c" by (subst (asm) mult_commute, blast) |
848 |
from ab' have "a = ?g*a'" by algebra |
|
849 |
with thb thc have ?thesis by blast } |
|
850 |
ultimately show ?thesis by blast |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
851 |
qed |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
852 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
853 |
lemma pow_divides_pow_nat: |
31706 | 854 |
assumes ab: "(a::nat) ^ n dvd b ^n" and n:"n \<noteq> 0" |
855 |
shows "a dvd b" |
|
856 |
proof- |
|
857 |
let ?g = "gcd a b" |
|
858 |
from n obtain m where m: "n = Suc m" by (cases n, simp_all) |
|
859 |
{assume "?g = 0" with ab n have ?thesis by auto } |
|
860 |
moreover |
|
861 |
{assume z: "?g \<noteq> 0" |
|
35216 | 862 |
hence zn: "?g ^ n \<noteq> 0" using n by simp |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
863 |
from gcd_coprime_exists_nat[OF z] |
31706 | 864 |
obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'" |
865 |
by blast |
|
866 |
from ab have "(a' * ?g) ^ n dvd (b' * ?g)^n" |
|
867 |
by (simp add: ab'(1,2)[symmetric]) |
|
868 |
hence "?g^n*a'^n dvd ?g^n *b'^n" |
|
869 |
by (simp only: power_mult_distrib mult_commute) |
|
870 |
with zn z n have th0:"a'^n dvd b'^n" by auto |
|
871 |
have "a' dvd a'^n" by (simp add: m) |
|
872 |
with th0 have "a' dvd b'^n" using dvd_trans[of a' "a'^n" "b'^n"] by simp |
|
873 |
hence th1: "a' dvd b'^m * b'" by (simp add: m mult_commute) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
874 |
from coprime_dvd_mult_nat[OF coprime_exp_nat [OF ab'(3), of m]] th1 |
31706 | 875 |
have "a' dvd b'" by (subst (asm) mult_commute, blast) |
876 |
hence "a'*?g dvd b'*?g" by simp |
|
877 |
with ab'(1,2) have ?thesis by simp } |
|
878 |
ultimately show ?thesis by blast |
|
879 |
qed |
|
880 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
881 |
lemma pow_divides_pow_int: |
31706 | 882 |
assumes ab: "(a::int) ^ n dvd b ^n" and n:"n \<noteq> 0" |
883 |
shows "a dvd b" |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
884 |
proof- |
31706 | 885 |
let ?g = "gcd a b" |
886 |
from n obtain m where m: "n = Suc m" by (cases n, simp_all) |
|
887 |
{assume "?g = 0" with ab n have ?thesis by auto } |
|
888 |
moreover |
|
889 |
{assume z: "?g \<noteq> 0" |
|
35216 | 890 |
hence zn: "?g ^ n \<noteq> 0" using n by simp |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
891 |
from gcd_coprime_exists_int[OF z] |
31706 | 892 |
obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'" |
893 |
by blast |
|
894 |
from ab have "(a' * ?g) ^ n dvd (b' * ?g)^n" |
|
895 |
by (simp add: ab'(1,2)[symmetric]) |
|
896 |
hence "?g^n*a'^n dvd ?g^n *b'^n" |
|
897 |
by (simp only: power_mult_distrib mult_commute) |
|
898 |
with zn z n have th0:"a'^n dvd b'^n" by auto |
|
899 |
have "a' dvd a'^n" by (simp add: m) |
|
900 |
with th0 have "a' dvd b'^n" |
|
901 |
using dvd_trans[of a' "a'^n" "b'^n"] by simp |
|
902 |
hence th1: "a' dvd b'^m * b'" by (simp add: m mult_commute) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
903 |
from coprime_dvd_mult_int[OF coprime_exp_int [OF ab'(3), of m]] th1 |
31706 | 904 |
have "a' dvd b'" by (subst (asm) mult_commute, blast) |
905 |
hence "a'*?g dvd b'*?g" by simp |
|
906 |
with ab'(1,2) have ?thesis by simp } |
|
907 |
ultimately show ?thesis by blast |
|
908 |
qed |
|
909 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
910 |
lemma pow_divides_eq_nat [simp]: "n ~= 0 \<Longrightarrow> ((a::nat)^n dvd b^n) = (a dvd b)" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
911 |
by (auto intro: pow_divides_pow_nat dvd_power_same) |
31706 | 912 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
913 |
lemma pow_divides_eq_int [simp]: "n ~= 0 \<Longrightarrow> ((a::int)^n dvd b^n) = (a dvd b)" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
914 |
by (auto intro: pow_divides_pow_int dvd_power_same) |
31706 | 915 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
916 |
lemma divides_mult_nat: |
31706 | 917 |
assumes mr: "(m::nat) dvd r" and nr: "n dvd r" and mn:"coprime m n" |
918 |
shows "m * n dvd r" |
|
919 |
proof- |
|
920 |
from mr nr obtain m' n' where m': "r = m*m'" and n': "r = n*n'" |
|
921 |
unfolding dvd_def by blast |
|
922 |
from mr n' have "m dvd n'*n" by (simp add: mult_commute) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
923 |
hence "m dvd n'" using coprime_dvd_mult_iff_nat[OF mn] by simp |
31706 | 924 |
then obtain k where k: "n' = m*k" unfolding dvd_def by blast |
925 |
from n' k show ?thesis unfolding dvd_def by auto |
|
926 |
qed |
|
927 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
928 |
lemma divides_mult_int: |
31706 | 929 |
assumes mr: "(m::int) dvd r" and nr: "n dvd r" and mn:"coprime m n" |
930 |
shows "m * n dvd r" |
|
931 |
proof- |
|
932 |
from mr nr obtain m' n' where m': "r = m*m'" and n': "r = n*n'" |
|
933 |
unfolding dvd_def by blast |
|
934 |
from mr n' have "m dvd n'*n" by (simp add: mult_commute) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
935 |
hence "m dvd n'" using coprime_dvd_mult_iff_int[OF mn] by simp |
31706 | 936 |
then obtain k where k: "n' = m*k" unfolding dvd_def by blast |
937 |
from n' k show ?thesis unfolding dvd_def by auto |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
938 |
qed |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
939 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
940 |
lemma coprime_plus_one_nat [simp]: "coprime ((n::nat) + 1) n" |
31706 | 941 |
apply (subgoal_tac "gcd (n + 1) n dvd (n + 1 - n)") |
942 |
apply force |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
943 |
apply (rule dvd_diff_nat) |
31706 | 944 |
apply auto |
945 |
done |
|
946 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
947 |
lemma coprime_Suc_nat [simp]: "coprime (Suc n) n" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
948 |
using coprime_plus_one_nat by (simp add: One_nat_def) |
31706 | 949 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
950 |
lemma coprime_plus_one_int [simp]: "coprime ((n::int) + 1) n" |
31706 | 951 |
apply (subgoal_tac "gcd (n + 1) n dvd (n + 1 - n)") |
952 |
apply force |
|
953 |
apply (rule dvd_diff) |
|
954 |
apply auto |
|
955 |
done |
|
956 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
957 |
lemma coprime_minus_one_nat: "(n::nat) \<noteq> 0 \<Longrightarrow> coprime (n - 1) n" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
958 |
using coprime_plus_one_nat [of "n - 1"] |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
959 |
gcd_commute_nat [of "n - 1" n] by auto |
31706 | 960 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
961 |
lemma coprime_minus_one_int: "coprime ((n::int) - 1) n" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
962 |
using coprime_plus_one_int [of "n - 1"] |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
963 |
gcd_commute_int [of "n - 1" n] by auto |
31706 | 964 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
965 |
lemma setprod_coprime_nat [rule_format]: |
31706 | 966 |
"(ALL i: A. coprime (f i) (x::nat)) --> coprime (PROD i:A. f i) x" |
967 |
apply (case_tac "finite A") |
|
968 |
apply (induct set: finite) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
969 |
apply (auto simp add: gcd_mult_cancel_nat) |
31706 | 970 |
done |
971 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
972 |
lemma setprod_coprime_int [rule_format]: |
31706 | 973 |
"(ALL i: A. coprime (f i) (x::int)) --> coprime (PROD i:A. f i) x" |
974 |
apply (case_tac "finite A") |
|
975 |
apply (induct set: finite) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
976 |
apply (auto simp add: gcd_mult_cancel_int) |
31706 | 977 |
done |
978 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
979 |
lemma coprime_common_divisor_nat: "coprime (a::nat) b \<Longrightarrow> x dvd a \<Longrightarrow> |
31706 | 980 |
x dvd b \<Longrightarrow> x = 1" |
981 |
apply (subgoal_tac "x dvd gcd a b") |
|
982 |
apply simp |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
983 |
apply (erule (1) gcd_greatest_nat) |
31706 | 984 |
done |
985 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
986 |
lemma coprime_common_divisor_int: "coprime (a::int) b \<Longrightarrow> x dvd a \<Longrightarrow> |
31706 | 987 |
x dvd b \<Longrightarrow> abs x = 1" |
988 |
apply (subgoal_tac "x dvd gcd a b") |
|
989 |
apply simp |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
990 |
apply (erule (1) gcd_greatest_int) |
31706 | 991 |
done |
992 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
993 |
lemma coprime_divisors_nat: "(d::int) dvd a \<Longrightarrow> e dvd b \<Longrightarrow> coprime a b \<Longrightarrow> |
31706 | 994 |
coprime d e" |
995 |
apply (auto simp add: dvd_def) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
996 |
apply (frule coprime_lmult_int) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
997 |
apply (subst gcd_commute_int) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
998 |
apply (subst (asm) (2) gcd_commute_int) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
999 |
apply (erule coprime_lmult_int) |
31706 | 1000 |
done |
1001 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1002 |
lemma invertible_coprime_nat: "(x::nat) * y mod m = 1 \<Longrightarrow> coprime x m" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1003 |
apply (metis coprime_lmult_nat gcd_1_nat gcd_commute_nat gcd_red_nat) |
31706 | 1004 |
done |
1005 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1006 |
lemma invertible_coprime_int: "(x::int) * y mod m = 1 \<Longrightarrow> coprime x m" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1007 |
apply (metis coprime_lmult_int gcd_1_int gcd_commute_int gcd_red_int) |
31706 | 1008 |
done |
1009 |
||
1010 |
||
1011 |
subsection {* Bezout's theorem *} |
|
1012 |
||
1013 |
(* Function bezw returns a pair of witnesses to Bezout's theorem -- |
|
1014 |
see the theorems that follow the definition. *) |
|
1015 |
fun |
|
1016 |
bezw :: "nat \<Rightarrow> nat \<Rightarrow> int * int" |
|
1017 |
where |
|
1018 |
"bezw x y = |
|
1019 |
(if y = 0 then (1, 0) else |
|
1020 |
(snd (bezw y (x mod y)), |
|
1021 |
fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y)))" |
|
1022 |
||
1023 |
lemma bezw_0 [simp]: "bezw x 0 = (1, 0)" by simp |
|
1024 |
||
1025 |
lemma bezw_non_0: "y > 0 \<Longrightarrow> bezw x y = (snd (bezw y (x mod y)), |
|
1026 |
fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y))" |
|
1027 |
by simp |
|
1028 |
||
1029 |
declare bezw.simps [simp del] |
|
1030 |
||
1031 |
lemma bezw_aux [rule_format]: |
|
1032 |
"fst (bezw x y) * int x + snd (bezw x y) * int y = int (gcd x y)" |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1033 |
proof (induct x y rule: gcd_nat_induct) |
31706 | 1034 |
fix m :: nat |
1035 |
show "fst (bezw m 0) * int m + snd (bezw m 0) * int 0 = int (gcd m 0)" |
|
1036 |
by auto |
|
1037 |
next fix m :: nat and n |
|
1038 |
assume ngt0: "n > 0" and |
|
1039 |
ih: "fst (bezw n (m mod n)) * int n + |
|
1040 |
snd (bezw n (m mod n)) * int (m mod n) = |
|
1041 |
int (gcd n (m mod n))" |
|
1042 |
thus "fst (bezw m n) * int m + snd (bezw m n) * int n = int (gcd m n)" |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1043 |
apply (simp add: bezw_non_0 gcd_non_0_nat) |
31706 | 1044 |
apply (erule subst) |
36350 | 1045 |
apply (simp add: field_simps) |
31706 | 1046 |
apply (subst mod_div_equality [of m n, symmetric]) |
1047 |
(* applying simp here undoes the last substitution! |
|
1048 |
what is procedure cancel_div_mod? *) |
|
44821 | 1049 |
apply (simp only: field_simps of_nat_add of_nat_mult) |
31706 | 1050 |
done |
1051 |
qed |
|
1052 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1053 |
lemma bezout_int: |
31706 | 1054 |
fixes x y |
1055 |
shows "EX u v. u * (x::int) + v * y = gcd x y" |
|
1056 |
proof - |
|
1057 |
have bezout_aux: "!!x y. x \<ge> (0::int) \<Longrightarrow> y \<ge> 0 \<Longrightarrow> |
|
1058 |
EX u v. u * x + v * y = gcd x y" |
|
1059 |
apply (rule_tac x = "fst (bezw (nat x) (nat y))" in exI) |
|
1060 |
apply (rule_tac x = "snd (bezw (nat x) (nat y))" in exI) |
|
1061 |
apply (unfold gcd_int_def) |
|
1062 |
apply simp |
|
1063 |
apply (subst bezw_aux [symmetric]) |
|
1064 |
apply auto |
|
1065 |
done |
|
1066 |
have "(x \<ge> 0 \<and> y \<ge> 0) | (x \<ge> 0 \<and> y \<le> 0) | (x \<le> 0 \<and> y \<ge> 0) | |
|
1067 |
(x \<le> 0 \<and> y \<le> 0)" |
|
1068 |
by auto |
|
1069 |
moreover have "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> ?thesis" |
|
1070 |
by (erule (1) bezout_aux) |
|
1071 |
moreover have "x >= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> ?thesis" |
|
1072 |
apply (insert bezout_aux [of x "-y"]) |
|
1073 |
apply auto |
|
1074 |
apply (rule_tac x = u in exI) |
|
1075 |
apply (rule_tac x = "-v" in exI) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1076 |
apply (subst gcd_neg2_int [symmetric]) |
31706 | 1077 |
apply auto |
1078 |
done |
|
1079 |
moreover have "x <= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> ?thesis" |
|
1080 |
apply (insert bezout_aux [of "-x" y]) |
|
1081 |
apply auto |
|
1082 |
apply (rule_tac x = "-u" in exI) |
|
1083 |
apply (rule_tac x = v in exI) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1084 |
apply (subst gcd_neg1_int [symmetric]) |
31706 | 1085 |
apply auto |
1086 |
done |
|
1087 |
moreover have "x <= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> ?thesis" |
|
1088 |
apply (insert bezout_aux [of "-x" "-y"]) |
|
1089 |
apply auto |
|
1090 |
apply (rule_tac x = "-u" in exI) |
|
1091 |
apply (rule_tac x = "-v" in exI) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1092 |
apply (subst gcd_neg1_int [symmetric]) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1093 |
apply (subst gcd_neg2_int [symmetric]) |
31706 | 1094 |
apply auto |
1095 |
done |
|
1096 |
ultimately show ?thesis by blast |
|
1097 |
qed |
|
1098 |
||
1099 |
text {* versions of Bezout for nat, by Amine Chaieb *} |
|
1100 |
||
1101 |
lemma ind_euclid: |
|
1102 |
assumes c: " \<forall>a b. P (a::nat) b \<longleftrightarrow> P b a" and z: "\<forall>a. P a 0" |
|
1103 |
and add: "\<forall>a b. P a b \<longrightarrow> P a (a + b)" |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1104 |
shows "P a b" |
34915 | 1105 |
proof(induct "a + b" arbitrary: a b rule: less_induct) |
1106 |
case less |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1107 |
have "a = b \<or> a < b \<or> b < a" by arith |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1108 |
moreover {assume eq: "a= b" |
31706 | 1109 |
from add[rule_format, OF z[rule_format, of a]] have "P a b" using eq |
1110 |
by simp} |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1111 |
moreover |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1112 |
{assume lt: "a < b" |
34915 | 1113 |
hence "a + b - a < a + b \<or> a = 0" by arith |
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1114 |
moreover |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1115 |
{assume "a =0" with z c have "P a b" by blast } |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1116 |
moreover |
34915 | 1117 |
{assume "a + b - a < a + b" |
1118 |
also have th0: "a + b - a = a + (b - a)" using lt by arith |
|
1119 |
finally have "a + (b - a) < a + b" . |
|
1120 |
then have "P a (a + (b - a))" by (rule add[rule_format, OF less]) |
|
1121 |
then have "P a b" by (simp add: th0[symmetric])} |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1122 |
ultimately have "P a b" by blast} |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1123 |
moreover |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1124 |
{assume lt: "a > b" |
34915 | 1125 |
hence "b + a - b < a + b \<or> b = 0" by arith |
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1126 |
moreover |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1127 |
{assume "b =0" with z c have "P a b" by blast } |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1128 |
moreover |
34915 | 1129 |
{assume "b + a - b < a + b" |
1130 |
also have th0: "b + a - b = b + (a - b)" using lt by arith |
|
1131 |
finally have "b + (a - b) < a + b" . |
|
1132 |
then have "P b (b + (a - b))" by (rule add[rule_format, OF less]) |
|
1133 |
then have "P b a" by (simp add: th0[symmetric]) |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1134 |
hence "P a b" using c by blast } |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1135 |
ultimately have "P a b" by blast} |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1136 |
ultimately show "P a b" by blast |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1137 |
qed |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1138 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1139 |
lemma bezout_lemma_nat: |
31706 | 1140 |
assumes ex: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> |
1141 |
(a * x = b * y + d \<or> b * x = a * y + d)" |
|
1142 |
shows "\<exists>d x y. d dvd a \<and> d dvd a + b \<and> |
|
1143 |
(a * x = (a + b) * y + d \<or> (a + b) * x = a * y + d)" |
|
1144 |
using ex |
|
1145 |
apply clarsimp |
|
35216 | 1146 |
apply (rule_tac x="d" in exI, simp) |
31706 | 1147 |
apply (case_tac "a * x = b * y + d" , simp_all) |
1148 |
apply (rule_tac x="x + y" in exI) |
|
1149 |
apply (rule_tac x="y" in exI) |
|
1150 |
apply algebra |
|
1151 |
apply (rule_tac x="x" in exI) |
|
1152 |
apply (rule_tac x="x + y" in exI) |
|
1153 |
apply algebra |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1154 |
done |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1155 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1156 |
lemma bezout_add_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> |
31706 | 1157 |
(a * x = b * y + d \<or> b * x = a * y + d)" |
1158 |
apply(induct a b rule: ind_euclid) |
|
1159 |
apply blast |
|
1160 |
apply clarify |
|
35216 | 1161 |
apply (rule_tac x="a" in exI, simp) |
31706 | 1162 |
apply clarsimp |
1163 |
apply (rule_tac x="d" in exI) |
|
35216 | 1164 |
apply (case_tac "a * x = b * y + d", simp_all) |
31706 | 1165 |
apply (rule_tac x="x+y" in exI) |
1166 |
apply (rule_tac x="y" in exI) |
|
1167 |
apply algebra |
|
1168 |
apply (rule_tac x="x" in exI) |
|
1169 |
apply (rule_tac x="x+y" in exI) |
|
1170 |
apply algebra |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1171 |
done |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1172 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1173 |
lemma bezout1_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> |
31706 | 1174 |
(a * x - b * y = d \<or> b * x - a * y = d)" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1175 |
using bezout_add_nat[of a b] |
31706 | 1176 |
apply clarsimp |
1177 |
apply (rule_tac x="d" in exI, simp) |
|
1178 |
apply (rule_tac x="x" in exI) |
|
1179 |
apply (rule_tac x="y" in exI) |
|
1180 |
apply auto |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1181 |
done |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1182 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1183 |
lemma bezout_add_strong_nat: assumes nz: "a \<noteq> (0::nat)" |
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1184 |
shows "\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d" |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1185 |
proof- |
31706 | 1186 |
from nz have ap: "a > 0" by simp |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1187 |
from bezout_add_nat[of a b] |
31706 | 1188 |
have "(\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d) \<or> |
1189 |
(\<exists>d x y. d dvd a \<and> d dvd b \<and> b * x = a * y + d)" by blast |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1190 |
moreover |
31706 | 1191 |
{fix d x y assume H: "d dvd a" "d dvd b" "a * x = b * y + d" |
1192 |
from H have ?thesis by blast } |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1193 |
moreover |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1194 |
{fix d x y assume H: "d dvd a" "d dvd b" "b * x = a * y + d" |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1195 |
{assume b0: "b = 0" with H have ?thesis by simp} |
31706 | 1196 |
moreover |
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1197 |
{assume b: "b \<noteq> 0" hence bp: "b > 0" by simp |
31706 | 1198 |
from b dvd_imp_le [OF H(2)] have "d < b \<or> d = b" |
1199 |
by auto |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1200 |
moreover |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1201 |
{assume db: "d=b" |
41550 | 1202 |
with nz H have ?thesis apply simp |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1203 |
apply (rule exI[where x = b], simp) |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1204 |
apply (rule exI[where x = b]) |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1205 |
by (rule exI[where x = "a - 1"], simp add: diff_mult_distrib2)} |
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1206 |
moreover |
31706 | 1207 |
{assume db: "d < b" |
41550 | 1208 |
{assume "x=0" hence ?thesis using nz H by simp } |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1209 |
moreover |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1210 |
{assume x0: "x \<noteq> 0" hence xp: "x > 0" by simp |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1211 |
from db have "d \<le> b - 1" by simp |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1212 |
hence "d*b \<le> b*(b - 1)" by simp |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1213 |
with xp mult_mono[of "1" "x" "d*b" "b*(b - 1)"] |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1214 |
have dble: "d*b \<le> x*b*(b - 1)" using bp by simp |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1215 |
from H (3) have "d + (b - 1) * (b*x) = d + (b - 1) * (a*y + d)" |
31706 | 1216 |
by simp |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1217 |
hence "d + (b - 1) * a * y + (b - 1) * d = d + (b - 1) * b * x" |
49962
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents:
48562
diff
changeset
|
1218 |
by (simp only: mult_assoc distrib_left) |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1219 |
hence "a * ((b - 1) * y) + d * (b - 1 + 1) = d + x*b*(b - 1)" |
31706 | 1220 |
by algebra |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1221 |
hence "a * ((b - 1) * y) = d + x*b*(b - 1) - d*b" using bp by simp |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1222 |
hence "a * ((b - 1) * y) = d + (x*b*(b - 1) - d*b)" |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1223 |
by (simp only: diff_add_assoc[OF dble, of d, symmetric]) |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1224 |
hence "a * ((b - 1) * y) = b*(x*(b - 1) - d) + d" |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1225 |
by (simp only: diff_mult_distrib2 add_commute mult_ac) |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1226 |
hence ?thesis using H(1,2) |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1227 |
apply - |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1228 |
apply (rule exI[where x=d], simp) |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1229 |
apply (rule exI[where x="(b - 1) * y"]) |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1230 |
by (rule exI[where x="x*(b - 1) - d"], simp)} |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
1231 |
ultimately have ?thesis by blast} |
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1232 |
ultimately have ?thesis by blast} |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1233 |
ultimately have ?thesis by blast} |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1234 |
ultimately show ?thesis by blast |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1235 |
qed |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1236 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1237 |
lemma bezout_nat: assumes a: "(a::nat) \<noteq> 0" |
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1238 |
shows "\<exists>x y. a * x = b * y + gcd a b" |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1239 |
proof- |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1240 |
let ?g = "gcd a b" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1241 |
from bezout_add_strong_nat[OF a, of b] |
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1242 |
obtain d x y where d: "d dvd a" "d dvd b" "a * x = b * y + d" by blast |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1243 |
from d(1,2) have "d dvd ?g" by simp |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1244 |
then obtain k where k: "?g = d*k" unfolding dvd_def by blast |
31706 | 1245 |
from d(3) have "a * x * k = (b * y + d) *k " by auto |
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1246 |
hence "a * (x * k) = b * (y*k) + ?g" by (algebra add: k) |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1247 |
thus ?thesis by blast |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1248 |
qed |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1249 |
|
31706 | 1250 |
|
34030
829eb528b226
resorted code equations from "old" number theory version
haftmann
parents:
33946
diff
changeset
|
1251 |
subsection {* LCM properties *} |
31706 | 1252 |
|
34030
829eb528b226
resorted code equations from "old" number theory version
haftmann
parents:
33946
diff
changeset
|
1253 |
lemma lcm_altdef_int [code]: "lcm (a::int) b = (abs a) * (abs b) div gcd a b" |
31706 | 1254 |
by (simp add: lcm_int_def lcm_nat_def zdiv_int |
44821 | 1255 |
of_nat_mult gcd_int_def) |
31706 | 1256 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1257 |
lemma prod_gcd_lcm_nat: "(m::nat) * n = gcd m n * lcm m n" |
31706 | 1258 |
unfolding lcm_nat_def |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1259 |
by (simp add: dvd_mult_div_cancel [OF gcd_dvd_prod_nat]) |
31706 | 1260 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1261 |
lemma prod_gcd_lcm_int: "abs(m::int) * abs n = gcd m n * lcm m n" |
31706 | 1262 |
unfolding lcm_int_def gcd_int_def |
1263 |
apply (subst int_mult [symmetric]) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1264 |
apply (subst prod_gcd_lcm_nat [symmetric]) |
31706 | 1265 |
apply (subst nat_abs_mult_distrib [symmetric]) |
1266 |
apply (simp, simp add: abs_mult) |
|
1267 |
done |
|
1268 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1269 |
lemma lcm_0_nat [simp]: "lcm (m::nat) 0 = 0" |
31706 | 1270 |
unfolding lcm_nat_def by simp |
1271 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1272 |
lemma lcm_0_int [simp]: "lcm (m::int) 0 = 0" |
31706 | 1273 |
unfolding lcm_int_def by simp |
1274 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1275 |
lemma lcm_0_left_nat [simp]: "lcm (0::nat) n = 0" |
31706 | 1276 |
unfolding lcm_nat_def by simp |
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1277 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1278 |
lemma lcm_0_left_int [simp]: "lcm (0::int) n = 0" |
31706 | 1279 |
unfolding lcm_int_def by simp |
1280 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1281 |
lemma lcm_pos_nat: |
31798 | 1282 |
"(m::nat) > 0 \<Longrightarrow> n>0 \<Longrightarrow> lcm m n > 0" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1283 |
by (metis gr0I mult_is_0 prod_gcd_lcm_nat) |
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
1284 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1285 |
lemma lcm_pos_int: |
31798 | 1286 |
"(m::int) ~= 0 \<Longrightarrow> n ~= 0 \<Longrightarrow> lcm m n > 0" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1287 |
apply (subst lcm_abs_int) |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1288 |
apply (rule lcm_pos_nat [transferred]) |
31798 | 1289 |
apply auto |
31706 | 1290 |
done |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1291 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1292 |
lemma dvd_pos_nat: |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1293 |
fixes n m :: nat |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1294 |
assumes "n > 0" and "m dvd n" |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1295 |
shows "m > 0" |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1296 |
using assms by (cases m) auto |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1297 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1298 |
lemma lcm_least_nat: |
31706 | 1299 |
assumes "(m::nat) dvd k" and "n dvd k" |
27556 | 1300 |
shows "lcm m n dvd k" |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1301 |
proof (cases k) |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1302 |
case 0 then show ?thesis by auto |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1303 |
next |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1304 |
case (Suc _) then have pos_k: "k > 0" by auto |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1305 |
from assms dvd_pos_nat [OF this] have pos_mn: "m > 0" "n > 0" by auto |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1306 |
with gcd_zero_nat [of m n] have pos_gcd: "gcd m n > 0" by simp |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1307 |
from assms obtain p where k_m: "k = m * p" using dvd_def by blast |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1308 |
from assms obtain q where k_n: "k = n * q" using dvd_def by blast |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1309 |
from pos_k k_m have pos_p: "p > 0" by auto |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1310 |
from pos_k k_n have pos_q: "q > 0" by auto |
27556 | 1311 |
have "k * k * gcd q p = k * gcd (k * q) (k * p)" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1312 |
by (simp add: mult_ac gcd_mult_distrib_nat) |
27556 | 1313 |
also have "\<dots> = k * gcd (m * p * q) (n * q * p)" |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1314 |
by (simp add: k_m [symmetric] k_n [symmetric]) |
27556 | 1315 |
also have "\<dots> = k * p * q * gcd m n" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1316 |
by (simp add: mult_ac gcd_mult_distrib_nat) |
27556 | 1317 |
finally have "(m * p) * (n * q) * gcd q p = k * p * q * gcd m n" |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1318 |
by (simp only: k_m [symmetric] k_n [symmetric]) |
27556 | 1319 |
then have "p * q * m * n * gcd q p = p * q * k * gcd m n" |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1320 |
by (simp add: mult_ac) |
27556 | 1321 |
with pos_p pos_q have "m * n * gcd q p = k * gcd m n" |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1322 |
by simp |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1323 |
with prod_gcd_lcm_nat [of m n] |
27556 | 1324 |
have "lcm m n * gcd q p * gcd m n = k * gcd m n" |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1325 |
by (simp add: mult_ac) |
31706 | 1326 |
with pos_gcd have "lcm m n * gcd q p = k" by auto |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1327 |
then show ?thesis using dvd_def by auto |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1328 |
qed |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1329 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1330 |
lemma lcm_least_int: |
31798 | 1331 |
"(m::int) dvd k \<Longrightarrow> n dvd k \<Longrightarrow> lcm m n dvd k" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1332 |
apply (subst lcm_abs_int) |
31798 | 1333 |
apply (rule dvd_trans) |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1334 |
apply (rule lcm_least_nat [transferred, of _ "abs k" _]) |
31798 | 1335 |
apply auto |
31706 | 1336 |
done |
1337 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1338 |
lemma lcm_dvd1_nat: "(m::nat) dvd lcm m n" |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1339 |
proof (cases m) |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1340 |
case 0 then show ?thesis by simp |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1341 |
next |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1342 |
case (Suc _) |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1343 |
then have mpos: "m > 0" by simp |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1344 |
show ?thesis |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1345 |
proof (cases n) |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1346 |
case 0 then show ?thesis by simp |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1347 |
next |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1348 |
case (Suc _) |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1349 |
then have npos: "n > 0" by simp |
27556 | 1350 |
have "gcd m n dvd n" by simp |
1351 |
then obtain k where "n = gcd m n * k" using dvd_def by auto |
|
31706 | 1352 |
then have "m * n div gcd m n = m * (gcd m n * k) div gcd m n" |
1353 |
by (simp add: mult_ac) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1354 |
also have "\<dots> = m * k" using mpos npos gcd_zero_nat by simp |
31706 | 1355 |
finally show ?thesis by (simp add: lcm_nat_def) |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1356 |
qed |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1357 |
qed |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1358 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1359 |
lemma lcm_dvd1_int: "(m::int) dvd lcm m n" |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1360 |
apply (subst lcm_abs_int) |
31706 | 1361 |
apply (rule dvd_trans) |
1362 |
prefer 2 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1363 |
apply (rule lcm_dvd1_nat [transferred]) |
31706 | 1364 |
apply auto |
1365 |
done |
|
1366 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1367 |
lemma lcm_dvd2_nat: "(n::nat) dvd lcm m n" |
35726 | 1368 |
using lcm_dvd1_nat [of n m] by (simp only: lcm_nat_def mult.commute gcd_nat.commute) |
31706 | 1369 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1370 |
lemma lcm_dvd2_int: "(n::int) dvd lcm m n" |
35726 | 1371 |
using lcm_dvd1_int [of n m] by (simp only: lcm_int_def lcm_nat_def mult.commute gcd_nat.commute) |
31706 | 1372 |
|
31730 | 1373 |
lemma dvd_lcm_I1_nat[simp]: "(k::nat) dvd m \<Longrightarrow> k dvd lcm m n" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1374 |
by(metis lcm_dvd1_nat dvd_trans) |
31729 | 1375 |
|
31730 | 1376 |
lemma dvd_lcm_I2_nat[simp]: "(k::nat) dvd n \<Longrightarrow> k dvd lcm m n" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1377 |
by(metis lcm_dvd2_nat dvd_trans) |
31729 | 1378 |
|
31730 | 1379 |
lemma dvd_lcm_I1_int[simp]: "(i::int) dvd m \<Longrightarrow> i dvd lcm m n" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1380 |
by(metis lcm_dvd1_int dvd_trans) |
31729 | 1381 |
|
31730 | 1382 |
lemma dvd_lcm_I2_int[simp]: "(i::int) dvd n \<Longrightarrow> i dvd lcm m n" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1383 |
by(metis lcm_dvd2_int dvd_trans) |
31729 | 1384 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1385 |
lemma lcm_unique_nat: "(a::nat) dvd d \<and> b dvd d \<and> |
31706 | 1386 |
(\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" |
33657 | 1387 |
by (auto intro: dvd_antisym lcm_least_nat lcm_dvd1_nat lcm_dvd2_nat) |
27568
9949dc7a24de
Theorem names as in IntPrimes.thy, also several theorems moved from there
chaieb
parents:
27556
diff
changeset
|
1388 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1389 |
lemma lcm_unique_int: "d >= 0 \<and> (a::int) dvd d \<and> b dvd d \<and> |
31706 | 1390 |
(\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" |
33657 | 1391 |
by (auto intro: dvd_antisym [transferred] lcm_least_int) |
31706 | 1392 |
|
37770
cddb3106adb8
avoid explicit mandatory prefix markers when prefixes are mandatory implicitly
haftmann
parents:
36350
diff
changeset
|
1393 |
interpretation lcm_nat: abel_semigroup "lcm :: nat \<Rightarrow> nat \<Rightarrow> nat" |
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1394 |
proof |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1395 |
fix n m p :: nat |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1396 |
show "lcm (lcm n m) p = lcm n (lcm m p)" |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1397 |
by (rule lcm_unique_nat [THEN iffD1]) (metis dvd.order_trans lcm_unique_nat) |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1398 |
show "lcm m n = lcm n m" |
36350 | 1399 |
by (simp add: lcm_nat_def gcd_commute_nat field_simps) |
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1400 |
qed |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1401 |
|
37770
cddb3106adb8
avoid explicit mandatory prefix markers when prefixes are mandatory implicitly
haftmann
parents:
36350
diff
changeset
|
1402 |
interpretation lcm_int: abel_semigroup "lcm :: int \<Rightarrow> int \<Rightarrow> int" |
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1403 |
proof |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1404 |
fix n m p :: int |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1405 |
show "lcm (lcm n m) p = lcm n (lcm m p)" |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1406 |
by (rule lcm_unique_int [THEN iffD1]) (metis dvd_trans lcm_unique_int) |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1407 |
show "lcm m n = lcm n m" |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1408 |
by (simp add: lcm_int_def lcm_nat.commute) |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1409 |
qed |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1410 |
|
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1411 |
lemmas lcm_assoc_nat = lcm_nat.assoc |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1412 |
lemmas lcm_commute_nat = lcm_nat.commute |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1413 |
lemmas lcm_left_commute_nat = lcm_nat.left_commute |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1414 |
lemmas lcm_assoc_int = lcm_int.assoc |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1415 |
lemmas lcm_commute_int = lcm_int.commute |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1416 |
lemmas lcm_left_commute_int = lcm_int.left_commute |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1417 |
|
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1418 |
lemmas lcm_ac_nat = lcm_assoc_nat lcm_commute_nat lcm_left_commute_nat |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1419 |
lemmas lcm_ac_int = lcm_assoc_int lcm_commute_int lcm_left_commute_int |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
1420 |
|
31798 | 1421 |
lemma lcm_proj2_if_dvd_nat [simp]: "(x::nat) dvd y \<Longrightarrow> lcm x y = y" |
31706 | 1422 |
apply (rule sym) |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1423 |
apply (subst lcm_unique_nat [symmetric]) |
31706 | 1424 |
apply auto |
1425 |
done |
|
1426 |
||
31798 | 1427 |
lemma lcm_proj2_if_dvd_int [simp]: "(x::int) dvd y \<Longrightarrow> lcm x y = abs y" |
31706 | 1428 |
apply (rule sym) |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1429 |
apply (subst lcm_unique_int [symmetric]) |
31706 | 1430 |
apply auto |
1431 |
done |
|
1432 |
||
31798 | 1433 |
lemma lcm_proj1_if_dvd_nat [simp]: "(x::nat) dvd y \<Longrightarrow> lcm y x = y" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1434 |
by (subst lcm_commute_nat, erule lcm_proj2_if_dvd_nat) |
31706 | 1435 |
|
31798 | 1436 |
lemma lcm_proj1_if_dvd_int [simp]: "(x::int) dvd y \<Longrightarrow> lcm y x = abs y" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1437 |
by (subst lcm_commute_int, erule lcm_proj2_if_dvd_int) |
31706 | 1438 |
|
31992 | 1439 |
lemma lcm_proj1_iff_nat[simp]: "lcm m n = (m::nat) \<longleftrightarrow> n dvd m" |
1440 |
by (metis lcm_proj1_if_dvd_nat lcm_unique_nat) |
|
1441 |
||
1442 |
lemma lcm_proj2_iff_nat[simp]: "lcm m n = (n::nat) \<longleftrightarrow> m dvd n" |
|
1443 |
by (metis lcm_proj2_if_dvd_nat lcm_unique_nat) |
|
1444 |
||
1445 |
lemma lcm_proj1_iff_int[simp]: "lcm m n = abs(m::int) \<longleftrightarrow> n dvd m" |
|
1446 |
by (metis dvd_abs_iff lcm_proj1_if_dvd_int lcm_unique_int) |
|
1447 |
||
1448 |
lemma lcm_proj2_iff_int[simp]: "lcm m n = abs(n::int) \<longleftrightarrow> m dvd n" |
|
1449 |
by (metis dvd_abs_iff lcm_proj2_if_dvd_int lcm_unique_int) |
|
27568
9949dc7a24de
Theorem names as in IntPrimes.thy, also several theorems moved from there
chaieb
parents:
27556
diff
changeset
|
1450 |
|
42871
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
haftmann
parents:
41792
diff
changeset
|
1451 |
lemma comp_fun_idem_gcd_nat: "comp_fun_idem (gcd :: nat\<Rightarrow>nat\<Rightarrow>nat)" |
31992 | 1452 |
proof qed (auto simp add: gcd_ac_nat) |
1453 |
||
42871
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
haftmann
parents:
41792
diff
changeset
|
1454 |
lemma comp_fun_idem_gcd_int: "comp_fun_idem (gcd :: int\<Rightarrow>int\<Rightarrow>int)" |
31992 | 1455 |
proof qed (auto simp add: gcd_ac_int) |
1456 |
||
42871
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
haftmann
parents:
41792
diff
changeset
|
1457 |
lemma comp_fun_idem_lcm_nat: "comp_fun_idem (lcm :: nat\<Rightarrow>nat\<Rightarrow>nat)" |
31992 | 1458 |
proof qed (auto simp add: lcm_ac_nat) |
1459 |
||
42871
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
haftmann
parents:
41792
diff
changeset
|
1460 |
lemma comp_fun_idem_lcm_int: "comp_fun_idem (lcm :: int\<Rightarrow>int\<Rightarrow>int)" |
31992 | 1461 |
proof qed (auto simp add: lcm_ac_int) |
1462 |
||
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1463 |
|
31995 | 1464 |
(* FIXME introduce selimattice_bot/top and derive the following lemmas in there: *) |
1465 |
||
1466 |
lemma lcm_0_iff_nat[simp]: "lcm (m::nat) n = 0 \<longleftrightarrow> m=0 \<or> n=0" |
|
1467 |
by (metis lcm_0_left_nat lcm_0_nat mult_is_0 prod_gcd_lcm_nat) |
|
1468 |
||
1469 |
lemma lcm_0_iff_int[simp]: "lcm (m::int) n = 0 \<longleftrightarrow> m=0 \<or> n=0" |
|
44766 | 1470 |
by (metis lcm_0_int lcm_0_left_int lcm_pos_int less_le) |
31995 | 1471 |
|
1472 |
lemma lcm_1_iff_nat[simp]: "lcm (m::nat) n = 1 \<longleftrightarrow> m=1 \<and> n=1" |
|
1473 |
by (metis gcd_1_nat lcm_unique_nat nat_mult_1 prod_gcd_lcm_nat) |
|
1474 |
||
1475 |
lemma lcm_1_iff_int[simp]: "lcm (m::int) n = 1 \<longleftrightarrow> (m=1 \<or> m = -1) \<and> (n=1 \<or> n = -1)" |
|
31996
1d93369079c4
Tuned proof of lcm_1_iff_int, because metis produced enormous proof term.
berghofe
parents:
31995
diff
changeset
|
1476 |
by (auto simp add: abs_mult_self trans [OF lcm_unique_int eq_commute, symmetric] zmult_eq_1_iff) |
31995 | 1477 |
|
34030
829eb528b226
resorted code equations from "old" number theory version
haftmann
parents:
33946
diff
changeset
|
1478 |
|
45264 | 1479 |
subsection {* The complete divisibility lattice *} |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1480 |
|
51489 | 1481 |
lemma semilattice_neutr_set_lcm_one_nat: |
1482 |
"semilattice_neutr_set lcm (1::nat)" |
|
1483 |
by default simp_all |
|
1484 |
||
44845 | 1485 |
interpretation gcd_semilattice_nat: semilattice_inf gcd "op dvd" "(%m n::nat. m dvd n & ~ n dvd m)" |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1486 |
proof |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1487 |
case goal3 thus ?case by(metis gcd_unique_nat) |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1488 |
qed auto |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1489 |
|
44845 | 1490 |
interpretation lcm_semilattice_nat: semilattice_sup lcm "op dvd" "(%m n::nat. m dvd n & ~ n dvd m)" |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1491 |
proof |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1492 |
case goal3 thus ?case by(metis lcm_unique_nat) |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1493 |
qed auto |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1494 |
|
44845 | 1495 |
interpretation gcd_lcm_lattice_nat: lattice gcd "op dvd" "(%m n::nat. m dvd n & ~ n dvd m)" lcm .. |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1496 |
|
45264 | 1497 |
text{* Lifting gcd and lcm to sets (Gcd/Lcm). |
1498 |
Gcd is defined via Lcm to facilitate the proof that we have a complete lattice. |
|
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1499 |
*} |
45264 | 1500 |
|
1501 |
class Gcd = gcd + |
|
1502 |
fixes Gcd :: "'a set \<Rightarrow> 'a" |
|
1503 |
fixes Lcm :: "'a set \<Rightarrow> 'a" |
|
1504 |
||
1505 |
instantiation nat :: Gcd |
|
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1506 |
begin |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1507 |
|
45264 | 1508 |
definition |
51489 | 1509 |
"Lcm (M::nat set) = (if finite M then semilattice_neutr_set.F lcm 1 M else 0)" |
1510 |
||
1511 |
lemma Lcm_nat_infinite: |
|
1512 |
"\<not> finite M \<Longrightarrow> Lcm M = (0::nat)" |
|
1513 |
by (simp add: Lcm_nat_def) |
|
1514 |
||
1515 |
lemma Lcm_nat_empty: |
|
1516 |
"Lcm {} = (1::nat)" |
|
1517 |
proof - |
|
1518 |
interpret semilattice_neutr_set lcm "1::nat" |
|
1519 |
by (fact semilattice_neutr_set_lcm_one_nat) |
|
1520 |
show ?thesis by (simp add: Lcm_nat_def) |
|
1521 |
qed |
|
1522 |
||
1523 |
lemma Lcm_nat_insert: |
|
1524 |
"Lcm (insert n M) = lcm (n::nat) (Lcm M)" |
|
1525 |
proof (cases "finite M") |
|
1526 |
interpret semilattice_neutr_set lcm "1::nat" |
|
1527 |
by (fact semilattice_neutr_set_lcm_one_nat) |
|
1528 |
case True |
|
1529 |
then show ?thesis by (simp add: Lcm_nat_def) |
|
1530 |
next |
|
1531 |
case False then show ?thesis by (simp add: Lcm_nat_infinite) |
|
1532 |
qed |
|
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1533 |
|
45264 | 1534 |
definition |
1535 |
"Gcd (M::nat set) = Lcm {d. \<forall>m\<in>M. d dvd m}" |
|
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1536 |
|
45264 | 1537 |
instance .. |
51489 | 1538 |
|
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1539 |
end |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1540 |
|
45264 | 1541 |
lemma dvd_Lcm_nat [simp]: |
51489 | 1542 |
fixes M :: "nat set" |
1543 |
assumes "m \<in> M" |
|
1544 |
shows "m dvd Lcm M" |
|
1545 |
proof (cases "finite M") |
|
1546 |
case False then show ?thesis by (simp add: Lcm_nat_infinite) |
|
1547 |
next |
|
1548 |
case True then show ?thesis using assms by (induct M) (auto simp add: Lcm_nat_insert) |
|
1549 |
qed |
|
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1550 |
|
45264 | 1551 |
lemma Lcm_dvd_nat [simp]: |
51489 | 1552 |
fixes M :: "nat set" |
1553 |
assumes "\<forall>m\<in>M. m dvd n" |
|
1554 |
shows "Lcm M dvd n" |
|
45264 | 1555 |
proof (cases "n = 0") |
1556 |
assume "n \<noteq> 0" |
|
1557 |
hence "finite {d. d dvd n}" by (rule finite_divisors_nat) |
|
1558 |
moreover have "M \<subseteq> {d. d dvd n}" using assms by fast |
|
1559 |
ultimately have "finite M" by (rule rev_finite_subset) |
|
51489 | 1560 |
then show ?thesis using assms by (induct M) (simp_all add: Lcm_nat_empty Lcm_nat_insert) |
45264 | 1561 |
qed simp |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1562 |
|
45264 | 1563 |
interpretation gcd_lcm_complete_lattice_nat: |
51547
604d73671fa7
avoid odd foundational terms after interpretation;
haftmann
parents:
51489
diff
changeset
|
1564 |
complete_lattice Gcd Lcm gcd Rings.dvd "\<lambda>m n. m dvd n \<and> \<not> n dvd m" lcm 1 "0::nat" |
604d73671fa7
avoid odd foundational terms after interpretation;
haftmann
parents:
51489
diff
changeset
|
1565 |
where |
54257
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
hoelzl
parents:
52729
diff
changeset
|
1566 |
"Inf.INFI Gcd A f = Gcd (f ` A :: nat set)" |
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
hoelzl
parents:
52729
diff
changeset
|
1567 |
and "Sup.SUPR Lcm A f = Lcm (f ` A)" |
51547
604d73671fa7
avoid odd foundational terms after interpretation;
haftmann
parents:
51489
diff
changeset
|
1568 |
proof - |
604d73671fa7
avoid odd foundational terms after interpretation;
haftmann
parents:
51489
diff
changeset
|
1569 |
show "class.complete_lattice Gcd Lcm gcd Rings.dvd (\<lambda>m n. m dvd n \<and> \<not> n dvd m) lcm 1 (0::nat)" |
604d73671fa7
avoid odd foundational terms after interpretation;
haftmann
parents:
51489
diff
changeset
|
1570 |
proof |
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
52397
diff
changeset
|
1571 |
case goal1 thus ?case by (simp add: Gcd_nat_def) |
51547
604d73671fa7
avoid odd foundational terms after interpretation;
haftmann
parents:
51489
diff
changeset
|
1572 |
next |
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
52397
diff
changeset
|
1573 |
case goal2 thus ?case by (simp add: Gcd_nat_def) |
51547
604d73671fa7
avoid odd foundational terms after interpretation;
haftmann
parents:
51489
diff
changeset
|
1574 |
next |
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
52397
diff
changeset
|
1575 |
case goal5 show ?case by (simp add: Gcd_nat_def Lcm_nat_infinite) |
51547
604d73671fa7
avoid odd foundational terms after interpretation;
haftmann
parents:
51489
diff
changeset
|
1576 |
next |
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
52397
diff
changeset
|
1577 |
case goal6 show ?case by (simp add: Lcm_nat_empty) |
51547
604d73671fa7
avoid odd foundational terms after interpretation;
haftmann
parents:
51489
diff
changeset
|
1578 |
next |
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
52397
diff
changeset
|
1579 |
case goal3 thus ?case by simp |
51547
604d73671fa7
avoid odd foundational terms after interpretation;
haftmann
parents:
51489
diff
changeset
|
1580 |
next |
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
52397
diff
changeset
|
1581 |
case goal4 thus ?case by simp |
51547
604d73671fa7
avoid odd foundational terms after interpretation;
haftmann
parents:
51489
diff
changeset
|
1582 |
qed |
604d73671fa7
avoid odd foundational terms after interpretation;
haftmann
parents:
51489
diff
changeset
|
1583 |
then interpret gcd_lcm_complete_lattice_nat: |
604d73671fa7
avoid odd foundational terms after interpretation;
haftmann
parents:
51489
diff
changeset
|
1584 |
complete_lattice Gcd Lcm gcd Rings.dvd "\<lambda>m n. m dvd n \<and> \<not> n dvd m" lcm 1 "0::nat" . |
54257
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
hoelzl
parents:
52729
diff
changeset
|
1585 |
from gcd_lcm_complete_lattice_nat.INF_def show "Inf.INFI Gcd A f = Gcd (f ` A)" . |
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
hoelzl
parents:
52729
diff
changeset
|
1586 |
from gcd_lcm_complete_lattice_nat.SUP_def show "Sup.SUPR Lcm A f = Lcm (f ` A)" . |
45264 | 1587 |
qed |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1588 |
|
45264 | 1589 |
lemma Lcm_empty_nat: "Lcm {} = (1::nat)" |
1590 |
by (fact gcd_lcm_complete_lattice_nat.Sup_empty) (* already simp *) |
|
1591 |
||
1592 |
lemma Gcd_empty_nat: "Gcd {} = (0::nat)" |
|
1593 |
by (fact gcd_lcm_complete_lattice_nat.Inf_empty) (* already simp *) |
|
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1594 |
|
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1595 |
lemma Lcm_insert_nat [simp]: |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1596 |
shows "Lcm (insert (n::nat) N) = lcm n (Lcm N)" |
45264 | 1597 |
by (fact gcd_lcm_complete_lattice_nat.Sup_insert) |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1598 |
|
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1599 |
lemma Gcd_insert_nat [simp]: |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1600 |
shows "Gcd (insert (n::nat) N) = gcd n (Gcd N)" |
45264 | 1601 |
by (fact gcd_lcm_complete_lattice_nat.Inf_insert) |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1602 |
|
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1603 |
lemma Lcm0_iff[simp]: "finite (M::nat set) \<Longrightarrow> M \<noteq> {} \<Longrightarrow> Lcm M = 0 \<longleftrightarrow> 0 : M" |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1604 |
by(induct rule:finite_ne_induct) auto |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1605 |
|
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1606 |
lemma Lcm_eq_0[simp]: "finite (M::nat set) \<Longrightarrow> 0 : M \<Longrightarrow> Lcm M = 0" |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1607 |
by (metis Lcm0_iff empty_iff) |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1608 |
|
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1609 |
lemma Gcd_dvd_nat [simp]: |
45264 | 1610 |
fixes M :: "nat set" |
1611 |
assumes "m \<in> M" shows "Gcd M dvd m" |
|
1612 |
using assms by (fact gcd_lcm_complete_lattice_nat.Inf_lower) |
|
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1613 |
|
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1614 |
lemma dvd_Gcd_nat[simp]: |
45264 | 1615 |
fixes M :: "nat set" |
1616 |
assumes "\<forall>m\<in>M. n dvd m" shows "n dvd Gcd M" |
|
1617 |
using assms by (simp only: gcd_lcm_complete_lattice_nat.Inf_greatest) |
|
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1618 |
|
45264 | 1619 |
text{* Alternative characterizations of Gcd: *} |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1620 |
|
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1621 |
lemma Gcd_eq_Max: "finite(M::nat set) \<Longrightarrow> M \<noteq> {} \<Longrightarrow> 0 \<notin> M \<Longrightarrow> Gcd M = Max(\<Inter>m\<in>M. {d. d dvd m})" |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1622 |
apply(rule antisym) |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1623 |
apply(rule Max_ge) |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1624 |
apply (metis all_not_in_conv finite_divisors_nat finite_INT) |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1625 |
apply simp |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1626 |
apply (rule Max_le_iff[THEN iffD2]) |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1627 |
apply (metis all_not_in_conv finite_divisors_nat finite_INT) |
44890
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
nipkow
parents:
44845
diff
changeset
|
1628 |
apply fastforce |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1629 |
apply clarsimp |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1630 |
apply (metis Gcd_dvd_nat Max_in dvd_0_left dvd_Gcd_nat dvd_imp_le linorder_antisym_conv3 not_less0) |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1631 |
done |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1632 |
|
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1633 |
lemma Gcd_remove0_nat: "finite M \<Longrightarrow> Gcd M = Gcd (M - {0::nat})" |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1634 |
apply(induct pred:finite) |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1635 |
apply simp |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1636 |
apply(case_tac "x=0") |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1637 |
apply simp |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1638 |
apply(subgoal_tac "insert x F - {0} = insert x (F - {0})") |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1639 |
apply simp |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1640 |
apply blast |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1641 |
done |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1642 |
|
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1643 |
lemma Lcm_in_lcm_closed_set_nat: |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1644 |
"finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> ALL m n :: nat. m:M \<longrightarrow> n:M \<longrightarrow> lcm m n : M \<Longrightarrow> Lcm M : M" |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1645 |
apply(induct rule:finite_linorder_min_induct) |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1646 |
apply simp |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1647 |
apply simp |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1648 |
apply(subgoal_tac "ALL m n :: nat. m:A \<longrightarrow> n:A \<longrightarrow> lcm m n : A") |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1649 |
apply simp |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1650 |
apply(case_tac "A={}") |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1651 |
apply simp |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1652 |
apply simp |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1653 |
apply (metis lcm_pos_nat lcm_unique_nat linorder_neq_iff nat_dvd_not_less not_less0) |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1654 |
done |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1655 |
|
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1656 |
lemma Lcm_eq_Max_nat: |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1657 |
"finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> 0 \<notin> M \<Longrightarrow> ALL m n :: nat. m:M \<longrightarrow> n:M \<longrightarrow> lcm m n : M \<Longrightarrow> Lcm M = Max M" |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1658 |
apply(rule antisym) |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1659 |
apply(rule Max_ge, assumption) |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1660 |
apply(erule (2) Lcm_in_lcm_closed_set_nat) |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1661 |
apply clarsimp |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1662 |
apply (metis Lcm0_iff dvd_Lcm_nat dvd_imp_le neq0_conv) |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1663 |
done |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1664 |
|
54437
0060957404c7
proper code equations for Gcd and Lcm on nat and int
haftmann
parents:
54257
diff
changeset
|
1665 |
lemma Lcm_set_nat [code, code_unfold]: |
45992 | 1666 |
"Lcm (set ns) = fold lcm ns (1::nat)" |
45264 | 1667 |
by (fact gcd_lcm_complete_lattice_nat.Sup_set_fold) |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
1668 |
|
54437
0060957404c7
proper code equations for Gcd and Lcm on nat and int
haftmann
parents:
54257
diff
changeset
|
1669 |
lemma Gcd_set_nat [code, code_unfold]: |
45992 | 1670 |
"Gcd (set ns) = fold gcd ns (0::nat)" |
45264 | 1671 |
by (fact gcd_lcm_complete_lattice_nat.Inf_set_fold) |
34222 | 1672 |
|
1673 |
lemma mult_inj_if_coprime_nat: |
|
1674 |
"inj_on f A \<Longrightarrow> inj_on g B \<Longrightarrow> ALL a:A. ALL b:B. coprime (f a) (g b) |
|
1675 |
\<Longrightarrow> inj_on (%(a,b). f a * g b::nat) (A \<times> B)" |
|
1676 |
apply(auto simp add:inj_on_def) |
|
35216 | 1677 |
apply (metis coprime_dvd_mult_iff_nat dvd.neq_le_trans dvd_triv_left) |
34223 | 1678 |
apply (metis gcd_semilattice_nat.inf_commute coprime_dvd_mult_iff_nat |
1679 |
dvd.neq_le_trans dvd_triv_right mult_commute) |
|
34222 | 1680 |
done |
1681 |
||
1682 |
text{* Nitpick: *} |
|
1683 |
||
41792
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
blanchet
parents:
41550
diff
changeset
|
1684 |
lemma gcd_eq_nitpick_gcd [nitpick_unfold]: "gcd x y = Nitpick.nat_gcd x y" |
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
blanchet
parents:
41550
diff
changeset
|
1685 |
by (induct x y rule: nat_gcd.induct) |
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
blanchet
parents:
41550
diff
changeset
|
1686 |
(simp add: gcd_nat.simps Nitpick.nat_gcd.simps) |
33197
de6285ebcc05
continuation of Nitpick's integration into Isabelle;
blanchet
parents:
32960
diff
changeset
|
1687 |
|
41792
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
blanchet
parents:
41550
diff
changeset
|
1688 |
lemma lcm_eq_nitpick_lcm [nitpick_unfold]: "lcm x y = Nitpick.nat_lcm x y" |
33197
de6285ebcc05
continuation of Nitpick's integration into Isabelle;
blanchet
parents:
32960
diff
changeset
|
1689 |
by (simp only: lcm_nat_def Nitpick.nat_lcm_def gcd_eq_nitpick_gcd) |
de6285ebcc05
continuation of Nitpick's integration into Isabelle;
blanchet
parents:
32960
diff
changeset
|
1690 |
|
45264 | 1691 |
subsubsection {* Setwise gcd and lcm for integers *} |
1692 |
||
1693 |
instantiation int :: Gcd |
|
1694 |
begin |
|
1695 |
||
1696 |
definition |
|
1697 |
"Lcm M = int (Lcm (nat ` abs ` M))" |
|
1698 |
||
1699 |
definition |
|
1700 |
"Gcd M = int (Gcd (nat ` abs ` M))" |
|
1701 |
||
1702 |
instance .. |
|
21256 | 1703 |
end |
45264 | 1704 |
|
1705 |
lemma Lcm_empty_int [simp]: "Lcm {} = (1::int)" |
|
1706 |
by (simp add: Lcm_int_def) |
|
1707 |
||
1708 |
lemma Gcd_empty_int [simp]: "Gcd {} = (0::int)" |
|
1709 |
by (simp add: Gcd_int_def) |
|
1710 |
||
1711 |
lemma Lcm_insert_int [simp]: |
|
1712 |
shows "Lcm (insert (n::int) N) = lcm n (Lcm N)" |
|
1713 |
by (simp add: Lcm_int_def lcm_int_def) |
|
1714 |
||
1715 |
lemma Gcd_insert_int [simp]: |
|
1716 |
shows "Gcd (insert (n::int) N) = gcd n (Gcd N)" |
|
1717 |
by (simp add: Gcd_int_def gcd_int_def) |
|
1718 |
||
1719 |
lemma dvd_int_iff: "x dvd y \<longleftrightarrow> nat (abs x) dvd nat (abs y)" |
|
1720 |
by (simp add: zdvd_int) |
|
1721 |
||
1722 |
lemma dvd_Lcm_int [simp]: |
|
1723 |
fixes M :: "int set" assumes "m \<in> M" shows "m dvd Lcm M" |
|
1724 |
using assms by (simp add: Lcm_int_def dvd_int_iff) |
|
1725 |
||
1726 |
lemma Lcm_dvd_int [simp]: |
|
1727 |
fixes M :: "int set" |
|
1728 |
assumes "\<forall>m\<in>M. m dvd n" shows "Lcm M dvd n" |
|
1729 |
using assms by (simp add: Lcm_int_def dvd_int_iff) |
|
1730 |
||
1731 |
lemma Gcd_dvd_int [simp]: |
|
1732 |
fixes M :: "int set" |
|
1733 |
assumes "m \<in> M" shows "Gcd M dvd m" |
|
1734 |
using assms by (simp add: Gcd_int_def dvd_int_iff) |
|
1735 |
||
1736 |
lemma dvd_Gcd_int[simp]: |
|
1737 |
fixes M :: "int set" |
|
1738 |
assumes "\<forall>m\<in>M. n dvd m" shows "n dvd Gcd M" |
|
1739 |
using assms by (simp add: Gcd_int_def dvd_int_iff) |
|
1740 |
||
54437
0060957404c7
proper code equations for Gcd and Lcm on nat and int
haftmann
parents:
54257
diff
changeset
|
1741 |
lemma Lcm_set_int [code, code_unfold]: |
51547
604d73671fa7
avoid odd foundational terms after interpretation;
haftmann
parents:
51489
diff
changeset
|
1742 |
"Lcm (set xs) = fold lcm xs (1::int)" |
45264 | 1743 |
by (induct xs rule: rev_induct, simp_all add: lcm_commute_int) |
1744 |
||
54437
0060957404c7
proper code equations for Gcd and Lcm on nat and int
haftmann
parents:
54257
diff
changeset
|
1745 |
lemma Gcd_set_int [code, code_unfold]: |
51547
604d73671fa7
avoid odd foundational terms after interpretation;
haftmann
parents:
51489
diff
changeset
|
1746 |
"Gcd (set xs) = fold gcd xs (0::int)" |
45264 | 1747 |
by (induct xs rule: rev_induct, simp_all add: gcd_commute_int) |
1748 |
||
1749 |
end |
|
51547
604d73671fa7
avoid odd foundational terms after interpretation;
haftmann
parents:
51489
diff
changeset
|
1750 |